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SUMMARY
Human health and disease have increasingly been shown to be impacted by the gut microbiota, and mouse
models are essential for investigating these effects. However, the compositions of human andmouse gut mi-
crobiotas are distinct, limiting translation of microbiota research between these hosts. To address this, we
constructed the Mouse Gastrointestinal Bacteria Catalogue (MGBC), a repository of 26,640 high-quality
mouse microbiota-derived bacterial genomes. This catalog enables species-level analyses for mapping
functions of interest and identifying functionally equivalent taxa between the microbiotas of humans and
mice. We have complemented this with a publicly deposited collection of 223 bacterial isolates, including
62 previously uncultured species, to facilitate experimental investigation of individual commensal bacteria
functions in vitro and in vivo. Together, these resources provide the ability to identify and test functionally
equivalent members of the host-specific gut microbiotas of humans and mice and support the informed
use of mouse models in human microbiota research.
INTRODUCTION

The mammalian gastrointestinal tract hosts trillions of bacteria,

known as the gut microbiota, that actively impact the health of

the host. Variations in this bacterial ecosystem are associated

with susceptibility to and outcomes of many human diseases

(Armour et al., 2019), from adverse nutritional states (Chen

et al., 2021; Sonnenburg and B€ackhed, 2016) and autoimmunity

(Li et al., 2018) to neurological pathologies (Cryan et al., 2020)

and infection (Libertucci and Young, 2019). In order to charac-

terize these microbial associations for therapeutic benefit, it is

necessary to establish causal relationships between microbial

factors and phenotypes (Neville et al., 2018). To this end, mouse

models are essential tools in microbiota research, allowing

controlled experimental studies in a physiologically and geneti-

cally tractable system.

A recognized limitation in using mice to study the human gut

microbiota is that few bacterial species are shared between

the gastrointestinal tracts of humans and mice (Chung et al.,

2012; Xiao et al., 2015). In addition, many mouse-derived spe-
124 Cell Host & Microbe 30, 124–138, January 12, 2022 ª 2021 The
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cies remain unidentified or uncharacterized, hindering transla-

tion of microbiota research between hosts. One approach that

has been used to improve the utility of mice for human micro-

biota research is the colonization of mice with human microbio-

tas (Park and Im, 2020). However, while it has been reported that

themicrobiotas of humans andmice are functionally comparable

(Liu et al., 2020; Xiao et al., 2015), mice treated with a human mi-

crobiota exhibit compromised immune maturation and perfor-

mance compared with mice harboring a mouse-derived micro-

biota (Chung et al., 2012; Lundberg et al., 2020), resulting in

differences in susceptibility to infectious (Chung et al., 2012)

and inflammatory (Surana and Kasper, 2017) diseases. This

may be due in part to an inability of some human microbes to

colonize well in the mouse gut (Aluthge et al., 2020; Lundberg

et al., 2020). It is, therefore, likely that studying commensal bac-

teria in their endogenous hosts is the most physiologically valid

approach. This requires the ability to identify functionally equiv-

alent species between host microbiotas to perform mechanistic

experimental studies in mice and translate microbiota findings

between humans and mice.
Authors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Accurate species-resolved functional analyses require

comprehensive and complete genomes (Meziti et al., 2021;

Shaiber and Eren, 2019), and both culture-dependent and cul-

ture-independent approaches have been implemented to char-

acterize the human (Almeida et al., 2019; Forster et al., 2019; La-

gier et al., 2016; Nayfach et al., 2019; Pasolli et al., 2019; Poyet

et al., 2019; Zou et al., 2019) and mouse (Lagkouvardos et al.,

2019, 2016; Lesker et al., 2020; Liu et al., 2020) gut microbiotas.

Cultured isolates provide highly complete reference genomes

and are essential for experimental validation of correlative find-

ings (Neville et al., 2018; Surana and Kasper, 2017). Owing to

current challenges in culturing the complete diversity of the gut

microbiota, culture-independent approaches, most commonly

metagenome-assembled genome (MAG) reconstruction from

shotgun metagenome samples, have been leveraged to

generate genomes for uncultured species and improve coverage

in microbiome analyses (Forster et al., 2019). Gene catalogs

have also been generated for improving metagenome analyses

(Li et al., 2014; Qin et al., 2010; Xiao et al., 2015; Zhu et al.,

2021); however, as these catalogs do not link genes to their ge-

nomes of origin, they cannot be used for genome-resolved func-

tional analyses (Almeida et al., 2021).

Here, we complement high-throughput culturing of mouse gut

bacteria with large-scale MAG synthesis to produce a compre-

hensive isolate and genome repository, the Mouse Gastrointes-

tinal Bacteria Catalogue (MGBC). The MGBC includes 26,640

non-redundant, high-quality bacterial genomes representing

1,094 species and a publicly deposited collection of 223 cultured

isolates for 132 species, including 62 species with no previously

cultured representative. Through species-resolved functional

mapping of the gut microbiotas of humans and mice, this

resource enables the identification of the closest functionally

related bacterial species between hosts and provides access

to the taxonomic locations of shared functions, allowing the

application and investigation of microbiota discoveries between

hosts.

RESULTS

Expanding the cultured diversity of the mouse gut
microbiota
Bacterial culturing and isolate biobanking are essential for

research and biotechnology applications by enabling the valida-

tion of in silico findings and investigation of underlying biological

mechanisms. Nearly 10,000 isolate genomes exist for human-

derived commensal bacteria (Almeida et al., 2021; Poyet et al.,

2019), but fewer than 400 have been published for the mouse.

To begin to address this disparity, we performed high-

throughput culturing of feces from 30 conventionally housed,

specific-pathogen-free (SPF) laboratorymice from theWellcome

Sanger Institute. We cultured and whole-genome sequenced

288 bacterial strains, of which 276 genomes passed our strin-

gent quality control criteria to be included in our mouse culture

collection (MCC; Figure 1A; Table S1). These isolates represent

132 species across 67 genera, 25 families, and 6 phyla and

include 62 taxa with no previously cultured murine representa-

tive (i.e., they share <95% average nucleotide identity (ANI)

with the closest related genome). Themajority of these additional

cultured bacterial species belong to the phylum Firmicutes_A
(54/62), with the remaining isolates from the Bacteroidota

(4/62), Firmicutes (3/62), and Desulfobacterota (1/62) phyla (Fig-

ure 1B). These previously uncultured isolates increase the

cultured microbial diversity of the mouse gut microbiota by

32.5% at the species level and provide the first cultured repre-

sentatives for 10 genera, as well as the first mouse-derived

representative of the phylum Desulfobacterota. In order to

establish the prevalence of these species, we compiled 2,398

publicly available and sequenced 48 new mouse gut metage-

nomes, representing mice from 63 institutes across 17 countries

(Table S2). Using this global compilation, we found that 20 of our

additional species are present in more than 80% of samples,

while 39 were present in over 50% (Figures 1B and 1C), indi-

cating that our novel cultured isolates represent highly prevalent

species of the mouse gut microbiota. To make these bacteria

easily accessible to the scientific community, the 223 isolates

that were successfully cryopreserved, are currently available

upon request from the Wellcome Sanger Institute and are addi-

tionally being deposited with the German Collection of Microor-

ganisms and Cell Cultures (DSMZ).

In addition, we compiled 319 publicly available mouse-derived

bacterial isolate genomes from the NCBI, including genomes

from the mouse intestinal Bacterial Collection (miBC, n = 53)

(Lagkouvardos et al., 2016) and the mouse Gut Microbial Bio-

bank (mGMB, n = 120) (Liu et al., 2020), among other studies (Ta-

ble S1). Following genome quality filtering, 288 public genomes

were combined with our MCC to yield 564 cultured isolate ge-

nomes, representing 253 species that we included in our

MGBC genome repository.

Construction of the MGBC
Multiple studies have resulted in over 100,000 high-quality

MAGs for species of the human gut microbiota (Almeida et al.,

2021), but fewer than 8,000 high-quality MAGs have been gener-

ated for the mouse (Lesker et al., 2020). To facilitate translation

between the human and mouse gut microbiotas, we sought

to construct a comprehensive, genome-resolved catalog for

mouse gut bacterial species that would allow species-level func-

tional comparisons with the gut bacteria of human hosts. As

highly complete genomes are required for accurate functional

analyses and identification of functionally equivalent species,

we first compared binning methods for MAG generation using

metrics of genome quality and completeness (Parks et al.,

2015). Compared with usingMetaBAT2, MaxBin2, or CONCOCT

alone, the MetaWRAP pipeline (Uritskiy et al., 2018) yielded bins

with the highest quality scores (Figure S1A) and generated the

highest quality MAGs for the most species (Figures S1B and

S1C). Considering the most dominantly binned species of the

mouse gutmicrobiota, MetaWRAP consistently yielded the high-

est quality MAGs (Figure S1D) and conserved a large proportion

of the core genome (Mdn [Inter-Quartile Range (IQR)]: Lm =

79.04% [77.48–80.19]; Lj = 81.62% [79.84–81.77]; Bg =

83.35% [80.19–86.47]; Am = 95.23% [94.47–95.87]; Figure S1E).

Based on these results, we employed MetaWRAP to generate

MAGs for the MGBC.

To produce a globally representative genome collection, we

assembled and binned publicly available mouse gut metage-

nomes from the European Nucleotide Archive (ENA) in addition

to the 48 new fecal samples that were sequenced from mice at
Cell Host & Microbe 30, 124–138, January 12, 2022 125
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Figure 1. Isolates of the mouse culture collection

(A) Maximum likelihood phylogenetic tree of the 276 bacterial isolate genomes of the MCC. Genome labels indicate genome taxon as assigned by GTDB-Tk;

where a genome could not be assigned at species level, lowest taxonomic rank is indicated. Labels are colored by phylum, and the outer ring indicates genomes

with no previously cultured representative. Tree distances were calculated from an alignment of 120 core genes using the BLOSUM45 amino acid similarity

matrix.

(B) Abundance and prevalence profiles for the 62 previously uncultured species of theMCCbased on 2,446mouse gutmetagenomes. Each datapoint represents

the percentage of reads assigned to a species for a single sample. Prevalence is calculated as the percentage of samples with species abundance R0.01%.

Colors represent phyla.

(C) Scatterplot of mean abundance against prevalence for all 132 species of the MCC. Color represents prior cultured status.
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the Wellcome Sanger Institute and the Babraham Institute. Of

these metagenomes, 2,286 samples yielded R1 high-quality

MAGs per sample; these samples represented 71 studies and

13 strains of mice from 58 institutes across 17 countries and 4

continents. In total, these efforts yielded 64,490 medium-plus

quality MAGs (Table S3), of which 35,361 were defined as

high-quality in line with previous studies (Almeida et al., 2021;

Pasolli et al., 2019). To remove virtually identical genomes from

our collection, we dereplicated our isolate genomes and MAGs
126 Cell Host & Microbe 30, 124–138, January 12, 2022
using a Mash distance (Ondov et al., 2016) of 0.001 (equivalent

to 99.9%ANI) to yield 26,640 high-quality, non-redundant bacte-

rial genomes for the MGBC (Figure 2A; Table S3). Of all the spe-

cies cultured in the MCC (n = 132), 74.2% are represented by at

least one high-quality MAG. Isolate genomes were significantly

more complete than MAGs (98.9% [98.3–99.4] versus 96.9%

[94.8–98.3], Mdn [IQR]; p < 0.0001) but were equivalent in terms

of contamination (0.77% [0.19–1.72] versus 0.64% [0.23–1.35];

p = 0.22). Overall, the quality scores of isolate genomes were
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Figure 2. Genomes of the Mouse Gastrointestinal Bacteria Catalogue

(A) Maximum likelihood tree of representative genomes for the 1,094 species of the MGBC. Color range indicates whether a species cluster is represented by

MAGs only (light red), isolates only (light green), or both (light blue). For each species, the innermost color ring represents phylum, the second ring indicates

species that could not be assigned at a species level by GTDB-Tk (dark blue), the third ring denotes cultured status of each species (blue), and the outer ring

indicates the 62 species that have been uniquely cultured in the MCC (brown). The circumferential bar plot (green) illustrates the number of high-quality genomes

representing each species in the MGBC. Tree distances were calculated from an alignment of 120 core genes using the BLOSUM45 amino acid similarity matrix.

(B) Phylum-level distribution of the 26,640 high-quality genomes of the MGBC (left) and percentage of species clusters not assigned to a species-level taxonomy

by GTDB-Tk (right).

(C) Stacked bar plots comparing the phylum-level composition of the 276 MCC isolates (MCC isolates) and the 26,640 genomes of the MGBC with the average

mouse microbiome (microbiome; n = 2,446). The distributions of each stacked bar were compared using a chi-square test for Independence. MCC, microbiome

(p = 0.015, significantly different); MGBC, microbiome (p = 1, not significantly different).
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higher than those of MAGs (95.2 [89.6–98.0] versus 93.0 [88.4–

96.1]; p < 0.0001). Notably, despite the number of samples

considered, no bins were generated for the domain Archaea,

potentially due to very low abundance of this domain in the

mouse gastrointestinal tract (Zhu et al., 2021).

The MGBC represents 1,094 species of the mouse gastroin-

testinal tract across 16 phyla (Figure 2A). Only 23.1% of these

species have cultured representatives, of which 24.5% are

contributed uniquely by our MCC. Only 23.5% of species could

be assigned to a species-level taxonomy by the Genome Taxon-

omy Database Toolkit (GTDB-Tk) (Chaumeil et al., 2019), with

61.3% unassigned at the species level, 14.0% at the genus level,

and 1.2% at the family level. Species of the Cyanobacteria, Spi-

rochaetota, Firmicutes_B, Elusimicrobiota, and Firmicutes_C

were represented entirely by taxa unassigned at the species

level (Figure 2B). In contrast to the MCC, the MGBC is highly

representative of the average mouse microbiome at the

phylum-level (Figure 2C). These findings underpin our use of

both isolates and MAGs to produce a comprehensive high-qual-

ity genome catalog of the mouse gut microbiota to provide a

framework for species-resolved functional comparisons.

Benchmarking the MGBC against current mouse
microbiota resources
To maximize the reliability and accuracy of our analyses, we

curated only our high-quality genomes into the MGBC (Figures

3A and 3B). To benchmark our resource against currently avail-

able mousemicrobiota resources, we compared the genomes of

the MGBC with the high-quality genomes of the integrated

mouse gut metagenome catalog (iMGMC) (Lesker et al., 2020).

The 8,509 high-quality genomes of the iMGMC represent 805

species, of which 670 (83.2%) are shared with the MGBC (Fig-

ure 3C). Comparing the representative genomes for these

shared species, 71.8% of species representatives from the

MGBC had a higher quality score than their equivalent in the

iMGMC (Figure 3D), while 14.6% were equal in quality. The

MGBC achieves significantly higher levels of metagenome

read classification of independent samples, classifying 90.5%

of reads on average, 8.4% more than with the iMGMC, and

56.9% more than with the medium-plus quality co-abundance

gene groups (CAGs) of the MGCv1 (Xiao et al., 2015) (Figure 3E).

The MGBC represents an additional 407 species compared with

the iMGMC, expanding the known taxonomic diversity of the

mouse gut microbiota by 77 genera (30.6% increase), 25 families

(31.8% increase), 15 orders (34.1% increase), 3 classes (15% in-

crease), and 2 phyla (12.5% increase). Therefore, this resource,

provides improved coverage and quality of representation of the

mouse gutmicrobiota comparedwith the previousmousemicro-

biota resources, better facilitating species-resolved functional

analyses and improving overall characterization of the mouse

gut microbiota.

Previous studies have performed taxonomic profiling of the

mouse gut microbiota using alternative methods and/or smaller

sample sizes (Lesker et al., 2020; Xiao et al., 2015). Therefore, we

applied the MGBC to generate species-resolved taxonomic an-

alyses for the compilation of 2,446 global mouse gut metage-

nome samples used above. The abundance and prevalence pro-

files of mouse gut bacterial species are available in Table S4. In

line with previous reports (Lesker et al., 2020), species of the
128 Cell Host & Microbe 30, 124–138, January 12, 2022
phylum Firmicutes_A represented 15 of the top 20 most preva-

lent species in the mouse microbiota (Figure S2A), while CAG-

485 sp002362485 (recently proposed as ‘‘Sangeribacter muris’’

[Forster et al., 2021]) was the most prevalent species. As varia-

tion in the mouse gut microbiota is recognized as a confounding

factor of mouse studies (Baker, 2016; Forster et al., 2021; Stap-

penbeck and Virgin, 2016), we assessed the effect of host ge-

netic and environmental factors on compositional variation in

themouse gut microbiota (Figure S2B; Table S5). The study itself

was the most impactful factor, explaining 40.1% of the variance

in microbiota composition (Figure S2B), followed by the institute

in which the study was performed (38.0%). We next assessed

the microbiota of C57BL/6 ‘‘control’’ mice from different insti-

tutes (Figure S2C). These institutes exhibited large differences

in abundance of key microbial species, including known pheno-

typically important bacterial species such as Bacteroides the-

taiotaomicron and CAG-485 sp002362485. We additionally

considered the differences between the microbiotas of labora-

tory and wild mice. Species prevalence between laboratory

and wild mouse cohorts correlated strongly (Figure S2D)

although species were found to be differentially abundant (Fig-

ure S2E). Taken together, these enhanced analyses using the

MGBC indicate that while institutional housing environments

represent a substantial source of variation and may in part

explain the irreproducibility observed between mouse studies,

the microbiota of laboratory mice is more similar to that of wild

mice than previously suggested (Rosshart et al., 2019, 2017).

Taxonomic versus functional relationships between
human and mouse gut bacteria
Gene cluster analyses have estimated that taxonomic overlap

between the human and mouse gut microbiotas is below 4%

(Xiao et al., 2015). Using a whole-genome approach, we

compared the MGBC with the high-quality genomes of the

Unified Human Gastrointestinal Genome (UHGG) collection

(Almeida et al., 2021) to reveal that only 2.58% (103/3997) of spe-

cies are shared between the human and mouse gut microbiotas

(Figure S3A). Of these shared species, 93.2% could be assigned

a species rank by GTDB-Tk, and 55.3% have cultured represen-

tatives within the MGBC (Table S6).

While very few species are shared, it has previously been esti-

mated using gene-level functional analyses that up to 95%of gut

microbial functions are shared between humans and mice (Xiao

et al., 2015). To ascertain the degree of functional overlap be-

tween the human and mouse microbiotas, we created

genome-linked protein catalogs fromall high-quality, non-redun-

dant genomes of the MGBC and UHGG. Using these catalogs,

we assembled pangenomes for each species cluster of the

MGBC and UHGG and annotated predicted protein-coding se-

quences using InterProScan (Jones et al., 2014) and eggNOG

(Huerta-Cepas et al., 2019, 2017). In linewith previous estimates,

84.5% of KEGG orthology (KO) groups and 82.1% of InterPro

(IPR) protein families are shared between the gut ecosystems

of the two hosts (Figure S3B). However, due to the currently

incomplete functional reference databases (Thomas and Se-

gata, 2019), only 53.2% of proteins could be assigned a KO,

and notable differences were observed in the annotation effi-

ciency between phyla (Figure S3C) as well as between host or-

ganisms (Figure S3D). Taken together, these analyses confirm
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Figure 3. Genome quality evaluation and benchmarking of the MGBC

(A) Completeness and contamination of MAGs of the MGBC. Using a modified MIMAGs criteria, 26,640 MAGs were defined as high-quality (blue) (R90%

completeness, %5% contamination, metrics of genome fragmentation). Quality estimates were generated using CheckM.

(B) Phylum-level distribution of high-quality and medium-plus MAGs.

(C) Upset plot illustrating the intersections of species between the contributing isolate collections and MAGs of the MGBC (blue). The iMGMC has been included

for comparison (gray).

(D) Comparison of representative genome quality for shared species between the MGBC and iMGMC. Genome quality score: QS = Completeness � 5 3

Contamination. Color represents phylum.

(E) Read classification rates of 64 independent mouse gut metagenome samples using different custom Kraken2 databases. Box plot color indicates the origins

of the genomes used to build each database. Only genomes meeting high-quality criteria were used to build databases, except where indicated (purple). miBC,

n = 43; mGMB, n = 100; public (combination of all mouse gut-derived isolates fromNCBI), n = 288;MCC, n = 276;MCC+public, n = 564;MGCv1, n = 239; iMGMC,

n = 8,509; MGBC, n = 26,640; mq iMGMC, n = 18,306; mq MGBC, n = 65,907; NCBI (standard database), n = 97,603; human (representative genomes of the

UHGG), n = 3,006. Significance was determined for selected comparisons using paired t tests, ****p < 0.0001.
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that while functionality is largely conserved, the taxonomic loca-

tions of these shared functions likely differ betweenmice and hu-

mans. However, previous resources have not been sufficient to

map these taxonomic locations between hosts.
To begin to resolve these limitations for translating microbiota

findings between humans and mice, we next quantified func-

tional distances between species pangenomes using a combi-

nation of functional annotation schemes (KEGG [Kanehisa
Cell Host & Microbe 30, 124–138, January 12, 2022 129
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et al., 2017], MetaCyc [Caspi et al., 2016], InterPro, CAZy

[Lombard et al., 2014], and GO [Ashburner et al., 2000]) and

examined the functional similarities between species in the

context of their taxonomic relationships. Interpangenome func-

tional and taxonomic relationships were significantly conserved

at a broad phylogenetic scale (Figure 4A). For each human bac-

terial species, we compared the identity of the closest mouse

taxonomic species with the closest mouse functional species

and found that these were only the same taxon in 47.0% of

cases. We next stratified these analyses by the shared taxo-

nomic rank of the closest mouse taxonomic species (Figure 4B).

Where the closest taxonomic mouse species was assigned to

the same species as the human species (i.e., shared species),

the closest functional mouse species was the same taxon in

99% of cases. The only exception was human Phocaeicola dorei

(formerly Bacteroides dorei), a shared species in the mouse gut

microbiota, which was functionally closer to mouse Phocaeicola

vulgatus (formerly Bacteroides vulgatus) than mouse Phocaei-

cola dorei. The functional pathways that underly these differ-

ences include bacterial cell wall biosynthesis, pyocyanin biosyn-

thesis, and vitamin B12 biosynthesis pathways (Table S10).

Where the closest taxonomic mouse species belonged to the

same genus (e.g., human Bifidobacterium infantis and mouse

B. globosum), the closest functional mouse species was only

the same taxon in 57.5% of cases, dropping to 37.2% and

31.7% when the closest taxonomic mouse species was shared

at the family- and order- level, respectively (Figure 4B). Func-

tional distances increase as a function of taxonomic distance

(Figure 4C), suggesting that the closest functional species at

higher taxonomic ranks are not likely to be functionally identical

but rather may represent the most likely species for recapitu-

lating associated functions or phenotypes of interest. Divergent

taxonomy-function relationships are not confined to any partic-

ular taxonomic clade but are present in every phylum of the

gut microbiota (Figure 4D). These findings indicate that the

closest taxonomic neighbor, at every taxonomic rank, is not

necessarily the closest related species functionally and, there-

fore, might not be the best candidate for investigatingmicrobiota

functions between hosts.

Taxonomic locations of drug metabolism genes in the
microbiotas of mice and humans
Global functional comparisons between species of the human

and mouse gut microbiotas may serve as a starting point to

translate microbial functions between hosts; however, it is likely

more useful to identify functionally equivalent species between

hosts at the level of an individual function or gene product.

One biologically important example of this is drug metabolism

by the gut microbiota, where the drug metabolizing capacity of

a species can have implications for drug therapy (Collins and

Patterson, 2020; Maini Rekdal et al., 2019). Asmice are common

models for preclinical pharmaceutical research, we leveraged

the MGBC to examine the conservation status and taxonomic

location of 34 experimentally validated drug metabolizing genes

from the human gut microbiota (Haiser et al., 2013; Maini Rekdal

et al., 2019; Ridlon et al., 2013; Zimmermann et al., 2019a,

2019b) (Table S7). For 27 genes (79.4%), themost dominant spe-

cies in the human gut microbiota was shared in the mouse, and

the same gene product (R95% sequence identity) was found in
130 Cell Host & Microbe 30, 124–138, January 12, 2022
both human- and mouse-derived species pangenomes (Figures

5A and 5B). However, in 37% (10/27) of these cases, the most

dominant species that encoded these genes in the murine host

differed from the most dominant species in humans—for drug

metabolizing genes described in human Phocaeicola dorei

(formerly Bacteroides dorei), the most dominant gene-encoding

species in the mouse microbiota is Phocaeicola vulgatus

(formerly Bacteroides vulgatus) (Figure 5B). Notably, our global

species-resolved functional analyses had identified mouse-

derived Phocaeicola vulgatus as the closest functional species

to human-derived Phocaeicola dorei, instead of the more

closely, taxonomically related mouse-derived Phocaei-

cola dorei.

Where the human-derived species was not shared with the

mouse gut microbiota (7/34), an equivalent gene product could

not be located in the high-quality genomes of the MGBC (Fig-

ure 5C), even at 50% sequence identity. While these analyses

indicate that homologous gene products are unlikely to be en-

coded by dominant species of the mouse gut microbiota, it is

possible that homologous genes might be encoded by subdom-

inant species that have been sequenced with insufficient

coverage to generate high-quality bins. Therefore, we searched

the medium-quality genomes of our collection for these genes.

Although no genes with R95% sequence identity were identi-

fied, we found hits for four drug metabolizing genes with

R50% identity (Table S7). While experiments using cultured iso-

lates are necessary to validate these in silico predictions, the

MGBC provides the species-resolved taxonomic locations of

functions of interest that enable further functional and pheno-

typic studies.

Validating butyrate synthesis by different human and
mouse microbes
Butyrate-producing species are also functionally important

members of the human gut microbiota and are associated with

clinical outcomes of diseases as diverse as inflammatory bowel

disease (Parada Venegas et al., 2019) and depression (Caspani

et al., 2019). In addition, butyrate is involved in regulating host

metabolism (Donohoe et al., 2011), sleep (Szentirmai et al.,

2019), and healthy cognitive functioning (Silva et al., 2020) and

is important for induction of peripheral T regulatory cells (Atara-

shi et al., 2011; Furusawa et al., 2013). Faecalibacterium praus-

nitzii, a canonical butyrate-producing species, has been associ-

ated with improved outcomes for inflammatory bowel disease

(Carlsson et al., 2013; Sokol et al., 2008), but it does not colonize

well in themouse gut (Aluthge et al., 2020; Lundberg et al., 2020),

limiting the utility of mouse models to study these clinical asso-

ciations. To demonstrate how the MGBC can be leveraged to

potentially overcome such challenges, we identified the equiva-

lent butyrogenic species of the mouse gut microbiota.

Butyrate is synthesized from dietary fiber or from amino acids

such as glutamate and lysine, culminating in the conversion of

butyryl-CoA to butyrate via either butyrate CoA-transferase

(BCOAT; direct pathway) or a phosphotransferase pathway

(PTB/BUK; indirect pathway) (Louis and Flint, 2017) (Fig-

ure S4A). To identify the butyrate-producing species of the

mouse gut microbiota and compare the taxonomic locations

of this function with the human gut ecosystem, we ranked spe-

cies according to the number of genomes encoding terminal
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Figure 4. Taxonomy-function relationships between species of the human and mouse microbiotas

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.chom.2021.12.003.

(A) Principal coordinate analyses for functional (left) and taxonomic (right) relationships between all species of human and mouse gut microbiota. Each data point

represents a single species cluster, and point color denotes phylum. Functional analyses use Jaccard distances between pangenomic functional profiles of each

species. Taxonomic distances represent phylogenetic branch lengths between species calculated from alignment of 120 core genes. Distance matrices used for

ordination were compared using the Mantel test (r = 0.7416, p = 0.001).

(B) Taxonomy-function relationships between human- and mouse-derived bacterial species, stratified by shared taxonomic level. Bars indicate distribution of

shared taxonomic rank between closest taxonomically related species. Colored bars and bar statistics indicate number and percentage, respectively, of paired

species at each rank where the closest functionally related species is the same taxon as the closest taxonomic relative.

(C) Scatterplot comparing taxonomic distance with functional distance for each human-derived species and the closest taxonomically related mouse-derived

species. Color indicates the shared taxonomic rank between these species.

(D) Inverted maximum likelihood tree of the 4,100 species of the human and mouse gut microbiotas. External branches represent phylogenetic relationships

between representative genome of each species. Internal connections illustrate closest functionally related species between hosts. Connections are only shown

when the closest taxonomically and functionally related taxa differ. Clade color represents phylum of each species, and the inside color bar denotes the host.

Color of internal connections indicates shared taxonomic rank of the closest functionally related species.
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pathway genes between hosts (Figures 6A and 6B). Model

butyrate producers of the human gut microbiota, including

Agathobacter rectalis (homotypic synonym: Eubacterium rec-
tale), A. faecis (homotypic synonym: Roseburia faecis), Faeca-

libacterium prausnitzii, and Anaerostipes hadrus featured

among the top 20 most dominant BCOAT-encoding species
Cell Host & Microbe 30, 124–138, January 12, 2022 131
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Figure 5. Taxonomic locations of drug metabolism genes between host microbiotas

(A–C) Representative examples of taxonomic locations of drug metabolism genes between host microbiotas. Data illustrate the species-level contribution of

genomes encoding the indicated drug metabolism gene (R95% sequence identity). Genes and associated predicted functions are either (A) shared with a

conserved taxonomic location, (B) shared with a different taxonomic location, or (C) not shared between hosts.
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from the human gut (Figure 6A, top), while members of the

Coprococcus genus were among the top 20 PTB/BUK-encod-

ing species (Figure 6A, bottom). Importantly, all the most domi-

nant butyrate-producing species from both host organisms

were host-specific. While no human butyrate producers were

previously uncharacterized as determined by GTDB, in the

mouse, 17 of the top 20 BCOAT-encoding species (85%) and

11 of the top 20 PTB/BUK-encoding species (55%) could not

be assigned to a species-level taxonomy (Figure 6B).

As 94.2% of predicted butyrate-producing species belong to

the Firmicutes_A phylum, we considered the taxonomic loca-

tions within this phylum of the butyrate terminal pathway genes

between hosts (Figure 6C). Both pathways are largely conserved

within the same taxonomic clades between hosts (Figure 6C);

however, the most dominant species in each host for each

pathway do not represent the closest species phylogenetically,

suggesting that there are likely to be host-specific niche factors

affecting species dominance.

Cultured isolates are essential for validating in silico functional

predictions from genomic data. Utilizing our MCC, we identified

isolates that were predicted to produce butyrate via each termi-

nal pathway according to genomic functional annotations. We

selected three isolates for each pathway that ranked in the top

30 most abundant predicted butyrate-producing species (Fig-

ure S4B) based on the species abundance profiles generated

from 2,446 mouse gut metagenomic samples (Table S2). We

then tested the capacity of these isolates to synthesize butyrate

in broth monoculture. Isolates for known butyrate-producing

species from the human gut microbiota, Coprococcus eutactus

and Eubacterium rectale (Sorbara et al., 2020), were included

as positive controls, and an isolate from the MCC that lacked

predicted butyrate terminal pathway genes was included as a

negative control. All predicted isolates produced butyrate (Fig-

ure 6D; Table S9), although Kineothrix sp000403275 grew poorly

in broth culture (OD < 0.1) and, therefore, exhibited only a low-

level increase in butyrate compared with the negative control

isolate Lachnospiraceae_NOV MGBC000113. Together, these

findings demonstrate that the MGBC and MCC resources we

have generated enable identification and experimental investi-

gation of functionally equivalent gut bacterial species be-

tween hosts.
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DISCUSSION

In this study, we generated the MGBC as a resource for trans-

lating microbiota findings between the host-specific microbiotas

of humans and mice by providing access to the taxonomic loca-

tions of functions of interest in the gut microbiotas of both hosts.

We demonstrated the utility of our resourcewith butyrate synthe-

sis and drug metabolism as applied examples; however, these

represent just two of many biologically and medically important

functions of the gut microbiota. For example, bile acid meta-

bolism is largely divergent between human and mouse gut mi-

crobiotas and has been shown to play a key role in susceptibility

to enteric infection (Buffie et al., 2015). The ability to further

explore this metabolic pathway in mouse models could yield

important mechanistic insights for targeted therapeutics. The

MGBC is therefore accompanied by a toolkit (https://github.

com/BenBeresfordJones/MGBC-Toolkit) to allow users to query

any function of interest. It provides users the ability to look for

functions via annotation ID (KEGG, InterPro, COG, eggNOG,

and GO) and the ability to screen for gene products at the

sequence level, facilitating identification of nonannotated genes

and predicted functions of interest. Our bacterial catalog also

enables improved correlative analyses of mouse gut metage-

nomes through increased coverage of the mouse gut micro-

biome and expands the study of causation in the mouse gut

microbiota through increased availability of cultured isolates.

Our toolkit and analyses improve our understanding of the

taxonomy-function relationships of bacterial species from the

microbiotas of different hosts and reveal that the closest taxo-

nomically related species is not necessarily themost functionally

equivalent.

Understanding the functional potential encoded within micro-

bial genomes is key to understanding the implications of taxo-

nomically divergent microbiotas between host organisms

(Thomas and Segata, 2019). Our results, as well as those of other

studies (Almeida et al., 2021), indicate that over 40% of pre-

dicted proteins have no representation in functional reference

databases. These functional unknowns limit the resolution of in-

terhost functional analyses and remain one of the main limiting

factors for the microbiome field at large (Thomas and Segata,

2019). In order to partly mitigate these limitations and using

https://github.com/BenBeresfordJones/MGBC-Toolkit
https://github.com/BenBeresfordJones/MGBC-Toolkit
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Figure 6. Identification and validation of butyrate-producing species between hosts

(A and B) The most dominant butyrate-producing species of the human (A) and mouse (B) gut microbiotas, utilizing either the BCOAT (top) or PTB/BUK (bottom)

pathways. Color indicates the lowest assigned taxonomic rank for each species by GTDB-Tk, either known species (light blue), novel species (dark blue), or novel

genera (green).

(C) Maximum likelihood tree of the representative genomes for species of the Firmicutes_A phylum. Color range represents the order-level taxonomy, and the

innermost color bar denotes the host organism. The outer color bars indicate predicted butyrate-producing species using the BCOAT pathway (purple) or the

PTB-BUK pathway (orange). The top 5 most dominant butyrogenic pathway encoding species for each host are marked with a colored triangle (mouse) or

star (human).

(D) Butyrate production by bacterial isolates in broth monoculture. Bar color indicates the encoded pathway for butyrate synthesis.
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drug metabolism genes as examples, we used taxonomically

contextualized protein catalogs to perform sequence-level

interhost functional comparisons for nonannotated functions.

However, this approach does not enable prediction of functional

capacity from genomic data. Future studies combining genome-

level data with experimental functional characterization, enabled

by large-scale genome and isolate catalogs (Sorbara et al.,

2020), will therefore be required to uncover this unexplored func-

tionality. Notably, nearly 77% of species represented in the

MGBC lack a cultured representative, hindering experimental

validation of associated phenotypes and functions. Genomic in-

sights can be used to facilitate targeted culturing techniques and

improve the representation of cultured species (Browne et al.,

2016; Cross et al., 2019). Future studies that increase cultured

diversity will also be highly valuable to advancing the therapeutic

potential of the microbiota field.

Highly complete genomes with low levels of contamination are

required for accurate functional analyses, necessitating the use

of stringent quality control thresholds and validated binning

methods when curating genome catalogs. In addition, a consis-

tent level of genome quality is required to combine both isolate

genomes andMAGs in analyses (Almeida et al., 2021). However,

as lower quality genomes, often representing minor or rare spe-

cies of the gut microbiota (Pedron et al., 2019), are excluded

from these analyses, there is a loss of covered taxonomic and

functional diversity, which is then inaccessible for comparison.

While minor species of the gutmicrobiota may not be sequenced

with sufficient coverage to facilitate complete genome binning,

future microbiome studies implementing long-read or deeper

sequencing and improved binning methods will be useful for ex-

panding the known taxonomic and functional diversity of the

mouse gut microbiota. In addition, standard tools for estimating

genome completeness exhibit bias against certain taxonomic

clades and represent technical challenges in the compilation of

fully comprehensive genome collections. For example, genomes

of the large clade of uncultured bacteria, candidate phyla radia-

tion (CPR), cannot be assigned a high-quality genome status us-

ing current single copy number gene methods (Brown et al.,

2015). Studies aiming to address these technical limitations,

such as the recently published Genome UNClutterer (GUNC)

tool (Orakov et al., 2021), will drive further improvements to the

comprehensiveness and quality of genome catalogs.

Bacteria represent the most dominant members of the mouse

gut ecosystem, contributing up to 90% of the genetic material in

metagenomic samples according to our analyses; however,

other domains including fungi, microeukaryotes, and viruses

remain understudied in the context of host-specific microbiotas.

It is likely that these biomes will contribute additional functional

and phenotypic complexities to modeling human disease in

mice, and further study of these domainsmay yield additional av-

enues for clinical intervention. Targeted microbiota therapies,

live bacterial therapeutics, rationally designed drugs, and micro-

bial biomarkers of disease are just some of the clinical develop-

ments that microbiota research aims to deliver to improve out-

comes of human health and disease. Mouse models will

continue to play a central role in this research, and therefore,

the isolate, genome, and protein catalogs presented in our study

represent important developments in understanding and tack-

ling the obstacles posed by host-specificmicrobiota and provide
134 Cell Host & Microbe 30, 124–138, January 12, 2022
a starting point toward efficient and informed translation of gut

microbiota research between humans and mice.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources, reagents and software should be directed to and will be fulfilled by the lead contact,

Virginia A. Pedicord (vap33@cam.ac.uk).

Materials availability
Isolates of additional culturable species generated in this study are being deposited at the Leibniz Institute DSMZ-German Collection

of Microorganism and Cell Cultures (DSMZ), and accession numbers are available under https://github.com/BenBeresfordJones/

MGBC. Isolates generated in this study that have not been deposited at DSMZ will be made available without restriction upon

request.

Data and code availability
d Raw sequencing data and genome assemblies for the isolates of the MCC have been deposited in the European Nucleotide

Archive (ENA) under project accessions ENA: PRJEB18589 and ENA: PRJEB45232 respectively. Genome assemblies for

the representative MAGs of the MGBC have been deposited in the ENA under project accession ENA: PRJEB45234. The

MGBC Kraken2/Bracken database, protein catalogues and all genome assemblies and annotations generated in this study

have been deposited at Zenodo and can be accessed via https://github.com/BenBeresfordJones/MGBC. DOIs are listed in

the key resources table. Metagenomics sequences from 48 samples are deposited in the European Bioinformatics Institute-

Sequence Read Archive (SRA) database under accessions ENA: PRJEB44285 and ENA: PRJEB44286. All datasets generated

in this study are either included in Supplementary Tables or have been deposited on Zenodo and can be accessed via https://

github.com/BenBeresfordJones/MGBC.

d The pipelines, workflows, and code to generate figures are available under https://github.com/BenBeresfordJones/MGBC.

The MGBC-Toolkit is available at https://github.com/BenBeresfordJones/MGBC-Toolkit. All code produced by this project

has been additionally deposited in Zenodo, and DOIs are provided in the STAR methods.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Faecal samples from mice
Mice were maintained under specific pathogen-free conditions at a Home Office-approved facility in accordance with the United

Kingdom Animals (Scientific Procedures) Act of 1986. Faecal samples from 30 mice aged between 5 to 8 weeks were used to

generate the Mouse Culture Collection. We used both male and female representatives from 10 different mouse colonies at theWell-

come Sanger Institute. Colony genotypes are detailed in Table S8. For shotgun metagenome sequencing, faecal samples were

obtained from 48 8-week-old male C57BL/6N mice.

Bacterial culture
Fresh faecal samples were collected frommice into sterile 1.5mL Eppendorf tubes using aseptic technique. Sample processing and

culturing were performed under anaerobic conditions (80% nitrogen, 10% carbon dioxide, 10% hydrogen) in a Don Whitley A95

anaerobic workstation. Faeces were homogenised in sterile, pre-reduced PBS (100mg/mL) and a 10-fold 1:10 dilution series per-

formed. 200mL of each dilution was plated onto pre-reduced 140mm agar plates and incubated at 37�C. A range of agars were em-

ployed to maximise culturing yields and diversity (Table S8). After 2 days, individual colonies were picked and re-streaked onto fresh

plates. This was then repeated until purity was achieved. Colonies were identified using 16S rRNA gene sequencing. Single bacterial

colonies were scraped into 2mL screw cap tubes containing glass beads (acid-washed 425–600mm) and 500mL sterile PBS, and then

physically lysed by 30 seconds shaking at speed 6.0 using a FastPrep Instrument (MPBio). After centrifugation at 14,000rpm for 5 mi-

nutes, 1mL of supernatant was taken to carry out a 16S PCR using the standard 7F and 1510R bacterial primers (Browne et al., 2016)

and GoTaq Hot Start reagents (Promega). PCR products were sequenced by an external supplier (Eurofins Genomics) and mothur

(Schloss et al., 2009) used to align the resulting sequences and create OTUs representing clusters ofR97.8% sequence identity. For

each OTU, a single sequence was taxonomically classified using NCBI BLAST (Johnson et al., 2008) and a single isolate selected for

further culturing andwhole-genome sequencing. 10mL of BHI or YCFA broth was inoculated for each new isolate identified and left to

grow overnight. 500mL of the overnight culture was mixed with 500mL of 50% glycerol in a cryotube (performed in quadruplicate) and

these were frozen at�80�C. The remaining overnight culture was centrifuged at 4,000rpm, and the cell pellet then washed with 10mL

sterile PBS. For isolates that did not grow in broth, 2mL sterile PBSwas pipetted ontomono-inoculated agar plates and colonies were

dissolved using a bacterial scraper. Plate supernatants were then used in place of overnight cultures. Genomic DNA was extracted

from the washed pellet using the ‘MasterPure Complete DNA and RNA Purification Kit’ (Lucigen). Genomic DNAwas kept at 4�C until

sequencing.While 276 strains were cultured to purity and sequenced, only 223were subsequently recovered successfully from cryo-

preservation for banking at the Wellcome Sanger Institute and DSMZ.
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METHOD DETAILS

Curation of public mouse gut-derived isolate genomes
To build a comprehensive genome collection, we curated 319 publicly available mouse-derived isolate genomes from the ENA,

including the genomes of previously published mouse gut isolate collections (Lagkouvardos et al., 2019, 2016; Liu et al., 2020).

As genome assemblies for the isolates of the miBC (Lagkouvardos et al., 2016) had not been made available, we assembled these

from raw reads according to our standard genome processing pipeline. Only genomes that passed our quality control thresholds

(n=288; ‘‘Quality control of genome assemblies’’) were included in the analyses for this study. The metadata for these public mouse

isolate genomes are included in Table S1.

Curation of public human gut-derived bacterial genomes
To perform taxonomic and functional analyses betweenmouse and human gut bacterial species, we curated 204,939 non-redundant

human gutmicrobial genomes from theUnifiedHumanGastrointestinal Genome (UHGG) catalogue (Almeida et al., 2021).We applied

the same quality control and taxonomy assignment pipelines to the UHGG genomes as with the MGBC. In total, 100,456 non-redun-

dant, high-quality human gut microbial genomes, representing 3,006 species, were curated for comparison with the MGBC. Meta-

data for these genomes are provided in Table S3.

Mouse gut metagenome cohort curation
To create a comprehensivemouse gut-derivedmetagenome catalogue forMAG synthesis and quantification of species global abun-

dance and prevalence profiles, we utilised the Advanced Search functionality of the ENA (Harrison et al., 2021) to identify all WGS raw

read samples with an NCBI Taxonomymetadata value of ‘‘mouse gut metagenome’’ (taxid: 410661; last accessed February 2021). In

total, 8,418 samples were identified which were then manually assessed according to our exclusion criteria. We additionally per-

formed a review of the available literature to identify further studies that our ENA search might have overlooked due to constraints

with manual metadata entry. Samples were technically excluded if they were unpublished, i.e., where no publication listed the study

accession number, or if they represented 16S rRNA amplicon sequencing datasets. Samples were biologically excluded if mice had

been exposed to antibiotics, had an active gastrointestinal infection, or had received faecal microbiota transplantation derived from a

non-mouse host. Furthermore, we additionally excluded samples that would disrupt the validity of species prevalence and abun-

dance analyses, e.g., following enrichment for viral particles, or deriving from an ex-germfree mouse reconstituted with a simplified

microbiota. Details of included and excluded studies are provided in Table S2. Of the included metagenomes, 64 were kept aside as

independent samples for read classification analyses. Metadata for these samples are included in Table S2.

These publicly available samples were supplemented with 48 newly sequenced faecal samples from 8-week-old male C57BL/6N

mice. In total, 2,913 metagenome samples were used to generate MAGs; data for these samples are supplied in Table S2. 2,446

samples yieldedR1MAG andwere used to generate abundance and prevalence profiles of mouse gut microbial species. The meta-

data for these samples are provided in Table S2.

Whole-genome sequencing and assembly
Bacterial genomic DNAwas sequenced using the Illumina Hi-Seq Ten platform at theWellcome Sanger Institute with library fragment

sizes of 200–300 bp, a read length of 150 bp and a target read depth of 100x. Annotated assemblies were produced using a previ-

ously described pipeline (Page et al., 2016). Briefly, multiple assemblies were generated from sequence reads using Velvet v1.2 (Zer-

bino and Birney, 2008) and VelvetOptimiser v2.2.5. An assembly improvement step was applied to the assembly with the best N50

(Page et al., 2016), and contigs were scaffolded using SSPACE v2.1.1 (Boetzer et al., 2011) and sequence gaps filled using GapFiller

(Boetzer and Pirovano, 2012). Automated annotation was performed using Prokka v1.14.5 (Seemann, 2014).

Faecal sample collection and shotgun metagenomic sequencing
Faecal samples were collected directly from C57BL/6N mice using aseptic techniques, and immediately stored at �80�C until DNA

extraction. DNA was extracted using the ‘FastDNA Spin Kit for Soil’ (MPBio) according to manufacturer’s instructions and stored at

�20�C until metagenomic sequencing. DNA samples were quantified using a Qubit 4 Fluorometer (Thermo Fisher), and samples with

R100 ng DNA material proceeded to paired-end (23150 bp) shotgun metagenomic sequencing on the HiSeq 4000 platform.

Workflow for metagenome-assembled genome (MAG) synthesis
MAGs were generated using a custom in-house pipeline that leveraged MetaWRAP v1.2.3 (Uritskiy et al., 2018) for single sample

assembly, binning and bin refinement. First, metagenomes were quality controlled using KneadData v0.7.3 with default settings.

Host reads were removed from samples using the GRCm39 reference genome and Bowtie2 v2.3.5 (Langmead et al., 2019). In addi-

tion, reads were aligned to the phi-X174 genome and removed. MetaSPAdes v3.10.1 (Nurk et al., 2017) was used for the assembly of

paired-end samples. In line with other reports, runtime with MetaSPAdes was excessively long (>48 hours) for some samples (Kim

et al., 2020). In these cases, and for samples with only unpaired reads, MEGAHIT v1.1.1-2-g02102e1 (Li et al., 2016) was used for

assembly. To generate genome bins, we utilised the ‘binning’ module from MetaWRAP to run MetaBAT2 v2.9.1 (Kang et al.,

2019), MaxBin 2.0 v2.2.4 (Wu et al., 2016) and CONCOCT v0.4.0 (Alneberg et al., 2014) in parallel on each sample. These bins

were then consolidated and refined using the ‘bin_refinement’ module.
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Quality control of genome assemblies
Both isolate genomes and MAGs were subjected to stringent genome quality criteria to be included in our analyses. Completeness,

contamination, and genome fragmentation were estimated using CheckM v1.1.2 (Parks et al., 2015). Genome assemblies with

R90% completeness, <5% contamination, maximum contig count %500 (Browne et al., 2016), maximum genome size %8 Mb

(Zou et al., 2019), N50R10,000 kb (Nayfach et al., 2019) andmean contig lengthR5 kb (Zou et al., 2019), were defined as high-qual-

ity genomes, in line with guidelines and previous studies (Bowers et al., 2017; Parks et al., 2017; Pasolli et al., 2019). Any isolate

genome that did not meet these thresholds was excluded from analysis. For MAGs, we additionally defined medium-plus quality ge-

nomes as those assemblies with R50% completeness, <5% contamination and a quality score R50, where

QS = Completeness� ð5 3 ContaminationÞ
(Parks et al., 2017). This definition exceeds the medium-quality thresholds as defined by MIMAGs (Bowers et al., 2017). Only high-

quality genomes were included in our analyses, unless otherwise indicated. Data for MAG yields from included samples are provided

in Table S2.

Additional quality metrics were calculated to complement the contamination scores generated with CheckM. For the non-redun-

dant, high-quality genomes of the MGBC genome chimerism was quantified using GUNC v1.0.4 (Orakov et al., 2021) and strain het-

erogeneity was assessed using CMseq v1.0.3 (Pasolli et al., 2019). Quality data for these genomes are provided in Table S3.

Taxonomic classification of genomes and species clustering
To remove redundancy from our collection of high-quality genomes, we used dRep v2.5.4 (Olm et al., 2017) to remove conspecific

genomes that shared R99.9% ANI (options: -pa 0.999 –SkipSecondary). We taxonomically classified our genomes using the ‘clas-

sify_wf’ workflow from GTDB-Tk v1.3-r95 (Chaumeil et al., 2019). To generate species clusters for genomes that could not be as-

signed to a species-level taxonomy using GTDB-Tk, we clustered these genomes atR95% ANI using a two-step genomic distance

analysis implemented by dRep (options: -comp 50 -con 5 -pa 0.9 -sa 0.95 -nc 0.6). Previously calculated quality data from CheckM

were supplied for each genomewith the –genomeInfo flag to reduce computation time. Genomes that sharedR95%ANI at 0.6 align-

ment fraction were considered the same species (Jain et al., 2018; Nielsen et al., 2014; Varghese et al., 2015).

To determine genome representatives for each species cluster, we ranked each genome according to a modified quality score

mQS = Completeness � ð5 3 ContaminationÞ+ logðN50Þ
and used the highest scoring genome from each species as the representative.

Determining prior cultured status of isolates
We inferred the cultured status of our isolates using a two-step approach. First, we compared our isolate genomes to the publicly

available mouse-derived isolate genomes of the MGBC. Isolates were considered to be the same species if (1) they were designated

as the same species by GTDB-Tk, or (2) they sharedR95% ANI across an alignment fraction ofR0.6, in the case of a non-species-

level classification. Next, we searched our isolates that were not represented in the public mouse gut isolate collections against NCBI

RefSeq release 205 (O’Leary et al., 2016) usingMash v2.2.2 (Ondov et al., 2016), after which themost similar RefSeq genome to each

isolate was then compared using FastANI v1.3 (Jain et al., 2018). As RefSeq excludesmetagenome-derived genomes, an isolate was

designated as ‘‘previously uncultured’’ if it shared <95% ANI with the closest related genome.

Benchmarking binner performance for production of high-quality MAGs
We compared high-quality bins generated from a subset of 2,303 publicly available mouse gut metagenomes byMetaBAT2, MaxBin

2.0 and CONCOCT, as well as the consolidated bins generated by MetaWRAP refinement. Binner performance was compared

across four metrics:

i. CheckM estimates of genome quality (completeness, contamination, quality score) across all high-quality bins

ii. Taxonomic coverage of high-quality bins (i.e., the number of species represented)

iii. Average quality score of high-quality bins on a per species basis

iv. Core genome conservation by high-quality bins

Akkermansia muciniphila (Am),Bifidobacterium globosum (Bg), Ligilactobacillus murinus (Lm), and Lactobacillus johnsonii (Lj) were

selected for comparing the conservation of the core genome between binners as these species ranked among the top 10 most

commonly binned species across all four binning tools, and each have R50 isolate genomes with which to build a robust baseline

core genome. In addition, these species represent three phyla, reducing the potential for any taxonomic bias. Isolate genomes were

compiled from RefSeq and the MGBC, and high-quality isolate genomes that were designated as the correct species by GTDB-Tk

were annotated using Prokka v1.14.5 with default settings. For each species, Panaroo v1.2.4 (Tonkin-Hill et al., 2020) was used to

build an ‘isolate-only’ core genome and an ‘isolate+bins’ core genome for each binner using the following options: �clean-mode

strict –core_threshold 0.99. The number of isolate genomes used for each species was as follows: Am, 136; Bg, 62; Lm, 58; Lj,

54. For each species, a standardised number of subsampled bins was used to build the ‘isolate+bins’ core genome for each binner:

Am, 90; Bg, 35; Lm, 150; Lj, 60. To quantify core genome conservation, 100 iterations of bin subsampling and core genome analysis
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were performed for each binner, and the core genome size distribution was calculated as a percentage of the ‘isolate-only’ core

genome.

Comparison to other mouse microbiota resources
The MAGs of the iMGMC and co-abundance gene groups (CAGs) from Xiao et al. (2015) (MGCv1) were accessed and processed

according to the quality control and taxonomic assignment protocols above. 8,509MAGs of the iMGMCwere defined as high-quality

genomes and used for benchmarking the MGBC. Comparison of this resource to the MGBC consisted of three stages: taxonomic

coverage, genome quality, andmetagenome coverage. Shared and unique specieswere identified between the two collections using

GTDB-Tk and dRep as performed for theMGBC alone. For each shared species, the quality score was compared between the repre-

sentative genome of each collection.

To assess metagenomic read classification performance, custom Kraken2 (Wood et al., 2019) databases were built for all high-

quality genomes (MGBC, iMGMC) and medium-plus quality genomes (mq MGBC, mq iMGMC) of the MGBC and iMGMC. As

CAGs cannot be defined as high-quality due to failure to meet minimum genome fragmentation criteria (Bowers et al., 2017), a

custom Kraken2 database for the 239 CAGs defined as medium-plus quality was built for comparison (MGCv1). In addition, custom

Kraken2 databases were built for the post-qc isolate genomes of the miBC (Lagkouvardos et al., 2016) (n=43), the mGMB (Liu et al.,

2020) (n=100), all publicly available mouse-derived isolates (Public, n=288), the Mouse Culture Collection (MCC, n=276), all mouse

isolates (MCC+Public, n=564), and representative genomes of the high-quality species of the Unified Human Gastrointestinal

Genome (Human, n=3,006). The standard Kraken2 database for all NCBI genomes (accessed 2nd December 2020) was also included.

64 independent, post-qc mouse gut metagenome samples that had not been included in the generation of the MGBCwere analysed

with the different Kraken2 databases and percentage read classification was utilised as a proxy for database efficiency. The meta-

data for these samples are included in Table S2.

Construction of phylogenetic trees
Maximum likelihood phylogenetic trees were built de novo from protein sequence alignments of 120 core bacterial genes generated

by the GTDB-Tk ‘align’ module. The phylogenetic trees of theMouse Culture Collection and theMGBC representative genomeswere

built using FastTree v2.1.10 (Price et al., 2010) with default settings (BLOSUM45 matrix; JTT+CAT model). IQ-TREE v1.6.10 (Nguyen

et al., 2015) was usedwith default settings to build a phylogenetic tree of representative genomes for 3,006 human-derived and 1,094

mouse-derived bacterial species. LG+F+R10 was identified as the best fit protein substitution model based on the Bayesian infor-

mation criterion (Kalyaanamoorthy et al., 2017). Trees were visualised using Interactive Tree Of Life v5.6.3 (Letunic and Bork, 2021).

Metagenome classification and analysis
For analysis ofmouse gut shotgunmetagenome samples, taxonomic classification was performed using Kraken2 v2.0.8 (Wood et al.,

2019) and Bracken v2.5.2 (Lu et al., 2017). To enable species-resolved metagenomic analyses, we built a custom Kraken2/Bracken

database (options: -k 31 -l 150) with the 26,640 high-quality genomes of the MGBC using a custom GTDB taxonomy (Parks et al.,

2020, 2018). Only post-qc metagenomes that were of sufficient read depth to generate MAGs were used in metagenomic analyses

(n=2,446). The resulting Bracken outputs were compiled and analysed with R v4.0.2 (R Core Team, 2020). To calculate prevalence, a

threshold of 0.01% assigned classified reads was used to define presence of a species in a sample.

Due to the compositional nature metagenome analyses, we determined the Aitchison distances between samples (Aitchison,

1992). We performed Bayesian-multiplicative treatment of count zeros (Martı́n-Fernández et al., 2015) using the zCompositions

v1.3.4 R package (Palarea-Albaladejo and Martı́n-Fernández, 2015) and transformed data using a center log-ratio transformation.

Finally, the Euclidean distances of samples were determined using the vegan R package v2.5-6 (Oksanen et al., 2014). To assess

the ability of metadata variables to explain variance inmicrobial communities of themousemicrobiome, we applied the ‘adonis’ func-

tion from vegan to calculate the Permutational Multivariate Analysis of Variance of the Aitchison distance matrices using 999 permu-

tations. The PERMANOVA summary statistics are provided in Table S5.

For institute analyses, samples from ‘‘control’’ C57BL/6 mice were curated that were 1) faecal samples, 2) from wildtype mice, 3)

not exposed to a wild mouse microbiota, and 4) fed only a regular chow diet. Only institutes that were represented byR10 samples

were compared. Center log-ratio transformation of the data was performed and a heatmap generated using the pheatmapR package

v1.0.12 for the top 20 most abundant species of these samples against institute. For laboratory vs wild analyses, 65 samples from

‘wild’ gut microbiotas were compared against 1,065 samples from control ‘laboratory’ microbiotas. Hybrid microbiotas, where wild

and laboratory mice were crossed, were excluded from these analyses.

Taxonomic comparison of the mouse and human gut microbiotas
For taxonomic comparison, species were considered shared between the UHGG and the MGBC if they were annotated as the same

species by GTDB-Tk, or, if they could not be assigned at a species-level, the representative genomes shared R95% ANI across a

minimum alignment fraction of 0.6.

Pangenome synthesis and functional annotation
To generate species pangenomes for functional annotation, we first concatenated 76,937,350 pre-clustered (100% sequence iden-

tity) proteins derived from the 100,456 non-redundant, high-quality genomes of the UHGG with 67,768,723 predicted proteins from
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the 26,640 non-redundant, high-quality genomes of the MGBC, and performed protein clustering using the ‘linclust’ function from

MMseqs2 v10-6d92c (-c 0.8 –cov-mode 1 –cluster-mode 2 –kmer-per-seq 80) (Steinegger and Söding, 2018, 2017). Proteins

were clustered at 100%, 90%, 80% and 50% sequence identity.

Next, we generated species pangenomes by concatenating all non-redundant (90% sequence identity) protein-coding sequences

from member genomes. Pangenomes were then functionally annotated using both InterProScan v5.39-77.0 (Jones et al., 2014) and

EggNOG-mapper v2.0.1 (Huerta-Cepas et al., 2017).

To assess global functional overlap between host gut microbiotas, we calculated the number of InterPro (IPR) protein families and

KEGG orthology (KO) groups that were shared in total between human and mouse pangenomes.

Taxonomic and functional distance analyses
Taxonomic distances were calculated from the human-mouse representative genome phylogeny (‘‘Construction of phylogenetic

trees’’). Phylogenetic branch lengths between the representative genomes of each human andmouse species were calculated using

the ‘cophenetic.phylo’ function from ape v5.5 (Paradis and Schliep, 2019).

To maximise the resolution of functional comparisons, functional annotations from multiple schemes – including InterPro, KEGG

(Kanehisa et al., 2017), MetaCyc (Caspi et al., 2016), CAZy (Lombard et al., 2014), Reactome (Jassal et al., 2020), and Gene Ontology

(Ashburner et al., 2000) – were considered together (all functions) in the context of each species pangenome. To facilitate functional

distance analyses, pangenome-feature matrices were constructed where each functional annotation was scored according to the

fraction of genomes per pangenome that were annotated with that feature. Inter-pangenomic functional distances were then calcu-

lated using the Jaccard Index.

A global comparison of the interspecies taxonomic and functional relationships was performed using aMantel test. The taxonomic

and functional distance matrices were ordinated using the ‘cmdscale’ function, and the two most dominant principal coordinates

were visualised using the R packages ggpubr v0.4.0 and ggplot2 v3.3.5.

Functional comparison of Phocaeicola species
To identify the functional pathways that underpin the divergence between human and mouse Phocaeicola dorei (PdH, PdM) and the

relative similarity of human P. dorei and mouse P. vulgatus (PvM), InterProScan v5.39-77.0 and Genome Properties v2.0.1 (Richard-

son et al., 2019) were run on all genomes for these species (PdH, n=1,954; PdM, n=15; PvM, n=177). The tabular outputs were

concatenated and the proportion of ‘complete pathway’-encoding genomes for each species was calculated for each property.

The proportion of property-encoding genomes was then compared between each species pair using two-proportion z-tests with

Yates’ continuity correction. The data from these analyses are provided in Table S10.

Drug metabolism analyses
The protein sequences of genes validated for drugmetabolism by the human gutmicrobiota from four independent studies (Table S7)

were accessed via UniProt (The UniProt Consortium, 2021). Each gene was queried against a UHGG-MGBC combined protein cata-

logue (pre-clustered at 100% sequence identity) using BLAST+ v2.7.1 (Camacho et al., 2009). The ‘hm_blast’ module of the MGBC-

Toolkit (https://github.com/BenBeresfordJones/MGBC-Toolkit) was utilised for these analyses. Hits with R95% sequence identity

were considered functionally equivalent, and the genomes of origin for each hit were identified. For bt_4096, additional hits with

sequence identity down to 50% were considered.

Butyrate synthesis analyses
The ‘feature_search’ module of the MGBC-Toolkit was applied to search bacterial pangenomes for the IPR family identifiers of the

terminal pathways of butyrate synthesis: IPR023990 (BCOAT), IPR011245 (BUK), IPR014079 (PTB). Only species encoding both BUK

and PTBwere considered as butyrate producers using the PTB/BUK terminal pathway. The fraction of genomes per pangenome that

were predicted to encode terminal pathway genes was calculated and based on these data a threshold of 70% was used to define

butyrate-producing species.

Validating butyrate terminal pathway predictions using isolate cultures
From the functional annotations of their genomes, isolates from the Mouse Culture Collection were identified that encoded either the

BCOAT pathway, the PTB/BUK pathway or neither. For each pathway, three isolates that ranked in the top 30 most abundant pre-

dicted butyrate-producing species according to the global mouse gut metagenome catalogue curated above (‘‘Metagenome clas-

sification and analysis’’) were selected for culturing. Isolates for known butyrate-producing species of the human gut microbiota

(Agathobacter rectalis, Coprococcus eutactus_A) were included as positive controls, and an isolate from the MCC that lacked pre-

dicted butyrate terminal pathway genes (Lachnospiraceae_NOV MGBC000113) was included as a negative control.

Under anaerobic conditions and using pre-reduced reagents, isolates were streaked onto YCFA (Duncan et al., 2002) agar and

single colonies picked into 10 mL YCFA broth. Broth cultures were incubated at 37�C for 48 hours. Culture turbidity and pH were

measured to confirm growth, and 16S rRNA gene sequencing was performed to check for contamination. Bacterial cultures were

centrifuged at 3,600rpm for 5 minutes to pellet cells. The supernatant was pipetted off and sterile-filtered before being immediately

stored at -80�C until analysis. These experiments were performed in triplicate.
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Short chain fatty acid quantitation by GC-MS
Bacterial media samples (100 mL) were extracted using 400 mL methanol containing acetate-d3, propionate-d5, butyrate-d7 and

valerate-d9 as internal standards (Cambridge Isotope Laboratories). After vortexing, samples were incubated at -80�C for >1 h to

promote protein precipitation, then centrifuged for 20 min at 20,000g at 4�C. 100 mL of the resulting supernatant was added to

100 mL of 100 mM borate buffer (pH 10). Subsequently, 400 mL of 100 mM pentafluorobenzyl bromide (Thermo Scientific) diluted

in acetonitrile (Fisher) and 400 ml of cyclohexane (Acros Organics) were added and reaction vials were sealed. Samples were deri-

vatised by heating to 65�C for 1 h with agitation, then cooled to room temperature and centrifuged at 2,000g for 2 min to promote

phase separation. 100 mL of the cyclohexane (upper) phase was transferred to a fresh autosampler vial and diluted 1:100 with cyclo-

hexane prior to analysis. Gas chromatography-mass spectrometry (GC-MS) was performed using an Agilent 7890A gas chromato-

graph and Agilent 5975CMS detector operating in negative chemical ionisation mode. A 1mL splitless injection was made onto a VF-

1701ms column (30 m3 0.25 mm, 0.25 mm; Agilent Technologies). Helium (1.2 mL/min) was the carrier gas and methane (2 mL/min)

was used as the chemical ionisation reagent gas. For SCFA quantification, the peak areas of acetate (m/z 59) and propionate (m/z 73)

were normalized to acetate-d3 (m/z 62) and propionate-d5 (m/z 78) internal standards respectively; the C4 compounds butyrate and

isobutyrate (m/z 87) were normalized to butyrate-d7 (m/z 94) and the C5 compounds 2-methylbutyrate, valerate and isovalerate (m/z

101) were normalized to valerate-d9 (m/z 110). Calibrator and quality control (QC) samples were prepared in borate buffer and deri-

vatised using the same procedure covering the range 0.05–125 mM. All data analyses were performed with Agilent MassHunter

quantitative analysis software (version 10.1, Agilent Technologies) and QC samples were confirmed to be within ±15% accuracy.

Butyrate production data are provided in Table S9.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using R v4.0.2. Statistical significance was verified using tests as reported in the text, STAR

methods and figure legends. Tests for correlation utilised Pearson coefficients unless otherwise stated. A p- or q-value %0.05 was

considered statistically significant. Experimental ‘n’ is reported throughout the results and methods, as well as in figure legends.

Summary statistics, including measures of center and dispersion, are reported in the results section where appropriate. Graphs

were generated using the ggpubr and ggplot2 packages in R v4.0.2.
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Supplementary Figure 1: Comparison of common binners for MAG synthesis, related to STAR 
methods. a) Quality scores of high-quality and medium-quality bins generated using the single binners 
MetaBAT2, MaxBin2, CONCOCT and hybrid bins from MetaWRAP (combined bins from all three single 
binners). b) Bars represent the number of species for which each binner generated the lowest quality 
bins (“Ranked lowest binner”, red), and the highest quality (“Ranked highest binner”, blue).  c) UpSet 
plot illustrating the number of species represented by high-quality bins generated by each binner, and 
the species intersections between binners. d) MAG quality scores for the 12 most commonly binned 
species. e) Core genome size of commonly binned species when utilising different binners. Data 
represent the core genome size of MAG+isolate core genomes, compared to isolates alone. A. 
muciniphila, 100 iterations of 90 MAGs per binner and 136 isolate genomes; B. globosum, 100 
iterations of 35 MAGs per binner and 62 isolate genomes; L. johnsonii, 100 iterations of 60 MAGs per 
binner and 54 isolate genomes; L. murinus, 100 iterations of 150 MAGs per binner and 58 isolate 
genomes. Aside from the medium quality MAG data in (a), only high-quality MAGs were used in these 
analyses. 
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Supplementary Figure 2: The mouse gut microbiota between institutes and wild mice, related to 
STAR methods. a) Abundance and prevalence profiles of the 20 most prevalent species of the mouse 
gut microbiota across 2,446 samples. A species was determined as present in a sample if it was 
assigned ≥0.01% of classified reads. Point colour represents taxonomic phylum and point shapes and 
boldface labels indicate whether a species has been cultured as part of the MCC (triangles, bold) or 
not (circles). b) Proportion of variance explained (R2) by variables in the metadata using a 
permutational analysis of variance (PERMANOVA). All analyses were run with 999 permutations. 
Statistics for the PERMANOVA are provided in Table S7. c) Heatmap showing abundance of the top 20 
most abundant species of the mouse microbiota across different institutes. Analyses include faecal 
samples from wildtype C57BL/6 “control” mice fed chow diets (n=432). Data are centre log-ratio 
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normalised read fractions, following Bayesian-multiplicative replacement of count zeros. d) Scatter 
plot comparing prevalence of species between untreated laboratory (n=1,065) and wild (n=65) mouse 
gut microbiotas. Each datapoint represents a mouse, and colour represents taxonomic phylum. Black 
line and shadow indicate linear regression line with 95% confidence interval (r=0.87, p<2.2x10-16). e) 
Fold-change in mean abundance of species in wild mice compared to untreated laboratory mice. 
Positive coefficient indicates enrichment in wild mice. Bar colour represents taxonomic phylum.  



Supplementary Figure 3: Taxonomic and functional analyses of the human and mouse gut 
microbiotas, related to Figure 4. a) Venn diagram illustrating species sharing between human and 
mouse microbiotas. b) Venn diagrams illustrating the functional overlap of InterPro protein families 
(IPR; left) or KEGG Orthology (KO) groups (right) between all human (blue) and mouse (yellow) gut 
bacterial species. c) Functional annotation efficiency of bacterial pangenomes by taxonomic phylum 
for KO groups (top) and IPR families (bottom). Data represent the percentage of predicted protein-
coding genes of each pangenome that could be assigned to an IPR or KO, coloured by phylum. d) 
Functional annotation efficiency of KO groups by host organism. A Wilcoxon signed-rank test was used 
to calculate statistical significance, ****P < 0.0001. 
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Supplementary Figure 4: Butyrate metabolism by species of the mouse gut microbiota, related to 
Figure 6. a) Schematic of the terminal pathways of butyrate synthesis by the gut microbiota. Butyrate 
CoA-transferase (BCoAT; orange); butyrate phosphotransferase/butyrate kinase (PTB/BUK; purple). b) 
Abundance and prevalence profiles of the 90 most abundant predicted butyrate producing species of 
the mouse gut microbiota. Point colour represents predicted encoded terminal butyrate pathway. 
Point shapes and boldface labels indicate whether a species has been cultured as part of the MCC 
(triangles, bold) or not (circles). 
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Supplementary Table 5: PERMANOVA statistics, related to STAR methods. 
PERMANOVA comparing the extent to which factors in sample metadata explain variance between metagenomic samples.
 

Metadata factor DegreesFreedom SumsOfSquares MeanSquares F.Model R2 P_value Explanation of factor/variable: 
Study 74 2055298 27774.3 21.42 0.40067 0.001 Study accession. 

Institute 62 1949409 31442.1 23.56 0.38002 0.001 
Experimental institute i.e., location of mice at time 
of sampling. 

Vendor 57 1688944 29630.6 20.646 0.33217 0.001 
Vendor's name with region if relevant e.g., Jackson, 
US vs Jackson, Denmark. 

Age 54 1084273 20079.1 12.347 0.24407 0.001 Age at time of sampling. 
Institute country 16 1074085 67130 40.29 0.21124 0.001 Country of the institute. 

Treatment 58 1010917 17429.6 10.102 0.19728 0.001 
What treatments did the mice receive e.g., control, 
high fat diet, specific drug treatment. 

Vendor country 14 932012 66572 38.714 0.18555 0.001 Country of the vendor. 

Dietary Supplement 30 635939 21198 11.392 0.1241 0.001 
Dietary supplement, including in the drinking water 
e.g., glucose, NSAIDs, or DSS. 

Mouse strain 20 553619 27681 14.671 0.10806 0.001 Strain of mice e.g., C57BL/6J vs C57BL/6NTac 
Institute continent 3 394842 131614 67.88 0.07697 0.001 Continent of the institute. 

Genotype 17 263389 15493.5 7.7309 0.05141 0.001 
Genotype: wildtype, or specific knockout e.g., IL-10 
deficient. 

Diet 10 152023 15202.3 7.437 0.03 0.001 Diet: chow, high fat, low fibre, etc. 
Sample source/GI 
location 10 143611 14361.1 7.0171 0.02825 0.001 

Sampling location e.g., faeces, caecum, small 
intestine. 

Sex 1 94158 94158 45.948 0.02201 0.001 Sex of mice. 

exGF 1 32620 32620 15.641 0.00636 0.001 
Endogenous (SPF) or reconstituted (ExGF) 
microbiota. 

Lab vs Wild 1 18098 18098.1 8.6532 0.00353 0.001 
Laboratory vs wild mice, reflecting their faecal 
origins e.g., in the case of ExGF mice 

Technical features: Permutation: Free 
Number of 
permutations: 999 
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