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Supplementary Tables and Figures

Figure S1: Pie chart of the categories of the 245 phenotypes used in this study. A full description of
these phenotypes can be downloaded at https://github.com/privefl/UKBB-PGS/blob/main/
phenotype-description.xlsx.

1

https://github.com/privefl/UKBB-PGS/blob/main/phenotype-description.xlsx
https://github.com/privefl/UKBB-PGS/blob/main/phenotype-description.xlsx


Nigeria Poland United Kingdom

India Iran Italy

Ashkenazi Caribbean China

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Individual # (ordered by main component of group)

A
nc

es
tr

y 
pr

op
or

tio
n

(a) with K = 8 components

Nigeria Poland United Kingdom

India Iran Italy

Ashkenazi Caribbean China

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Individual # (ordered by main component of group)

A
nc

es
tr

y 
pr

op
or

tio
n

(b) with K = 5 components

Figure S2: Results of running ADMIXTURE (Alexander et al. 2009) on 200 individuals from each of the nine
ancestry groups we define in this study.
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Figure S3: Partial correlation (and 95% CI) in the UK test set versus in a test set from another ancestry group.
Each point represents a phenotype (only 83 of the continuous phenotypes here) and training has been performed
with penalized regression on UK individuals (training 1 in table 1) and genotyped variants. The slope (in blue)
is computed using Deming regression accounting for standard errors in both x and y, fixing the intercept at 0.
The square of this slope is provided above each plot, which we report as the relative predictive performance
compared to testing in UK.
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Figure S4: Results from identical analyses as in figure S3 except that we also remove third-degree relatives in
the UK Biobank data we use (instead of second-degree and closer before).
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Figure S5: Partial correlation (and 95% CI) in the UK test set versus in a test set from another ancestry group.
Each point represents a phenotype and training has been performed with LDpred2-auto on UK individuals
(training 1 in table 1) and HapMap3 variants. The slope (in blue) is computed using Deming regression ac-
counting for standard errors in both x and y, fixing the intercept at 0. The square of this slope is provided above
each plot, which we report as the relative predictive performance compared to testing in UK.
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Figure S6: Relative predictive performance compared to the UK (ratio of variance explained in one group
compared to in the UK group) versus PC distance from the UK. PCA is computed using individuals from
test 1 (Table 1), and PC distances are computed using Euclidean distance between geometric medians of the
first 32 PC scores of each ancestry group (shown in figure S7). Relative performance values are the ones
reported in figure 2 of the main text. The slope and standard errors are computed internally by function
geom_smooth(method = "lm") of R package ggplot2.
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Figure S7: PC scores 19 to 40 when PCA is computed using individuals from test 1 (Table 1). PCs 19 to 32
visually capture some population structure, so we use first 32 PCs when computing the PC distances.
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Figure S8: Zoomed Manhattan plot for total bilirubin concentration. The phenotypic variance explained per
variant is computed as r2 = t2/(n+ t2), where t is the t-score from GWAS and n is the degrees of freedom (the
sample size minus the number of variables in the model, i.e. the covariates used in the GWAS, the intercept
and the variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within
a 500Kb radius around the top hit from the GWAS performed in the UK training set and on the HapMap3
variants, represented by a vertical dotted line.
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Figure S9: Effect sizes and variance explained for the top three variants from figure S8.
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Figure S11: Zoomed Manhattan plot for apolipoprotein B concentration. The phenotypic variance explained
per variant is computed as r2 = t2/(n+ t2), where t is the t-score from GWAS and n is the degrees of freedom
(the sample size minus the number of variables in the model, i.e. the covariates used in the GWAS, the intercept
and the variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within
a 500Kb radius around the top hit from the GWAS performed in the UK training set and on the HapMap3
variants, represented by a vertical dotted line.
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Figure S14: A) Partial correlations (and 95% CI) achieved per phenotype (each point) and per ancestry group
(each panel) when training either with LASSO or with LDpred2-auto. B) Focusing now on the UK panel from
A), each panel represents a range of proportion of causal variants p and points are colored by SNP heritability
h2 (estimates from LDpred2-auto). Penalized regression tends to provide better predictive performance than
LDpred2 for phenotypes for which partial-r > 0.3, and inversely.
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Figure S15: Partial correlations achieved per phenotype (each point) and per ancestry group (each panel) when
training either with LDpred2-auto or with LDpred2-auto-sparse (sparse option enabled).
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Figure S16: Proportion of variants with non-zero effects in the penalized regression models for each phenotype
(point) versus the proportion of causal variants p estimated from LDpred2-auto, colored by the partial correla-
tion achieved in the UK test set.
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Figure S17: Proportion of variants with non-zero effects in LDpred2-auto-sparse for each phenotype (point)
versus the proportion of causal variants p estimated from LDpred2-auto, colored by the SNP heritability h2

estimated from LDpred2-auto.
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Figure S18: Computation times for all penalized regression models run using the 1M HapMap3 variants. We
recall that we usually run 90 models for each phenotype because we use 9 sets of hyper-parameters and K=10
folds. Computation time is largely quadratic with the number of non-zero effects in the model. It is also
dependent on the compute node and the loading of the HPC cluster at the time of running (Figure S19).
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Figure S19: Computation times for fitting LDpred2-auto (with default 1000 burn-in iterations + 500 more +
sparse option running 150 more) using the 1M HapMap3 variants. Running times should be the same for all
phenotypes, yet we see some variability depending on the node used. Some fitting had to be run again because
it exceeded the 12-hour timeout, which happened a few times when and the HPC cluster was particularly
crowded.
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Figure S20: Comparison between frequencies in the UK Biobank and frequencies in external data.
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Figure S21: Differences in MAF between the first 100,000 variants in UK Biobank and external data. These
differences (likely errors in UKBB) are hypothetically grouped around errors in the genotyped data that prop-
agated to the imputed data.
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Figure S22: First 24 PC scores for the PCA computed in the reference dataset composed of several Jewish and
non-Jewish individuals (Behar et al. 2013). Orange triangles represent the Ashkenazi Jews, pink points the
Italian and Sephardi Jews, green points the Maghrebian Jews, and blue points the Iranian and Iraqi Jews.
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Figure S23: Comparison of the standard deviations (SD) computed from both genotypes and summary statistics
for the 1000 most associated variants with bilirubin concentration. A) uses the previous formula sd(Gj) ≈

sd(y)√
n se(γ̂j)2

proposed in Privé et al. (2020) while B) uses the updated formula sd(Gj) ≈ sd(y)√
n se(γ̂j)2+γ̂2j

proposed

here, which does one less approximation. The slope slightly larger than 1 can be explained by sd(y) > sd(y̆).
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Phenotype Set of variants h2 [2.5%-97.5%] p [2.5%-97.5%]
174.1 top1M 0.0889 [0.086-0.092] 0.0076 [0.00678-0.00841]
174.1 HM3 0.0299 [0.0264-0.0334] 0.000881 [0.000636-0.00117]
185 top1M 0.113 [0.109-0.116] 0.00819 [0.00743-0.00906]
185 HM3 0.0381 [0.0343-0.0423] 0.000784 [0.000588-0.00105]

411.4 top1M 0.0641 [0.0624-0.0659] 0.0152 [0.0138-0.0168]
411.4 HM3 0.0401 [0.0379-0.0422] 0.00457 [0.00397-0.00526]
apoB top1M 0.269 [0.265-0.272] 0.0533 [0.0498-0.0568]
apoB HM3 0.163 [0.16-0.166] 0.00132 [0.00119-0.00145]
height top1M 0.482 [0.479-0.486] 1 [1-1]
height HM3 0.546 [0.541-0.552] 0.0226 [0.0218-0.0235]

log_bilirubin top1M 0.301 [0.267-0.363] 0.214 [0.195-0.227]
log_bilirubin HM3 0.361 [0.357-0.365] 0.000481 [0.000423-0.000545]

log_BMI top1M 0.173 [0.171-0.176] 1 [1-1]
log_BMI HM3 0.263 [0.26-0.266] 0.0426 [0.0404-0.0446]
log_lipoA top1M 0.696 [0.689-0.702] 0.0116 [0.011-0.0122]
log_lipoA HM3 0.34 [0.336-0.345] 0.000229 [0.000192-0.000268]

Table S1: Estimates of SNP heritability h2 and proportion of causal variants p from LDpred2-auto, when using
either 1,040,096 HapMap3 variants or when prioritizing 1M variants out of 8M+ common variants, for eight
phenotypes. Quantiles of all estimates are also reported. Phecode 174.1: breast cancer; 185: prostate cancer;
411.4: coronary artery disease.
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Supplementary Note: Ancestry inference and grouping from
principal component analysis of genetic data

† Further defined in section “Definitions † and methods”.

Measures of genetic dissimilarity between populations

We first compare four measures of genetic dissimilarity using populations of the 1000 Genomes Project (1000G†,
1000 Genomes Project Consortium et al. (2015)). The FST

† is an ubiquitous measure of genetic dissimilarity
between populations and the first measure we use in this comparison. We report FST between the 26 1000G
populations in tables SA2-SA6, and the clustering of these populations based on FST in figure SA3. The other
three measures compared are distances applied to the PC scores† of the genetic data: 1) the Bhattacharyya
distance†; 2) the distance between the centers (geometric medians†) of the two populations; and 3) the shortest
distance between pairs of PC scores, one from each of the two populations. The (squared) Euclidean distance
between population centers appears to be an appropriate PCA-based distance as it is approximately propor-
tional to the FST (Figure SA1) and provides an appropriate clustering of populations (Figure SA6). However,
future work is needed to understand why residuals are bimodal for large distances (e.g. in figure SA1). This
relation between FST and (squared) Euclidean distances in the PCA space has been previously shown for two
populations only (McVean 2009).

Previously, we and others proposed to use (robust) Mahalanobis distances to infer ancestry or identify a
single homogeneous group of individuals (Peterson et al. 2017; Privé et al. 2020). When looking at distances
between two populations, this corresponds to using the Bhattacharyya distance. However, in contrast to Eu-
clidean distances, the two other Bhattacharyya and shortest distances do not provide as satisfactory results
(Figures SA4, SA5, SA8 and SA9). For example, African Caribbeans in Barbados (ACB) and Americans of
African Ancestry in SW USA (ASW) and the four admixed American (AMR) populations are close to all
European (EUR), South Asian (SAS) and African (AFR) populations when using the Bhattacharyya distance
(Figure SA4). We hypothesize that the main issue with this approach is that an admixed population covers
a large volume in the PCA space, therefore all distances to this population cluster are small because of the
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Figure SA1: Comparing FST to the squared Euclidean distance on the PCA space (i.e. using PC scores†)
between centers of pairs of the 26 1000G populations.

covariance component from the Mahalanobis distance. In contrast, the global scale of the PC scores used when
using Euclidean distances is invariant from the cluster scattering.

We also vary the number of PCs used for computing the Euclidean distances and how they compare with
FST in figure SA7. With 2 to 4 PCs, we are able to adequately separate distant populations, but not the closest
ones. For example, when using 4 PCs, there are pairs of populations with an FST of ~0.02 while their PC
centers are superimposed (Figure SA7). When using more PCs (8, 16 or 25) to compute the distances, results
remain mostly similar.

PCA-based ancestry inference

We project the dataset of interest onto the PCA space of the 1000G data using the fast tools developed in Privé
et al. (2020). We recall that this uses an automatic removal of LD when computing PCA and a correction for
shrinkage in projected PC scores, which has been shown to be particularly important when using PC scores for
ancestry estimation (Zhang et al. 2020). Based on the results from the previous section, we propose to assign
individual ancestry to one of the 26 1000G populations based on the Euclidean distance to these reference
population centers in the PCA space (geometric medians† of PC scores†). Since we showed previously that
(squared) distances in the PCA space are proportional to FST , we can set a threshold on these distances that
would correspond approximately to an FST of e.g. 0.002. This threshold is close to the dissimilarity between
Spanish and Italian people (FST (IBS, TSI) of 0.0015). When an individual is not close enough to any of the
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26 1000G populations, we leave its ancestry inference as unknown, otherwise we assign this individual to the
closest reference population center.

We first perform ancestry estimation for the individuals in the UK Biobank†. For 488,371 individuals,
this procedure takes less than 20 minutes using 16 cores. These individuals seem to originate from many
parts of the world when we project onto the PCA space of the 1000G (Figure SA10). Self-reported ancestry
(Field 21000) is available for almost all individuals, with only 1.6% with unknown or mixed ancestry. When
using the threshold defined before, we could not infer ancestry for 4.6% of all 488,371 individuals. More
precisely, among “British”, “Irish” and “White” ancestries, this represented respectively 2.2%, 3.3% and 7.9%
(Tables SA7 and SA9). This also represented 3.3% for “Chinese”, 13.8% for “Indian” and 17.8% for “African”
ancestries. Finally, mixed ancestries were particularly difficult to match to any of the 1000G populations, e.g.
97.3% unmatched within “White and Black Africa” and 93.0% within “White and Asian” ancestries. Only
47 individuals were misclassified in “super” population of the 1000G; e.g. six “British” were classified as
South Asians, one “Chinese” as European and 25 “Caribbean” as South Asian by our method (Table SA7).
However, when comparing the location of these mismatched individuals to the rest of individuals on the PCA
space computed within the UK Biobank (Bycroft et al. 2018), it seems more probable that our genetic ancestry
estimate is exact while the self-reported ancestry is not matching the underlying genetic ancestry for these
individuals (Figure SA11). This possible discrepancy between self-reported ancestry and genetic ancestry has
been reported before (Mersha and Abebe 2015).

We also test the approach proposed in Zhang et al. (2020) which consists in finding the 20 nearest neighbors
in 1000G and computing the frequency of (super) population membership, weighted by the inverse distance
to these 20 closest 1000G individuals. When this probability is less than 0.875, they leave the ancestry as
unknown, aiming at discarding admixed individuals. Less than 0.5% could not be matched by their method
(Table SA8). Of note, they could match much more admixed individuals, whereas they set a high probability
threshold aiming at discarding such admixed individuals. Morever, there are many more discrepancies between
their method and the self-reported ancestry in the UK Biobank (Table SA8) compared to the previous results
with our method (Table SA7). The global scale used in Euclidean distances makes it more robust to infer
ancestry as compared to using relative proportions from k=20 nearest neighbors (kNN, Zhang et al. (2020)).
Indeed, consider e.g. an admixed individual of say 25% European ancestry and 75% African ancestry. The
kNN-based method is likely to identify this individual as of African ancestry, while our method will probably
be unable to match it, which is a beneficial feature when we are interested in defining genetically homogeneous
groups. We also believe our proposed method to be more robust than machine learning methods, because a
machine learning method would try e.g. to differentiate between GBR and CEU 1000G populations, which are
two very close populations of Northwest Europe (FST of 0.0002). In other words, our distance-based method
should benefit from the inclusion of any new reference population, whereas it would make it increasingly
complex to apply machine learning methods.

Finally, our method is able to accurately differentiate between sub-continental populations such as differen-
tiating between Pakistani, Bangladeshi and Chinese people (Table SA9). We also applied our ancestry detection
technique to the European individuals of the POPRES data (Nelson et al. 2008). Only 16 out of the 1385 indi-
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viduals (1.2%) could not be matched, of which 11 were from East or South-East Europe (Table SA10). Note
that all individuals that we could match were identified as of European ancestry. We could also identify accu-
rately sub-regions of Europe; e.g. 261 out of 264 Spanish and Portugese individuals were identified as “Iberian
Population in Spain” (EUR_IBS, Table SA10).

The proposed method has two possible limitations. First, since we match target individuals to 1000G
populations, if individuals are far from all 26 1000G populations, then they would not be matched. When
looking at the POPRES data, more individuals from East Europe could not be matched. This is not surprising
because there are no East European population in the 1000G data. Moreover, if we look at the location of
the 1000G populations on a map, we can see that it lacks representation of many parts of the world (Figure
SA12). This issue has also been reported e.g. for Asian populations (Lu and Xu 2013). Therefore more
diverse populations should be aggregated to better cover the worldwide genome diversity, such as with the
Simons Genome Diversity Project (Mallick et al. 2016), which would also improve the proposed method. A
second potential limitation of the proposed method is that it has two hyper-parameters: the number of PCs
used to compute the distances and the threshold on the minimum distance to any cluster center above which
the ancestry is not matched. Several studies have used only the first two PCs for ancestry inference. We
have shown here that using two PCs (or even four) is not enough for distinguishing between populations at
the sub-continental level (Figure SA7). As in Privé et al. (2020), we recommend to use all PCs that visually
separate some populations. Moreover, we believe our proposed method to be robust to increasing the number
of PCs used because contribution to the Euclidean distance is smaller for later PCs than for first PCs. As
for the distance limit, we have shown here how to define it to approximately correspond to an FST of 0.002.
Alternatively, a threshold can be chosen based on the visual inspection of the histogram of distances (on a log
scale). This threshold can also be adjusted depending on how homogeneous one want each cluster to be.

PCA-based ancestry grouping

Finally, we show several ways how to use our ancestry inference method for grouping genetically homogeneous
individuals. One first possible approach is to simply match individuals that are close enough to one of the
1000G populations, as described previously. Alternatively, one could use the internal PC scores and the self-
reported ancestries or countries of birth, e.g. available in the UK Biobank (Fields 21000 and 20115). This
solution does not require projecting individuals to the 1000G, but does require computing PC scores
within the dataset instead. In the UK Biobank data, we can define centers of the seven self-reported ancestry
groups: British, Indian, Pakistani, Bangladeshi, Chinese, Caribbean and African; then match all individuals to
one of these centers (or none if an individual is far from all centers). This enables e.g. to capture a larger set
of individuals who are close enough to British people (e.g. Irish people), while discarding individuals whose
genetic ancestry is not matching the self-reported ancestry (Table SA11). Only 3.7% of all individuals could
not be matched. The resulting clusters are presented in the PCA space in figure SA13.

One could do the same using the countries of birth instead of the self-reported ancestries, which we
use in the main text. Again, the country of birth may sometime not reflect the ancestral origin. Therefore, we
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first compute the robust centers (geometric medians) of all countries with at least 300 individuals. Then, we
cluster these countries based on their distance in the PCA space to make sure of their validity as proxies for
genetic ancestry and to choose a small subset of centers with good coverage of the overall dissimilarities (Fig-
ure SA14). Based on the previous clustering and the available sample sizes, we choose to use the centers from
the following eight countries as reference: the United Kingdom, Poland, Iran, Italy, India, China, “Caribbean”
and Nigeria. Only 2.8% of all individuals could not be matched to one of these eight groups (Table SA1).
The resulting clusters are presented in the PCA space in figure SA2. Note that these clusters probably include
individuals from nearby countries as well. Moreover, more clusters could probably be defined, e.g. the indi-
viduals with large values for PC6 in figure SA2 seem to originate from South America with many people from
Colombia, Chile, Mexico, Peru, Ecuador, Venezuela, Bolivia, Brazil, and Argentina. However, here we decide
to restrict to large enough clusters (e.g. with more than 1000 individuals). The cluster with small values for
PC4 corresponds to Ashkenazi ancestry, and is described in the main text.

Finally, when we know that the data is composed of a predominant ancestry, we can define a single homo-
geneous cluster by simply restricting to individuals who are close enough to the overall center of all individuals
(Figure SA15). When doing so, we can cluster 91% of the data into one cluster composed of 421,871 British,
12,039 Irish, 8351 “Other White”, 1814 individuals of unknown ancestry, 467 “White” and 41 individuals of
other self-reported ancestries. This is made possible because we use the geometric median which is robust to
outliers.
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Table SA1: Self-reported ancestry (left) of UKBB individuals and their matching to country groups (top) by
our method.

United Kingdom Poland Iran Italy India China Caribbean Nigeria Not matched
British 423509 1412 30 3152 18 1 2 2890
Irish 12683 14 29 27
White 472 13 8 38 1 13
Other White 8102 2754 239 3259 2 1459
Indian 6 33 4296 1381
Pakistani 1 2 1672 73
Bangladeshi 4 217
Chinese 1 1441 62
Other Asian 4 1 226 3 299 93 1 1120
Caribbean 3 2306 1245 743
African 1 2 71 2281 849
Other Black 2 36 34 46
Asian or Asian British 4 23 2 13
Black or Black British 2 11 9 4
White and Black Caribbean 7 3 13 1 573
White and Black African 6 4 1 2 389
White and Asian 56 12 30 54 650
Unknown 1827 116 680 462 345 315 215 513 3347

Figure SA2: The first eight PC scores† computed from the UK Biobank (Field 22009) colored by the homoge-
neous ancestry group we infer for these individuals.
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Definitions † and methods

Note that the code used in this supplementary note is available at https://github.com/privefl/
paper-ancestry-matching/tree/master/code.

• The 1000 Genomes Project (1000G) data is composed of approximately 100 individuals for each of 26
populations worldwide (described at https://www.internationalgenome.org/category/
population/), including 7 African (AFR), 5 East Asian (EAS), 5 South Asian (SAS), 5 European
(EUR) and 4 admixed American (AMR) populations. Here we used the transformed data in PLINK
format provided in Privé et al. (2020).

• The FST measures the relative amount of genetic variance between populations compared to the total
genetic variance within these populations (Wright 1965). We use the weighted average formula proposed
in Weir and Cockerham (1984), which we now implement in our package bigsnpr (Privé et al. 2018).

• The Principal Component (PC) scores are defined as U∆, where U∆V T is the singular value decompo-
sition of the (scaled) genotype matrix (Privé et al. 2020). They are usually truncated, e.g. corresponding
to the first 20 principal dimensions only.

• The Bhattacharyya distance between two multivariate normal distributionsN (µ1, Σ1) andN (µ2, Σ2)

is defined as DB = 1
8
(µ2 − µ1)

TΣ−1(µ2 − µ1) + 1
2

log

(
|Σ|√
|Σ1| |Σ2|

)
, where Σ = Σ1+Σ2

2
and |M | is

the absolute value of the determinant of matrix M (Bhattacharyya 1943; Fukunaga 1990). The mean
and covariance parameters for each population are computed using the robust location and covariance
parameters as proposed in Privé et al. (2020).

• The geometric median of points is the point that minimizes the sum of all Euclidean distances to these
points. We now implement this as function geometric_median in our R package bigutilsr.

• The UK Biobank is a large cohort of half a million individuals from the UK, for which we have access
to both genotypes and multiple phenotypes (https://www.ukbiobank.ac.uk/). We apply some
quality control filters to the genotyped data; we remove individuals with more than 10% missing values,
variants with more than 1% missing values, variants having a minor allele frequency < 0.01, variants with
P-value of the Hardy-Weinberg exact test < 10−50, and non-autosomal variants. This results in 488,371
individuals and 504,139 genetic variants.
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Additional Figures and Tables

Measures of genetic dissimilarity between populations

Table SA2: FST values between African populations of the 1000G and all 26 1000G populations.

LWK ESN YRI ACB ASW GWD MSL
LWK 0.0000 0.0077 0.0071 0.0064 0.0090 0.0108 0.0093
ESN 0.0077 0.0000 0.0008 0.0034 0.0088 0.0075 0.0051
YRI 0.0071 0.0008 0.0000 0.0025 0.0080 0.0062 0.0039
ACB 0.0064 0.0034 0.0025 0.0000 0.0020 0.0060 0.0044
ASW 0.0090 0.0088 0.0080 0.0020 0.0000 0.0098 0.0094
GWD 0.0108 0.0075 0.0062 0.0060 0.0098 0.0000 0.0036
MSL 0.0093 0.0051 0.0039 0.0044 0.0094 0.0036 0.0000
JPT 0.1475 0.1564 0.1545 0.1344 0.1194 0.1517 0.1574
CHB 0.1456 0.1546 0.1527 0.1324 0.1174 0.1499 0.1556
CHS 0.1466 0.1555 0.1536 0.1335 0.1186 0.1509 0.1565
CDX 0.1456 0.1544 0.1526 0.1324 0.1178 0.1498 0.1555
KHV 0.1435 0.1525 0.1507 0.1304 0.1154 0.1479 0.1535
GIH 0.1101 0.1200 0.1186 0.0954 0.0773 0.1156 0.1200
PJL 0.1069 0.1167 0.1154 0.0920 0.0735 0.1124 0.1167
BEB 0.1077 0.1174 0.1161 0.0934 0.0755 0.1131 0.1174
ITU 0.1096 0.1195 0.1181 0.0954 0.0778 0.1151 0.1195
STU 0.1091 0.1189 0.1175 0.0949 0.0774 0.1145 0.1189
PEL 0.1472 0.1559 0.1541 0.1325 0.1144 0.1515 0.1567
MXL 0.1125 0.1219 0.1205 0.0972 0.0772 0.1175 0.1218
CLM 0.0970 0.1063 0.1051 0.0816 0.0620 0.1021 0.1061
PUR 0.0849 0.0938 0.0927 0.0699 0.0515 0.0898 0.0935
FIN 0.1219 0.1319 0.1306 0.1044 0.0837 0.1272 0.1319
CEU 0.1189 0.1291 0.1278 0.1014 0.0805 0.1244 0.1290
GBR 0.1193 0.1295 0.1282 0.1017 0.0808 0.1248 0.1294
IBS 0.1145 0.1247 0.1234 0.0975 0.0772 0.1199 0.1247
TSI 0.1154 0.1258 0.1245 0.0986 0.0783 0.1210 0.1258
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Table SA3: FST values between admixed American populations of the 1000G and all 26 1000G populations.

PEL MXL CLM PUR
LWK 0.1472 0.1125 0.0970 0.0849
ESN 0.1559 0.1219 0.1063 0.0938
YRI 0.1541 0.1205 0.1051 0.0927
ACB 0.1325 0.0972 0.0816 0.0699
ASW 0.1144 0.0772 0.0620 0.0515
GWD 0.1515 0.1175 0.1021 0.0898
MSL 0.1567 0.1218 0.1061 0.0935
JPT 0.0795 0.0643 0.0707 0.0773
CHB 0.0786 0.0628 0.0689 0.0752
CHS 0.0811 0.0650 0.0708 0.0769
CDX 0.0849 0.0675 0.0719 0.0773
KHV 0.0817 0.0643 0.0689 0.0744
GIH 0.0725 0.0370 0.0278 0.0269
PJL 0.0688 0.0327 0.0230 0.0220
BEB 0.0669 0.0344 0.0278 0.0282
ITU 0.0732 0.0391 0.0308 0.0303
STU 0.0728 0.0390 0.0309 0.0305
PEL 0.0000 0.0170 0.0380 0.0548
MXL 0.0170 0.0000 0.0090 0.0180
CLM 0.0380 0.0090 0.0000 0.0056
PUR 0.0548 0.0180 0.0056 0.0000
FIN 0.0772 0.0338 0.0178 0.0149
CEU 0.0804 0.0334 0.0143 0.0100
GBR 0.0809 0.0338 0.0146 0.0102
IBS 0.0820 0.0339 0.0134 0.0081
TSI 0.0825 0.0345 0.0143 0.0090
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Table SA4: FST values between East Asian populations of the 1000G and all 26 1000G populations.

JPT CHB CHS CDX KHV
LWK 0.1475 0.1456 0.1466 0.1456 0.1435
ESN 0.1564 0.1546 0.1555 0.1544 0.1525
YRI 0.1545 0.1527 0.1536 0.1526 0.1507
ACB 0.1344 0.1324 0.1335 0.1324 0.1304
ASW 0.1194 0.1174 0.1186 0.1178 0.1154
GWD 0.1517 0.1499 0.1509 0.1498 0.1479
MSL 0.1574 0.1556 0.1565 0.1555 0.1535
JPT 0.0000 0.0068 0.0086 0.0166 0.0140
CHB 0.0068 0.0000 0.0010 0.0084 0.0062
CHS 0.0086 0.0010 0.0000 0.0047 0.0031
CDX 0.0166 0.0084 0.0047 0.0000 0.0016
KHV 0.0140 0.0062 0.0031 0.0016 0.0000
GIH 0.0693 0.0673 0.0685 0.0685 0.0650
PJL 0.0669 0.0647 0.0660 0.0660 0.0626
BEB 0.0542 0.0518 0.0528 0.0527 0.0494
ITU 0.0656 0.0636 0.0647 0.0646 0.0611
STU 0.0642 0.0623 0.0634 0.0633 0.0598
PEL 0.0795 0.0786 0.0811 0.0849 0.0817
MXL 0.0643 0.0628 0.0650 0.0675 0.0643
CLM 0.0707 0.0689 0.0708 0.0719 0.0689
PUR 0.0773 0.0752 0.0769 0.0773 0.0744
FIN 0.0924 0.0901 0.0920 0.0925 0.0893
CEU 0.0985 0.0960 0.0977 0.0978 0.0946
GBR 0.0993 0.0968 0.0985 0.0985 0.0953
IBS 0.0981 0.0957 0.0973 0.0973 0.0942
TSI 0.0981 0.0956 0.0972 0.0972 0.0940
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Table SA5: FST values between European populations of the 1000G and all 26 1000G populations.

FIN CEU GBR IBS TSI
LWK 0.1219 0.1189 0.1193 0.1145 0.1154
ESN 0.1319 0.1291 0.1295 0.1247 0.1258
YRI 0.1306 0.1278 0.1282 0.1234 0.1245
ACB 0.1044 0.1014 0.1017 0.0975 0.0986
ASW 0.0837 0.0805 0.0808 0.0772 0.0783
GWD 0.1272 0.1244 0.1248 0.1199 0.1210
MSL 0.1319 0.1290 0.1294 0.1247 0.1258
JPT 0.0924 0.0985 0.0993 0.0981 0.0981
CHB 0.0901 0.0960 0.0968 0.0957 0.0956
CHS 0.0920 0.0977 0.0985 0.0973 0.0972
CDX 0.0925 0.0978 0.0985 0.0973 0.0972
KHV 0.0893 0.0946 0.0953 0.0942 0.0940
GIH 0.0343 0.0325 0.0328 0.0334 0.0317
PJL 0.0289 0.0269 0.0272 0.0278 0.0262
BEB 0.0372 0.0368 0.0372 0.0375 0.0362
ITU 0.0393 0.0380 0.0384 0.0384 0.0367
STU 0.0398 0.0385 0.0389 0.0389 0.0373
PEL 0.0772 0.0804 0.0809 0.0820 0.0825
MXL 0.0338 0.0334 0.0338 0.0339 0.0345
CLM 0.0178 0.0143 0.0146 0.0134 0.0143
PUR 0.0149 0.0100 0.0102 0.0081 0.0090
FIN 0.0000 0.0062 0.0066 0.0101 0.0116
CEU 0.0062 0.0000 0.0002 0.0022 0.0034
GBR 0.0066 0.0002 0.0000 0.0024 0.0037
IBS 0.0101 0.0022 0.0024 0.0000 0.0015
TSI 0.0116 0.0034 0.0037 0.0015 0.0000
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Table SA6: FST values between South Asian populations of the 1000G and all 26 1000G populations.

GIH PJL BEB ITU STU
LWK 0.1101 0.1069 0.1077 0.1096 0.1091
ESN 0.1200 0.1167 0.1174 0.1195 0.1189
YRI 0.1186 0.1154 0.1161 0.1181 0.1175
ACB 0.0954 0.0920 0.0934 0.0954 0.0949
ASW 0.0773 0.0735 0.0755 0.0778 0.0774
GWD 0.1156 0.1124 0.1131 0.1151 0.1145
MSL 0.1200 0.1167 0.1174 0.1195 0.1189
JPT 0.0693 0.0669 0.0542 0.0656 0.0642
CHB 0.0673 0.0647 0.0518 0.0636 0.0623
CHS 0.0685 0.0660 0.0528 0.0647 0.0634
CDX 0.0685 0.0660 0.0527 0.0646 0.0633
KHV 0.0650 0.0626 0.0494 0.0611 0.0598
GIH 0.0000 0.0035 0.0042 0.0039 0.0043
PJL 0.0035 0.0000 0.0035 0.0033 0.0036
BEB 0.0042 0.0035 0.0000 0.0022 0.0021
ITU 0.0039 0.0033 0.0022 0.0000 0.0013
STU 0.0043 0.0036 0.0021 0.0013 0.0000
PEL 0.0725 0.0688 0.0669 0.0732 0.0728
MXL 0.0370 0.0327 0.0344 0.0391 0.0390
CLM 0.0278 0.0230 0.0278 0.0308 0.0309
PUR 0.0269 0.0220 0.0282 0.0303 0.0305
FIN 0.0343 0.0289 0.0372 0.0393 0.0398
CEU 0.0325 0.0269 0.0368 0.0380 0.0385
GBR 0.0328 0.0272 0.0372 0.0384 0.0389
IBS 0.0334 0.0278 0.0375 0.0384 0.0389
TSI 0.0317 0.0262 0.0362 0.0367 0.0373
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Figure SA3: Heatmap with clustering based on the FST between pairs of the 26 1000G populations. Corre-
sponding values are reported in tables SA2-SA6.
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populations.
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Figure SA7: Comparing FST to the squared Euclidean distances on the PCA space between centers of pairs of
the 26 1000G populations. Distances are computed using different numbers of Principal Components (PCs).
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1000G populations.
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Figure SA9: Comparing FST to the shortest distances between individuals in pairs of the 26 1000G populations.
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PCA-based ancestry inference

Figure SA10: First 18 PC scores of the 1000G data (in black), onto which the UK Biobank data has been
projected (in red).
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Table SA7: Self-reported ancestry (left) of UKBB individuals and their matching to 1000G continen-
tal populations (top) by our method. See the description of 1000G populations at https://www.
internationalgenome.org/category/population/.

AFR AMR EAS EUR SAS Not matched
British 2 1 421457 6 9548
Irish 12328 425
White 1 1 1 499 43
Other White 40 11334 1 4440
Indian 5 4922 789
Pakistani 1421 327
Bangladeshi 217 4
Chinese 1453 1 50
Other Asian 1 279 939 528
Caribbean 3848 25 424
African 2633 1 570
Other Black 74 2 42
Asian or Asian British 2 20 20
Black or Black British 20 2 4
White and Black Caribbean 24 1 8 1 563
White and Black African 5 6 391
White and Asian 1 2 27 26 746
Unknown 835 173 576 2296 633 3307

22

https://www.internationalgenome.org/category/population/
https://www.internationalgenome.org/category/population/


Figure SA11: PC scores (computed in the UK Biobank) colored by self-reported ancestry. On the left, these
are 50,000 random individuals. On the right, these are the 47 individuals with some discrepancy between their
self-reported-ancestry and our ancestry estimation (see table SA7).
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Table SA8: Self-reported ancestry (left) of UKBB individuals and their matching to 1000G conti-
nental populations (top) using 20-wNN. See the description of 1000G populations at https://www.
internationalgenome.org/category/population/.

AFR AMR EAS EUR SAS Not matched
British 4 50 6 430696 95 163
Irish 12748 3 2
White 1 2 1 540 1
Other White 170 1 15533 18 93
Indian 21 5680 15
Pakistani 3 1742 3
Bangladeshi 220 1
Chinese 7 1483 3 3 8
Other Asian 1 1 359 216 1138 32
Caribbean 4117 1 36 143
African 3000 1 2 2 199
Other Black 90 1 1 5 21
Asian or Asian British 2 4 34 2
Black or Black British 23 2 1
White and Black Caribbean 93 16 74 11 403
White and Black African 102 13 52 4 231
White and Asian 42 10 242 349 159
Unknown 1024 541 712 3774 1020 749
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Table SA9: Self-reported ancestry (top) of UKBB individuals and their matching to 1000G populations (left)
by our method. See the description of 1000G populations at https://www.internationalgenome.
org/category/population/.

British Irish White Other White Indian Pakistani Bangladeshi Chinese Other Asian Caribbean African Other Black Unknown
AFR_ACB 2024 66 34 198
AFR_ASW 2 1072 31 11 134
AFR_ESN 1 270 1 47
AFR_GWD 42 9
AFR_LWK 1 284 1 69
AFR_MSL 3 144 3 23
AFR_YRI 1 748 1796 24 404
AMR_CLM 18 27
AMR_MXL 21 117
AMR_PEL 1 1 30
AMR_PUR 1
EAS_CDX 4 15 10
EAS_CHB 218 23 33
EAS_CHS 1 1 907 17 42
EAS_JPT 10 53 221
EAS_KHV 314 171 274
EUR_CEU 183646 854 181 5802 2 1 883
EUR_FIN 1 126 1
EUR_GBR 235579 11461 294 2446 3 1 1066
EUR_IBS 68 7 775 24
EUR_TSI 2163 13 17 2185 365
SAS_BEB 1 229 17 215 92 20 1 209
SAS_GIH 416 4
SAS_ITU 1 813 12 220 4 135
SAS_PJL 5 3332 1392 2 203 1 1 238
SAS_STU 132 424 94
Not matched 9548 425 43 4440 789 327 4 50 528 424 570 42 5031

Table SA10: Ancestry (left) of POPRES individuals and their matching to 1000G populations (top) by our
method. See the description of 1000G populations at https://www.internationalgenome.org/
category/population/.

EUR_CEU EUR_FIN EUR_GBR EUR_IBS EUR_TSI Not matched
Anglo-Irish Isles 136 127 2 1
Belgium 43
Central Europe 47 8
Eastern Europe 27 1 2
France 49 3 35 2
Germany 67 3 1
Italy 1 11 204 3
Netherlands 13 4
Scandinavia 13 1 1
SE Europe 12 3 70 9
SW Europe 1 261 1 1
Switzerland 179 32 11
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Figure SA12: Percentage of individuals from the UK Biobank that could not been matched to any of the
26 1000G populations using our method, per country of birth (Field 20115). Countries in grey contain less
than 30 individuals, therefore their percentages are not represented. Red points represent the locations of the
1000G populations, accessed from https://www.internationalgenome.org/data-portal/
population. Note that “Gujarati Indian from Houston, Texas” were manually moved to Gujarat (22.309425,
72.136230), “Sri Lankan Tamil from the UK” to Sri Lanka (6.927079, 79.861244), and “Indian Telugu from the
UK” to (16.5, 79.5) to better reflect the location of their ancestors. Also note that “Utah Residents with North-
ern and Western European Ancestry”, “Americans of African Ancestry in SW USA”, “African Caribbeans in
Barbados” and “Mexican Ancestry from Los Angeles USA” are probably not located at their ancestral location.
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PCA-based ancestry grouping

Table SA11: Self-reported ancestry (left) of UKBB individuals and their matching to ancestry groups (top) by
our method.

British Indian Pakistani Bangladeshi Chinese Caribbean African Not matched
British 426210 6 4 1 1 2 4790
Irish 12712 41
White 492 1 52
Other White 10932 1 1 1 4880
Indian 6 1764 2488 1321 137
Pakistani 1 362 1299 63 23
Bangladeshi 3 215 3
Chinese 1 1 1437 65
Other Asian 4 113 169 745 62 1 653
Caribbean 2 23 2325 1148 799
African 1 1 74 2271 857
Other Black 1 1 1 36 33 46
Asian or Asian British 7 16 3 1 15
Black or Black British 2 11 9 4
White and Black Caribbean 7 1 10 1 578
White and Black African 6 1 2 393
White and Asian 59 31 7 19 686
Unknown 2008 129 189 421 114 214 505 4240
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Figure SA13: The first eight PC scores computed from the UK Biobank (Field 22009) colored by the homoge-
neous ancestry group we infer for these individuals.
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Figure SA14: Heatmap with clustering based on the distances in the PCA space between centers of pairs of the
countries of birth in the UK Biobank.
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Figure SA15: Histogram of (log) squared distances from the UK Biobank PC scores to the geometric median
of the all UKBB individuals. Here we use a threshold at 7, based on visual inspection. Alternatively, a more
stringent threshold at 6 could also be used.
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Supplementary Note: Comparison between bigstatsr and snpnet
for fitting penalized regressions on very large genetic data

Penalized regression with L1 penalty, also known as “lasso”, has been widely used since it proved to be
an effective method for simultaneously performing variable selection and model fitting (Tibshirani 1996). R
package glmnet is a popular software to fit the lasso efficiently (Friedman et al. 2010). However, glmnet cannot
handle very large datasets such as biobank-scale data that are now available in human genetics, where both the
sample size and the number of variables are very large. One strategy used to run penalized regressions on large
datasets such as the UK Biobank (Bycroft et al. 2018) has been to apply a variable pre-selection step before
fitting the lasso (Lello et al. 2018). Recently, authors of the glmnet package have developed a new R package,
snpnet, to fit penalized regressions on the UK Biobank without having to perform any pre-filtering (Qian
et al. 2020). Earlier, we developed two R packages for efficiently analyzing large-scale (genetic) data, namely
bigstatsr and bigsnpr (Privé et al. 2018). We then specifically derived a highly efficient implementation of
penalized linear and logistic regressions in R package bigstatsr, and showed how these functions were useful for
genetic prediction with some applications to the UK Biobank (Privé et al. 2019). Here we benchmark bigstatsr
against snpnet for fitting penalized regressions on large genetic data. Through some theoretical expectations
and empirical comparisons, we show that package bigstatsr is generally much faster than snpnet. We also take
that opportunity to provide more recommendations on how to fit penalized regressions in the context of genetic
data.

Main motivation for snpnet

Before we can present the main motivation behind snpnet developed by Qian et al. (2020), let us recall how
the lasso regression is fitted. Fitting the lasso consists in finding regression coefficients β that minimize the
following regularized loss function

L(λ) =
n∑
i=1

(
yi − β0 −

p∑
j=1

Xi,jβj

)2

︸ ︷︷ ︸
Loss function

+λ

p∑
j=1

|βj|︸ ︷︷ ︸
Penalization

, (SS1)

1



where X denotes the matrix composed of p (standardized) genotypes and possible covariates (e.g. sex, age
and principal components) for n individuals, y is the (continuous) trait to predict, λ (> 0) is a regularization
hyper-parameter that control the strength of the penalty. For a sequence of λ, one can find argminβ L(λ) using
cyclical coordinate descent (Friedman et al. 2010). To speed up the coordinate descent, one can use sequential
strong rules for discarding lots of variables, i.e. setting lots of βj to 0, a priori (Tibshirani et al. 2012). Therefore
the cyclical coordinate descent used to solve the lasso can be performed in a subset of the data only thanks to
these strong rules. However, the main drawback of these strong rules is that they require checking Karush-
Kuhn-Tucker (KKT) conditions a posteriori, usually in two phases. These KKT conditions are first checked in
the ever-active set, i.e. the set of all variables j with βj 6= 0 for any previous λ. Then, the cyclical coordinate
descent has to be rerun while adding the new variables that do not satisfy these KKT conditions (if any). In
a second phase, the KKT conditions are also checked for all the remaining variables, i.e. the ones not in the
ever-active set. This last step requires to pass over the whole dataset at least once again for every λ tested.
Then, when the available random access memory (RAM) is not large enough to cache the whole dataset, data
has to be read from disk, which can be extremely time consuming. To alleviate this particular issue, Qian et al.

(2020) have developed a clever approach called batch screening iterative lasso (BASIL) to be able to check
these KKT conditions on the whole dataset only after having fitted solutions for many λ, instead of performing
this operation for each λ. Hence, for very large datasets, the BASIL procedure enables to fit the exact lasso
solution faster than when checking the KKT conditions for all variables at each λ, as performed in e.g. R
package biglasso (Zeng and Breheny 2017).

A more pragmatic approach in bigstatsr

In our R package bigstatsr, we proposed a different strategy. We also check the KKT conditions for variables in
the ever-active set, i.e. for a (small) subset of all variables only; this first checking is therefore fast. However,
KKT conditions almost always hold when p > n (Tibshirani et al. 2012), which is particularly the case for the
remaining variables in the second phase of checking. Because of this, we decided in Privé et al. (2019) to skip
this second checking when designing functions big_spLinReg and big_spLogReg for fitting penalized
regression on very large datasets in R package bigstatsr. Thanks to this approximation, these two functions
effectively access all variables only once at the very beginning to compute the statistics used by the strong
rules, and then access a subset of variables only (the ever-active set). As we show later, this means that fitting
penalized regressions using the approximation we proposed in Privé et al. (2019) is computationally more
efficient than using the BASIL procedure proposed by Qian et al. (2020), and yet provides equally accurate
predictors. Moreover, as bigstatsr uses memory-mapping, data that resides on disk is accessed only once from
disk to memory and then stays in memory while there is no need to free memory. Only when the ever-active set
becomes very large, e.g. for very polygenic traits, memory can become an issue, but this extreme case would
become a problem for package snpnet as well. Please refer to the Discussion section of Privé et al. (2019) for
more details on these matters. In summary, bigstatsr effectively performs only one pass on the whole dataset
while snpnet performs many passes, even though the number of passes in snpnet is reduced thanks to the
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BASIL approach. Moreover, bigstatsr still uses a single pass even when performing CMSA (a variant of cross-
validation (CV), see figure SS1) internally, whereas performing CV with snpnet would multiply the number of
passes to the data by the number of folds used in the CV.

Figure SS1: Illustration of one turn of the Cross-Model Selection and Averaging (CMSA) procedure. This
figure comes from Privé et al. (2019); the Genetics Society of America has granted us permission to re-use
it. First, this procedure separates the training set in K folds (e.g. 10 folds). Secondly, in turn, each fold
is considered as an inner validation set (red) and the other (K − 1) folds form an inner training set (blue). A
“regularization path” of models is trained on the inner training set and the corresponding predictions (scores) for
the inner validation set are computed. The model that minimizes the loss on the inner validation set is selected.
Finally, the K resulting models are averaged; this is different to standard cross-validation where the model is
refitted on the whole training set using the best-performing hyper-parameters. We also use this procedure to
derive an early stopping criterion so that the algorithm does not need to evaluate the whole regularization paths,
making this procedure much faster.
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Benchmark

Before, we have presented why we expect bigstatsr to be more efficient than snpnet. To practically support
this claim, we perform comparisons for the four real traits used in the UK Biobank analyses of Qian et al.

(2020). We compare R package snpnet (v0.3) with bigstatsr (v1.3) and bigsnpr (v1.5). We use similar quality
controls as Qian et al. (2020) (see “Data & Methods”). We also use the same splitting strategy: 20% test,
20% validation and 60% training. To use the same sets for bigstatsr as for snpnet, we use the same test set,
use K=4 folds for training with bigstatsr while making sure the first split is composed of the same 20% of the
data used for validation in snpnet. Moreover, we use penalty factors to effectively use unscaled genotypes in
bigstatsr (see “Conclusion & further recommendations”), as performed by default in snpnet. This enables us to
compare predictions from snpnet and bigstatsr using the exact same model and the same single validation fold.
Note that, to make the most of the training set, bigstatsr uses CMSA (Figure SS1) while Qian et al. (2020)
propose to refit the model (on the whole training + validation) using the best λ identified using the validation
set in snpnet. Also note that the parallelism used by snpnet and bigstatsr is different; snpnet relies on PLINK
2.0 to check KKT conditions in parallel, while bigstatsr parallelizes fitting of models from different folds and
hyper-parameters. Because bigstatsr uses memory-mapping, the data is shared across processes and therefore
it can fit these models in parallel without multiplying the memory needed. We allow for 16 cores to be used in
these comparisons; bigstatsr effectively uses only 4 here (the number of folds). We allow for 128 GB of RAM
for bigstatsr, but allow for 500 GB of RAM for snpnet because we had memory issues running it with only 128
GB or 256 GB.

Table SS1 presents the results of this benchmark. Fitting lasso is 35 times faster using bigstatsr than using
snpnet for high cholesterol, 29 times faster for asthma, 16 times faster for BMI, and 4.5 times faster for height.
When using only one validation fold for choosing the best-performing λ and no refitting, snpnet and bigstatsr
provide the same predictive performance, validating the use of the approximation in bigstatsr. When using
the whole training set, i.e. when refitting in snpnet and using CMSA in bigstatsr, predictive performance is
much higher than when the validation set is not used for training. For example, partial correlation for height
is of 0.6116 with CMSA (i.e. using the average of 4 models) compared to 0.5856 when using only one of
these models, showing how important it is to make the most of the training + validation sets. Also, CMSA can
provide slightly higher predictive performance than the refitting strategy in snpnet, with e.g. a partial correlation
of 0.3324 vs 0.3221 for BMI.

Conclusion & further recommendations

We have found the BASIL approach derived in Qian et al. (2020) to be a clever approach that alleviates the I/O
problem of other penalized regression implementations for very large datasets. BASIL makes significant and
valuable contributions to the important problem of fitting penalized regression models efficiently. However, we
also find that the implementation of BASIL in snpnet is still an order of magnitude slower than our package
bigstatsr, which uses a simpler and more pragmatic approach (Privé et al. 2019). Hereinafter we also come
back to some statements made in Qian et al. (2020) and provide more recommendations on how to best use

4



Table SS1: Benchmark of snpnet against bigstatsr in terms of predictive performance and computation time.
Predictive performance is reported in terms of partial correlations between the polygenic scores and the pheno-
types, residualized using the covariates. Timings are reported in minutes. Timings for snpnet report the training
for 60% of the data (using the training set only) + the refitting for 80% of the data (using both the training and
validation sets). Timings for bigstatsr report the time taken by the CMSA procedure (fitting K=4 models here).

snpnet bigstatsr
Trait Perf. (1 fold) Perf. (refit) Time Perf. (1 fold) Perf. (CMSA) Time
Asthma 0.1349 0.1438 188 + 101 0.1348 0.1493 10
High cholesterol 0.1254 0.1366 101 + 146 0.1257 0.1387 7
BMI 0.3031 0.3231 161 + 893 0.3018 0.3324 65
Height 0.5871 0.6106 409 + 715 0.5856 0.6116 249

penalized regression for deriving polygenic scores based on very large individual-level genetic data. This also
enables us to highlight further similarities and differences between implementations from snpnet and bigstatsr.

First, in their UK Biobank applications, Qian et al. (2020) have tried using elastic-net regularization (a
combination of L1 and L2 penalties) instead of lasso (only L1), i.e. introducing a new hyper-parameter α
(0 < α < 1, with the special case of α = 1 being the L1 regularization). They show that L1 regularization is
very effective for very large sample sizes, and elastic-net regularization is not needed in this case, which we
have also experienced. Yet, in smaller sample sizes and for very polygenic architectures, we showed through
extensive simulations that using lower values for α can significantly improve predictive performance (Privé
et al. 2019). In Qian et al. (2020), they tried α ∈ {0.1, 0.5, 0.9, 1}; we recommend to use a grid on the log
scale with smaller values (e.g. 1, 0.1, 0.01, 0.001, and even until 0.0001) for smaller sample sizes. Note that
using a smaller α leads to a larger number of non-zero variables and therefore more time and memory required
to fit the penalized regression. In functions big_spLinReg and big_spLogReg of R package bigstatsr,
we allow to directly test many α values in parallel within the CMSA procedure. Therefore an optimal α value
can be chosen automatically within the CMSA framework, without the need for more passes on the data.

Second, for large datasets, one should always use early-stopping. We have not found this to be emphasized
enough in Qian et al. (2020). Indeed, while fitting the regularization path of decreasing λ values on the training
set, one can monitor the predictive performance on the validation set, and stop early in the regularization path
when the model starts to overfit (Figure SS1). For large datasets, performance on the validation sets is usually
very smooth and monotonic (before and after the minimum) along the regularization path, then one can safely
stop very early, e.g. after the second iteration for which prediction becomes worse on the validation set. This
corresponds to setting n.abort=2 in bigstatsr and stopping.lag=2 in snpnet. This is particularly useful
because, when we move down the regularization path of λ values, more and more variables enter the model and
the cyclical coordinate descent takes more and more time and memory. Therefore, the early-stopping criterion
used in both bigstatsr and snpnet prevents from fitting very costly models, saving a lot of time and memory.

Third, Qian et al. (2020) recommend not to use scaled genotypes when applying lasso to genetic data.
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However, using scaled genotypes is common practice in genetics, and is the assumption behind models in
popular software such as GCTA and LDSC (Yang et al. 2011; Bulik-Sullivan et al. 2015). Scaling genotypes
assumes that, on average, all variants explain the same amount of variance and that low-frequency variants have
larger effects. Speed et al. (2012) argued that this assumption might not be reasonable and proposed another
model: E[h2j ] ∝ [pj(1− pj)]ν , where h2j is the variance explained by variant j and pj is its allele frequency.
In Speed et al. (2017), they estimated ν to be between −0.25 and −0.5 for most traits. Note that scaling
genotypes by dividing them by their standard deviations SDj as done by default in bigstatsr assumes ν = −1
while not using any scaling as argued by Qian et al. (2020) assumes ν = 0. Therefore, using a trade-off between
these two approaches can provide higher predictive performance and is therefore recommended (Zhang et al.

2020). In the case of L1 regularization, using a different scaling can be obtained by using different penalty
factors λj in equation (SS1), which is an option available in both bigstatsr and snpnet. For example, using
λj = 1/SDj allows to effectively use unscaled genotypes. Recently, we have implemented a new parameter
power_scale to allow for different scalings when fitting the lasso in bigstatsr. Note that a vector of values
to try can be provided, and the best-performing scaling is automatically chosen within the CMSA procedure.

Fourth, Qian et al. (2020) stated that bigstatsr “do not provide as much functionality as needed in [their]
real-data application”, mainly because bigstatsr requires converting the input data and cannot handle missing
values. It is true that bigstatsr uses an intermediate format, which is a simple on-disk matrix format accessed via
memory-mapping. However, package bigsnpr provides fast parallel functions snp_readBed2 for converting
from ‘.bed’ files and snp_readBGEN for converting from imputed ‘.bgen’ files, the two formats used by
the UK Biobank. For example, it took 6 minutes only to read from the UK biobank ‘.bed’ file used in this
paper. We then used function snp_fastImputeSimple to impute by the variant means in 5 minutes only,
which is also the imputation strategy used in snpnet. When reading imputed dosages instead, it takes less than
one hour to access and convert 400K individuals over 1M variants using function snp_readBGEN with 15
cores, and less than three hours for 5M variants. When available, we recommend to directly read from ‘.bgen’
files to get dosages from external reference imputation. As for package snpnet, it uses the PLINK 2.0 ‘.pgen‘
format, which is still under active development (in alpha testing, see https://www.cog-genomics.

org/plink/2.0/formats#pgen). This format is not currently provided by the UK Biobank, and can
therefore be considered as an intermediate format as well.

Data & Methods

As in Qian et al. (2020), we use the UK Biobank data (Bycroft et al. 2018), which is a large cohort of half
a million individuals from the UK, for which we have access to both genotypes and multiple phenotypes
(https://www.ukbiobank.ac.uk/). We apply some quality control filters to the genotyped data; we
remove individuals with more than 10% missing values, variants with more than 1% missing values, variants
having a minor allele frequency < 0.01, variants with P-value of the Hardy-Weinberg exact test < 10−50, and
non-autosomal variants. We restrict individuals to the ones used for computing the principal components in
the UK Biobank (Field 22020); these individuals are unrelated and have passed some quality control (Bycroft
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et al. 2018). We also restrict to the “White British” group defined by the UK Biobank (Field 22006) to get a
set of genetically homogeneous individuals. These filters result in 337,475 individuals and 504,139 genotyped
variants.

We use the same four phenotypes as used in Qian et al. (2020), namely height, body mass index (BMI),
high cholesterol and asthma. We define height using field 50, BMI using field 21001, high cholesterol using
field 20002 (“Non-cancer illness code, self-reported”). Asthma is defined using field 20002 as well as fields
40001, 40002, 41202 and 41204 (ICD10 codes); please see code for further details at https://github.
com/privefl/paper2-PRS/tree/master/response-snpnet/code. For height and BMI, L1-
penalized linear regressions are fitted using function big_spLinReg from bigstatsr and using parameter
family=“gaussian” in snpnet. For high cholesterol and asthma, L1-penalized logistic regressions are
fitted using function big_spLogReg from bigstatsr and using parameter family=“binomial” in snpnet.
We use sex (Field 22001), age (Field 21022), and the first 16 principal components (Field 22009) as unpenalized
covariates when fitting the lasso models.
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