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Supplementary Materials 1 

 (1)  Why do the conventional methods fail in the presence of correlated data? 2 

In basic neuroscience research, data dependency due to clustering or repeated measurements is 3 

probably the norm rather than the exception. Unfortunately, the most widely used methods under these 4 

situations are still the t-test and ANOVA, which do not take dependence into account, thus leading to 5 

incorrect statistical inference and misleading conclusions.  6 

We will use a data set collected from our own work to assess the degree of data dependency due 7 

to clustering (animal effects) and to illustrate the consequences of ignoring the dependent structure. In 8 

this example, we measured the change in pCREB immunoreactivity of 1,200 putative excitatory neurons 9 

in mouse visual cortex at different time points: collected at baseline (saline), 24, 48, 72 hours, and 1 week 10 

following ketamine treatment, from 24 mice. See Grieco et al. (2020) for more details. Figure S1 shows 11 

that the changes in pCREB immunoreactivity tend to be clustered, i.e., measurements from the same 12 

animal tend to be more similar to each other than measurements from different animals.  13 

 14 
Figure S1: Normalized pCREB staining intensity values from 1,200 neurons (Example 1). The values in 15 
each cluster were from one animal. In total, pCREB values were measured for 1,200 neurons from 24 16 
mice at five conditions: saline (7 mice), 24h (6 mice), 48h (3 mice), 72h (3 mice), 1week (5 mice) after 17 
treatment.  18 

 19 

We compute the intra-class correlation (ICC) to quantify the magnitude of dependency within 20 

animals using the software R, a free and open source software (CRAN) (R Development Core Team, 2020).  21 

One major advantage of R over other open source or commercial software is that R is widely adopted and 22 

continuously reassessed for accuracy, and has a rich collection of user-contributed packages (over 15,000), 23 

thus supporting a programing environment for developers and access to cutting-edge statistical 24 

methods. In this tutorial, we will use the following R packages: lme4 (Bates et al., 2014), nlme (Pinheiro 25 

https://cran.r-project.org/web/packages/lme4/index.html
https://cran.r-project.org/package=lme4
https://cran.r-project.org/package=nlme
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et al., 2007), icc (Wolak and Wolak, 2015), pbkrtest (Halekoh and Højsgaard, 2014), brms (Bürkner, 2017; 26 

Bürkner, 2018), lmerTest (Kuznetsova et al., 2017), emmeans (Lenth et al., 2019), car (Fox and Weisberg, 27 

2018) , and sjPlot (Lüdecke, 2018).  If they have not been installed onto your computer, you will need to 28 

install them by removing the “#” symbol and copy one line at a time to your R console. The “#” symbol is 29 

used for commenting out code in R. The installation of a package to a computer only needs to be done 30 

once. However, the libraries for data analysis need to be loaded each time you start the R software. We 31 

recommend you only load a library when it is needed.  32 

#install.packages("lme4") 

#install.packages("nlme") 

#install.packages("ICC") 

#install.packages(“brms”) 

#install.packages(“pbkrtest”) 

#install.packages(“emmeans”) 

#install.packages(“car”) 

#install.packages(“sjPlot”) 

 33 
We start with reading the pCREB data (Example 1) into R.  Because the data file is comma-34 

separated, we use the function “read.csv” to read it.  The option “head=T” reads the first row as the 35 

column names. Most R packages of LME require the “long”, also known as “vertical” format, in which data 36 

are organized in a rectangular data matrix, i.e., each row of the dataset contains only the values for one 37 

observation. The columns contain necessary information about this observation such as the experimental 38 

condition, treatment, cell ID, and animal ID.  In this example, the data are stored in a 1,200-by-3 matrix, 39 

with the first column being the pCREB immunoreactivity values, the second column being the treatment 40 

labels, and the last column being the animal identification numbers. The treatment information is in the 41 

second column and it is coded as labels 1 through 5: 1 for baseline (saline), 2-5 for 24, 48, 72 hours, and 1 42 

week after ketamine treatment, respectively. By default, the treatment information is read into numerical 43 

values. To convert it to a categorical variable, we apply the “as.factor” function to the treatment variable.  44 

# The following lines of code read the Example 1 data 

> Ex1 = read.csv("Example1.txt", head=T) 

 

# checking the dimensions of the dataset 

# in this case 1200 rows and 3 columns 

> dim(Ex1) 

[1] 1200    3 

 

# checking the names of each column 

> names(Ex1) 

[1] "res"           "treatment_idx" "midx"      

 

# a frequency table for the treatment variable 

> table(Ex1$treatment_idx) 

  1   2   3   4   5  

357 309 139 150 245  

 

# a frequency table for the measurements in each mouse 

https://cran.r-project.org/package=ICC
https://cran.r-project.org/package=pbkrtest
https://cran.r-project.org/package=brms
https://cran.r-project.org/package=lmerTest
https://cran.r-project.org/package=emmeans
https://cran.r-project.org/package=car
https://cran.r-project.org/package=sjPlot
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> table(Ex1$midx) 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  

53 49 56 52 46 47 54 52 54 54 47 53 49 47 48 44 50 45 55 47 57 47 52 42 

 

#Do not forget to factor the treatment IDs 

Ex1$treatment_idx = as.factor(Ex1$treatment_idx) 

 

 45 
Next, we examine the magnitude of clustering due to animal effects by computing the ICC for 46 

each treatment group. 47 

### load the ICC library 

library(ICC) #load the library to conduct ICC analysis with its function ICCbare 

 

### conduct ICC analysis by organizing all the information into a data frame 

icc.analysis=data.frame(n=rep(0,5), icc=rep(0,5), design.effect=rep(0,5),  

effective.n=rep(0,5), M=rep(0,5), cells=rep(0,5)) 

for(i in 1:5) 

{ 

 trt= Ex1[Ex1$treatment_idx==i,] 

 trt$midx=factor(trt$midx) 

 icc=ICCbare(factor(trt$midx), trt$res) #ICCbare is a function in the ICC package 

 icc.analysis$cells[i]=dim(trt)[1] 

 M=dim(trt)[1]/length(unique( trt$midx)) 

 def=1+ icc*(M-1) 

 

 icc.analysis$n[i]=length(unique( trt$midx)) 

 icc.analysis$icc[i]=icc 

 icc.analysis$design.effect[i]=def 

 icc.analysis$effective.n[i]=dim(trt)[1]/def 

 icc.analysis$M[i]=M 

} 

> icc.analysis 

  n        icc design.effect effective.n        M cells 

1 7 0.62094868     32.047434   11.139737 51.00000   357 

2 6 0.33006327     17.668195   17.489053 51.50000   309 

3 3 0.01780304      1.807071   76.920039 46.33333   139 

4 3 0.62810904     31.777343    4.720344 50.00000   150 

5 5 0.53694579     26.773398    9.150874 49.00000   245 

 

 48 
The results are organized in the following table: 49 

 Saline (7 mice) 24h (6 mice) 48h (3 mice) 72h (3 mice) 1wk (5 mice) 

# of cells 357 209 139 150 245 
ICC 0.61 0.33 0.02 0.63 0.54 

 50 

The ICC indicates that the dependency due to clustering is substantial. Therefore, the 1,200 51 

neurons should not be treated as 1,200 independent cells. When dependence is not adequately accounted 52 

for, the type I error rate can be much higher than the pre-chosen level of significance. To see how serious 53 

this problem is, we examine the false positives based on the dependence structure observed in our own 54 

study. In the simulation script we wrote (simulation_TypeIErrorRate.R, see the Supplemental Appendix 0), 55 

we generated 1000 data sets, each of which follows the same ICC structure and assumes NO difference 56 
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between the five conditions.  Surprisingly, the type I error rate when treating 1,200 neurons as 57 

independent observations is over 90% at the significance level of α=0.05. 58 

### run the simulation script  

> source("simulation_TypeIErrorRate.R") 

[1] "Type I error rate of LM at significance level 0.05: " 

[1] 0.9 

[1] "Type I error rate of LME at significance level 0.05: " 

[1] 0.086 
 59 
This is a situation for which the number of observational units is much larger than the number of 60 
experimental units. We will show how to use a linear mixed-effects model to correctly analyze the data 61 
in the next section.  62 
 63 
(2) Mixed-effects model analysis 64 

The word “mixed” in linear mixed-effects (LME) means that the model consists of both fixed and 65 

random effects. Fixed effects refer to fixed but unknown coefficients for the variables of interest and 66 

explanatory covariates, as identified in the traditional linear model (LM). Random effects, refer to 67 

variables that are not of direct interest - however, they may potentially lead to correlated outcomes.  A 68 

major difference between fixed and random effects is that the fixed effects are considered as parameters 69 

whereas the random effects are considered as random variables drawn from a distribution (e.g., a normal 70 

distribution).   71 

In order to apply the LME, it is necessary to understand its inner workings in sufficient detail. Let 72 

Yij indicate the jth observation of the ith mouse, and (xij,1, …, xij,4) be the dummy variables for the treatment 73 

labels with xij,1 = 1 for 24 hours, xij,2 = 1 for 48 hours, xij,3 = 1 for 72 hours, and xij,4 = 1 for 1 week after 74 

ketamine treatments, respectively.  Because there are multiple observations from the same animal, the 75 

data are naturally clustered by animal. We account for the resulting dependence by adding an animal-76 

specific mean to the regression framework discussed in the previous section, as follows: 77 

Yij = β0+ xij,1 x β1+ … + xij,4 x β4 + ui + Ԑij, i=1, …, 24; j=1, …, ni; 78 

where ni is the number of observations from the ith mouse, ui indicates the deviance between the overall 79 

intercept β0 and the mean specific to the ith mouse, and Ԑij represents the deviation in pCREB 80 

immunoreactivity of observation (cell) j in mouse i from the mean pCREB immunoreactivity of mouse i.  81 

Among the coefficients, the coefficients of the fixed-effects component, (β0, β1, β2, β3, β4), are assumed 82 

to be fixed but unknown, whereas (u1, …, u24) are treated as independent and identically distributed 83 

random variables from a normal distribution with mean 0 and a variance parameter that reflects the 84 

variation across animals.  It is important to notice that the cluster/animal-specific means are more 85 

generally referred to as random intercepts in an LME.  Equivalently, one could write the previous equation 86 
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by using a vector (zij,1, …, zij,24) of dummy variables for the cluster/animal memberships such that zij,k=1 for 87 

i=k and 0 otherwise: 88 

 Yij = β0+ xij,1 x β1+ … + xij,4 x β4 + zij,1 u1 + … + zij,24 u24 + Ԑij, I =1, …, 24; j=1, …, ni. (1) 89 

In the model above, Yij is modeled by four components: the overall intercept β0, which is the 90 

population mean of the reference group in this example, the fixed-effects from the covariates (xij,1, …, 91 

xij,4), the random-effects due to the clustering (zij,1, …, zij,24), and the random errors Ԑij’s, assumed to be 92 

i.i.d. from a normal distribution with mean 0.   93 

It is often convenient to write the LME in a very general matrix form, which was first derived in 94 

(Henderson et al., 1959).  This format gives a compact expression of the linear mixed-effects model: 95 

Y= 1β0 + X β+Z u + Ԑ, 96 

where Y is an n-by-1 vector of individual observations, 1 is the n-by-1 vector of ones, the columns of X are 97 

predictors whose coefficients β, a p-by-1 vector, are assumed to be fixed but unknown, the columns of Z 98 

are the variables whose coefficients u, a q-by-1 vector, are random variables drawn from a distribution 99 

with mean 0 and a partially or completely unknown covariance matrix, and Ԑ is the residual random error.   100 

 101 

Conduct LME in R 102 

nlme and lme4 are the two most popular R packages for LME analysis.  Besides the use of slightly 103 

different syntaxes for random effects, their main functions do differ in several other ways, such as their 104 

flexibility for modeling different types of outcomes, how they handle heteroscedasticity, the covariance 105 

structure of random effects, crossed random effects, and their approximations for test statistics.  A full 106 

description of these differences is beyond the scope of this article. We refer interested readers instead to 107 

the documentation for each of the two packages. Next, we show how to analyze Examples 1-3 using linear 108 

mixed effects models.   109 

 110 

Example 1.  The data have been described in Part I. We first fit a conventional linear model using the lm 111 

function, which erroneously pools all the neurons together and treats them as independent 112 

observations.  113 

 114 

################ Wrong analysis #################### 

 

> #Wrong analysis: using the linear model 

> obj.lm=lm(res~treatment_idx, data=Ex1) 

> summary(obj.lm) 

 

Call: 

lm(formula = res ~ treatment_idx, data = Ex1) 
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Residuals: 

    Min      1Q  Median      3Q     Max  

-1.7076 -0.5283 -0.1801  0.3816  5.1378  

 

Coefficients: 

               Estimate Std. Error t value Pr(>|t|)     

(Intercept)     1.02619    0.03997  25.672  < 2e-16 *** 

treatment_idx2  0.78286    0.05868  13.340  < 2e-16 *** 

treatment_idx3  0.81353    0.07551  10.774  < 2e-16 *** 

treatment_idx4  0.16058    0.07349   2.185   0.0291 *   

treatment_idx5 -0.36047    0.06266  -5.753 1.11e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.7553 on 1195 degrees of freedom 

Multiple R-squared:  0.2657,    Adjusted R-squared:  0.2632  

F-statistic: 108.1 on 4 and 1195 DF,  p-value: < 2.2e-16 

 

> summary(obj.lm)$coefficients 

                 Estimate Std. Error   t value      Pr(>|t|) 

(Intercept)     1.0261907 0.03997259 25.672363 4.064778e-116 

treatment_idx2  0.7828564 0.05868406 13.340189  6.040147e-38 

treatment_idx3  0.8135287 0.07550847 10.774006  6.760583e-26 

treatment_idx4  0.1605790 0.07348870  2.185084  2.907634e-02 

treatment_idx5 -0.3604732 0.06265813 -5.753015  1.112796e-08 

 

> anova(obj.lm) 

Analysis of Variance Table 

 

Response: res 

                Df Sum Sq Mean Sq F value    Pr(>F)     

treatment_idx    4 246.62  61.656  108.09 < 2.2e-16 *** 

Residuals     1195 681.65   0.570                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

> anova(obj.lm)[1,5] 

[1] 1.17392e-78 

 

> #wrong analysis: use ANOVA 

> obj.aov=aov(res~treatment_idx, data=Ex1) 

> summary(obj.aov) 

                Df Sum Sq Mean Sq F value Pr(>F)     

treatment_idx    4  246.6   61.66   108.1 <2e-16 *** 

Residuals     1195  681.6    0.57                    

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 115 

In this example, the parameters of major interest are the coefficients of the treatments (1: 116 

baseline; 2: 24 hours; 3: 48 hours; 4: 72 hours; 5: 1 week following treatment). The summary function of 117 

the lm object provides the estimates, standard error, t statistics, and p-values for each time point after 118 

the treatment, with the before treatment measurement used as the reference. The overall significance 119 

of the treatment factor is performed using an F test, which is available in the ANOVA table by applying 120 

the anova function to the lm object. Equivalently, one can also use the aov function to obtain the same 121 

ANOVA table.  122 
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As explained in Part I, ignoring the dependency due to clustering can lead to unacceptably high 123 

type I error rates. We next fit a linear mixed effects model by including animal-specific means. This can 124 

be done using either nlme::lme (the lme function in the nlme package) or lme4::lmer (the lmer function 125 

in the lme4 package), as shown below 126 

 127 
################## Linear Mixed-effects Model ########################### 

> #use nlme::lme 

> library(nlme) #load the nlme library 

> # The nlme:lme function specifies the fixed effects in the formula  

> # (first argument) of the function, and the random effects   

> # as an optional argument (random=). The vertical bar | denotes that  

> # the cluster is done through the animal id (midx)  

> obj.lme=lme(res~treatment_idx, data= Ex1, random = ~ 1|midx) 

> summary(obj.lme) 

Linear mixed-effects model fit by REML 

  Data: Ex1  

       AIC      BIC    logLik 

  2278.466 2314.067 -1132.233 

 

Random effects: 

 Formula: ~1 | midx 

        (Intercept)  Residual 

StdDev:   0.5127092 0.5995358 

 

Fixed effects:  res ~ treatment_idx  

                    Value Std.Error   DF   t-value p-value 

(Intercept)     1.0006729 0.1963782 1176  5.095642  0.0000 

treatment_idx2  0.8194488 0.2890372   19  2.835098  0.0106 

treatment_idx3  0.8429473 0.3588556   19  2.348988  0.0298 

treatment_idx4  0.1898432 0.3586083   19  0.529389  0.6027 

treatment_idx5 -0.3199877 0.3043369   19 -1.051426  0.3063 

 Correlation:  

               (Intr) trtm_2 trtm_3 trtm_4 

treatment_idx2 -0.679                      

treatment_idx3 -0.547  0.372               

treatment_idx4 -0.548  0.372  0.300        

treatment_idx5 -0.645  0.438  0.353  0.353 

 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-2.5388279 -0.5761356 -0.1128839  0.4721228  8.8600545  

 

Number of Observations: 1200 

Number of Groups: 24 

 

> #use lme4::lmer 

> library(lme4) #load the lme4 library 

> # The nlme:lme4 adds the random effects directly in the  

> # formula (first argument) of the function   

> obj.lmer=lmer(res ~ treatment_idx+(1|midx), data=Ex1) 

> summary(obj.lmer) 

Linear mixed model fit by REML ['lmerMod'] 

Formula: res ~ treatment_idx + (1 | midx) 

   Data: Ex1 

 

REML criterion at convergence: 2264.5 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  
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-2.5388 -0.5761 -0.1129  0.4721  8.8601  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 midx     (Intercept) 0.2629   0.5127   

 Residual             0.3594   0.5995   

Number of obs: 1200, groups:  midx, 24 

 

Fixed effects: 

               Estimate Std. Error t value 

(Intercept)      1.0007     0.1964   5.096 

treatment_idx2   0.8194     0.2890   2.835 

treatment_idx3   0.8429     0.3589   2.349 

treatment_idx4   0.1898     0.3586   0.529 

treatment_idx5  -0.3200     0.3043  -1.051 

 

Correlation of Fixed Effects: 

            (Intr) trtm_2 trtm_3 trtm_4 

tretmnt_dx2 -0.679                      

tretmnt_dx3 -0.547  0.372               

tretmnt_dx4 -0.548  0.372  0.300        

tretmnt_dx5 -0.645  0.438  0.353  0.353 

 
 128 
On the method of parameter estimation for LME.  Note that lme and lmer produce exactly the same 129 

coefficients, standard errors, and t statistics.  By default, the lme and lmer function estimate parameters 130 

using a REML procedure. Estimation of the population parameters in LME is often conducted using 131 

maximum likelihood (ML) or REML, where REML stands for the restricted (or residual, or reduced) 132 

maximum likelihood. While the name REML sounds confusing, REML obtains unbiased estimators for the 133 

variances by accounting for the fact that some information from the data is used for estimating the fixed-134 

effects parameters. A helpful analogy is the estimation of the population variance by the maximum 135 

likelihood estimator ∑ (𝑥𝑖 − 𝑥̅)2/𝑛𝑛
𝑖=1  , which is biased, or by an unbiased estimator ∑ (𝑥𝑖 − 𝑥̅)2/(𝑛 −𝑛

𝑖=1136 

1). This strategy is helpful when n is small.  137 

 138 

On the degrees of freedom and P-values.  A noticeable difference between the lme and lmer outputs is 139 

that p-values are provided by lme but not lmer. The calculation of p-values in lme uses the degrees of 140 

freedom according to “the grouping level at which the term is estimated” (Pinheiro and Bates, 2006), 141 

which is the animal level in Example 1.  However, the calculation of the degrees of freedom for a fixed 142 

model is not as straightforward as for a linear model (see the link here for some details). Several packages 143 

use more accurate approximations or bootstrap methods to improve the accuracy of p-values. In the 144 

following, we show different methods to compute (1) the overall p-value of the treatment factor, (2) p-145 

values for individual treatments, and (3) p-value adjustment for multiple comparisons. These p-values are 146 

for testing the fixed effects. We defer the discussion related to random effects until Example 3. 147 

https://stat.ethz.ch/pipermail/r-help/2006-May/094765.html
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 148 
(1) The overall p-value for the treatment factor. This p-value aims to understand whether there 149 
is any statistically significant difference among a set of treatments. We offer several ways to 150 
calculate this type of p-values. When assessing the overall treatment effects using a likelihood 151 
ratio test, one should use maximum likelihood, rather than REML, when using lme or lmer. 152 

 153 
> #overall p-value from lme 

> Wald F-test from an lme object 

> obj.lme=lme(res~treatment_idx, data= Ex1, random = ~ 1|midx) 

> anova(obj.lme) #Wald F-test 

              numDF denDF  F-value p-value 

(Intercept)       1  1176 142.8589  <.0001 

treatment_idx     4    19   4.6878  0.0084 

 

> #Likelihood ratio test from lme objects 

> # notice the argument of the option “method”  

> # which calls for using ML instead of REML  

> obj.lme0.ml=lme(res~1, data= Ex1, random = ~ 1|midx, method="ML") 

> obj.lme.ml=lme(res~treatment_idx, data= Ex1, random = ~ 1|midx, method="ML") 

> anova(obj.lme0.ml, obj.lme.ml) 

            Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

obj.lme0.ml     1  3 2281.441 2296.712 -1137.721                         

obj.lme.ml      2  7 2272.961 2308.592 -1129.481 1 vs 2 16.48011  0.0024 

 

#equivalently, one can conduct LRT using drop1  

> drop1(obj.lme.ml, test="Chisq") 

Single term deletions 

 

Model: 

res ~ treatment_idx 

              Df    AIC   LRT Pr(>Chi)    

<none>           2273.0                   

treatment_idx  4 2281.4 16.48 0.002438 ** 

 154 
As noted earlier, p-values are not provided for the overall effect or individual treatments by the lmer 155 

function in the lme4 package. Next, we show how to use the lmerTest package to calculate p-values.   156 

 157 
> library(lmerTest) 

> obj.lmer=lmerTest::lmer(res ~ treatment_idx+(1|midx), data=Ex1) 

> #when ddf is not specified, the F test with Satterthwaite's method will be use 

> anova(obj.lmer, ddf="Kenward-Roger")  

Type III Analysis of Variance Table with Kenward-Roger's method 

              Sum Sq Mean Sq NumDF  DenDF F value   Pr(>F)    

treatment_idx   6.74   1.685     4 19.014  4.6878 0.008398 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> #likelihood ratio test 

> obj.lmer.ml=lme4::lmer(res ~ treatment_idx+(1|midx), data=Ex1, REML=F) 

> obj.lmer0.ml=lme4::lmer(res ~ 1+(1|midx), data=Ex1, REML=F) 

> anova(obj.lmer0.ml, obj.lmer.ml) 

Data: Ex1 

Models: 

obj.lmer0.ml: res ~ 1 + (1 | midx) 

obj.lmer.ml: res ~ treatment_idx + (1 | midx) 

             npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)    

obj.lmer0.ml    3 2281.4 2296.7 -1137.7   2275.4                        

obj.lmer.ml     7 2273.0 2308.6 -1129.5   2259.0 16.48  4   0.002438 ** 

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> # drop1(obj.lmer.ml, test="Chisq") also works 

 158 
Remarks: (i) Since the function lmer is in both nlme and lmerTest, to ensure that the lmer from lmerTest 159 

is used, we specify the package name by using double colon: lmerTest::lmer. (ii) The default method of 160 

calculating the denominator degrees of freedom is Satterwhite’s method. One can use the option ddf to 161 

choose the Kenward-Roger method, which is often preferred by many researchers. (iii) Based on the 162 

simulation studies in (Pinheiro and Bates, 2006), F tests usually perform better than likelihood ratio tests.   163 

 164 

(2) P-values for individual treatments. The effects of individual treatments are also of great 165 

interest. As shown earlier, the individual p-values from nlme::lme can be obtained by using the 166 

summary function. Similarly, one can also obtain individual p-values by using the lmerTest 167 

package for a model fit by lmer. 168 

 169 
> obj.lmer=lmerTest::lmer(res ~ treatment_idx+(1|midx), data=Ex1) 

> #summary(obj.lmer) #Sattertwhaite's method for denominator degrees of freedom 

> summary(obj.lmer, ddf="Kenward-Roger") 

Linear mixed model fit by REML. t-tests use Kenward-Roger's method ['lmerModLmerTest'] 

Formula: res ~ treatment_idx + (1 | midx) 

   Data: Ex1 

 

REML criterion at convergence: 2264.5 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-2.5388 -0.5761 -0.1129  0.4721  8.8601  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 midx     (Intercept) 0.2629   0.5127   

 Residual             0.3594   0.5995   

Number of obs: 1200, groups:  midx, 24 

 

Fixed effects: 

               Estimate Std. Error      df t value Pr(>|t|)     

(Intercept)      1.0007     0.1964 18.9806   5.096 6.44e-05 *** 

treatment_idx2   0.8194     0.2890 18.9745   2.835   0.0106 *   

treatment_idx3   0.8429     0.3589 19.0485   2.349   0.0298 *   

treatment_idx4   0.1898     0.3586 18.9960   0.529   0.6027     

treatment_idx5  -0.3200     0.3043 19.0078  -1.051   0.3062     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) trtm_2 trtm_3 trtm_4 

tretmnt_dx2 -0.679                      

tretmnt_dx3 -0.547  0.372               

tretmnt_dx4 -0.548  0.372  0.300        

tretmnt_dx5 -0.645  0.438  0.353  0.353 
 170 
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(3) P-value adjustment for multiple comparisons. Note that the individual p-values shown above 171 

are for the comparison between each treatment group and the control group. Multiple 172 

comparisons have not been considered so far. Once a model is fit and an overall significance has 173 

been established, a natural question is which treatments are different from each other among a 174 

set of treatments. Consider Example 1, which involves five experimental conditions. The number 175 

of comparisons to examine all pairs of conditions is 10. When using unadjusted p-values and 176 

conducting testing at significance level α =0.05, the chance that we will make at least one false 177 

positive is much greater than 5%. The emmeans package can be used to adjust p-values by taking 178 

multiple comparisons into consideration. Two useful options are (i) the adjustment of multiple 179 

comparisons for all pairs of treatment by adding “pairwise” and (ii) the adjustment for 180 

comparisons for all the treatments to the control by adding “trt.vs.ctrl” and specifying the 181 

reference group, which is group “1” in this example.  182 

 183 
> library(emmeans) 

> obj.lmer=lme4::lmer(res ~ treatment_idx+(1|midx), data=Ex1) 

> contrast(emmeans(obj.lmer, specs="treatment_idx"), "pairwise") 

 contrast estimate    SE   df t.ratio p.value 

 1 - 2     -0.8194 0.289 19.0  -2.835  0.0704 

 1 - 3     -0.8429 0.359 19.1  -2.349  0.1727 

 1 - 4     -0.1898 0.359 19.0  -0.529  0.9832 

 1 - 5      0.3200 0.304 19.0   1.051  0.8283 

 2 - 3     -0.0235 0.368 19.0  -0.064  1.0000 

 2 - 4      0.6296 0.367 19.0   1.713  0.4496 

 2 - 5      1.1394 0.315 19.0   3.621  0.0138 

 3 - 4      0.6531 0.425 19.0   1.538  0.5517 

 3 - 5      1.1629 0.380 19.1   3.062  0.0447 

 4 - 5      0.5098 0.380 19.0   1.343  0.6690 

 

Degrees-of-freedom method: kenward-roger  

P value adjustment: tukey method for comparing a family of 5 estimates  

 

> #he default method of degrees of freedom is Kenward-Roger’s method 

> contrast(emmeans(obj.lmer, specs="treatment_idx"), "trt.vs.ctrl", ref = "1") 

 contrast estimate    SE   df t.ratio p.value 

 2 - 1       0.819 0.289 19.0   2.835  0.0364 

 3 - 1       0.843 0.359 19.1   2.349  0.0965 

 4 - 1       0.190 0.359 19.0   0.529  0.9219 

 5 - 1      -0.320 0.304 19.0  -1.051  0.6613 

 

Degrees-of-freedom method: kenward-roger  

P value adjustment: dunnettx method for 4 tests 

 184 
In the pairwise adjustment for Example 1, one examines all the ten pairs, listed as “1-2”, …, “4-5”. When 185 

only the difference between each of the four treatments and the control is of interest, the number of 186 

comparisons reduced to four.  As a result, the adjusted p-values for all pairs are less significant than the 187 

adjusted p-values based on “trt.vs.ctrl”.  188 
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 189 

A final note on p-values for Example 1. Instead of relying on large-sample distributions or approximations 190 

based on F distributions, the pbkrtest package provides a parametric bootstrap test to compare two 191 

models, as shown below. Resampling methods, such as bootstrap, are often believed to be more robust 192 

than their parametric counterparts.  193 

 194 
> library(pbkrtest) 195 
> obj.lmer=lmerTest::lmer(res ~ treatment_idx+(1|midx), data=Ex1) 196 
> obj.lmer0=lmerTest::lmer(res ~ 1+(1|midx), data=Ex1) 197 
> PBmodcomp(obj.lmer, obj.lmer0) 198 
Bootstrap test; time: 30.42 sec; samples: 1000; extremes: 13; 199 
large : res ~ treatment_idx + (1 | midx) 200 
res ~ 1 + (1 | midx) 201 
         stat df  p.value    202 
LRT    15.905  4 0.003149 ** 203 
PBtest 15.905    0.013986 *  204 
--- 205 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 206 

 207 
There are other potentially useful alternative functions, such as car::Anova, and sjPlot::plot_scatter, 208 

sjPlot::plot_model. We provide sample code and encourage interested readers to continue exploring 209 

these packages if they wish to compare additional tools.  210 

 211 
Library(car) #load the car library 

library(sjPlot) #load the sjPlot library 

obj.lmer=lme4::lmer(res ~ treatment_idx+(1|midx), data=Ex1) 

car::Anova(obj.lmer, test.statistic="F") 

sjPlot::plot_model(obj.lmer) 

plot_scatter(Ex1, midx, res, treatment_idx) 

 212 

 213 
  214 
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Example 2. Data were derived from an experiment to determine how in vivo calcium (Ca++) activity of PV 215 

cells (measured longitudinally by the genetically encoded Ca++ indicator GCaMP6s) changes over time after 216 

ketamine treatment.  We show four mice whose Ca++ event frequencies were measured at 24h, 48h, 72h, 217 

and 1 week after ketamine treatment and compare Ca++ event frequency at 24h to the other three time 218 

points. In total, Ca++ event frequencies of 1,724 neurons were measured. First let us evaluate the effect of 219 

ketamine using LM (or ANOVA, which ignores mouse-specific effect).  220 

 221 
### read the data 

Ex2=read.csv("Example2.txt", head=T) 

Ex2$treatment_idx=Ex2$treatment_idx-4 

Ex2$treatment_idx=as.factor(Ex2$treatment_idx) 

### change the variable of mouse IDs to a factor  

Ex2$midx=as.factor(Ex2$midx) 

  

### wrong analysis: using the linear model 

lm.obj=lm(res~treatment_idx, data=Ex2) 

> summary(lm.obj) 

 

Call: 

lm(formula = res ~ treatment_idx, data = Ex2) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.66802 -0.10602 -0.00916  0.09028  2.43137  

 

Coefficients: 

                Estimate Std. Error t value Pr(>|t|)     

(Intercept)     0.714905   0.012337  57.946  < 2e-16 *** 

treatment_idx2 -0.078020   0.017011  -4.586 4.84e-06 *** 

treatment_idx3  0.009147   0.017189   0.532  0.59467     

treatment_idx4  0.049716   0.016332   3.044  0.00237 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2414 on 1720 degrees of freedom 

Multiple R-squared:  0.03715,   Adjusted R-squared:  0.03548  

F-statistic: 22.12 on 3 and 1720 DF,  p-value: 4.677e-14 

 222 
The LM (including ANOVA, t-test) analysis results indicate significantly reduced Ca++ activity at 48h 223 

relative to 24h with p=4.8x10-6, and significantly increased Ca++ event frequency at 1week compared to 224 

24h with p=2.4x10-3.  However, if we account for repeated measures due to cells clustered in mice using 225 

LME, most of p-values are greater than 0.05 except that the overall p-value is 0.04. 226 

 227 
### lme 

> lme.obj=lme(res~treatment_idx, random= ~ 1| midx, data= Ex2, method="ML") 

> summary(lme.obj) 

Linear mixed-effects model fit by maximum likelihood 

 Data: Ex2  

        AIC       BIC   logLik 
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  -781.3599 -748.6664 396.6799 

 

Random effects: 

 Formula: ~1 | midx 

        (Intercept)  Residual 

StdDev:  0.07396325 0.1911732 

 

Fixed effects: res ~ treatment_idx  

                    Value  Std.Error   DF   t-value p-value 

(Intercept)     0.6857786 0.03841845 1711 17.850242  0.0000 

treatment_idx2 -0.0114193 0.01426559 1711 -0.800479  0.4235 

treatment_idx3  0.0196507 0.01365505 1711  1.439077  0.1503 

treatment_idx4  0.0249234 0.01367244 1711  1.822893  0.0685 

 Correlation:  

               (Intr) trtm_2 trtm_3 

treatment_idx2 -0.183               

treatment_idx3 -0.185  0.495        

treatment_idx4 -0.195  0.462  0.526 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-3.33823301 -0.45681799  0.05440281  0.36978166  4.13882285  

 

Number of Observations: 1718 

Number of Groups: 4  

> anova(lme.obj) 

              numDF denDF  F-value p-value 

(Intercept)       1  1711 345.8873  <.0001 

treatment_idx     3  1711   2.7761    0.04 

 228 
The results (estimates ± s.e., and p-values) the Ca++ event frequency data using LM and LME (Example 2).  229 

 230  
48h 72h 1wk 

LM est -0.078±0.017 0.009±0.017 0.050±0.016 
LM p 4.8x10-6 0.595 2.4x10-3 
LME est -0.011±0.014 0.020±0.014 0.025±0.014 
LME p 0.424 0.150 0.069 

 231 

To understand the discrepancy between the results from LM and LME, we created boxplots using 232 
individual mice as well as all the mice (Figure S2).  Although the pooled data and the corresponding p-233 
value from the LM show significant reduction in Ca++ activities from 24h to 48h, we see that the only 234 
mouse showing a noticeable reduction was Mouse 2.  In fact, a close examination of the figure below 235 
suggests that there might be small increases in the other three mice.  236 
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 237 
Figure S2: The boxplots of Ca++ event frequencies measured at four time points. (A) Boxplot of Ca++ event 238 
frequencies using the pooled neurons from four mice. (B) boxplots of Ca++ event frequencies stratified by 239 
individual mice. 240 
 241 

To examine why the pooled data follow the pattern of Mouse 2 and not that of other mice, we 242 

checked the number of neurons in each of the mouse-by-time combinations.  243 

 244 
# one mouse contributed 43% cells 

# the number of cells in each animal-time combination 

table(Ex2$midx, Ex2$treatment_idx) 

# compute the percent of cells contributed by each mouse 

rowSums(table(Ex2$midx, Ex2$treatment_idx))/1724  

 245 

 246  
24h 48h 72h 1wk Total 

Mouse 1 81 254 88 43 466 (27%) 
Mouse 2 206 101 210 222 739 (43%) 
Mouse 3 33 18 51 207 309 (18%) 
Mouse 4 63 52 58 37 210 (12%) 
Total 383 425 407 509 1,724 (100%) 

 247 
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The last column of the table above shows that Mouse 2 contributed 43% cells, which likely 248 

explains why the pooled data are more similar to Mouse 2 than to the other mice.  The lesson from this 249 

example is that naively pooling data from different animals is a potentially dangerous practice, as the 250 

results can be dominated by a single animal that can misrepresent the data.  Application of LME solves 251 

this troubling potential problem as it takes dependency and weighting into account. 252 

In this example, the number of levels in the random-effects variable is four, as there are four mice. 253 

This number may be smaller than the recommended number for using random-effects. However, as 254 

discussed in Gelman and Hill (2007), using a random-effects model in this situation of a small sample size 255 

might not do much harm. An alternative is to include the animal ID variable as a factor with fixed animal 256 

effects in the conventional linear regression. Note that neither of the two analyses is the same as fitting a 257 

linear model to the pooled cells together, which erroneously ignores the between-animal heterogeneity 258 

and fails to account for the data dependency due to the within-animal similarity.  In a more extreme case, 259 

for an experiment using only two monkeys for example, naively pooling the neurons from the two animals 260 

faces the risk of making conclusions mainly from one animal and unrealistic homogeneous assumptions 261 

across animals, as discussed above.  A more appropriate approach is to analyze the animals separately 262 

and check whether the results from these two animals “replicate” each other. Exploratory analysis such 263 

as data visualization is highly recommended to identify potential issues.  264 

 265 
  266 
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Example 3. In this experiment, Ca++ event integrated amplitudes are compared between baseline and 24h 267 

after ketamine treatment.  622 cells were sampled from 11 mice and each cell was measured twice 268 

(baseline and after ketamine treatment).  As a result, correlation arises from both cells and animals, which 269 

creates a three-level structure: measurements within cells and cells within animals. It is clear that the 270 

ketamine treatment should be treated as a fixed effect. The choice for random effects deserves more 271 

careful consideration. The hierarchical structure, i.e., two observations per cell and multiple cells per 272 

animal suggests that the random effects of cells should be nested within individual mice. By including the 273 

cell variable in the random effect, we implicitly use the change from “before” to “after” treatment for 274 

each cell.  This is similar to how paired data are handled in a paired t-test. Moreover, by specifying that 275 

the cells are nested within individual mice, we essentially model the correlations at both mouse and cell 276 

levels. 277 

 278 

> Ex3=read.csv("Example3.txt", head=T) 

>  

> #### wrong analysis: using the linear model 

> summary(lm(res~treatment, data=Ex3[!is.na(Ex3$res),])) #0.0036 

 

Call: 

lm(formula = res ~ treatment, data = Ex3[!is.na(Ex3$res), ]) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-3.1311 -1.3203 -0.1806  1.1438  6.7518  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.73206    0.10817  25.258   <2e-16 *** 

treatment    0.19952    0.06847   2.914   0.0036 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 1.708 on 2487 degrees of freedom 

Multiple R-squared:  0.003403,  Adjusted R-squared:  0.003002  

F-statistic: 8.492 on 1 and 2487 DF,  p-value: 0.0036 

> #### wrong anlaysis using t tests (paired or unpaired) 

> t.test(Ex3[Ex3$treatment==1,"res"], Ex3[Ex3$treatment==2,"res"], var.eq=T) 

> t.test(Ex3[Ex3$treatment==1,"res"], Ex3[Ex3$treatment==2,"res"]) 

> t.test(Ex3[Ex3$treatment==1,"res"], Ex3[Ex3$treatment==2,"res"], paired=T) 

 

 

>#correct analysis 

> lme.obj=lme(res~ treatment, random =~1| midx/cidx, data= Ex3[!is.na(Ex3$res),] , 

method="ML") 

> summary(lme.obj) 

Linear mixed-effects model fit by maximum likelihood 

  Data: Ex3[!is.na(Ex3$res), ]  

       AIC      BIC    logLik 

  9378.498 9407.596 -4684.249 

 

Random effects: 

 Formula: ~1 | midx 
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        (Intercept) 

StdDev:    0.404508 

 

 Formula: ~1 | cidx %in% midx 

        (Intercept) Residual 

StdDev:    1.083418 1.259769 

 

Fixed effects:  res ~ treatment  

                Value  Std.Error   DF   t-value p-value 

(Intercept) 2.7983541 0.15017647 1240 18.633772   0e+00 

treatment   0.1934755 0.05055295 1240  3.827184   1e-04 

 Correlation:  

          (Intr) 

treatment -0.504 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-2.69833206 -0.60733714 -0.09362515  0.52748499  3.91394332  

 

Number of Observations: 2489 

Number of Groups:  

          midx cidx %in% midx  

            11           1248 

 279 
For the treatment effect, LME and LM produce similar estimates; however, the standard error of 280 

the LM is larger.  As a result, the p-value based on LME is smaller (0.0036 for LM vs 0.0001 for LME).  In 281 

this example, since the two measures from each cell are positively correlated, as shown in the Figure S3, 282 

the variance of the differences is smaller when treating the data as paired rather than independent.  As a 283 

result, LME produces a smaller p-value than the t-test.  As a result, the more rigorous practice of using cell 284 

effects as random effects leads to a lower p-value for Example 3.   285 

 286 
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Figure S3: (Left) the scatter plot of Ca++ event integrated amplitude at baseline vs 24h after treatment for 287 
the neurons from four mice (labeled as 1, 2, 3 and 4) indicates that the baseline and after-treatment 288 
measures are positively correlated. (Right) boxplot of the baseline and after-treatment correlations of the 289 
11 mice.  290 

 291 
A note on “nested” random effects. When specifying the nested random effects, we used “random 292 

=~1| midx/cidx”. This leads to random effects at two levels: the mouse level and the cells-within-mouse 293 

level. This specification is important if same cell IDs might appear in different mice. When each cell has its 294 

unique ID, just like “cidx” variable in Example 3, it does not matter and “random =list(midx=~1, cidx=~1)” 295 

leads to exactly the same model. 296 

### to verify that the cell IDs are indeed unique 

> length(unique(Ex3$cidx)) 

[1] 1248 

 

#lme.obj2 is the same as lme.obj 

> lme.obj2=lme(res~ treatment, random =list(midx=~1, cidx=~1), data= 

Ex3[!is.na(Ex3$res),] , method="ML") 

> summary(lme.obj2) 

Linear mixed-effects model fit by maximum likelihood 

  Data: Ex3[!is.na(Ex3$res), ]  

       AIC      BIC    logLik 

  9378.498 9407.596 -4684.249 

 

Random effects: 

 Formula: ~1 | midx 

        (Intercept) 

StdDev:    0.404508 

 

 Formula: ~1 | cidx %in% midx 

        (Intercept) Residual 

StdDev:    1.083418 1.259769 

 

Fixed effects:  res ~ treatment  

                Value  Std.Error   DF   t-value p-value 

(Intercept) 2.7983541 0.15017647 1240 18.633772   0e+00 

treatment   0.1934755 0.05055295 1240  3.827184   1e-04 

 Correlation:  

          (Intr) 

treatment -0.504 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-2.69833206 -0.60733714 -0.09362515  0.52748499  3.91394332  

 

Number of Observations: 2489 

Number of Groups:  

          midx cidx %in% midx  

            11           1248  

 297 
 298 

On models with more random effects. The above LME model only involves random intercepts.  299 

When there are random effects due to multiple sources, it is often recommended to fit a large model (in 300 

the sense of as many random effects as possible) to avoid obtaining false positives.  However, studies also 301 
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find that fitting the maximal model can cause decreased statistical power. Visualization is a useful 302 

exploratory tool to help identify an appropriate model. Figure S4 shows two common ways to visualize 303 

data in an exploratory data analysis: the scatter plots and the so-called “spaghetti” plots.  The spaghetti 304 

plots indicate that neurons are quite different from each other in terms of both baseline values and 305 

changes; the scatter plots with linear model fit suggest that the animals are different from each other at 306 

least at the starting baseline. Together, they suggest that random slopes are needed at least at the neuron 307 

level.  308 

Here we consider three alternative models (lme.obj3, lme.obj4, lme.obj5) that include additional 309 

random effects. More specifically, lme.ojb3 includes random slopes only at the neuron level; lme.ojb4 310 

includes random slopes only at the animal level; and lme.obj5 includes random slopes for both neurons 311 

and animals. 312 

 313 

   314 
Figure S4: Ca++ event integrated amplitudes at baseline vs 24h after treatment for the neurons from four 315 
mice (labeled as A, B, C and D) with each dot representing a neuron.  The four plots on the left are 316 
“spaghetti” plots of the four animals with each line representing the values at baseline and 24h after 317 
treatment for a neuron; the four plots on the right report the before-after scatter plots (with fitted straight 318 
lines using a simple linear regression).  319 

 320 
 321 
> #mouse: random intercepts; neuron: both random intercepts and random slopes  

> #(independence not assumed) 

> lme.obj3=lme(res~ treatment, random=list(midx=~1, cidx=~treatment), data= 

Ex3[!is.na(Ex3$res),], method="ML") 

> summary(lme.obj3) 

Linear mixed-effects model fit by maximum likelihood 

 Data: Ex3[!is.na(Ex3$res), ]  

      AIC      BIC    logLik 

  9272.45 9313.187 -4629.225 
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Random effects: 

 Formula: ~1 | midx 

        (Intercept) 

StdDev:   0.4302823 

 

 Formula: ~treatment | cidx %in% midx 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev   Corr   

(Intercept) 1.529776 (Intr) 

treatment   1.159775 -0.724 

Residual    0.956257        

 

Fixed effects: res ~ treatment  

               Value  Std.Error   DF   t-value p-value 

(Intercept) 2.808037 0.15076357 1240 18.625434   0e+00 

treatment   0.191860 0.05057672 1240  3.793445   2e-04 

 Correlation:  

          (Intr) 

treatment -0.425 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-2.26228406 -0.47042693 -0.07585988  0.42870152  2.37367673  

 

Number of Observations: 2489 

Number of Groups:  

          midx cidx %in% midx  

            11           1248  

> anova(lme.obj1, lme.obj3) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

lme.obj1     1  5 9378.498 9407.596 -4684.249                         

lme.obj3     2  7 9272.450 9313.187 -4629.225 1 vs 2 110.0484  <.0001 

>   

> #mouse: random intercepts and random slopes (independence not assumed); neuron: 

random intercepts 

> lme.obj4=lme(res~ treatment, random=list(midx=~treatment, cidx=~1), data= 

Ex3[!is.na(Ex3$res),], method="ML") 

> summary(lme.obj4) 

Linear mixed-effects model fit by maximum likelihood 

 Data: Ex3[!is.na(Ex3$res), ]  

       AIC      BIC    logLik 

  9379.713 9420.451 -4682.857 

 

Random effects: 

 Formula: ~treatment | midx 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev    Corr   

(Intercept) 0.5482023 (Intr) 

treatment   0.1393209 -0.784 

 

 Formula: ~1 | cidx %in% midx 

        (Intercept) Residual 

StdDev:    1.085417 1.256165 

 

Fixed effects: res ~ treatment  

               Value  Std.Error   DF  t-value p-value 

(Intercept) 2.822533 0.18848581 1240 14.97477  0.0000 

treatment   0.178527 0.06703098 1240  2.66335  0.0078 

 Correlation:  

          (Intr) 

treatment -0.758 

 

Standardized Within-Group Residuals: 
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       Min         Q1        Med         Q3        Max  

-2.6551618 -0.6096016 -0.0860911  0.5312087  3.8846466  

 

Number of Observations: 2489 

Number of Groups:  

          midx cidx %in% midx  

            11           1248  

> #mouse: random intercepts and random slopes; neuron: random intercepts and random 

slopes 

> lme.obj5=lme(res~ treatment, random= ~ 1+treatment | midx/cidx, data= 

Ex3[!is.na(Ex3$res),], method="ML") 

> summary(lme.obj5) 

Linear mixed-effects model fit by maximum likelihood 

 Data: Ex3[!is.na(Ex3$res), ]  

      AIC      BIC   logLik 

  9272.72 9325.097 -4627.36 

 

Random effects: 

 Formula: ~1 + treatment | midx 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev    Corr   

(Intercept) 0.5727292 (Intr) 

treatment   0.1423942 -0.84  

 

 Formula: ~1 + treatment | cidx %in% midx 

 Structure: General positive-definite, Log-Cholesky parametrization 

            StdDev    Corr   

(Intercept) 1.5670930 (Intr) 

treatment   1.1781355 -0.731 

Residual    0.9400533        

 

Fixed effects: res ~ treatment  

                Value  Std.Error   DF   t-value p-value 

(Intercept) 2.8318145 0.18997195 1240 14.906488  0.0000 

treatment   0.1745063 0.06743067 1240  2.587937  0.0098 

 Correlation:  

          (Intr) 

treatment -0.758 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-2.24686402 -0.46954860 -0.07119766  0.42205349  2.36058720  

 

Number of Observations: 2489 

Number of Groups:  

          midx cidx %in% midx  

            11           1248  

> anova(lme.obj1, lme.obj3) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

lme.obj1     1  5 9378.498 9407.596 -4684.249                         

lme.obj3     2  7 9272.450 9313.187 -4629.225 1 vs 2 110.0484  <.0001 

> anova(lme.obj1, lme.obj4) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

lme.obj1     1  5 9378.498 9407.596 -4684.249                         

lme.obj4     2  7 9379.713 9420.451 -4682.857 1 vs 2 2.784563  0.2485 

> anova(lme.obj3, lme.obj5) 

         Model df     AIC      BIC    logLik   Test  L.Ratio p-value 

lme.obj3     1  7 9272.45 9313.187 -4629.225                         

lme.obj5     2  9 9272.72 9325.097 -4627.360 1 vs 2 3.729136   0.155 

 322 
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The comparisons indicate that lme.obj3 improves the basic model lme.obj1 substantially; the 323 

improvement brought by lme.obj4 is less impressive; and lme.obj3, the model with random intercepts 324 

and slopes at the neuron level, and random intercepts at the animal level appears adequate.  This is 325 

supported by the observable differences in baseline values and changes even for cells within the same 326 

animal (Figure S4). This suggests that including random intercepts and slopes at the neuron level is 327 

necessary.   328 

 329 

A note on the testing of random-effects. The comparisons using the “anova” function suggests that 330 

lme.obj4, which assumes random intercepts and random slopes at the animal level and random intercepts 331 

at neuron level, might be adequate.  It should be kept in mind that these comparisons based on likelihood 332 

ratio tests and the p-values are conservative. This is because these hypothesis problems are testing 333 

parameters at their boundary (Self and Liang 1987). Without getting into many details, the consequence 334 

is that the null distribution for the likelihood ratio test is no longer valid and the p-value will be 335 

overestimated. Obtaining the correct null distribution is not straightforward and requires advanced 336 

considerations beyond the scope of this article. However, (Fitzmaurice et al., 2012) suggests the ad-hoc 337 

rule to use a level of significance α=0.1, instead of the typical α =0.05, when judging the statistical 338 

significance of the likelihood ratio test. We adopted this suggestion in interpreting the results above.  339 

It should also be noted that decisions should not be based on tests and p-values alone.  Results 340 

can be significant with a very small effect size and large sample size or might not reach significance from 341 

a moderate or large effect size but based on a small sample size.  Rather, these decisions should be based 342 

on study design, scientific reasoning, experience, or previous studies.  For example, different animals are 343 

expected to have different mean levels on outcome variables; thus, it is reasonable to model the variation 344 

due to animals by considering animal specific effects.  A similar argument is the inclusion of baseline 345 

covariates such as age in many medical studies even when they are not significant. Also, when random 346 

slopes are included, it is typically recommended to include the corresponding random intercepts. For 347 

example, if the random slopes (for treatment) are included at the animal level, it is also sensible to include 348 

the animal-specific random intercepts. 349 

 350 

Conduct GLMM using R.  351 

Traditional linear models and LME should be designed to model a continuous outcome variable 352 

with a fundamental assumption that its variance does not change with its mean. This assumption is easily 353 

violated for commonly collected outcome variables, such as the choice made in a two-alternative forced 354 
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choice task (binary data), the proportion of neurons activated (proportional data), the number neural 355 

spikes in a given time window, and the number of behavioral freezes in each session (count data). These 356 

types of outcome variables can be analyzed using a framework called generalized linear models, which 357 

are further extended to generalized linear mixed-effects models (GLMM) for correlated data. The 358 

computation involved in GLMM is more much challenging. The “glmer” function in the lme4 package can 359 

be used to fit a GLMM, which will be shown in Example 4. 360 

 361 

Example 4. In the previous examples, the outcomes of interest are continuous. In particular, some were 362 

transformed from original measures so that the distribution of the outcome variable still has a rough 363 

bell shape.  In many situations, the outcome variable we are interested has a distribution that far away 364 

from normal. Consider a simulated data set based upon part of the data used in Wei et al 2020.  In our 365 

simulated data, a tactile delayed response task, eight mice were trained to use their whiskers to predict 366 

the location (left or right) of a water pole and report it with directional licking (lick left or lick right).  The 367 

behavioral outcome we are interested in is whether the animals made the correct predictions. 368 

Therefore, we code correct left or right licks as 1 and erroneous licks as 0. In total, 512 trials were 369 

generated, which include 216 correct trials and 296 wrong trials. One question we would like to answer 370 

is whether a particular neuron is associated with the prediction.  For that purpose, we analyze the 371 

prediction outcome and mean neural activity levels (measured by dF/F) from the 512 trials using a 372 

GLMM.  The importance of modeling correlated data by introducing random effects has been shown in 373 

the previous examples.  In this example, we focus on how to interpret results from a GLMM model in 374 

the water lick experiment. 375 

Like a GLM, a GLMM requires the specification of a family of the distributions of the outcomes 376 

and an appropriate link function. Because the outcomes in this example are binary, the natural choice, 377 

which is often called the canonical link of the “binomial” family, is the logistic link.  For each family of 378 

distributions, there is a canonical link, which is well defined and natural to that distribution family. For 379 

researchers with limited experience with GLM or GLMM, a good starting point, which is often a 380 

reasonable choice, is to use the default choice (i.e., the canonical link).  381 

library(lme4) #the main functions are "lmer" and glmer 

library(pbkrtest) 

 

#read data from the file named “waterlick_sim.txt” 

waterlick=read.table("waterlick_sim.txt", head=T) 

#take a look at the data 

summary(waterlick) 

#change the mouseID to a factor 

waterlick[,1]=as.factor(waterlick[,1]) 

#use glmer to fit a GLMM model  
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obj.glmm=glmer(lick~dff+(1|mouseID), 

       data=waterlick,family="binomial") 

#summarize the model 

> summary(obj.glmm) 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 

[glmerMod 

] 

 Family: binomial  ( logit ) 

Formula: lick ~ dff + (1 | mouseID) 

   Data: waterlick 

 

     AIC      BIC   logLik deviance df.resid  

   679.8    692.5   -336.9    673.8      509  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.4854 -0.8375 -0.6196  1.0265  1.9641  

 

Random effects: 

 Groups  Name        Variance Std.Dev. 

 mouseID (Intercept) 0.106    0.3255   

Number of obs: 512, groups:  mouseID, 8 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -0.63382    0.17753  -3.570 0.000357 *** 

dff          0.06235    0.01986   3.139 0.001693 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

    (Intr) 

dff -0.550 

#compute increase in odds and a 95% CI 

> exp(c(0.06235, 0.06235-1.96*0.01986, 0.06235+1.96*0.01986))-1 

[1] 0.06433480 0.02370091 0.10658157 

 382 
The default method of parameter estimation is the maximum likelihood with Laplace 383 

approximation.  As shown in the Fixed effects section of the R output, the estimated increase in log-odds 384 

associated with one percent increase in dF/F is 0.06235 with a standard error of 0.01986 and the p-value 385 

(which is based on the large-sample Wald test) is 0.01693.  Correspondingly, an approximate 95% CI is 386 

(0.06235-1.96*0.01986, 0.06235-1.96*0.01986), i.e., (0.0234244 0.1012756). In a logistic regression, the 387 

estimated coefficient of an independent variable is typically interpreted using the percentage of odds 388 

changed for a one-unit increase in the independent variable.  In this example, exp(0.06235)=1.064, 389 

indicating that the odds of making correct licks increased by 6.4% (95% C.I.: 2.4%-10.7%) with one 390 

percent increase in dF/F.  391 

An alternative way to compute a p-value is to use a likelihood ratio test by comparing the 392 

likelihoods of the current model and a reduced model.  393 

 394 
#fit a smaller model, the model with the dff variable removed 

obj.glmm.smaller=glmer(lick~(1|mouseID), 
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       data=waterlick,family="binomial") 

#use the anova function to compare the likelihoods of the two models 

> anova(obj.glmm, obj.glmm.smaller)  

Data: waterlick 

Models: 

obj.glmm.smaller: lick ~ (1 | mouseID) 

obj.glmm: lick ~ dff + (1 | mouseID) 

                 npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    

obj.glmm.smaller    2 687.77 696.24 -341.88   683.77                         

obj.glmm            3 679.77 692.48 -336.88   673.77 9.9964  1   0.001568 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

#alternatively, one can use the “drop1” function to test the effect of dfff 

> drop1(obj.glmm, test="Chisq") 

Single term deletions 

 

Model: 

lick ~ dff + (1 | mouseID) 

       npar    AIC    LRT  Pr(Chi)    

<none>      679.77                    

dff       1 687.77 9.9964 0.001568 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 395 
In the output from “anova(obj.glmm, obj.glmm.smaller)”, the “Chisq” is the -2*log(L0/L1), 396 

where L1 is the maximized likelihood of the model with dff and L0 is the maximized likelihood of the 397 

model without the dff. The p-value was obtained using the large-sample likelihood ratio test.  398 

In GLMM, the p-value based on large-sample approximations might not be accurate.  It is helpful 399 

to check whether nonparametric tests lead to similar findings.  For example, one can use a parametric 400 

bootstrap method.  For this example, the p-value from the parametric bootstrap test, which is slightly 401 

less significant than the p-values from the Wald or LRT test.   402 

 403 
> PBmodcomp(obj.glmm, obj.glmm.smaller)  

Bootstrap test; time: 333.45 sec;samples: 1000; extremes: 0; 

Requested samples: 1000 Used samples: 999 Extremes: 0 

large : lick ~ dff + (1 | mouseID) 

small : lick ~ (1 | mouseID) 

         stat df  p.value     

LRT    9.9964  1 0.001568 **  

PBtest 9.9964    0.001000 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

There were 16 warnings (use warnings() to see them) 

 404 
By default, 1000 samples were generated to understand the null distribution of the likelihood 405 

ratio statistic.  When a p-value is small, 1000 samples might not return an accurate estimation.  In this 406 

situation, one can increase the number of samples to 10,000 or even more.  One way to expedite 407 

computation is by using multiple cores. We encourage the interested readers to read the 408 
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documentation of this package, which is available at https://cran.r-409 

project.org/web/packages/pbkrtest/pbkrtest.pdf.   410 

A note on convergence.  Compared to LME, GLMM is harder to converge.  When increasing the number 411 

of iterations does not work, one can change the likelihood approximation methods and numerical 412 

maximization methods.  If convergence is still problematic, one might want to consider modifying models. 413 

For example, eliminating some random effects will likely make the algorithm converge.  In particular, 414 

when the number of levels of a categorical variable is small, using fixed- rather than random- effects might 415 

help resolve the convergence issues.  Using Bayesian alternatives might also be helpful.  We recommend 416 

readers to check several relevant websites for further guidance:  417 

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html 418 

https://m-clark.github.io/posts/2020-03-16-convergence/ 419 

https://rstudio-pubs-static.s3.amazonaws.com/33653_57fc7b8e5d484c909b615d8633c01d51.html 420 

 421 

A Bayesian Analysis of Example 4. In the LME and GLMM framework, the random effect coefficients are 422 

assumed as being drawn from a given distribution. Therefore, Bayesian analysis provides a natural 423 

alternative for analyzing multilevel/ hierarchical data.  Statistical inference in Bayesian analysis is from the 424 

posterior distribution of the parameters, which is proportional to the product of the likelihood of the data 425 

and the prior distribution of the parameters.  Here we use the “brms” package to analyze the water lick 426 

data.  The package performs Bayesian regression in multilevel models using the software “Stan” for full 427 

Bayesian (Bürkner, 2017; Bürkner, 2018). Due to the lack of prior information, we select priors that are 428 

relatively non-informative, i.e., have large variances around their mean.  More specifically, we use a 429 

normal prior with mean 0 and large standard deviation 10 for the fixed-effect coefficients.  For the 430 

variances of the random intercept and the errors, we assume a half-Cauchy distribution with a scale 431 

parameter of 5.  432 

 433 
library(brms)#it might ask you to install other necessary packages 

waterlick=read.table("waterlick_sim.txt", head=T) 

obj.brms=brm(formula = lick ~ dff + (1|mouseID), 

data=waterlick, family="bernoulli", 

prior = c( set_prior("normal(0,10)", class="b"), 

set_prior("cauchy(0,5)", class="sd")), 

warmup=1000, iter=2000, chains=4, 

control = list(adapt_delta = 0.95), 

save_all_pars = TRUE) 

 

> summary(obj.brms) 

 Family: bernoulli  

  Links: mu = logit  

Formula: lick ~ dff + (1 | mouseID)  

https://cran.r-project.org/web/packages/pbkrtest/pbkrtest.pdf
https://cran.r-project.org/web/packages/pbkrtest/pbkrtest.pdf
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
https://m-clark.github.io/posts/2020-03-16-convergence/
https://rstudio-pubs-static.s3.amazonaws.com/33653_57fc7b8e5d484c909b615d8633c01d51.html
https://cran.r-project.org/web/packages/brms/brms.pdf
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   Data: waterlick (Number of observations: 512)  

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

         total post-warmup samples = 4000 

 

Group-Level Effects:  

~mouseID (Number of levels: 8)  

              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

sd(Intercept)     0.46      0.23     0.08     1.02 1.01      765      732 

 

Population-Level Effects:  

          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

Intercept    -0.63      0.23    -1.08    -0.14 1.01     1305     1803 

dff           0.06      0.02     0.02     0.10 1.00     2780     2616 

 

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS 

and Tail_ESS are effective sample size measures, and Rhat is the potential 

scale reduction factor on split chains (at convergence, Rhat = 1). 

> summary(obj.brms)$fixed 

             Estimate  Est.Error    l-95% CI   u-95% CI     Rhat Bulk_ESS Tail_ESS 

Intercept -0.62627973 0.23101575 -1.08084815 -0.1373140 1.005906     1305     1803 

dff        0.06105309 0.02058415  0.02182994  0.1026825 1.000328     2780     2616 

 

 434 
The results show that the odds that the mice will make a correct prediction increase by 6.2% (95% credible 435 

interval: 2.0%-10.6%) with 1% increase in dF/F.  The use of a Bayesian approach and the Bayes factors 436 

have been advocated as an alternative to p-values since the Bayes factor represents a direct measure of 437 

the evidence of one model versus the other. Typically, it is recognized that a Bayes Factor greater than 438 

150 provides a very strong evidence of a hypothesis, say H1, against another hypothesis, say H0; a Bayes 439 

Factor between 20 and 150 provides strong evidence of the plausibility of H1, whereas if the Bayes Facto 440 

is between 3 and 20, it provides only positive evidence for H1. A value of the Bayes Factor between 1 and 441 

3 is not worth more than a bare mention (Held and Ott, 2018; Kass and Raftery, 1995).  In the following 442 

computation, we find that the Bayes factor of the model with dF/F versus the null model is 5.02, 443 

suggesting moderate association of dF/F with correct licks. These results are comparable to those from 444 

the frequentist GLMM in the previous paragraph.   445 

 446 
#Note: to compute a Bayes factor, we need to use “save_all_pars=TRUE” option  

#the reduced model is 

obj0.brms=brm(formula = lick ~ 1+ (1|mouseID), 

data=waterlick, family="bernoulli", 

prior = c(  

set_prior("cauchy(0,5)", class="sd")), 

warmup=1000, iter=2000, chains=4, 

control = list(adapt_delta = 0.95), 

save_all_pars = TRUE)  

> summary(obj0.brms) 

 Family: bernoulli  

  Links: mu = logit  

Formula: lick ~ 1 + (1 | mouseID)  

   Data: waterlick (Number of observations: 512)  

Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

         total post-warmup samples = 4000 
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Group-Level Effects:  

~mouseID (Number of levels: 8)  

              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

sd(Intercept)     0.65      0.28     0.28     1.37 1.00      745      849 

 

Population-Level Effects:  

          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

Intercept    -0.34      0.26    -0.85     0.17 1.00      831     1017 

 

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS 

and Tail_ESS are effective sample size measures, and Rhat is the potential 

scale reduction factor on split chains (at convergence, Rhat = 1). 

 

#compare the two models by computing the Bayes factor: the one with dff vs the null 

> bayes_factor(obj.brms, obj0.brms) 

Iteration: 1 

Iteration: 2 

Iteration: 3 

Iteration: 4 

Iteration: 5 

Iteration: 6 

Iteration: 1 

Iteration: 2 

Iteration: 3 

Iteration: 4 

Iteration: 5 

Estimated Bayes factor in favor of obj.brms over obj0.brms: 0.19960 

#compare the models by computing the Bayes factor: the null vs the one with dff 

#note that this Bayes factor is the reciprocal of the previous one 

> bayes_factor(obj0.brms, obj.brms) 

Iteration: 1 

Iteration: 2 

Iteration: 3 

Iteration: 4 

Iteration: 5 

Iteration: 6 

Iteration: 1 

Iteration: 2 

Iteration: 3 

Iteration: 4 

Iteration: 5 

Estimated Bayes factor in favor of obj0.brms over obj.brms: 5.01865 

 

  447 
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Supplemental Appendix 0 448 
library(MASS) #for function mvrnorm 

library(nlme) #for function lme 

 

set.seed(123) 

B=1000 

#change B to 10000 will produce more an accurate estimate of the Type I error rate 

p.lm.null=matrix(0, B, 5) 

p.lme.null=matrix(0, B, 5) 

for(b in 1:B) #B simulations  

{ 

  y=NULL 

  i=1; ncells=c(53, 49, 56, 52, 46, 47, 54) 

  for(j in 1:length(ncells)){ 

    mysigma=diag(ncells[j])+      

matrix(icc.analysis[i,]$icc,ncells[j],1)%*%matrix(icc.analysis[i,]$icc, 1, 

ncells[j]) 

    y=c(y, mvrnorm(n = 1, mu=rep(0,ncells[j]), Sigma=mysigma) ) } 

 

  i=2; ncells=c(52, 54, 54, 47, 53, 49) 

  for(j in 1:length(ncells)){ 

   mysigma=diag(ncells[j])+ 

matrix(icc.analysis[i,]$icc,ncells[j],1)%*%matrix(icc.analysis[i,]$icc, 1, 

ncells[j]) 

    y=c(y, mvrnorm(n = 1, mu=rep(0,ncells[j]), Sigma=mysigma) ) } 

 

  i=3; ncells=c(47, 48, 44) 

  for(j in 1:length(ncells)){ 

     mysigma=diag(ncells[j])+ 

matrix(icc.analysis[i,]$icc,ncells[j],1)%*%matrix(icc.analysis[i,]$icc, 1, 

ncells[j]) 

     y=c(y, mvrnorm(n = 1, mu=rep(0,ncells[j]), Sigma=mysigma) ) } 

 

  i=4; ncells=c(50, 45, 55) 

  for(j in 1:length(ncells)){ 

     mysigma=diag(ncells[j])+ 

matrix(icc.analysis[i,]$icc,ncells[j],1)%*%matrix(icc.analysis[i,]$icc, 1, 

ncells[j]) 

     y=c(y, mvrnorm(n = 1, mu=rep(0,ncells[j]), Sigma=mysigma) ) } 

 

  i=5; ncells=c(47, 57, 47, 52, 42) 

  for(j in 1:length(ncells)){ 

    mysigma=diag(ncells[j])+ 

matrix(icc.analysis[i,]$icc,ncells[j],1)%*%matrix(icc.analysis[i,]$icc, 1, 

ncells[j]) 

    y=c(y, mvrnorm(n = 1, mu=rep(0,ncells[j]), Sigma=mysigma) ) } 

 

  #treatment id: Ex1[,2]  

  #mouse id: Ex1[,3] 

  Ex1.sim=data.frame(res=y, treatment_idx=Ex1$treatment_idx, midx=Ex1$midx) 

  obj.lme=lme(res~treatment_idx, data= Ex1.sim, random = ~ 1|midx, method="ML") 

  p.lme.null[b, 1]=anova(obj.lme)[2,4] 

  p.lme.null[b, 2:5]=coef(summary(obj.lme))[-1,5] 

 

  obj.lm=lm(res~treatment_idx, data=Ex1.sim) 

  p.lm.null[b, 1]=anova(obj.lm)[1,5] 

  p.lm.null[b, 2:5]=coef(summary(obj.lm))[-1,4] 

 

} 

 

#colMeans(p.lm.null[,1]<0.05) 

#colMeans(p.lme.null[,1]<0.05) 



S31 
 

#There are five p-values for each method; the first p-value is the overall 

#significance for any difference among the groups 

#for i=2, ...5, the ith p-value is for the comparison between group 5 and the 

#reference group (i.e., group 1) 

 

print("Type I error rate of LM at significance level 0.05: ") 

print(mean(p.lm.null[,1]<0.05)) 

 

print("Type I error rate of LME at significance level 0.05: ") 

print(mean(p.lme.null[,1]<0.05)) 

 

 

par(mfrow=c(1,2)) 

h=hist(p.lm.null[,1], nclass=20,  plot=F) 

h$density = h$counts/sum(h$counts)*100 

plot(h,freq=FALSE, xlab="", ylab="Proportion (%)", main="histogram of LM p-values", 

ylim=c(0,100), xlim=c(0,1)) 

#abline(h=5, col=2) 

 

h=hist(p.lme.null[,1], nclass=20, plot=F) 

h$density = h$counts/sum(h$counts)*100 

plot(h,freq=FALSE, xlab="", ylab="Proportion (%)", main="histogram of LME p-values", 

ylim=c(0,100), xlim=c(0,1)) 

#abline(h=5, col=2) 
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