Supplementary Information

Interfacial compatibility critically controls Ru/TiO₂ metalsupport interaction modes in CO₂ hydrogenation

Jun Zhou¹⁺, Zhe Gao²⁺, Guolei Xiang^{1*}, Tianyu Zhai¹, Zikai Liu¹, Weixin Zhao¹, Xin Liang¹, Leyu Wang^{1*}

- 1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- 2. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan 030001, China

⁺ These authors contributed equally

*To whom correspondence should be addressed: xianggl@mail.buct.edu.cn; (G. X.) lywang@mail.buct.edu.cn (L. W.)

Supplementary Figure 1. TEM images of rutile-TiCl₄ (a), rutile-TiCl₃ (b), rutile-TiN (c) and anatase (d) after being annealed at 500 $^{\circ}$ C for 10 h.

Supplementary Figure 2. Scheme of the synthetic procedures of Ru/TiO₂ catalysts.

Supplementary Figure 3. Temperature-dependent CO₂ conversions of (a) 1%Ru/R-TiO₂and (b) 4%Ru/R-TiO₂.

Supplementary Figure 4. Arrhenius plots of 2%Ru/R-TiO₂ catalysts treated in different procedures.

Supplementary Figure 5. TEM (a) and STEM (b) images of RuO₂ epitaxial layers on R-TiO₂ nanorod.

Supplementary Figure 6. STEM of RuO₂ on A-TiO₂.

Supplementary Figure 7. Size distributions of 2%-Ru/TiO₂-H₂ catalysts. STEM images of (a) Ru/R-TiO₂-air-H₂ and (b) Ru/R-TiO₂-H₂ catalysts. Size distributions of Ru nanoparticles of (c) Ru/R-TiO₂-air-H₂, (d) Ru/R-TiO₂-H₂, (e) Ru/A-TiO₂-air-H₂, and (f) Ru/A-TiO₂-H₂ catalysts.

Supplementary Figure 8. XRD of 1%Ru/R-TiO₂(a), 4%Ru/R-TiO₂(b), 2%Ru/R-TiO₂(TiCl₃) (c) and 2%Ru/R-TiO₂(TiN) (d) after reaction

Supplementary Figure 9. XPS of 2%Ru/R-TiO₂-air-H2(TiCl₃) (a), 2%Ru/R-TiO₂-H₂(TiCl₃) (b), 2%Ru/R-TiO₂ -air-H₂(TiN) (c) and 2%Ru/R-TiO₂-H₂(TiN) (d) after reaction.

Supplementary Figure 10. XPS of 1%Ru/R-TiO₂-air-H₂(a), 1%Ru/R-TiO₂-H₂(b), 4%Ru/R-TiO₂-air-H₂(c) and 4%Ru/R-TiO₂-H₂(d) after reaction.

Supplementary Figure 11. XPS of Ru foil.

Sample	Binding Energy [eV]		The radio of
	Ru ^{δ+}	Ru ⁰	Ruº'/Ruº
1%Ru/R-TiO ₂ -air-H ₂	281.1	280.0	1.1
1%Ru/R-TiO ₂ -H ₂	281.7	280.6	1.1
4%Ru/R-TiO ₂ -air-H ₂	281.2	280.1	2.3
4%Ru/R-TiO ₂ -H ₂	281.6	280.5	1.0
2%Ru/R-TiO ₂ -air-H ₂ (TiCl ₃)	281.1	280.0	1.8
2%Ru/R-TiO ₂ -H ₂ (TiCl ₃)	281.7	280.4	1.2
2%Ru/R-TiO ₂ -air-H ₂ (TiN)	280.9	279.9	1.9
2%Ru/R-TiO ₂ -H ₂ (TiN)	281.4	280.4	1.1

Supplementary Table 1. XPS fitting results of other catalysts.

Supplementary Table 2. Metal dispersion of Ru on rutile calculated by CO pulse adsorption

Sample	Ru/R-TiO ₂ -air-H ₂	$Ru/R-TiO_2-H_2$
D _{CO} (%)	33.64	31.1