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MATERIALS AND METHODS 

 

Lead Contacts 

Further information and requests for resources and reagents should be directed 

to and will be fulfilled by Lead Contacts Anshul Kundaje (akundaje@stanford.edu) and 

Paul A. Khavari (khavari@stanford.edu).  

 

Materials Availability 

This study did not generate new unique reagents. 

 

Data Availability 

ATAC-seq, ChIP-seq, PAS-seq, HiChIP, and MPRA experiments can all be 

found on the Gene Expression Omnibus (GEO): GSE181416. There are no restrictions 

on the datasets. hg19 annotations can be found at 

https://hgdownload.soe.ucsc.edu/downloads.html, and GENCODE annotations can be 

found at https://www.gencodegenes.org/human/release_19.html. FANTOM5 

transcription factors can be found at 

https://fantom.gsc.riken.jp/5/sstar/Browse_Transcription_Factors_hg19. The 

HOCOMOCO database can be found at https://hocomoco11.autosome.ru/.  
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Code Availability 

Integrative analysis code and scripts can be found at 

https://github.com/vervacity/ggr-project (DOI: https://doi.org/10.5281/zenodo.5161189), 

and the deep learning code can be found at https://github.com/kundajelab/tronn (DOI: 

https://doi.org/10.5281/zenodo.5160998). 

 

Experiments and data processing 

 

Cell culture 

Primary human keratinocytes were isolated from fresh surgically discarded 

neonatal foreskin and cultured in Keratinocyte-SFM (Life Technologies 17005-142) and 

Medium 154 (Life Technologies M-154-500). Pen/Strep (Life Technologies 15140-122) 

and Anti-mycotic (Life Technologies 15240-062) were also added to the culture. 

Keratinocytes were induced to differentiate by addition of 1.2 mM calcium (added 12 

hours after seeding at confluence) for 6 days in full confluence. Cells were harvested 

every 12 hours for a total of 13 timepoints and banked into cell pellets, viable batches 

(10% DMSO in media), or cross-linked with 1% formaldehyde and frozen down at -80 

deg C. Further details can be found on the ENCODE portal under GGR experiment 

accessions (Supplementary Table S1). 
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ATAC-seq experiments 

ATAC-seq1 was performed on all 13 timepoints. Detailed methods can be found 

on the ENCODE portal under GGR experiment accessions (Supplementary Table S1). 

ATAC-seq read alignment, quality filtering, duplicate removal, transposase shifting, 

peak calling, and signal generation were all performed through thes ENCODE ATAC-

seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). Briefly, adapter 

sequences were trimmed, sequences were mapped to the hg19 reference genome 

using Bowtie22 (-X2000), poor quality reads were removed3, PCR duplicates were 

removed4 (Picard Tools MarkDuplicates), chrM reads were removed, reads with MAPQ 

> 30 were retained and read ends were shifted +4 on the positive strand or -5 on the 

negative strand to produce a set of filtered high quality reads. These reads were put 

through MACS25 to get peak calls and signal files. Finally, IDR analysis was run on the 

two replicate peak files to produce an IDR peak file that is the reproducible set of peaks 

across both replicates6. 

 

ChIP-seq experiments 

ChIP-seq for H3K27ac, H3K4me1, H3K27me3, and CTCF were performed on 3 

timepoints (days 0.0, 3.0, and 6.0). Detailed methods can be found on the ENCODE 

portal under GGR experiment accessions (Supplementary Table S1). ChIP-seq read 

alignment, quality filtering, duplicate removal, peak calling, and signal generation were 

all performed through the ENCODE ChIP-seq pipeline. Briefly, sequences were mapped 

to the hg19 reference genome using BWA7, and poor quality reads were removed, PCR 
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duplicates were removed (Picard Tools MarkDuplicates) to produce a set of filtered high 

quality reads with high mapping scores (MAPQ > 30). These reads were put through 

MACS2 to get peak calls and signal files. Finally, reproducible sets of peaks across both 

replicates (naïve overlap peaks) were used for all downstream analysis. The full pipeline 

can be found at https://github.com/ENCODE-DCC/chip-seq-pipeline2. 

 

PAS-seq experiments 

PAS-seq was performed on all 13 timepoints. Detailed methods can be found on 

the ENCODE portal under GGR experimental accessions (Supplementary Table S1). 

PAS-seq read alignment and quantification were performed using the ENCODE RNA-

seq pipeline v2.3.1 (https://github.com/ENCODE-DCC/long-rna-seq-pipeline). Briefly, 

sequences were mapped to the hg19 reference genome with GENCODE V19 

annotations using STAR aligner8 (v2.4.1d), quantification was performed with RSEM9 

(v1.2.21), and signal files were produced with STAR and ucsc tools (v3.0.9, 

http://hgdownload.soe.ucsc.edu/admin/exe).  

DESeq210 was used to identify gene sets that were significantly differentially 

expressed (adjusted p-value < 0.05) in each time point relative to timepoint day 0. We 

used GSEA11 (v3.0) to identify enriched functional terms for each differential gene set. 

We used the GseaPreranked tool and classic scoring scheme, to determine the GSEA 

normalized enrichment score (NES) for skin-relevant gene sets from MSigDB11, 

specifically CORNIFIED_ENVELOPE, KERATINIZATION, and 

KERATINOCYTE_DIFFERENTIATION. 
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HiChIP experiments 

The HiChIP protocol was performed as previously described12 using antibody 

H3K27ac (Abcam, ab4729) on 10 million cells per sample with the following 

modifications. Samples were sheared using a Covaris E220 using the following 

parameters: Fill Level = 10, Duty Cycle = 5, PIP = 140, Cycles/Burst = 200, Time = 4 

minutes and then clarified by centrifugation for 15 minutes at 16100 rcf at 4° C. We 

used 4 ug of antibody to H3K27ac and captured the chromatin-antibody complex with 

34 uL Protein A beads (Thermo Fisher). Qubit quantification following ChIP ranged from 

125-150 ng. The amount of Tn5 used and number of PCR cycles performed were based 

on the post-ChIP Qubit amounts, as previously described12. HiChIP samples were size 

selected by PAGE purification (300-700 bp) for effective paired-end tag mapping and 

where therefore removed of all primer contamination. All libraries were sequenced on 

the Illumina HiSeq 4000 instrument to an average read depth of 300 million total reads. 

HiChIP paired-end reads were aligned to the hg19 genome using the HiC-Pro 

pipeline13. Default settings were used to remove duplicate reads, assign reads to MboI 

restriction fragments, filter for valid interactions, and generate binned interaction 

matrices. HiC-Pro filtered reads were then processed using hichipper14 using the 

{EACH, ALL}  settings to call HiChIP peaks to MboI restriction fragments. HiC-Pro valid 

interaction pairs and hichipper HiChIP peaks were then processed using FitHiChIP15 to 

call significant chromatin contacts using the default settings except for the following: 
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MappSize=500, IntType=3, BINSIZE=5000, QVALUE=0.01, UseP2PBackgrnd=0, 

Draw=1, TimeProf=1. 

 

Analysis of epigenomic and transcriptomic landscapes 

 

Genome annotations: reference genome, transcription factors, known motifs 

We use reference genome hg19 and GENCODE v1916. For conversions between 

Ensemble IDs and HGNC, we use the biomaRt package17 in R. For transcription factors, 

we use the FANTOM5 list of transcription factors18 (Supplementary Table S11). For 

conversion of Entrez IDs to Ensembl IDs, we use the biomaRt package in R.  

For our known motif compendium, we use the HOCOMOCO resource19. To 

improve the quality of the motifs, we first remove non-informative bases on the ends of 

all position weight matrices (PWMs) in the database by clipping positions with 

information content (IC) < 0.4 from the ends in, until we hit a position with IC > 0.4. We 

reduce redundancy in this database using the RSAT matrix clustering methodology20. In 

brief, we cross correlate all motifs to all other motifs in the database, getting both the 

max raw cross correlation (cor) and the max normalized cross correlation (Ncor). The 

Ncor is the max cross correlation normalized by a width metric (divide the length of the 

best cross correlated alignment of the two PWMs by the number of overlapping base 

pairs between the two PWMs). We use 1 - Ncor as a distance metric to build a 

hierarchical clustering of the PWMs. We then merge PWMs from the leaves of the 

hierarchical clustering tree towards the root, stopping at each branch when cutoffs for 
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cor and Ncor (cor < 0.8, Ncor < 0.65) are passed. These cutoffs are the ones empirically 

derived in the RSAT matrix clustering study. We track all PWMs that were merged as 

well as associated Ensembl IDs for the corresponding transcription factors. 

 

Determining a keratinocyte atlas of cis-regulatory elements 

To determine the landscape of accessible regulatory elements across 

keratinocyte differentiation, we take the union set of the ATAC-seq peaks across all 

timepoints, using bedtools merge21, to determine an atlas of cis-regulatory elements 

(CREs). We use the IDR peak files for each timepoint as the peak set for that timepoint. 

This CRE atlas consists of 225,996 accessible regions that are accessible at some 

timepoint in differentiation. At this point in the analysis it was noted that days 3.5, 4.0, 

and 5.5 had small differences that could be attributed to a growth response from media 

changes, which were not noted to significantly change the regions included in the CRE 

atlas but could have important effects on the accessibility signals and downstream 

quantitative analyses. These timepoints were therefore removed for all downstream 

analyses. With our valid timepoints we generated a signal coverage matrix with the 

following computational pipeline. At the biological replicate level, we determined the 

transposase-corrected cut sites (the single base pair locations of transposase binding 

events on genomic DNA) from the sequencing reads by taking the read ends and 

correcting the positions to be +4 on the 5’ end and -5 on the 3’ end. We then count the 

number of cut sites that fall into each element of our CRE atlas to get transposase 

events per biological replicate sample. This gives us a count-based matrix of (regions, 
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samples). This count matrix with replicate information can be appropriately analyzed 

with DESeq2 with its underlying assumptions10. We thus use DESeq2 on all pairs of 

timepoints to get all CREs that have differential signal between any pair of timepoints, 

using an FDR of 0.0005 to give us a post-analysis Bonferroni corrected FDR of 0.05 

across all tests. Under this analysis framework, 47,835 CREs (21% of the CRE atlas) 

were found to be dynamically accessible across differentiation.  

To determine homogeneity and purity of the cell cultures used for data 

generation across keratinocyte differentiation, we utilized available single cell ATAC-seq 

(scATAC-seq) data22, which was provided as counts in regions. We used the master list 

of regions derived from the scATAC-seq data and obtained read counts per replicate 

per timepoint within each region from our ATAC-seq data. This count matrix, along with 

the scATAC-seq count matrix, were normalized with the DESeq2 regularized log 

transform to obtain normalized signal matrices. The signal matrices were then analyzed 

with UMAP23 with nearest neighbors n=15 and all other settings as defaults, and our 

ATAC-seq replicate timepoints were projected into the reduced dimensionality space. 

 

Time series clustering of dynamic CREs with replicate reproducibility 

To group the dynamically accessible CREs into defined trajectories across time, 

we utilized Dirichlet Process-Gaussian Process (DP-GP) time series clustering with 

replicate reproducibility. This analysis framework extends DP-GP time series 

clustering24 to consider replicates and to determine which clusters are reproducible 

across replicates. First, we sum the transposase event counts for each biological 
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replicate into a pooled count for each timepoint. This pooled count matrix is then used to 

calculate the DESeq2 regularized log transform to get a normalized signal matrix, where 

each CRE has a normalized value across timepoints. This same regularized log 

transform is applied to count matrices for replicate 1 and replicate 2, to generate similar 

normalized signal matrices for each replicate that are all normalized to the same 

transform. Then, the signal matrix with the pooled data is subsampled (n=5000 for 

speed, since the algorithm was originally built to run effectively at the scale of 

thousands of genes, not tens of thousands of regions) with the default parameters, 

providing the initial set of time series clusters. The cluster set is filtered for cluster size 

such that any cluster that has a total membership of CREs < 2% of all dynamically 

accessible CREs is removed. The cluster set is further filtered to remove non-dynamic 

trajectories, which are the clusters whose multivariate Gaussian process does not reject 

the null hypothesis of no change across time (in other words, the 0-vector falls in the 

99.9% multivariate confidence interval). We then run reproducibility in the following 

manner. For each CRE, with its corresponding signal trajectory across time, we assign 

the CRE to each cluster that it could match, and this is also done for the pooled signal 

trajectory of that CRE as well as the signal trajectories in the separated replicates. The 

CRE matches a cluster if it’s in the multivariate confidence interval (CI 0.95) for the 

trajectory, and is correlated by Spearman and Pearson correlation (p<0.05). We then 

only keep cluster matches for that CRE if all three trajectories – pooled, replicate 1, and 

replicate 2 – were matches in that cluster. If there is more than one matched cluster, the 

CRE is assigned to the cluster for which it is the least Euclidean distance away from the 
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mean trajectory. If there are no matched cluster, the CRE is considered irreproducible 

across time and discarded. After this is done for all CREs, any clusters that do not have 

matched CREs are discarded. This framework thus allows for utilizing replicate 

information within a time series framework to improve clustering as well as cluster 

membership. Under this analysis, 15 time series patterns of accessibility were found in 

keratinocyte differentiation, comprising 40,103 dynamically accessible and time series 

reproducible CREs.  

 

Analysis of histone modifications in the CRE atlas 

To characterize the diversity of CREs by histone modification, histone marks 

were analyzed with an accessibility-centric approach. For each histone mark (H3K27ac, 

H3K4me1, and H3K27me3), a union set of regions was generated by taking the CREs, 

extending the flanks on either side by 1kbp, and keeping any CREs that overlapped 

peaks for that mark across any of the timepoints. This analysis finds 83,785 CREs 

marked by H3K27ac, 122,395 CREs marked by H3K4me1, and 36,084 CREs marked 

by H3K27me3. We then generated count matrices for each set of CREs in the following 

manner. At the biological replicate level, we determined the midpoints from the paired 

sequencing reads as estimated positions where the histone was present on genomic 

DNA. We then count the number of read midpoints that fall into each flank-extended 

element of each CRE to get marked histone events per biological replicate sample. This 

gives us a count-based matrix of (regions, samples). This count matrix with replicate 

information can be appropriately analyzed with DESeq2 with its underlying 
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assumptions10. We thus use DESeq2 on sequential pairs of timepoints to get 

differentially marked CREs across time. Given three possible transitions (increase, no 

change, decrease in histone mark signal), and three timepoints (day 0, 3, and 6) for 

which histone mark data was collected, we enumerate 9 possible patterns for histone 

marks across time.  

 

Analysis of chromatin states in the CRE atlas  

To characterize the diversity of CREs by chromatin state, the histone mark 

analysis from above was used to consider all histone marks together. Chromatin states 

were generated by enumeration. With 9 possible patterns for each histone mark and 

three assayed marks, the total possible chromatin states is 729. However, most of the 

possible states do not appear, demonstrating a much more limited set of states.  

 

Determining the transcriptomic atlas of keratinocyte differentiation 

To determine the landscape of transcripts across keratinocyte differentiation, we 

first determine the set of expressed genes at each timepoint. We do this by first 

normalizing the full matrix of protein-coding transcripts across timepoints using the rlog 

function from DESeq210, and then setting an empirical threshold based on the best 

separation of a Gaussian mixture model on the rlog normalized values (threshold = 4.0). 

We then take the union of all expressed genes across timepoints to determine the 

transcriptomic atlas, which consists of 12,190 genes. We then use DESeq2 on all pairs 

of timepoints to get all genes that have differential signal between any pair of 
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timepoints, using an FDR of 0.0005 to give us a post-analysis Bonferroni corrected FDR 

of 0.05 across all tests. Under this analysis framework, 5,046 genes (41% of the 

transcriptome atlas) were found to be dynamically accessible across differentiation. 

 

Time series clustering of dynamic genes with replicate reproducibility 

To group the dynamic genes into defined trajectories across time, the same 

framework used for the dynamic CREs was also utilized for the dynamic genes (see 

above section, “Time series clustering of dynamic CREs with replicate reproducibility”). 

Under this analysis, 11 time series patterns of expression were found in keratinocyte 

differentiation, comprising 3,610 genes (29% of the transcriptomic atlas) that are 

dynamic and time-series reproducible. 

 

Analysis of chromatin conformation 

To determine a set of loops for downstream analyses, a replicate-based analysis 

was run to get replicate reproducible loops. For each timepoint, loops were generated 

for the pooled data (aggregated across both replicates), replicate 1, and replicate 2. 

Consensus loops were generated by getting the consensus endpoints from the union 

merge across the pooled, replicate 1, and replicate 2 endpoints. These were filtered 

such that each loop had a non-zero value for the pooled version, replicate 1 version, 

and replicate 2 version. These values were run through IDR (p<0.05) to keep loops that 

were replicate consistent6. These loops were then merged across timepoints to get the 
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union set of replicate consistent loops across differentiation. Under this analysis, 

101,884 loops were replicate consistent. 

 

Linking by proximity 

We utilize an exponential decay function e(-ld) to compute a linkage score 

between each ATAC-seq peaks and each expressed genes separated by distance d. 

Since previous work has shown that the median distance for functional distal regulatory 

elements to gene TSSs is 25kb25, we fit the exponential decay function such that the 

median score is at 25kb (i.e., l = ln(2)/25000). We then keep all peak-gene links that are 

within 100kb of each other. For curating a gene set linked to a region set, we use the 

above links to get genes that are proximally linked to the regions where 1) the genes 

are expressed at some point in the timecourse, 2) the gene TSS is within 100kb 

upstream or downstream of a region, 3) the summed score for the gene is > 0.5. For 

example, if two regions are within 100kb of a gene TSS and the sum of the link scores 

for the two regions is 0.51, then the gene is kept as part of the downstream gene set, 

with the corresponding summed score. We then use this summed score to rank the 

genes so that a ranked enrichment tools can be used. This linking and scoring strategy 

is the main strategy used to find gene sets to use in gene set enrichment analyses.  

 

Deep learning on dynamic regulatory DNA sequence 
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Convolutional neural networks on DNA sequence 

We trained multi-task convolutional neural networks (CNNs) to accurately map 1 

kbp DNA sequence regions across the genome to quantitative read outs of chromatin 

accessibility and multiple histone marks in each time point of keratinocyte differentiation. 

CNNs can learn complex sequence patterns that are predictive of genome-wide 

chromatin accessibility and histone mark profiles. We use a multi-stage, transfer 

learning training regimen to maximize prediction performance and model stability by 

leveraging large compendia of chromatin accessibility data across 100s of diverse 

tissues. 

 

Architecture 

We used the previously optimized multi-task Basset CNN architecture for 

predicting genome-wide chromatin accessibility from DNA sequence across multiple 

samples26. The inputs to the model are 1 kbp long DNA sequences that are one-hot 

encoded (A=[1,0,0,0], C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]). The Basset model has 

three convolutional layers with the following parameters: the first layer has 300 filters of 

size (1, 19) and stride (1, 1) followed by batch normalization, a ReLU non-linearity, and 

max-pooling with size (1, 3) and stride (1, 3); the second layer has 200 filters of size (1, 

11) and stride (1, 1) followed by batch normalization, a ReLU non-linearity, and max-

pooling with size (1, 4) and stride (1, 4); the third layer has 200 filters of size (1, 7) and 

stride (1, 1) followed by batch normalization, a ReLU non-linearity, and max pooling with 

size (1, 4) and stride (1, 4). After the convolutional layers there are two fully connected 
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layers, each with 1000 neurons, followed by batch normalization, a ReLU non-linearity, 

and dropout where the keep probability is 0.7. The final layer mapped to multiple 

outputs (multi-task output) spanning the time points and each of the different types of 

molecular read outs (chromatin accessibility or histone marks). We use binary or 

continuous output labels and associated loss functions in the multi-stage training (see 

below). When training on binary labels (accessible vs. not accessible or bound vs. 

unbound), we use the binary cross-entropy loss function with logistic outputs. When 

training on continuous, quantitative measures of accessibility or histone marks, we use 

the mean-squared error loss function with linear outputs. The multi-task loss is the sum 

of the loss over all tasks. 

 

Multi-stage transfer learning regimen 

We bin the genome into 1 kbp windows with a stride of 50 bp. Each bin can serve 

as an example in a training, validation/tuning or test set. We divide chromosomes into 

10 folds (Supplementary Table S7). We use a cross-validation set up where we use 8 

folds for training, 1 for validation/tuning, 1 for testing.  

We use a multi-stage training regimen to maximize performance and model 

stability. In stage 1, we train a ‘reference’ multi-task CNN model with randomly initialized 

parameters (variance scaling initialization, ie Xavier intialization) on DNase-seq and TF 

ChIP-seq data from a large collection of biosamples from the ENCODE and Roadmap 

Epigenomics Project27,28. All datasets used are detailed in Supplementary Tables S8, 

S9. In this stage, the labels associated with each input sequence are binary. A 1 kbp 
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sequence in the genome is assigned a positive label for a particular task (DNase-seq or 

TF ChIP-seq in a specific biosample), if the central 200bp of the sequence overlaps a 

DNase-seq or TF ChIP-seq peak in the biosample by at least 50%. All other bins in the 

genome are assigned negative labels for that task. The possible negative labeled bins 

significantly outnumber the positive labeled bins, since much of the genome is not 

accessible (or not TF bound). Hence, we use a subset of informative negative examples 

from the training chromosomes to train the models. For each task, we include negative 

labeled bins flanking every positive labeled bin (3 flanks, stride 50bp, on either side of 

the region). We further sample negatively labeled bins (half as many positive bins in the 

task). Finally, we include bins that overlap a comprehensive catalog of DNase-seq 

peaks28. This generates a dataset with reasonable class imbalances per task while 

maintaining diversity in negative examples29.  

In stage 2, we initialize a multi-task CNN model with the parameters derived from 

the reference ENCODE/Roadmap model30 and then train it to map DNA sequence bins 

to binary labels corresponding to important region sets as derived in the 

characterization of the epigenomic landscape. These important region sets include: 

ATAC-seq, H3K27ac, H3K4me1, and H3K27me3 region sets by timepoint, the region 

sets defined by accessibility time series clustering, region sets defined by dynamic and 

static histone modifications, region sets defined by dynamic and static chromatin states, 

and region sets from TF ChIP-seq experiments for CTCF, TP63, ZNF750, POL2, and 

KLF4. In total these region sets comprise 119 binary label sets used for multitask 
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training. The genomic bins for training and their associated binary labels for each of the 

tasks are constructed as described above31.  

In the final stage 3, we initialize a multi-task CNN with the parameters of the 

binary keratinocyte model from stage 232. We then train the model CNN with the mean-

squared error regression loss function to map DNA sequence bins to continuous, 

quantitative measures of ATAC-seq, H3K27ac ChIP-seq and H3K4me1 ChIP-seq in our 

keratinocyte differentiation time course (19 tasks). The genomic bins used for training 

cover the union of peaks across all time points. For each 1 kbp sequence bin, we 

compute the average of the log of the smoothed depth-normalized read coverage (log of 

the MACS2 fold-enrichment of smoothed observed 5’ end counts relative to expected 

local Poisson background) over the central 200 bp of the bin for ATAC-seq or over the 

entire 1 kbp for histone marks. The average is computed using bigWigAverageOverBed 

(column mean0). The average signal scores are normalized using quantile 

normalization across all time points for each of the assays (ATAC, H3K27ac, and 

H3K4me1). These normalized scores are used as quantitative labels for each bin.  

We use the same cross-validation folds for training, tuning and testing across all 

stages. The model parameters are transferred across stages to exactly match the 

cross-validation fold structure. Hence, for each fold, the test sets are completely held-

out across all stages of training. This multi-stage training set up allows the model to 

utilize larger sets of existing data to improve its understanding of DNA sequence and 

regulatory logic encoded in the human genome. 
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Training hyperparameters 

The following hyperparameters were used for all models at all stages. We train 

for a maximum of 30 epochs with early stopping, where the patience (number of epochs 

of nonimproved performance before stopping) is 3 and the metric considered is average 

AUPRC across all tasks on the validation set. The loss function for classification models 

is binary cross entropy, and the loss function for regression is mean squared error 

(MSE). The optimizer used is RMSprop with a learning rate of 0.002, a decay of 0.98, 

and a momentum of 0.0.  

 

Performance evaluation 

We evaluate on the held-out test chromosomes of each fold, calculating our 

performance metrics across the entire length of the chromosomes (genome-wide 

evaluation). For each task, we use the area under the precision-recall curve (AUPRC) to 

measure performance of the binary models and Spearman’s R and Pearson’s R to 

measure performance of the regression models. 

 

Prediction calibration through quantile normalization 

Using MSE loss on regression models provides effective ranking across 

predictions in the same task, but the prediction outputs may not be well calibrated to 

match the observed output labels. As such, we rescale the model’s continuous output 

predictions by quantile normalizing the distribution of the model predictions with respect 

to the distribution of the ground truth measured labels. We obtain prediction scores for a 
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random set of 1000 examples, which then provides us with a distribution of predicted 

scores and a corresponding distribution of the labels. We can then use those 

distributions to quantile match a prediction score value to a label score (for example, we 

can determine that a prediction score is in the 90th percentile of the distribution of 

prediction scores and should be matched to the 90th percentile of the distribution of 

label scores). Importantly this re-scaling does not actually change the performance of 

the model, it simply re-calibrates the output. Additionally, given that the continuous 

signal labels across tasks are quantile normalized relative to each other, the re-

calibration of the prediction scores also normalizes the prediction scores across tasks. 

 

Inference of predictive motif instances  

 

Overview 

The multi-task CNNs, described above, map every candidate regulatory DNA 

sequence to quantitative measures of chromatin accessibility at each time point in the 

differentiation time course. We developed an interpretation framework to interrogate the 

model and decipher motif instances in each candidate element that are predictive of 

chromatin accessibility at each time point. First, we use gradient based feature 

attribution methods to decompose the predicted output (at each time point) for an input 

sequence in terms of contribution scores of each nucleotide in the sequence. We 

develop methods to stabilize and normalize the scores. We develop stringent null 

models to identify statistically significant contribution scores. We then use a large 



Kim, et al 

 23 

compendium of pre-compiled TF motifs to scan and score the sequences as well as the 

contribution score profiles. We develop stringent null models to infer predictive motif 

instances that have statistically significant contribution scores and sequence match 

scores. The following sections provide details for each of these steps. 

  

Estimating nucleotide-resolution contribution scores 

The gradient of the predicted output with respect to each base at each position in 

the input DNA sequence, gated by the observed base, estimates the sensitivity of the 

output to infinitesimal changes in the input33. This measure of importance is often 

referred to as input-gated gradients. The method is efficient since a single 

backpropagation pass can be used to estimate the contribution of all nucleotides in an 

input DNA sequence to a specific output prediction. 

We compared the input-gated gradient scores to contribution scores derived from 

another related approach called DeepLIFT34 on a subset of the time points. DeepLIFT 

backpropagates a score, analogous to gradients, which is based on comparing the 

activations of all the neurons in the network for the input sequence to those obtained 

from neutral ‘reference’ sequences. We use 12 dinucleotide-shuffled versions of each 

input sequence as reference sequences. We used the DeepSHAP implementation of 

DeepLIFT 

(https://github.com/slundberg/shap/blob/0.28.5/shap/explainers/deep/deep_tf.py) to 

obtain contribution scores for all observed bases in each sequence. 
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We estimated input-gated gradient and DeepLIFT contribution scores for all 

nucleotides in all sequences with respect to quantitative chromatin accessibility 

predictions for three time points (0h-early, 3h-mid and 6h-late), using each of the 

models for the 10 folds of cross-validation. For each method, we averaged the scores 

for each sequence in each time point across all the 10 folds. For each sequence, we 

used cosine similarity to compare the average input-gated gradient and DeepLIFT score 

profiles separately. We observed high similarity between input-gated gradients and 

DeepLIFT scores (median cosine similarity across all sequences and all the 3 time 

points = 0.8736). While gradient based scores are often more unstable and less 

accurate than DeepLIFT scores, the regularization of our models via the multi-stage 

transfer learning and averaging over folds, greatly stabilizes the gradient based scores. 

Hence, we decided to use input-gated gradient scores as contribution scores for all 

downstream analyses, since it is more efficient than DeepLIFT and produces very 

similar contribution score profiles with respect to motif instance discovery. 

 

Estimating statistically significant contribution scores 

For each input sequence, we compute input-gated gradient score profiles from 

dinucleotide shuffled versions of the sequence. We use these scores to construct an 

empirical null distribution of contribution scores for that sequence. We use that empirical 

null distribution to derive empirical statistical significance of the observed contribution 

scores. We use a threshold of p < 0.01 to call statistically significant scores. The scores 

of all positions that do not pass the significance threshold are set to 0. 
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Normalization of contribution scores 

We normalize the contribution score profile of each sequence by dividing the 

score of each position by the sum of the absolute value of contribution scores across 

the entire sequence and multiplying them by the predicted output.  

 

Trimming contribution scores 

We observed that statistically significant contribution scores peaked within 160 

bp for the peak summit. Hence, we trim the DNA sequences from its original 1000bp 

context to the central 160bp for downstream analyses. We further eliminate the trimmed 

sequences from downstream analyses that have less than 10 base pairs of significant 

scores. These shorter sequences are also compatible with testing in reporter constructs. 

 

Average contribution score profiles across all folds for each sequence in each 

time points 

We estimate contribution score profiles for each sequence with respect to 

predictions in each of the time points using models from each of the 10 folds. These 

score profiles are filtered for statistical significance, normalized and trimmed as 

described above. We average the contribution scores of each position in each 

sequence for each time point, across the 10 folds. We compute the 99% confidence 

interval for each position using the scores from the 10 folds. If the confidence interval 
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includes 0, the score of the position is set to 0, else it is set to be the average score 

across the 10 folds.  

 

Validation of contribution scores by Allele-sensitive ATAC (asATAC) analysis 

We utilized our ATAC-seq data to determine allele-sensitive accessible sites. 

Since the data was collected from primary samples, we were able to utilize an allele-

sensitive ATAC-seq analysis to determine a number of single nucleotide polymorphisms 

(SNPs) that exhibited significant allelic imbalance of ATAC-seq reads. Utilizing 

QuaSAR35, a computational framework for calling genotypes and allelic imbalanced 

sites, we were able to call 16,686 heterozygous SNPs and capture 283 SNPs with 

statistically significant (FDR < 10%) allelic sensitivity across our two patient samples 

(and across all ATAC timepoints). We estimated contribution score profiles for the 

sequences containing each of these 16,686 SNPs, to determine if the SNP locations 

overlapped statistically significant contribution scores and whether the models predicted 

differential accessibility prediction for the two alleles. 

 

Identifying dynamic predictive motif instances using sequence match and 

contribution scores 

We identify dynamic predictive motif instances in each input sequence across 

time points, for each of the known motifs in the motif compendium, by scanning and 

scoring the sequence as well as the dynamic the contribution score profiles derived 

from the model.  
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First, for each PWM motif, we compute sequence match scores at every position 

in each sequence. The scanning and scoring can be implemented as a convolution 

operation. Hence, we use the deep learning framework to implement a single 

convolutional layer with filters corresponding to each of the PWMs in the deep learning 

framework. When loading the PWM weights into the filters, we pad the weights to get all 

filters to be the same size, normalize by the length of the nonzero weights (divide by the 

length), and convert the weights to a unit vector (divide by L1 norm). We use the 

convolutional layer to scan and score all PWMs across the forward and reverse 

complement of each one-hot encoded sequence. We also use the same operation to 

scan and score dinucleotide shuffled versions of each of the genomic sequences. We 

thus obtain an empirical null distribution of match scores for each PWM for each 

sequence. We identify positions with significant sequence match scores as those that 

pass p < 0.05 based on the empirical distributions. For any sequence, the significant 

positions based on sequence match scores will be identical across all time points.  

Next, we use the PWMs to scan and score the dynamic contribution score 

profiles for each sequence in each time point. Essentially, we repeat the same 

convolution operation using PWM filters but using the contribution score profiles to 

weight the one-hot encoded sequences and their reverse complements. Hence, we 

obtain contribution weighted match scores to the PWMs. We once again retain 

statistically significant contributed weighted match scores, using a p < 0.05 threshold, 

based on null distributions of the contribution weighted match scores for dinucleotide 

shuffled sequences. We compute these contribution weighted match scores and 
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significance separately for the positive contribution scores and negative contribution 

scores, as negative scores can influence PWM weights detrimentally (e.g. negative 

PWM weight value that now contributes positively because of a negative contribution 

score.)  

Our final set of predictive motif instances for each sequence in each time point 

correspond to positions that have significant sequence match scores and significant 

contribution weighted match scores. Since the contribution score profiles for each 

sequence can change across time points, the predictive motif instances are dynamic 

across time points.  

 

Identifying significant differential motifs between two sets of sequences  

We developed an approach to identify significant differential motifs between any 

foreground set of sequences relative to a background set of sequences. We use the 

sequences belonging to each dynamic trajectory as foreground region sets. First, we 

identify predictive motif instances for all PWMs in both sets using the method described 

above. We then use bootstraps of GC-content matched background genomic 

sequences (n=1000) that do not overlap any accessible peaks to estimate a null 

distribution of the number of PWM hits (average across the sequences in the 

bootstrapped background set). We then estimate an empirical p-value for each PWM in 

the foreground relative to these bootstrapped backgrounds. We use Storey’s q-value 

method to perform a multiple hypothesis correction. We use an q-value threshold of 

10% to identify statistically significant differential PWMs. 



Kim, et al 

 29 

 

Comparison to conventional motif discovery using HOMER 

To determine the utility of using neural net motifs for motif discovery, we 

compared the predictive motif inferred from our interpretation framework that leverages 

neural network derived contribution scores to an exemplar conventional motif discovery 

and enrichment method called HOMER (Hypergeometric Optimization of Motif 

EnRichment)36. HOMER was run with default parameters on foreground set of 

sequences underlying ATAC-seq peaks of CREs belong to each dynamic trajectory 

cluster against the background set of all CREs across the entire differentiation time 

course. The union set of motifs discovered by HOMER across the dynamic trajectories 

was compared to the union of predictive motifs inferred using our framework. 

 

Comparison to predictive motif instances to all motif instances based on activity 

correlation to TF expression 

We also compared our predictive motif instances to all motif instances identified 

solely based on sequence motif match scores by computing correlations of the motif 

activity across time points to RNA expression of TFs annotated to bind the motifs. 

Specifically, for the predictive motif instances, we use the average of the contribution-

weighted motif match scores over all predictive instances of each motif at each time 

point as the measure of motif activity. For all motif instances based on sequence-only 

motif match scores, we used the average chromatin accessibility signal across peaks 

overlapping all instances of each motif as the activity scores.  
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Validation of predictive motif sites by TF ChIP-seq  

The predictive motif instances are a subset of all sequence-based motif 

instances that also have significant contribution scores. We hypothesized that predictive 

motif instances are more likely to distinguish those that are bound by TFs from unbound 

motif instances. Hence, we used publicly available TF ChIP-seq to analyze occupancy 

over these motif sites. First, for each TF with available ChIP-seq data, we used our 

models to obtain all predictive motif instances of the PWM for the TF. We also collated a 

control set of motif instances with significant sequence match scores that are not 

marked as predictive and are matched for accessibility to the set of predictive instances. 

We matched for accessibility to account for confounding effects of differentially 

accessible regions. Using pre-processed normalized (MACS2 derived fold enrichment 

of smoothed 5’-end read coverage relative to local Poisson background) bigwigs from 

Cistrome37, we contrasted the average the ChIP-seq signal profile over predictive motif 

instances versus control motif instances using a +/- 1 kbp window (20 p bins) around 

the instances38.  

 

Validation of predictive motif sites by ATAC-seq footprinting analysis 

As above, we separated motif instances of each PWM into two sets depending 

on whether they were marked as predictive or not, matched for GC content of the 

surround sequencing context. We then utilized the HINT footprinting tool39 to generate 

average ATAC-seq bias-corrected cut site coverage profiles over the two sets of motif 
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instances using a +/-250 bp window around the motif. We normalized the average 

footprint profile by computing the fold enrichment of average footprint signal at each 

position relative to a reference. The reference was computed by averaging the footprint 

signal in the 50bp flanks on either side of the 250 bp footprint window. We computed 

the ‘average footprint height’ as the area under the normalized footprint profile in a +/- 

100 bp window around the motif center, excluding the central +/15 bp around the motif 

center. We computed the ‘average footprint depth’ as the area under the local maximum 

of the normalized average footprint profile within +/- 10bps on either side of the motif 

center. 

 

Identifying putative TFs binding the motifs based on correlation of weighted PWM 

scores and TF expression 

Since the contribution score profiles for each sequence are dynamic across the 

time points, the predictive motif instances within each sequence also have dynamic 

contribution scores across the time points. For each PWM, we identify the locations of 

all predictive motif instances across all the time points. Each instance is represented by 

an instance activity vector across time consisting of contribution scores (sum over all 

positions in the instance) for each of the time points. For a pre-defined set of 

sequences, we first identify all significant differential motifs relative to a background set 

(as described above). For each motif, we obtain a motif activity vector for the set of 

sequences as the average of the activity vectors over all its predictive instances in those 

sequences. We identify all candidate TFs associated with the motifs (TFs of the same 
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family often bind similar motifs). For each candidate TF, we extract the RNA-seq 

expression profile (variance stabilized rlog transformed counts from DESeq2) across the 

time points. We compute the Pearson correlation between the TF expression profile and 

its motif activity vector. We retain TFs that are expressed in keratinocytes (> 1 TPM) 

and exhibit a correlation of at least 0.75 with the activity vectors of associated motifs. 

 

Homotypic motif syntax analyses 

 To estimate the effects of density (number of instances) of a motif of interest on 

accessibility at a specific time point, we designed synthetic DNA sequences by 

embedding varying number (from 1 to 6) of motif instances (the best matching 

sequence to the PWM of the motif) in the central 200 bp of 1 kb sequences randomly 

sampled from the genome avoiding the union of ATAC-seq peaks across the entire time 

course. We then used the models to predict accessibility for each sequence.  

To characterize motif affinity rules in genomic regions, we used a surrogate score 

for affinity as the log odds scores of predictive motif instances. To determine functional 

enrichments of homotypic motif cluster region sets, proximity linking as described above 

was used to link regions to gene sets, and gProfiler40 was used to determine 

enrichments. 

 

Estimating interaction effects between motifs 
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In silico mutagenesis scores for motif instances 

We use each set of candidate regulatory elements that belong to each trajectory 

of accessibility dynamics as a foreground set of sequences to identify significant 

differential motifs relative to the background set of all peaks. As described above, we 

identify predictive motif instances of differential motifs by scanning sequence and 

gradient based contribution score profiles with the known motif compendium. We use an 

in-silico motif mutagenesis approach to further corroborate and filter high-confidence 

predictive motif instances. Specifically, we expect in-silico perturbation of predictive 

motif instances to induce (1) a significant change in the predicted output of the model, 

(2) a significant change in the contribution scores across the sequence.  

We use two complementary approaches to perturb motif instances. The first 

approach called the “motif scramble” method, randomly scrambles the 10 bp sequence 

around the center of a predictive motif instance. The scramble maintains the sequence 

composition of the window while destroying the precise sequence of the motif instance. 

The second approach, called the “point mutation” method, mutates the most influential 

base pair with the highest contribution score in the 10bp window around the center of 

the motif instance. The position is mutated to the base with the most detrimental 

predicted effect i.e. the base with the most negative gradient score at that position. For 

both types of mutations, we compute the ‘mutagenesis effect size of a motif instance’ as 

the difference in the predicted output (units of log depth normalized coverage of ATAC-

seq signal) of the model for the mutated sequence relative to the wild type. We also 

recompute the contribution score profile of the mutated sequence and record the 
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difference in contribution score (‘delta contribution score’) of each position in the 

sequence relative to the wild type contribution score profile. 

We generate null control distributions for the mutagenesis effect sizes and 

change in contribution scores as follows. First, we identify 10 randomly chosen positions 

that have non-significant contribution scores (set to 0 after thresholding for significance) 

in the central 200 bp of each wild type sequence. We expect mutations to these 

positions to have no significant effect on the output or contribution scores of other 

positions in the sequence. We mutate (point mutation or scramble around) each of 

these 10 positions and compute the difference in the output prediction as well the delta 

contribution scores for all the other positions in the sequence. We fit separate Gaussian 

null distributions to the mutagenesis scores and the delta contribution scores from these 

10 expected null mutations. The use these null distributions to estimate the statistical 

significance (p-value < 0.1) of mutagenesis scores and delta contribution score profiles 

for each predictive motif instances.  

We identify candidate epistatic partners of a motif instance in a sequence, as all 

other predictive motif instances in the sequence that overlap positions with significant 

delta contribution scores of a target motif instances in the sequence. We have 

previously described this approach as Deep Feature Interaction Maps41. 

 

Functional enrichment of co-occurring pairs of predictive motifs 

We associate each of the regulatory sequences of accessible peaks supporting a 

combinatorial motif set to proximal genes as follows. For sequence, we first identify up 
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to two closest candidate genes (based on distance from TSS) within a +/- 500 kb of the 

sequence, such that the genes are expressed in at least one of the time points in our 

differentiation time course. We then restrict all peak-gene associations to those that 

exhibit significant correlation between the ATAC-seq enrichment of the peaks (log fold 

enrichment) and the RNA-seq (TPM) expression levels of the genes across the time 

course. We thus obtain a gene set that is putatively regulated by any combinatorial motif 

set. We then test the gene sets for enrichment of functional annotations using 

gProfiler40. We use a background set of all genes expressed at any timepoint in 

differentiation time course) to get functional enrichments. We keep combinatorial rules 

that are functionally enriched for skin-related terms. We also combine combinatorial 

rules that were discovered in different trajectories but marked with the motif combination 

to create a set of rules that are all distinct motif combinations. 

 

Testing interaction effects between pairs of motifs with combinatorial in silico 

mutagenesis 

Co-occurring pairs of predictive motifs in a regulatory sequence can have 

different types of quantitative joint effects on chromatin accessibility (depth normalized 

ATAC-seq read coverage). We explore three types of joint effects. Lack of motif 

interactions would manifest as independent, additive effects on coverage. Interactions 

between motifs learned by the model would manifest as multiplicative (additive in log 

space) or super-multiplicative effects (multiplicative in log space) on coverage. For all 

pairs of functionally enriched pairs of co-occurring motifs, we identified all the 
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sequences containing predictive instances of the pair (as described above). We then 

used two complementary approaches to test each instance of a pair of motifs for 

epistatic interactions. 

First, we used the Deep Feature Interaction Map method41 to score epistatic 

interactions between pairs of candidate predictive motif instances (say A and B) in a 

sequence. Specifically, as described in the motif ISM section, we infer the positions in 

the sequence that exhibit statistically significant delta contribution scores due to in silico 

mutations to motif A. If motif instance B overlaps any positions with significant delta 

contribution scores then it is estimated to have an interaction effect with motif A on 

ATAC-seq read coverage.  

Next, we corroborate the DFIM scores, with an explicit combinatorial in silico motif 

mutagenesis approach using both the ‘scramble’ and ‘point mutation’ approach. 

Assume we have two motif instance A and B in a sequence that we would like to test for 

epistatic interactions using the model.  

• We record the model’s output with both motif instances intact in the sequence = 

o.  

• We record the output after ‘mutating’ only motif A i.e. the sequence only contains 

an intact motif  B = b.  

• We record the output after mutating only motif  B, i.e. the sequence contains an 

intact motif A = a. 

• Finally, we record the output after mutating both motifs A and B, which is a 

baseline = n.  
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• We compute the marginal effect size of adding motif A relative to a null sequence 

that does not contain either of the motifs = (a – n). 

• We compute the marginal effect size of adding motif B relative to a null sequence 

that does not contain either of the motifs = (b – n). 

• We compute the joint effect of adding motif A and B relative to the sequence that 

does not contain either of the motifs = (o – n) 

 

We then compare the joint effect size (o – n) to the sum of the marginal effect sizes 

(a – n) + (b – n) = (a + b – 2n). We run a Wilcoxon signed-rank test on the paired values 

(joint vs. sum of marginals) across all instances of a motif pair to determine whether the 

joint effects on the motif pair instances is significantly greater or less than the sum of the 

marginal effects. 

Since the output predictions are in units of log depth normalized coverage, additivity 

in log units translates to multiplicative effects in units of coverage. If the joint effect is 

significantly larger than the sum of the marginal effects, motifs A and B have super-

multiplicative effect on coverage. If the joint effect is significantly lower than the sum of 

the joint effects, motifs A and B exhibit a sub-multiplicative effect on coverage. A non-

significant difference between the joint and sum of marginals indicates a multiplicative 

effect of motif A and B on coverage. 
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Design of Massively Parallel Reporter Assay (MPRA) to test intrinsic 

activity dynamics of combinatorial motif rules 

 

MPRA design 

We designed MPRA constructs guided by the combinatorial motif sets that have 

positive motif interaction scores using the ‘motif scramble’ and ‘point mutation’ motif 

perturbations. For each rule of interacting motif pairs, we randomly select 19 genomic 

subsequences of length 160 bp within accessible peaks, contain predictive instances of 

both motifs in the rule and exhibit positive interaction scores. We test the wild-type 

(genomic) sequence and all versions of the sequences in which the motifs are 

combinatorially mutated.  

 

This sampling design allows us to test the following hypotheses: 

1. Trajectory: does the motif combination produce a reporter activation pattern 

across time points (days 0, 3, and 6 in the in vitro model) that was predicted by 

the trajectory it was derived from? 

2. Interactions: do the motif pairs exhibit multiplicative or super-multiplicative 

interaction effects on intrinsic reporter activity? 

 

We include the following positive and negative controls. As positive controls, we use 

316 TSSs of the highest expressed genes (at any time point in skin differentiation). As 

negative controls, we generate dinucleotide shuffled versions of 50 randomly selected 
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genomic test sequences selected above. We also select 50 negative controls from the 

genome that are not found in the master list of accessible regions across keratinocyte 

differentiation. The list of all constructs are in Supplementary Table S12. 

 

Library cloning 

The MPRA oligo library was synthesized using Agilent's oligo library synthesis 

platform. Each oligo sequence consisted of: 5'-FWD primer binding site-

[ACTGGCCGCTTCACTG]-176 nt insert-XhoI-NheI-20 nt oligo barcode-REV primer 

binding site-[AGATCGGAAGAGCGTCG]-3'. The oligo library was amplified using the 

FWD primer 5'-GCTAAGGAATTCACTGGCCGCTTCACTG-3' and REV primer 5'-

GCTAAGGGATCCCGACGCTCTTCCGATC-3', which add EcoRI and BamHI restriction 

sites, respectively. The resulting PCR product was gel purified, digested with EcoRI and 

BamHI, and ligated into the pGreenFire1 lentivector backbone. Takara Stellar 

competent cells were transformed with the plasmid library and a fraction of the bacteria 

were plated to ensure a library coverage of at least ten-fold. The remainder of the 

transformation was incubated overnight in Luria broth. Plasmids were isolated using the 

Qiagen Plasmid Plus Maxi kit. If insufficient colonies were obtained to ensure a library 

coverage of at least ten-fold, additional transformations were performed and plasmid 

preps were pooled. In the second cloning step, the plasmid library was digested with 

XhoI and NheI and ligated with an insert containing a minimal promoter and a short 

stuffer sequence consisting of the first 100 bp of luciferase. The luciferase sequence is 

not functional and merely provides a transcript sequence linked to each oligo barcode, 



Kim, et al 

 40 

which is necessary for downstream sequencing library construction. The ligated 

plasmids were used to transform Stellar competent cells as described above. The final 

plasmid library pool was sequenced on an Illumina MiSeq to ensure an oligo library 

coverage greater than 90%.  

  

Cell culture 

Lentivirus was produced in 293T cells (Takara 632180) in 10cm plates. Cells 

were transfected with 3.75ug pUC MDG, 7.5ug pCMV Δ8.91, and 7.5ug plasmid library 

using Lipofectamine 2000 (Life Technologies). Viral particles were collected 48 hours 

post-transfection and concentrated using Lenti-X Concentrator (Takara). Lentivirus was 

titrated in primary keratinocytes to maximize viral transduction while minimizing lentiviral 

toxicity. For each MPRA biological replicate, 12 million keratinocytes were transduced in 

15cm plates containing 5ug/mL polybrene. Cells were selected in 0.8ug/mL puromycin 

24 hours post transduction. Once selected, cells were seeded for day 0, 3, and 6 

timepoints of differentiation. At each timepoint, total RNA was isolated using Qiagen's 

RNeasy Plus kit and then used to generate MPRA sequencing libraries.  

  

MPRA sequencing library construction 

cDNA was synthesized from total RNA using SuperScript IV (ThermoFisher 

Scientific) using a gene specific primer that anneals to the MPRA transcript. The primer 

also contains a 15 nt degenerate sequence that serves as a transcript UMI. cDNA 

synthesis reactions were cleaned up using SPRIselect beads (Beckman) and amplified 
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using PrimeSTAR Max DNA Polymerase (Takara) for five PCR cycles to add Illumina 

sequencing adapters. Sequencing indexes were added in a second PCR step, which 

was monitored on a Stratagene MX3005P quantitative PCR machine to avoid library 

over-amplification. Final sequencing libraries were gel purified in a 2% agarose gel. 

Library concentration was determined using a KAPA Library Quantification Kit (Roche). 

Deep sequencing was performed on an Illumina NovaSeq 6000. 

 

MPRA analysis 

The DNA plasmid library was sequenced to capture the baseline fractions of 

each sequence in the library. Since the UMI is on read 1 and the barcode is on read 2 

based on the primer locations, we perform paired ended sequencing. The reads are 

then trimmed (only the 20bps after the first 17 bps in read 2 constitute the barcode) and 

the UMI is associated with the read such that downstream analysis can proceed as 

single-ended data. These adjusted reads are aligned to the barcode sequences using 

bwa aln/samse with default parameters, and the aligned reads are then reduced by UMI 

to get unique read counts per barcode. These counts are then divided by the total to get 

the fractional value for each barcode in the library. 

The MPRA library reads were sequenced and analyzed in the same fashion as 

the DNA plasmid library. The counts were then renormalized using the plasmid fractions 

by multiplying the MPRA counts by the plasmid fractions, converting to fractions, and 

multiplying by the total count across the MPRA library. In other words, the 

renormalization provides the counts per MPRA barcode assuming a uniform distribution 
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of barcodes in the library at the same sequencing depth as was actually performed. 

These counts are then run through regularized log transform from DESeq2 to get a 

normalized signal matrix. This normalized matrix is then used in downstream analyses.  

To test trajectory patterns, the normalized MPRA signal for all sequences 

belonging to the pattern are collected for days 0, 3 and 6. Then day 3 and 6 read outs 

are compared to day 0 by a Wilcoxon signed rank test (p < 0.05) to determine 

differential signal between timepoints. If the measurements show differential signal for 

any of the two days, the trajectory is considered to have dynamic activity across the 

time course. Then, the mean (across all sequences) pattern of the MPRA signal across 

the three time points is compared to the corresponding average ATAC trajectory to 

determine a correlative match (Spearman rank correlation p < 0.05) in terms of the 

dynamics. 

To estimate interaction scores for motif pairs tested in the MPRAs, we compare 

the distribution of normalized MPRA signal (log scale) of wild-type sequences 

containing both motifs to the expected log-additive effect of each individual motif. When 

motif a is scrambled, we note the MPRA signal = a. When motif b is scrambled, we note 

the MPRA signal = b. When both motif a and b are scrambled, we note the MPRA signal 

= n. Then, the expected log-additive signal for the wild-type sequence containing both 

motifs = (a – n) + (b – n). We then utilize the Wilcoxon signed rank test (p < 0.10) to 

determine whether there is a significant difference between the observed wild-type 

signal and the log-additive expected signal. A significantly positive score indicates a 

super-multiplicative effect of the motif pair. A non-significant score indicates a 
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multiplicative (log-additive) effect of the motif pair. A significant negative score indicates 

a sub-multiplicative effect of the motif pair. 

 

Biochemical characterization of combinatorial rules 

 

For the following assays, the genomic sequences tested can be found in 

Supplementary Table S13, within the sequence metadata as the “active” region. 

 

Luciferase reporter assay 

A lentiviral reporter construct was designed that contains a minimal promoter driving the 

expression of destabilized copGFP and luciferase separated by a T2A sequence. The 

construct also contains a CMV driven blasticidin S deaminase gene. Genomic 

sequences synthesized by IDT were inserted upstream of the minimal promoter by 

digestion of the vector with NheI, followed by a Gibson assembly using NEBuilder. 

Constructs were Sanger sequenced to confirm correct cloning. Lentivirus was made as 

described above and concentrated 50X. 125,000 primary progenitor keratinocytes were 

transduced with 15uL of concentrated lentivirus in media containing 5ug/mL polybrene 

and seeded in 6-well plates. 1-2 days after transduction, cells were plated onto 10cm 

plates in media containing 4ug/mL blasticidin HCl and selected for at least 3 days. In 

experiments in which a transcription factor knockout was performed, keratinocytes were 

co-transduced with 15uL of 50X concentrated lentivirus containing a LentiCRISPR v2 

(Addgene #52961) construct, in addition to the reporter construct. The original construct 
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was modified such that a CMV promoter drives the expression of Cas9 instead of EF-

1a. Guide oligos were cloned in by digestion with BsmBI, followed by a Gibson 

assembly using NEBuilder. 1-2 days after transduction, cells were plated onto 10cm 

plates in media containing 4ug/mL blasticidin HCl and 0.8ug/mL puromycin, selected for 

at least 3 days, and further cultured for at least 2 more days to allow guide cutting to 

occur. Cells were then seeded for day 0, 3, and 6 timepoints of differentiation. Lysate 

was collected in 1X PLB (Promega) and stored at -80°C prior to performing the 

luciferase assay. Genomic DNA was also isolated to determine lentiviral integration 

copy number for luciferase signal normalization. Luciferase assays were performed 

using a Tecan Infinite M1000 plate reader. Relative luciferase units (RLU) were 

normalized by both genomic lentiviral copy number and cell lysate. To determine 

lentiviral copy number, a qPCR was performed using primers that amplify part of the 

luciferase gene. A standard curve was obtained using a plasmid dilution series. 

Genomic DNA input was normalized using primers to the intron of LIPC. Cell lysate 

concentrations were determined using a Pierce Microplate BCA Protein Assay Kit – 

Reducing Agent Compatible (Thermo Fisher Scientific). 

 

Chromatin immunoprecipitation 

Human keratinocytes were cross-linked with 1% formaldehyde and chromatin was 

sonicated to an average fragment length of 150-500 bp. Chromatin was 

immunoprecipitated overnight at 4°C. Following cross-link reversal, samples were 

treated with RNaseA and the DNA was purified using a ChIP DNA Purification Kit (Zymo 
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Research). The following antibodies were used: CREB1 (Millipore), ETV5 (Proteintech), 

KLF4 (Sigma), ZNF750 (Sigma), CEBPD (ThermoFisher). For re-ChIP, samples were 

eluted in ChIP elution buffer (1% SDS, 50mM NaHCO3) then diluted 10-fold in modified 

RIPA buffer without SDS (1% NP-40, 1% sodium deoxycholate, 1mM EDTA in PBS) for 

immunoprecipitation with second antibody. All ChIP used 2ug Ab/40ug chromatin, and 

the re-ChIP used 1 ug Ab. The qPCR primers can be found in Supplementary Table 

S14.  

 

Engineered human epidermal organoids 

Primary human keratinocytes were isolated from fresh surgically discarded skin and 

cultured in Keratinocyte-SFM (Life Technologies #17005-142) and Medium 154 (Life 

Technologies #M-154-500). Organotypic regeneration of human epidermis was 

performed as previously described42. Briefly, cells were first transduced with lentivirus 

containing pGreenfire reporter constructs and selected with puromycin for 2d post-

transduction. After selection, 500,000 cells were seeded onto devitalized dermis, 

cultured for 7d and harvested. Biologic replicates were performed in all cases. 

 

Tissue immunofluorescence 

For immunofluorescence staining, tissue sections (7um thick) were fixed using 4% 

paraformaldehyde. Primary antibodies GFP (ThermoFisher, dilution 1:500) and filaggrin 

(Abcam, dilution 1:200) were incubated overnight at 4°C and secondary antibodies 

(AlexaFluor 488 or 555, ThermoFisher, dilution 1:1000) were incubated at room 
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temperature for 1h. Tissue samples were mounted with Duolink In Situ mouting media 

with DAPI (Sigma). Images were taken using a Zeiss Axio Observer Z1 fluorescence 

microscope and Zeiss Axiovision software. 

 

Analysis of genetic variation and heritability 

We utilized LD-score regression software (https://github.com/bulik/ldsc) to 

determine genome-wide significant variants. From UK Biobank 

(http://www.nealelab.is/uk-biobank/), we utilized the GWAs results for the following 

phenotypes (codes in parentheses): basal cell carcinoma (20001_1061), eczema 

(200002_1452), psoriasis (20002_1453, L12_PSORIASIS, L12_PSORI_NAS, L40), 

non-melanoma malignant neoplasms of skin (C3_OTHER_SKIN, C44, 

C_OTHER_SKIN), actinic keratosis (L12_ACTINKERA), rosacea (L12_ROSACEA, 

L71), seborrheic keratosis (L82), diseases of skin and subcutaneous tissue 

(XII_SKIN_SUBCUTAN), and other/unspecified disorders of skin and subcutaneous 

tissue (L12_SKINSUCUTISNAS). We additionally utilized two other GWAS studies for 

dermatitis (GWAS catalog: GCST003184) and acne (GWAS catalog: GCST006640) as 

cited in the main text. 

To characterize putative TF subnetworks for each phenotype, we utilized our 

putative TF network derived from the validated combinatorial rules and only kept the 

rules that had significantly enriched LDSC coefficients (p < 0.05). The sum of mean 

value for the coefficient for each motif was used to generate the relative size of each 

TF/motif node. 
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Limitations and future enhancements 

Our study has several limitations, providing scope for future enhancements. Our 

cis-regulatory lexicon is biased towards activators due to our modeling focus on active 

CREs in each time point. Models trained on markers of repression as well as differential 

effects across time points could reveal cis-regulatory sequences associated with 

dynamic repression. The current work also does not model the combinatorial effects of 

multiple CREs on gene expression. However, our chromatin-based models serve as a 

foundation for higher-order predictive models of gene expression which could be 

interpreted using similar in silico combinatorial perturbation strategies to decipher the 

distributed cis-regulatory code. We do not directly model the combinatorial influence of 

trans-acting factors on chromatin state and gene expression. Future modeling efforts, 

however, could be designed to jointly learn cis and trans regulatory logic from 

multimodal perturbation experiments43,44. Finally, extensions of these models to 

continuous cell state transitions from multi-modal single cell readouts of chromatin state 

and expression are exciting avenues for future research.  
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Supplementary Figure 1. Functional enrichments of genes associated with 
CREs containing predictive motifs. CREs containing predictive instances of each 
motif (y-axis) were mapped to putative target genes based on proximity. The x-axis 
shows the key functional ontology terms enriched for each motif’s target gene set. 
 




