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Microbiome differential abundance methods produce

disturbingly different results across 38 dataset



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This report attempts to address an important, ongoing and heavily debated question in the 

microbiome field, namely which sequence data analysis programs provide the most reliable and robust 

microbial differential abundance analysis that results in microbial profiles that are most closely 

representative of the actual composition of the samples being tested. To tackle this problem, the 

authors analyzed 38 16S rRNA gene datasets, each with two sample groups for differential abundance 

testing. Abundance tables of OTUs or amplicon sequence variants (ASVs) were compiled, either 

provided by the original previously published studies or processed by the authors from raw sequences 

in a few published studies. For each dataset, the table was used to generate a rarefied or non-rarefied 

ASV abundance table, as well as a table where a prevalence cut-off filter of 10% was applied. Each 

dataset was analyzed by 14 different methods, using whichever abundance table was most suitable for 

the program. A significance alpha-value cutoff of 0.05 was used, and for methods that provided output 

p-values, false-discovery-rate (FDR)-corrected p-values were also used. The differential abundance 

tools and data input tested were: ALDEx2 (counts), ANCOM-II (counts), corncob (counts), DESeq2 

(counts), edgeR (counts), LEfSe (rarefied relative abundance), MaAsLin2 (counts), MaAslin2(rarefied 

counts), metagenomeSeq (counts), limma voom (TMM counts), limma voom (TMMwsp counts), t-test 

(rarefied counts), Wilcoxon (CLR abundances), and Wilcoxon (rarefied counts). To compare each 

method, the authors generated a heatmap of the number of significant ASV hits found for each tool 

and Spearman correlations were determined. The authors compared the consistency between different 

tools within all datasets by pooling all significant ASVs and tallying the number of methods that 

identified each ASV as differentially abundant. To determine false discovery rates (FDRs), 8 datasets 

with the largest sample sizes were compared and the number of differentially abundant ASVs 

identified by each tool assessed at a 0.05 alpha value. The authors also performed a cross-study 

differential abundance consistency analysis using diarrhea and non-diarrhea sample groups and an 

obesity dataset comparison by determining which genera were significantly different at an alpha-value 

of 0.05. Overall, the manuscript is fairly well written and the study is relatively comprehensive in 

terms of datasets and methods applied to address an important question. However, there are a 

number of serious issues and concerns about the experimental design, lack of rigor regarding testing 

and supporting mathematical premise, and narrow scope of data interpretation that need to be 

addressed to provide more clarity and convincing support for the conclusions made. 

 

1. Lines 31-33. If sample size and sequencing depth were determining factors, then what was the 

impact of chimera read removal? Wouldn't that impact the outcomes then, if as the authors suggest 

that sequence depth was a contributing factor in the inconsistency observed among methods? While 

the authors may not be able to test this using the preprocessed data, which removed suspected 

chimeric reads or so-called rare reads, they could do so using the raw data to determine if chimera 

removal impacted the sample size, composition and/or sequencing depth. 

2. Lines 35-40. The authors need to more clearly define what they mean by "more reliable" in 

comparing these methods. Just because the tools cluster together does not mean that the microbial 

profiles obtained using them are more closely representative of the actual microbial composition of the 

samples or that the differential abundances are going to be discriminatory regarding biological 

outcomes. 

3. Why did ALDEx2 and ANCOM cluster together most reliably? What is the mathematical basis for this 

congruence? If data is routinely removed from analysis in the pipeline, then it stands to reason that 

certain methods would result in more consistent outputs than others. Likewise, if LEfSe, limma voom 

and edgeR produced inconsistent results and poorly controlled FDRs, what is the mathematical basis 

for this inconsistency? What differentiates these methods from ALDEx2 and ANCOM? In order for any 

method to be universally applicable for a wide variety of samples and their microbial communities, 

there must be clearly defined mathematical bases for differences observed in the outcomes. 

4. Figures 1 and 2. Lines 364-366, 370-375, 380-384. The authors chose to compare the different 

differential abundance methods by determining the number of significant features/ASVs identified by 



each method without or with prevalence filtering. Clearly the fact that the percentage of significant 

ASVs obtained by each method varied so widely across datasets strongly suggests that there is 

something inherently problematic with the approaches used to make this assessment. It is not 

surprising that the authors found several contributing factors. The authors do not provide any insight 

as to why the different methods gave such widely disparate outcomes in identifying significant 

features. What is the mathematical basis for these different outcomes? What does the finding that 

there are more significant ASV hits mean in terms of relevance to the microbial profiles of the 

samples? Are they more similar or more meaningful in terms of discriminating disease outcome? 

Importantly, in none of the analyses do the authors consider the key question: How closely do the 

resulting microbial composition profiles obtained by each of the methods resemble each other when 

considering discriminating outcomes within each dataset versus among multiple datasets? 

5. Figure 3, lines 502-503. The authors assume that having an overlap in significant ASVs indicates 

that the tools provide congruent outcomes and that those methods are more reliable and consistent, 

despite having quite different methodological approaches. As noted by the authors, each of the 

methods emphasize different aspects of the sample’s microbial composition. However, they do not 

provide any mathematical backing of these conclusions or a rationale for why this might be the case. 

As the authors point out (lines 513-515), there is substantial missing information that contributes to 

the observed clustering patterns. 

6. One critical question that the authors did not address when comparing each of the methods for 

analyzing the datasets is: Which method provided microbial composition profiles that more closely 

represented the expected microbial community? Why did the authors not compare their methods using 

the mockrobiota community raw dataset available for researchers (PMID: 27822553)? At least with 

these datasets, which have defined microbial compositions for each of the sample datasets, it should 

be possible for the authors to determine which methods provides a microbial profile that more closely 

resembles the expected defined community. Then, any differences observed between sample types 

within a dataset (such as healthy versus diseased) should provide more reliable and robust differential 

abundance profiles. 

7. Lines 166-169. Another critical question that the authors did not address is: What about chimeric 

reads? In all of the datasets used for this study, the raw sequencing reads were processed using 

QIIME2, which routinely removes any suspected chimeric reads from the dataset before further 

analyses are performed. Depending on the sample and its complexity, this step could significantly 

impact the number of reads for any given sample, and thereby, could impact the outcomes after 

processing through each of the differential abundance methods. What were the percentage of chimeric 

reads removed for each of the samples in these studies? If there was more than 5-10% of the reads 

removed, it is difficult to belief that this would not impact the sequence depth, complexity, and 

diversity of the samples, and therefore the outcomes. 

8. Lines 337-339, Table 2, Figure 5. What does this statement mean? Were these “two additional 

datasets” not listed as part of the original 38? What are the literature citations for these studies? Were 

these datasets part of published studies? The authors need to clarify which studies were used for this 

cross-study analysis, i.e., specify which studies were included in this analysis and provide the 

corresponding literature citations. 

9. Lines 343-344. The authors should specify exactly which obesity datasets were used for this 

analysis and provide the corresponding literature citations. 

10. In terms of choice of datasets, there have been in recent years at least three seminal, large-scale 

studies regarding the impact of gut microbiomes on cancer interventions (PMID:29097493; 

PMID:29097494; PMID:29302014) for which the significant ASVs were found to be completely 

different between the responsive versus nonresponsive cohorts. There is no mention of these studies 

in the discussion or the impact of the current study to address issues raised by those other studies. 

11. Did any of the methods account for the complexity of the community of the sample in determining 

significant ASVs, as opposed to just considering prevalence or low-counts for cut-off thresholds? 

 

 

 

Reviewer #2: 



Remarks to the Author: 

The authors present a comparison between most popular differential abundance methods for the 

microbiome based on a range of datasets. The great divergence of methods and lack of reproducibility 

of the results is correctly pointed out as a major problem, making this a timely and relevant work. The 

reliance on real data rather than simulation lends great credibility to the results. The manuscript is 

well written and demonstrates good literature review. The availability of data and code for 

reproducbility is exemplary. However, the description of the methods used and the evaluation 

methodology still needs improvement. 

 

Major comments 

 

* The main criterion for method evaluation is consistency of the results over the different datasets. 

Yet as the authors acknowledge, this benefits conservative methods: picking up only the strongest 

signal is the safest way to report reproducible results. Decreasing the significance level for any 

method will increase consistency. I believe an additional criterion is needed that also rewards more 

powerful methods that stick their neck out and report taxa with lower effect sizes too. I suggest the 

authors look at either consistency of taxon rankings, or take the twenty or so most significant genera 

and compare them across the experiments. This latter way reflects the way many scientists proceed 

when confronted with a long list of hits which they cannot all investigate further. Another citerion is 

whether the FDR truly lies around the significance level of 0.05. In relation to this, the authors should 

specify how genera not present in all studies are treated (l336), and how they affect the results. 

 

* In relation to this, I wonder whether the Kolmogorov-Smirnov test is the best choice for testing 

consistency. It uses the suppremum of the difference between expected and observed distribution 

function to calculate the p-value (last two columns of table 2). My first question is why to focus on the 

suppremum. The second is how this test statistic relates to the fold change between mean and 

observed number of datasets? I think the latter is indeed a useful measure, but then the statistical 

test should apply to this quantity directly. The resampling procedure outlined by the authors could be 

used to establish its null distribution. A section on this test in the supplementary material would lessen 

confusion. 

 

* l650 "While it might be argued that differences in tool outputs are expected given that they different 

hypotheses, we believe this perspective ignores how these tools are used in practice." 

 

I agree that most scientists ignore subtle differences in hypotheses tested by the different methods, 

but in the context of this manuscript it would be useful to elaborate on them, reiterate them when 

discussing results. This may help explain the difference in results, e.g. why CoDa methods like ANCOM 

and ALDEX2 are more conservative. 

 

* l531: In this complete null scenario, every discovery is a false discovery, and hence the false 

discovery proportion (FDP) in a single Monte-Carlo instance is either 0 (no discoveries) or 1 (one or 

more discoveries). The estimated FDR is then equal to the FWER, and is estimated as the average FDP 

over the Monte-Carlo instances. This number should hover around 0.05. I am not sure if this is the 

way the authors proceeded, but some more explanation may lessen confusion. Also, I would 

recommend doing at least 100 Monte-Carlo instances to obtain reliable results. 

 

* Personally, I would find it impractical to combine several differential abundance methods on a single 

dataset. It implies more work, the hypotheses tested may differ, and making choices on how exactly 

to pool the results is arbitrary. But that is a matter of taste, I agree that it is hard to make positive 

recommendations. 

 

* As a last major comment, the description of the different differential abundance methods in general 

needs improvement. In addition, some methods should be revised as they depart too far from the 

default specified by the authors. Detailed comments can be found below: 



 

- l80: "... are both tools that assume normalized read counts follow a negative binomial distribution". 

 

I do not agree: the raw read counts are assumed to follow the negative binomial distribution. The 

parameters of this distribution may depend on an estimate of the sequencing depth or other 

regressors, but the data are not normalised by them. 

 

- l82: "The null hypothesis is that the same parameters for the binomial solution explain the 

distribution of taxa across all sample groupings." 

 

I find this a little inaccurate. It is true that it is assumed that the dispersion parameter is constant 

over groups, but this is not part of the null hypothesis tested. The null hypothesis usually refers to a 

single parameter or a group of dummy parameters being equal (often equal to zero), not necessarily 

to all parameters. 

 

- l221: "This function first converted the into relative abundances and then fit each taxon abundance 

to a beta-binomial model" 

 

The beta-binomial model is a count model, so here as well I believe the model is fitted on the raw 

counts. 

 

- l266: I find this a strange way of running limma-voom. In the documentation it asks for a count 

matrix, but it seems that the authors prenormalised the data. If this is true they should justify why 

they depart from the documented limma pipeline, but I would rather see a count matrix being fed to 

it. Moreover, can the authors motivate their choice of normalization method, i.e. why was limma-voom 

combined with two normalization methods and the other methods not? 

 

- l297: For t-test and Wilcoxon rank sum test, it would be good to include tests on relative abundance, 

without rarefying. I expect this to be more powerful, and also often happens in this way. As a minor 

remark, it is pointless to apply total sum scaling to rarefied data as mentioned for the t-test, as all 

sample sums are equal after rarefying (it should not affect the results though). 

 

- l483: "Furthermore, the two Wilcoxon test approaches had different consistency profiles despite the 

same hypothesis test." 

 

Since one test is on rarefied abundances and the other on a log-ratio, these can hardly be called the 

same hypothesis. Changes in other taxa abundances may affect the log-ratio, and thus invalidate the 

null hypothesis, whereas the null hypothesis of equal abundances remains valid. This can also be seen 

from Figures C and D, where t-test and Wilcoxon rank sum test after rarefying are really close as they 

test very similar hypotheses, as opposed to Wilcoxon CLR. I suspect a t-test CLR would also cluster 

close to the latter. 

 

Minor comments 

 

* l554: "we also observed that in several replicates on the unfiltered datasets, 

the Wilcoxon (CLR) approach identified almost all features as statistically significant" 

 

Is this a consequence of a variable geometric mean, which is the denominator in the CLR 

transformation? 

 

* l762 "Indeed, tests based on rarefied data in our analyses did not substantially worse than other 

methods on average." 

 

It is hard to compare with the given results, one would need to compare the same method with and 



without rarefying, which was not done for most methods. 

 

* l517 "Interestingly, corncob, which is a methodologically distinct approach, also clusters relatively 

close to these two methods on the first PC." 

 

At parameter values encountered in microbiome data, the beta-binomial and negative binomial 

distributions are identical in terms of density. Hence it is not so surprising that corncob and edgeR are 

close. 

 

* p17 Figures A and B: this graph is interesting, but good to mention it strongly depends on which 

methods were included, and how many times (e.g. limma and Maaslin in duplicate). 

 

* l632 each genera -> each genus 

 

* Supplementary Figures (and Supplementary Table 1) are sometimes hard to read. Perhaps a tool 

like knitr or rmarkdown can help to embed figures in a text document. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

Nearing et al. conducted an in-depth and a comprehensive evaluation of common tools used to 

identify differentially abundant taxa in 16S microbiome studies. They performed their analysis on large 

dataset of 38 two-group 16S rRNA gene sequencing datasets. The authors looked at the concordance 

of the methods on these datasets with and without filtration of rare taxa. They additionally looked at 

the observed FDR for each tool and lastly looked at how consistent biological interpretations would be 

by looking across diarrheal datasets. Overall, the manuscript is well-written, and the analyses 

performed are appropriate. 

 

The manuscript addresses an issue that is often overlooked by so many in the field of microbiome 

research. While the conclusion about inconsistencies across tools is disturbing, it is not completely 

surprising. I have a few concerns with the manuscript primarily with how the data is presented and 

how the conclusions are discussed or outlined. 

 

• I think the manuscript would benefit if the authors showed analysis of a selection of simulations. In 

my opinion, this would make the conclusions more understandable to the readers. 

• While it is not easy to make a ruling on which tools would be best as acknowledged by the authors, I 

think there should be some recommendation for gold standards for the different applications. I would 

suggest adding a summary scheme or Box in which “advantages vs disadvantages” or 

“recommendations for use for different applications” of the tools used are summarized. This would 

make this manuscript more accessible to clinicians/microbiologists who are using these tools. As it 

stands now, I find the manuscript confusing/complicated to understand for the non-experts who are 

using DA tools to identify taxa relevant to diseases/phenotypes. 



REVIEWER COMMENTS 

Reviewer #1 (Expertise: Analysis of complex microbiome data):  

This report attempts to address an important, ongoing and heavily debated question in the 

microbiome field, namely which sequence data analysis programs provide the most reliable 

and robust microbial differential abundance analysis that results in microbial profiles that 

are most closely representative of the actual composition of the samples being tested. To 

tackle this problem, the authors analyzed 38 16S rRNA gene datasets, each with two 

sample groups for differential abundance testing. Abundance tables of OTUs or amplicon 

sequence variants (ASVs) were compiled, either provided by the original previously 

published studies or processed by the authors from raw sequences in a few published 

studies. For each dataset, the table was used to generate a rarefied or non-rarefied ASV 

abundance table, as well as a table where a prevalence cut-off filter of 10% was applied. 

Each dataset was analyzed by 14 different methods, using whichever abundance table was 

most suitable for the program. 

A significance alpha-value cutoff of 0.05 was used, and for methods that provided output p-

values, false-discovery-rate (FDR)-corrected p-values were also used. The differential 

abundance tools and data input tested were: ALDEx2 (counts), ANCOM-II (counts), corncob 

(counts), DESeq2 (counts), edgeR (counts), LEfSe (rarefied relative abundance), MaAsLin2 

(counts), MaAslin2(rarefied counts), metagenomeSeq (counts), limma voom (TMM counts), 

limma voom (TMMwsp counts), t-test (rarefied counts), Wilcoxon (CLR abundances), and 

Wilcoxon (rarefied counts). To compare each method, the authors generated a heatmap of 

the number of significant ASV hits found for each tool and Spearman correlations were 

determined. The authors compared the consistency between different tools within all 

datasets by pooling all significant ASVs and tallying the number of methods that identified 

each ASV as differentially abundant. To determine false discovery rates (FDRs), 8 datasets 

with the largest sample sizes were compared and the number of differentially abundant 

ASVs identified by each tool assessed at a 0.05 alpha value. The authors also performed a 

cross-study differential abundance consistency analysis using diarrhea and non-diarrhea 

sample groups and an obesity dataset comparison by determining which genera were 

significantly different at an alpha-value of 0.05. Overall, the manuscript is fairly well written 

and the study is relatively comprehensive in terms of datasets and methods applied to 

address an important question. However, there are a number of serious issues and concerns 

about the experimental design, lack of rigor regarding testing and supporting mathematical 

premise, and narrow scope of data interpretation that need to be addressed to provide more 

clarity and convincing support for the conclusions made. 

We thank the reviewer for their detailed review of our work. We appreciate several of their 

specific suggestions, but we believe that there may be a misunderstanding regarding the 

scope and focus of our manuscript. 



In particular, the first sentence of this reviewer’s report was the following: 

“This report attempts to address an important, ongoing and heavily debated question in the 

microbiome field, namely which sequence data analysis programs provide the most reliable 

and robust microbial differential abundance analysis that results in microbial profiles that 

are most closely representative of the actual composition of the samples being 

tested.” 

The tools we applied are solely intended to be used for differential abundance testing and 

the same input datasets were used for each tool. This means that our goal was not to 

assess processing pipelines to see how accurately they produced expected profiles, as is a 

typical approach when comparing pipelines such as QIIME 2 and mothur with mock 

communities for instance. Our goals here were qualitatively different and we believe it would 

be tangential to our manuscript’s purpose to compare such pipelines or what factors might 

impact the final sequencing depth. 

1. Lines 31-33. If sample size and sequencing depth were determining factors, then what 

was the impact of chimera read removal? Wouldn't that impact the outcomes then, if as the 

authors suggest that sequence depth was a contributing factor in the inconsistency 

observed among methods? While the authors may not be able to test this using the 

preprocessed data, which removed suspected chimeric reads or so-called rare reads, they 

could do so using the raw data to determine if chimera removal impacted the sample size, 

composition and/or sequencing depth. 

As described above, the same input datasets (whether prevalence filtered or not) were used 

to test each tool, so we do not believe that a deep investigation into chimeras is warranted 

for our manuscript’s purposes. 

Nonetheless, we ran chimera checking with the UCHIME algorithms (implemented in 

VSEARCH) to estimate what percentage of ASVs/OTUs in each dataset were chimeric and 

we now mention this in the text. Importantly, no ASVs/OTUs were identified as chimeric 

(based on comparisons of the final feature sequences) based on de novo chimera checking 

approaches. However, based on reference-based chimera picking with the UCHIME2 

algorithm, there were in some cases high percentages of chimeric features (e.g., >30% in 

one case). In several cases the percentage of significant features output by each tool was 

moderately correlated with the percentage of chimeric features. We have included a new 

supplementary figure displaying these results (Supp Fig 1). 

In addition, we believe the reviewer picked up on the interesting notion that the percent of 

rare ASVs in each dataset, which could be associated with artifacts such as chimeras, 

might help explain the variation in the number of significant ASVs. Accordingly, we added 

to our heatmaps (Fig. 1) the mean percent of ASV abundances that were removed from 

each sample following our 10% prevalence cut-off. In several cases this dataset 

characteristic was also significantly associated with the percentage of significant ASVs 

identified by each tool. 



2. Lines 35-40. The authors need to more clearly define what they mean by "more 

reliable" in comparing these methods. Just because the tools cluster together does not 

mean that the microbial profiles obtained using them are more closely representative of 

the actual microbial composition of the samples or that the differential abundances are 

going to be discriminatory regarding biological outcomes. 

In this particular case we were referring to the recommendations made by a separate study 

that claimed that limma voom, corncob, and DESeq2 were more reliable. We have changed 

this wording to be “more accurate”, which was based on numerous criteria in a separate 

study that we cite (Calgaro et al. 2020). 

However, we do agree that in our work that just because the results of certain tools are 

more consistent with others does not mean that they are necessarily more reliable. We now 

clarify this at the beginning of the results section presenting those consistency results: 

“These analyses provided insight into how similar the interpretations would be depending on 

which DA method was applied. We hypothesize that tools that produce significant ASVs that 

highly intersect with the output of other DA tools are the most accurate approaches. 

However, this is not necessarily the case: tools that produce similar sets of significant ASVs 

could simply be picking up on the same noise and producing similar sets of false positives. 

This caveat should be noted while interpreting these results.” 

3. Why did ALDEx2 and ANCOM cluster together most reliably? What is the mathematical 

basis for this congruence? If data is routinely removed from analysis in the pipeline, then it 

stands to reason that certain methods would result in more consistent outputs than others. 

Likewise, if LEfSe, limma voom and edgeR produced inconsistent results and poorly 

controlled FDRs, what is the mathematical basis for this inconsistency? What differentiates 

these methods from ALDEx2 and ANCOM? In order for any method to be universally 

applicable for a wide variety of samples and their microbial communities, there must be 

clearly defined mathematical bases for differences observed in the outcomes. 

ALDEx2 and ANCOM-II are both compositional data analysis tools that examine abundance 

values using ratios rather than relative abundances. Although they use different dominators 

in their ratio approaches (CLR vs ALR as we discuss in the introduction), they can be 

considered to be within the same overall method class. For this reason we believe that they 

tend to cluster together. We believe that the question of what are the statistical and/or 

mathematical reasons for the inconsistent results output by certain tools like LEFse, limma 

voom, and edgeR, is crucial for further development of improved differential methods, but 

that is beyond the scope of our manuscript. Rather than comparing the algorithm details, our 

work has been from the user’s perspective. In other words, we investigated whether these 

tools should be used interchangeably. Clearly they should not be based on our results and 

we discuss certain high-level reasons why the tools differ, such as the advantage of 

compositional data analysis methods in certain cases and the downside of tools like edgeR 

and limma voom that may fail when datasets have high sparsity. We believe this practical 



level of understanding how the tools perform is most relevant to microbiome researchers 

and that further contrasting of mathematical differences between the tools would make the 

paper much more difficult to follow and thus less impactful. 

4. Figures 1 and 2. Lines 364-366, 370-375, 380-384. The authors chose to compare the 

different differential abundance methods by determining the number of significant 

features/ASVs identified by each method without or with prevalence filtering. Clearly the 

fact that the percentage of significant ASVs obtained by each method varied so widely 

across datasets strongly suggests that there is something inherently problematic with the 

approaches used to make this assessment. It is not surprising that the authors found 

several contributing factors. The authors do not provide any insight as to why the different 

methods gave such widely disparate outcomes in identifying significant features. What is 

the mathematical basis for these different outcomes? What does the finding that there are 

more significant ASV hits mean in terms of relevance to the microbial profiles of the 

samples? Are they more similar or more meaningful in terms of discriminating disease 

outcome? Importantly, in none of the analyses do the authors consider the key question: 

How closely do the resulting microbial composition profiles obtained by each of the 

methods resemble each other when considering discriminating outcomes within each 

dataset versus among multiple datasets? 

We appreciate the reviewer’s comments and questions. There are a few different points to 

respond to here. 

First, regarding mathematical bases for differences you can see our response to the related 

point #3 above. 

Regarding how having more significant ASV hits could be relevant to the specific microbial 

samples - the variation in the number of significant ASV hits is related to the characteristics 

of each microbiome dataset, as indicated on Figures 1 and 2 by metadata such as the 

dataset sparsity. It is also related to the overall signal differentiating the sample groups, as 

indicated by the PERMANOVA coefficients. 

Regarding whether the ASVs are more relevant for discriminating disease outcome (and 

more generally the tested sample groups from any environment) - we now include an 

additional set of analyses to get at this question. Specifically, we have evaluated how 

useful each ASV is on its own for discriminating between the sample groups. Our new set 

of analyses that we now describe in the results (and with added supplementary figures 

(Sup Figs. 3-4) is based on comparing how useful the sets of significant ASVs identified by 

each tool are based on this approach. 

Last, regarding the reviewer’s last question here, we believe this is related to the confusion 

regarding what these tools are producing: the microbial composition profiles are the input to 

the tools and were the same across all tools (except for rarefied vs non-rarefied and filtered 

vs unfiltered datasets). 



5. Figure 3, lines 502-503. The authors assume that having an overlap in significant ASVs 

indicates that the tools provide congruent outcomes and that those methods are more 

reliable and consistent, despite having quite different methodological approaches. As noted 

by the authors, each of the methods emphasize different aspects of the sample’s microbial 

composition. However, they do not provide any mathematical backing of these conclusions 

or a rationale for why this might be the case. As the authors point out (lines 513-515), there 

is substantial missing information that contributes to the observed clustering patterns. 

Similar to our response to the reviewer’s point #2 we think this is an important point and 

have clarified in the text that just because tools overlap with others does not mean that 

they are more reliable: 

“These analyses provide insight into how similar the results of different tools are expected 

to be, which could be due to methodological similarities between them. However, this does 

not provide clear evidence for which tools are the most accurate.” 

6. One critical question that the authors did not address when comparing each of the 

methods for analyzing the datasets is: Which method provided microbial composition 

profiles that more closely represented the expected microbial community? Why did the 

authors not compare their methods using the mockrobiota community raw dataset available 

for researchers (PMID: 27822553)? At least with these datasets, which have defined 

microbial compositions for each of the sample datasets, it should be possible for the 

authors to determine which methods provides a microbial profile that more closely 

resembles the expected defined community. Then, any differences observed between 

sample types within a dataset (such as healthy versus diseased) should provide more 

reliable and robust differential abundance profiles. 

As described above, our manuscript focuses solely on comparing different differential 

abundance methods and not in comparing workflows for producing microbial composition 

profiles. Because of this we disagree that the analyses the reviewer describes would be 

relevant in this case. However, we certainly think this point touches on important 

questions related to other aspects of microbiome data analysis, but that are outside the 

scope of our paper. 

7. Lines 166-169. Another critical question that the authors did not address is: What about 

chimeric reads? In all of the datasets used for this study, the raw sequencing reads were 

processed using QIIME2, which routinely removes any suspected chimeric reads from the 

dataset before further analyses are performed. Depending on the sample and its 

complexity, this step could significantly impact the number of reads for any given sample, 

and thereby, could impact the outcomes after processing through each of the differential 

abundance methods. What were the percentage of chimeric reads removed for each of the 

samples in these studies? If there was more than 5-10% of the reads removed, it is difficult 



to belief that this would not impact the sequence depth, complexity, and diversity of the 

samples, and therefore the outcomes. 

Please see our response to the reviewer’s point #1 regarding the prevalence of 

chimeric ASVs where we discuss this issue. 

8. Lines 337-339, Table 2, Figure 5. What does this statement mean? Were these “two 

additional datasets” not listed as part of the original 38? What are the literature citations for 

these studies? Were these datasets part of published studies? The authors need to clarify 

which studies were used for this cross-study analysis, i.e., specify which studies were 

included in this analysis and provide the corresponding literature citations. 

Thanks for catching this. Those two datasets were not part of the origin 38, but were part of 

published studies. We now clarify all of the questions you raised in that section of the 

methods: 

“For this analysis we acquired two additional pre-processed datasets that were not used for 

other analyses, which are the GEMS1 (Pop et al., 2014) and the dia_schneider (Schneider 

et al., 2017), datasets (Supp. Table 1). The processed data for these datasets was acquired 

from the MicrobiomeDB (Oliveira et al., 2018) and the microbiomeHD (Duvallet et al., 2017) 

databases, respectively. These datasets were combined with three of the datasets used 

elsewhere in this manuscript (Human – C. diff [1 and 2] and Human – Inf.), to bring the 

number of diarrhea-related datasets to five. These three pre-existing datasets all related to 

enteric infections that had all been previously shown to show a distinct signal of microbial 

differences driven by diarrhea in patient samples (Duvallet et al., 2017).” 

9. Lines 343-344. The authors should specify exactly which obesity datasets were used 

for this analysis and provide the corresponding literature citations. 

We now provide these details in that section of the methods: 

“For the obesity cross-study analysis we leveraged four datasets that were part of core 38 

datasets: Human – OB (1-4) (Goodrich et al., 2014; Ross et al., 2015; Turnbaugh et al., 

2009; Zhu et al., 2013). We also included an additional obesity dataset, ob_zupancic 

(Zupancic et al., 2012), that we acquired from the microbiomeHD database.” 

0. In terms of choice of datasets, there have been in recent years at least three seminal, 

large-scale studies regarding the impact of gut microbiomes on cancer interventions 

(PMID:29097493; PMID:29097494; PMID:29302014) for which the significant ASVs were 

found to be completely different between the responsive versus nonresponsive cohorts. 

There is no mention of these studies in the discussion or the impact of the current study to 

address issues raised by those other studies. 

Thanks for pointing us to these studies. We now include this sentence near the beginning of 

our discussion: 



“These results might partially account for the common observation that significant microbial 

features reported in one dataset only marginally overlap with significant hits in similar 

datasets, such as recently found across three high-profile cancer intervention studies 

(Gopalakrishnan et al., 2018; Matson et al., 2018; Routy et al., 2018). However it should be 

noted that this could also be due to numerous other biases that are present in microbiome 

studies (Nearing et al., 2021).” 

11. Did any of the methods account for the complexity of the community of the sample in 

determining significant ASVs, as opposed to just considering prevalence or low-counts for 

cut-off thresholds? 

Several methods to account for community complexity, which we now highlight in the 

discussion: 

...“the variance in the number of features identified could also be attributed to pre-

processing steps various tools use to remove potential ASVs for testing. This includes 

corncob that does not report significance values for ASVs only found in one group or 

ANCOM-II’s ability to remove structural zeros” 

Reviewer #2 (Expertise: Statistical methods for the analysis of 16S data, microbiome 

studies): 

The authors present a comparison between most popular differential abundance methods 

for the microbiome based on a range of datasets. The great divergence of methods and 

lack of reproducibility of the results is correctly pointed out as a major problem, making this 

a timely and relevant work. The reliance on real data rather than simulation lends great 

credibility to the results. The manuscript is well written and demonstrates good literature 

review. The availability of data and code for reproducbility is exemplary. However, the 

description of the methods used and the evaluation methodology still needs improvement. 

Major comments 

* The main criterion for method evaluation is consistency of the results over the different 

datasets. Yet as the authors acknowledge, this benefits conservative methods: picking up 

only the strongest signal is the safest way to report reproducible results. Decreasing the 

significance level for any method will increase consistency. I believe an additional criterion 

is needed that also rewards more powerful methods that stick their neck out and report taxa 

with lower effect sizes too. I suggest the authors look at either consistency of taxon 

rankings, or take the twenty or so most significant genera and compare them across the 



experiments. This latter way reflects the way many scientists proceed when confronted with 

a long list of hits which they cannot all investigate further. Another citerion is whether the 

FDR truly lies around the significance level of 0.05. In relation to this, the authors should 

specify how genera not present in all studies are treated (l336), and how they affect the 

results. 

Thanks for the suggestion - we agree that in principle the top ASVs of all tools could have 

been similar and that some tools might simply stick their necks out more as you said. To 

get at this question we looked at the overlap in the top 20 ASVs per tool per dataset and 

describe the results in this new paragraph of the results: 

“A major caveat of the above analysis is that each DA tool produced substantially different 

numbers of ASVs in total. Accordingly, in principle all the tools could be identifying the 

same top ASVs and simply taking varying degrees of risk when identifying less clearly 

differential ASVs. To investigate this possibility, we identified the overlap between the 20 

top-ranked ASVs for each tool per dataset (Supp. Fig 5), which included non-significant 

(but relatively highly ranked) ASVs in some cases. The distribution of these ASVs in the 20 

top-ranked hits for all tools was similar to that of all significant ASVs described above. For 

example, in the filtered data we found that, t-test (rare) (mean: 7.7), edgeR, (mean: 7.0), 

corncob (mean: 6.8), and DESeq2 (mean: 5.4) had the highest number of ASVs only 

identified by that particular tool as being in the top 20. Only a small number of ASVs were 

amongst the top 20 ranked of all tools in both the filtered (mean: 2.0) and unfiltered (mean: 

1.0) datasets (Supp. Fig 5).” 

* In relation to this, I wonder whether the Kolmogorov-Smirnov test is the best choice for 

testing consistency. It uses the suppremum of the difference between expected and 

observed distribution function to calculate the p-value (last two columns of table 2). My first 

question is why to focus on the suppremum. The second is how this test statistic relates to 

the fold change between mean and observed number of datasets? I think the latter is 

indeed a useful measure, but then the statistical test should apply to this quantity directly. 

The resampling procedure outlined by the authors could be used to establish its null 

distribution. A section on this test in the supplementary material would lessen confusion. 

We agree that comparing the suppremum of the expected and observed distributions could 

be non-optimal for our purposes. We implemented the test you outlined (i.e., determining 

significance of the observed mean based on a distribution of expected means) and the 

results are qualitatively the same (except that ALDEx2 is now also significant across the 

obesity datasets). We now present the results of this analysis in the results as we believe it 

will be easier for readers to follow and is not based on the suppremum of the distributions 

alone. 

* l650 "While it might be argued that differences in tool outputs are expected given that they 

different hypotheses, we believe this perspective ignores how these tools are used in 

practice." 



I agree that most scientists ignore subtle differences in hypotheses tested by the different 

methods, but in the context of this manuscript it would be useful to elaborate on them, 

reiterate them when discussing results. This may help explain the difference in results, e.g. 

why CoDa methods like ANCOM and ALDEX2 are more conservative. 

We now describe the likely reasons why ANCOM-II and ALDEx2 appear to be more 

conservative in the discussion section. 

* l531: In this complete null scenario, every discovery is a false discovery, and hence the 

false discovery proportion (FDP) in a single Monte-Carlo instance is either 0 (no 

discoveries) or 1 (one or more discoveries). The estimated FDR is then equal to the FWER, 

and is estimated as the average FDP over the Monte-Carlo instances. This number should 

hover around 0.05. I am not sure if this is the way the authors proceeded, but some more 

explanation may lessen confusion. Also, I would recommend doing at least 100 Monte-

Carlo instances to obtain reliable results. 

We agree that this would be one way to evaluate the tools, but our analysis instead focused 

on the mean percentage of ASVs that were called as significant. We have added text at the 

beginning of this section to clarify that that is what we are focused on (in the main text at 

least). In this context and ASVs called as significant is indeed a problem, but what’s striking 

is that in some cases tools virtually always called some ASVs as significant (even if just a 

low percentage). In contrast, other tools almost never called significant features, but when 

they did they called a substantial proportion as significant. We believe both of these trends 

can be gleaned by considering both our heatmap of mean % significant ASVs in addition to 

the breakdown shown per Monte-Carlo instance in the supplementary materials. 

In addition, we have also run additional Monte-Carlo instances for long-running tools to 

ensure that those results are reliable. 

* Personally, I would find it impractical to combine several differential abundance methods 

on a single dataset. It implies more work, the hypotheses tested may differ, and making 

choices on how exactly to pool the results is arbitrary. But that is a matter of taste, I agree 

that it is hard to make positive recommendations. 

We completely agree that a consensus approach complicates analyses and the 

interpretation. However, as we outline in the text, we believe that moving towards 

consensus-based approaches is needed until the field settles on a single DA approach to 

use. 

In addition, we agree that the hypotheses being tested can differ between the tools, but 

importantly they are usually treated interchangeably in the microbiome literature. For this 

reason we think that providing differential abundance results based on a consensus of 

different tools would be the most conservative way to compare across studies. 



The exception is if researchers know specifically what studies they want to compare with 

then using the same DA approaches may be the best way forward. We have added this 

important point to our discussion: 

“If researchers are most interested in determining if signals from another study are 

reproducible, then they should ensure that they use the same DA approach.” 

* As a last major comment, the description of the different differential abundance methods in 

general needs improvement. In addition, some methods should be revised as they depart 

too far from the default specified by the authors. Detailed comments can be found below: 

- l80: "... are both tools that assume normalized read counts follow a negative binomial 

distribution". 

I do not agree: the raw read counts are assumed to follow the negative binomial distribution. 

The parameters of this distribution may depend on an estimate of the sequencing depth or 

other regressors, but the data are not normalised by them. 

Thanks for catching this. We now specify that the raw read counts, not the normalized 

reads, are assumed to follow a negative binomial distribution. 

- l82: "The null hypothesis is that the same parameters for the binomial solution explain the 

distribution of taxa across all sample groupings." 

I find this a little inaccurate. It is true that it is assumed that the dispersion parameter is 

constant over groups, but this is not part of the null hypothesis tested. The null hypothesis 

usually refers to a single parameter or a group of dummy parameters being equal (often 

equal to zero), not necessarily to all parameters. 

We have now changed this sentence to read: 

“The null hypothesis is that the same setting for certain parameters of the negative 

binomial solution explain the distribution of taxa across all sample groupings.” 

- l221: "This function first converted the into relative abundances and then fit each taxon 

abundance to a beta-binomial model" 

The beta-binomial model is a count model, so here as well I believe the model is fitted 

on the raw counts. 

This has been corrected. 



- l266: I find this a strange way of running limma-voom. In the documentation it asks for a 

count matrix, but it seems that the authors prenormalised the data. If this is true they should 

justify why they depart from the documented limma pipeline, but I would rather see a count 

matrix being fed to it. Moreover, can the authors motivate their choice of normalization 

method, i.e. why was limma-voom combined with two normalization methods and the other 

methods not? 

We decided to run limma-voom as it was outlined in the limma bioconductor user guide 

found here: 

https://www.bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/usersguide.pd  

f.  

Furthermore, the original paper outlining the voom method (https://doi.org/10.1186/gb-2014-

15-2-r29) also used TMM normalization in their analysis. As such to stay consistent with the 

author recommendations we choose to normalize the data using TMM normalization. We 

also choose to test out the use of TMMwsp normalization as well due to it being highlighted 

as an alternative normalization method for highly sparse data as outlined within the edgeR 

package. We choose to test both methods as limma-voom using TMM normalization was 

previously shown to perform preferentially in DA testing (Calgaro et al., 2020). In our hands 

we did not find this to be the case, however, we noted that our datasets were of higher 

sparsity than those tested by Calgaro et al., and as such we decided to also test a 

normalization method made to specifically address issues with sparsity. 

- l297: For t-test and Wilcoxon rank sum test, it would be good to include tests on relative 

abundance, without rarefying. I expect this to be more powerful, and also often happens in 

this way. As a minor remark, it is pointless to apply total sum scaling to rarefied data as 

mentioned for the t-test, as all sample sums are equal after rarefying (it should not affect the 

results though). 

Thanks for this suggestion, but we chose not to include the Wilcoxon and t-test approaches 

based on non-rarefied relative abundance by design. This was because it has been 

previously shown that applying such tools without normalizing the data in some way can 

lead to more false inferences, but otherwise similar results to first rarefying data (e.g., 

10.1186/s40168-017-0237-y). Given this past work, we do not believe that an additional 

comparison of rarefied and raw relative abundances based on these tools need be included 

in our work. 

- l483: "Furthermore, the two Wilcoxon test approaches had different consistency profiles 

despite the same hypothesis test." 

Since one test is on rarefied abundances and the other on a log-ratio, these can hardly be 

called the same hypothesis. Changes in other taxa abundances may affect the log-ratio, 

https://www.bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/usersguide.pdf
https://www.bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/usersguide.pdf
https://www.bioconductor.org/packages/release/bioc/vignettes/limma/inst/doc/usersguide.pdf
https://doi.org/10.1186/gb-2014-15-2-r29


and thus invalidate the null hypothesis, whereas the null hypothesis of equal abundances 

remains valid. This can also be seen from Figures C and D, where t-test and Wilcoxon 

rank sum test after rarefying are really close as they test very similar hypotheses, as 

opposed to Wilcoxon CLR. I suspect a t-test CLR would also cluster close to the latter. 

Thanks for catching this - we agree entirely that the hypotheses being tested are 

quite different. We have now changed the text to reflect this: 

“Furthermore, the two Wilcoxon test approaches had highly different consistency 

profiles, which highlights the impact that CLR-transforming has on downstream results.” 

Minor comments 

* l554: "we also observed that in several replicates on the unfiltered datasets, the 

Wilcoxon (CLR) approach identified almost all features as statistically significant" 

Is this a consequence of a variable geometric mean, which is the denominator in the 

CLR transformation? 

Yes, we believe that is the most likely driving factor for these observations. We have 

now added several statements following up on our report of differential read depth being 

associated with outlier samples: 

“These differences were associated with similar differences in the geometric mean 

abundances per-sample (i.e., the denominator of the CLR transformation) between the test 

groups. Specifically, per dataset, these outliers commonly displayed the most extreme 

difference in geometric mean on average between the test groups and were otherwise 

amongst the top ten most extreme replicates.” 

* l762 "Indeed, tests based on rarefied data in our analyses did not substantially worse 

than other methods on average." 

It is hard to compare with the given results, one would need to compare the same 

method with and without rarefying, which was not done for most methods. 

Thanks for pointing this out. We agree that in general to ask how rarefaction affects each 

method we would need to rarefy the data prior to running all DA methods. However, our 

intention was actually to focus on the reality that certain tools expect rarefied input data (or 



are usually used that way anyway) and for others the tool authors recommend that the input 

data not be rarefied. We have now clarified that section of the text to reflect this message, 

which is a much narrower statement than what we had initially stated. 

* l517 "Interestingly, corncob, which is a methodologically distinct approach, also clusters 

relatively close to these two methods on the first PC." 

At parameter values encountered in microbiome data, the beta-binomial and negative 

binomial distributions are identical in terms of density. Hence it is not so surprising that 

corncob and edgeR are close. 

Thanks for pointing this out - we now refer to this possibility: 

“This may reflect that the distributions that these two methods rely upon become similar 

when considering the parameter values often associated with microbiome data” 

* p17 Figures A and B: this graph is interesting, but good to mention it strongly depends on 

which methods were included, and how many times (e.g. limma and Maaslin in duplicate). 

Thanks for pointing this out, we now include this caveat in the Figure 3 legend: 

“Note that when interpreting these results that they are dependent on which methods were 

included, and whether they are represented multiple times. For instance, two different 

workflows for running MaAslin2 are included, which produced similar outputs.” 

* l632 each genera -> each genus  

Changed. 

* Supplementary Figures (and Supplementary Table 1) are sometimes hard to read. 

Perhaps a tool like knitr or rmarkdown can help to embed figures in a text document. 

We have greatly cleaned up and resized Supplementary Table 1 and it is now much easier 

to read. 

We also added a new Supplementary Table 2, which provides a brief description of each 

dataset, which readers may find useful. 

Reviewer #3 (Expertise: Studying the gut microbiome): 



Nearing et al. conducted an in-depth and a comprehensive evaluation of common tools 

used to identify differentially abundant taxa in 16S microbiome studies. They performed 

their analysis on large dataset of 38 two-group 16S rRNA gene sequencing datasets. The 

authors looked at the concordance of the methods on these datasets with and without 

filtration of rare taxa. They additionally looked at the observed FDR for each tool and lastly 

looked at how consistent biological interpretations would be by looking across diarrheal 

datasets. Overall, the manuscript is well-written, and the analyses performed are 

appropriate. 

The manuscript addresses an issue that is often overlooked by so many in the field of 

microbiome research. While the conclusion about inconsistencies across tools is disturbing, 

it is not completely surprising. I have a few concerns with the manuscript primarily with how 

the data is presented and how the conclusions are discussed or outlined. 

 I think the manuscript would benefit if the authors showed analysis of a selection of 

simulations. In my opinion, this would make the conclusions more understandable to 

the readers. 

We deliberately avoided basing our analyses on simulations as several papers have already 

been published that focus specifically on validating DA tools with simulations (e.g., 

10.1093/bib/bbx104 and 10.1186/s40168-016-0208-8). This work has been valuable but 

suffers from the limitation that the parameters used to simulate microbial profiles may not 

reflect true real-world samples and that tools designed around these parameters will 

perform better in those simulations. For this reason, we felt additional validations on actual 

datasets would be a useful contribution to the field. We now discuss this topic in more detail 

in a new paragraph of our discussion. 

 While it is not easy to make a ruling on which tools would be best as acknowledged by the 

authors, I think there should be some recommendation for gold standards for the different 

applications. I would suggest adding a summary scheme or Box in which “advantages vs 

disadvantages” or “recommendations for use for different applications” of the tools used are 

summarized. This would make this manuscript more accessible to clinicians/microbiologists 

who are using these tools. As it stands now, I find the manuscript confusing/complicated to 

understand for the non-experts who are using DA tools to identify taxa relevant to 

diseases/phenotypes. 

We appreciate that many readers will be looking for clear recommendations to follow. For this 

reason, we explicitly raised this point in our discussion and highlighted that certain tools are likely 

more specific (i.e., ALDEX2 and ANCOM-II), while other tools may be more useful for users in 

need of higher sensitivity (such as MaAsLin2). However, one key message of our paper is that 

the DA tools can vary in performance: sometimes identifying no features as significant and other 

times identifying large proportions. Because of this we think it would be misleading to readers to 

suggest that there was a single tool that would be best to use. We realize that this 



will be unsatisfying to not have a clear answer for many readers, but we believe it is a fair 

interpretation of our data. 

Similarly, although we were partially able to explain what factors are associated with variation in 

tool performance, we do not have data on any specific applications that each tool would be best 

suited for (besides the general inference of which tools have higher specificity/sensitivity, which 

we highlight in the discussion). However, our analysis on the likelihood of identifying false 

positives did point out that some methods have inappropriate type I error rates when used on 

microbiome data. Furthermore, in our discussion we highlighted that microbiome researchers 

need to take further consideration into the normalization approaches they are using on their data 

and how those approaches impact the biological observations that they are making. For 

example, centred log-ratio approaches compare the abundances of microbes to the geometric 

mean abundance within the sample which in some cases can have a vastly different 

interpretation than when comparing proportions (e.g., 10.3389/fmicb.2017.02224). In our 

discussion we now highlight the importance of clearly describing how the results of certain tools 

should be interpreted differently than other tools that may have been used in similar papers. 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Overall, the authors have addressed most of the concerns/comments adequately. It appears that the 

key aspects that this reviewer was hoping that the authors would address are clearly outside the 

scope of the authors' study since all that is being studied here is the differential abundance analysis 

regardless of the nature of the input data. 

This is fine since each step of data analysis could benefit from scrutiny. For the scope of the study, the 

authors have provided a detailed and comprehensive report outlining the pros and cons of the various 

analysis tools available. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors took the comments of all reviewers seriously, and improved their manuscript. I have 

several further concerns, listed below. 

 

l203. "FDR-corrected p-values were used for methods that output p-values". I suppose this is the 

Benjamini-Hochberg correction, but then this should be mentioned and the publication cited. Also, I 

prefer the term "adjusted" p-values, but perhaps that's just me. 

 

l499. "as input into receiver operator curves". What prediction method is used here? Logistic 

regression? 

 

l608. "what percentage of tested ASVs was called as significant by each tool even when there is no 

difference expected between the sample groups." As in my previous comment: this is not the 

definition of the false discovery rate; and this is not the quantity being controlled by the Benjamini-

Hochberg adjustment. The authors should give this quantity a new name. 

 

l.760 Hawinkel et al also found excessive FDR for metagenomeSeq 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors responded adequately to my previous comments. I have no further comments. 



Review Response Letter 

 

Reviewer #1 (Remarks to the Author): 

 

Overall, the authors have addressed most of the concerns/comments adequately. It appears 

that the key aspects that this reviewer was hoping that the authors would address are 

clearly outside the scope of the authors' study since all that is being studied here is the 

differential abundance analysis regardless of the nature of the input data. 

This is fine since each step of data analysis could benefit from scrutiny. For the scope of the 

study, the authors have provided a detailed and comprehensive report outlining the pros 

and cons of the various analysis tools available. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors took the comments of all reviewers seriously, and improved their manuscript. I 

have several further concerns, listed below. 

 

l203. "FDR-corrected p-values were used for methods that output p-values". I suppose this 

is the Benjamini-Hochberg correction, but then this should be mentioned and the 

publication cited. Also, I prefer the term "adjusted" p-values, but perhaps that's just me. 

 

We have addressed this comment by adding the type of p-value adjustment and citing the 

relevant paper. 

 

l499. "as input into receiver operator curves". What prediction method is used here? Logistic 

regression? 

 

We have updated our text to be clearer on how receiver operator curves were generated.  

 

“For each ASV in a dataset the abundance of that ASV along with metadata groupings was used 

as input into the prediction function in the ROCR R package 
80

. Multiple different optimal 

abundance cut-offs were then used to classify samples based on the input ASVs abundance. 

Classifications were then compared to the true sample groupings to generate ROCs for each ASV 

within the 38 tested datasets.” 



 

 

 

 

l608. "what percentage of tested ASVs was called as significant by each tool even when 

there is no difference expected between the sample groups." As in my previous comment: 

this is not the definition of the false discovery rate; and this is not the quantity being 

controlled by the Benjamini-Hochberg adjustment. The authors should give this quantity a 

new name. 

 

We have updated this text to indicate we are examining the false positive characteristics of 

the tools rather than their false discovery rates. 

“Through this approach we were able to infer the false positive characteristics of each tool. In 

other words, we determined what percentage of tested ASVs was called as significant by each 

tool even when there is no difference expected between the sample groups.” 

 

 

l.760 Hawinkel et al also found excessive FDR for metagenomeSeq 

 

We have added this reference to this line. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors responded adequately to my previous comments. I have no further comments. 


