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Summary
The low portability of polygenic scores (PGSs) across global populations is a major concern that must be addressed before PGSs can be

used for everyone in the clinic. Indeed, prediction accuracy has been shown to decay as a function of the genetic distance between the

training and test cohorts. However, such cohorts differ not only in their genetic distance but also in their geographical distance and their

data collection and assaying, conflating multiple factors. In this study, we examine the extent to which PGSs are transferable between

ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and applying them in nine ancestry groups from

the same cohort. By restricting both training and testing to the UK Biobank data, we reduce the risk of environmental and genotyping

confounding from using different cohorts. We define the nine ancestry groups at a sub-continental level, based on a simple, robust, and

effective method that we introduce here. We then apply two different predictive methods to derive polygenic scores for all 245 pheno-

types and show a systematic and dramatic reduction in portability of PGSs trained using Northwestern European individuals and applied

to nine ancestry groups. These analyses demonstrate that prediction already drops off within European ancestries and reduces globally in

proportion to genetic distance. Altogether, our study provides unique and robust insights into the PGS portability problem.
Introduction

Ever larger genetic datasets are becoming more readily

available. This enables researchers to derive polygenic

scores (PGSs), which summarize an individual’s genetic

component for a particular trait or disease by aggregating

information from many genetic variants into a single

score. In human genetics, polygenic scores are usually

derived from summary statistics from a large meta-analysis

of multiple genome-wide association studies (GWASs) and

an ancestry-matched linkage disequilibrium (LD) reference

panel.1 Polygenic scores can also be derived directly from

individual-level data when available, i.e., from the genetic

and phenotypic information of many individuals.2 When

using a single individual-level dataset with only moderate

sample size, deriving polygenic scores usually results in

poor prediction for most phenotypes, e.g., for autoim-

mune diseases with moderately large effects.3,4 Fortu-

nately, biobank datasets such as the UK Biobank now

link genetic data for half a million individuals with pheno-

typic data for hundreds of traits and diseases.5 Thanks to

the availability of these large datasets and to efficient

methods recently developed to handle such data,4,6,7 indi-

vidual-level data may be used to derive competitive PGSs

for hundreds of phenotypes.

A major concern about PGSs is that they usually transfer

poorly to other ancestries, e.g., a PGS derived from individ-
1National Centre for Register-Based Research, Aarhus University, Aarhus 8210

75015, France; 3Program in Genetic Epidemiology and Statistical Genetics, Ha

School of Public Health and Community Medicine, The Hebrew University of J

penhagen 2300, Denmark; 6Department of Genetics and Genomic Sciences, Ic

formatics Research Centre, Aarhus University, Aarhus 8000, Denmark

*Correspondence: florian.prive.21@gmail.com

https://doi.org/10.1016/j.ajhg.2021.11.008.

12 The American Journal of Human Genetics 109, 12–23, January 6, 2

� 2021 American Society of Human Genetics.
uals of European ancestry is not likely to predict as well in

individuals of African ancestry. Prediction in another

ancestry has been shown to decay with genetic distance

to the training population8,9 and with increasing propor-

tion of admixture with a distant ancestry.10,11 This porta-

bility issue is suspected to be primarily due to differences

in LD and allele frequencies between populations, and

not so much about differences in effects and positions of

causal variants.9,11 Individual-level data from the UK Bio-

bank offers an opportunity to further investigate this prob-

lem of PGS portability in a more controlled setting.9,12

Indeed, while the UK Biobank data contain genetic infor-

mation formore than450KBritish or European individuals,

it also contains the same data for tens of thousands of indi-

viduals of non-British ancestry.5 Of particular interest,

those individuals of diverse ancestries all live in the UK

and had their genetic and phenotypic information derived

in the same way as people of UK ancestry. Our study design

circumvents potential confounding bias thatmight arise in

comparative analyses from independent studies andmakes

the UK Biobank data very well suited for comparing and

evaluating predictive performance of derived PGSs in

diverse ancestries and across multiple phenotypes. Indeed,

the UK Biobank has been shown to offer a much more

controlled setting (compared to published GWAS meta-an-

alyses) in the case of studying (for example) polygenic adap-

tation.13,14 Note that these analyses are not completely free
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of bias since, on average, genotyped variants aremore com-

mon and imputed variants are more accurately imputed in

European ancestries. We also acknowledge that some resid-

ual structure may remain when deriving PGSs.15

To investigate portability of PGSs to other ancestries, we

must first define groups of different ancestries from the

data. Principal component analysis (PCA) has been widely

used to correct for population structure in association

studies and has been shown to mirror geography in Eu-

rope.16,17 Due to its popularity, many methods have been

developed for efficiently performing PCA18–20 as well as

appropriately projecting samples onto a reference PCA

space,20,21 making it possible to perform these analyses

for ever increasing datasets. Naturally, PCA has also been

used for ancestry inference.21–23 However, among the

studies where we have seen PCA used for ancestry infer-

ence, there does not seem to be a consensus on what is

the most appropriate method for inferring ancestry using

PCA. For example, there are divergences on which distance

metric to use and the number of PCs to use to compute

these distances. The ancestry of an individual can also be

inferred based on other approaches, including the ADMIX-

TURE model, its various extensions, and haplotype-based

methods.24–31 However, we focus on PCA here because it

is very fast and effective.

In this study, we examine the extent to which PGSs are

transferable between ancestries by deriving 245 polygenic

scores from the UK Biobank data and applying them in

nine ancestry groups from the same cohort. We first pro-

pose simple, robust, and effective methods for global

ancestry inference and grouping from PCA of genetic

data, and we use them to define nine ancestry groups in

theUKBiobank data.We then apply a computationally effi-

cient implementation of penalized regression4 to derive

PGSs for 245 traits using the UK Biobank genetic and

phenotypic data only. As an alternative method, we also

run LDpred2-auto,32 for which we directly derive the sum-

mary statistics from the individual-level data available.

We show a dramatically low portability of PGSs from UK

ancestry to other ancestries. For example, on average, the

phenotypic variance explained by the PGSs is only 64.7%

in South Asia (the ‘‘India’’ ancestry group defined here),

48.6% in East Asia (‘‘China’’), and 18% in West Africa

(‘‘Nigeria’’) compared to in individuals of Northwestern Eu-

ropean ancestry (‘‘United Kingdom’’). These results are pre-

sented at a finer scale than the usual continental level,

which allows us to show that prediction already drops

within Europe, e.g., for Northeast and South Europe (the

‘‘Poland’’ and ‘‘Italy’’ ancestry groups) compared to North-

west Europe. We find that this decay in variance explained

by the PGSs is roughly linear in the PC distance to the

training population and is remarkably consistent across

most phenotypes and for both predictionmethods applied.

The few exceptions include traits such as hair color, tan-

ning, and somebloodmeasurements.We also explore using

more than HapMap3 variants when fitting PGSs, it proves

usefulwhen large effects are poorly taggedbyHapMap3var-
The Am
iants, e.g., for lipoprotein(a), but not in the general case.We

also explore theperformanceof PGS trainedusing amixture

of European and non-European ancestry samples, but do

not observe any significant gain in prediction here.
Material and methods

Data
We derive polygenic scores for 245 phenotypes using the UK Bio-

bank (UKBB) data only.5 We read dosages data from UKBB BGEN

files using function snp_readBGEN() of R package bigsnpr.19 We

divide the UKBB data in eight ancestry groups (Note A) and restrict

to 437,669 individuals without second-degree relatives (KING

kinship <2�3.5). We also define a ninth ancestry group composed

of 1,709 unrelated Ashkenazi (see below). For the variants, we use

1,040,096 HapMap3 variants used in the LD reference provided in

Privé et al.32 and that were also present in the iPSYCH2015 data33

with imputation INFO score larger than 0.6. Even though the iP-

SYCH data is not used in this study, we plan to use the PGSs

derived here for iPSYCH in the future.

To define phenotypes, we first map ICD10 and ICD9 codes

(UKBB fields 40001, 40002, 40006, 40013, 41202, 41270, and

41271) to phecodes using R package PheWAS.34,35 We filter

down to 142 phecodes of interest that showed potential genetic

signals in the PheWeb results from the SAIGE UKBB GWAS.36,37

We further filter down to 106 phecodes with sufficient power for

penalized regression to include at least a few variants in the predic-

tive models. We then look closely at all 2,408 UKBB fields that we

have access to and filter down to defining 111 continuous and 28

binary phenotypes based on manual curation.
Additional data: Genotyped data
For the genotyped data used in some follow-up analyses, we

restrict to variants that have been genotyped on both chips used

by the UK Biobank, that pass quality control (QC) for all batches

and QC for possible mismappings,38 with a minor allele frequency

(MAF) larger than 0.01 and imputation INFO score of 1. There are

586,534 such high-quality variants, which we read from the BGEN

imputed data so that there is no missing value.
Additional data: 8Mþ variants
We also design a larger set of imputed variants to compare against

using only HapMap3 variants for prediction. We first restrict to

UKBB variants with MAF> 0.01 and INFO > 0.6. We then compile

frequencies and imputation INFO scores from other datasets,

iPSYCH, and summary statistics for breast cancer, prostate cancer,

coronary artery disease, and type 1 diabetes.33,39–42 We restrict to

variants with a mean INFO > 0.5 in these other datasets and also

compute themedian frequency. To exclude potentialmismappings

in thegenotypeddata38 thatmighthave propagated to the imputed

data, we compare median frequencies in the external data to the

ones in UKBB (Figure S20). As we expect these potential errors to

be localized around errors in the genotype data (confirmed in

Figure S21), we apply a moving-average smoothing on the fre-

quency differences to increase power to detect these errors and

also reduce false positives. We define the threshold on these

smootheddifferences basedonvisual inspectionof their histogram.

This is the samemethodwe have previously applied to PC loadings

to detect long-range LD regions when computing PCA.19,20 This re-

sults in a set of 8,238,692 variants.
erican Journal of Human Genetics 109, 12–23, January 6, 2022 13



Ashkenazi Jewish ancestry group
First, we refer the reader to Note A on ancestry grouping for the de-

tails on how we define the other eight ancestry groups, and also to

better understand how we infer the ‘‘Ashkenazi Jewish’’ ancestry

group. Briefly, we project the UKBB data onto the PCA space of a

reference dataset composed of many Jewish and non-Jewish indi-

viduals.43 We then compute the robust center (geometric median)

of the Ashkenazi Jewish reference individuals and compute the PC

distance to this center for all projected UKBB individuals. Based on

visual inspection of the histogram of these distances and on the

fact that the closest non-Ashkenazi Jewish reference individual,

an Italian Jew (Figure S22), is at distance 12.7, we use a threshold

of 12.5 under which to assign to the ‘‘Ashkenazi Jewish’’ ancestry

group. 1,709 unrelated UKBB individuals are then assigned to this

group. Note that, within the already defined eight ancestry groups,

the closest individual to this new group belongs to the Italian

group, and is at distance 17.3, so this new Ashkenazi group is

not overlapping with any of the other groups defined previously.

Penalized regression
To derive polygenic scores based on individual-level data from the

UKBB,weuse the fast implementation of penalized linear and logis-

tic regressions from R package bigstatsr.4 We have also considered

the recentlydevelopedRpackage snpnet for fittingpenalized regres-

sions on large genetic data; however, we provide theoretical and

empirical evidence that bigstatsr is much faster than snpnet (Note

B). Our implementation allows for lasso and elastic-net penaliza-

tions; yet, for the sake of simplicity and because the UKBB data is

very large, we have decided to only use the lasso penalty.4We recall

that fitting a penalized linear regression with lasso penalty corre-

sponds tofinding thevectorof effectsb (alsomandg) thatminimizes

LðlÞ ¼ ky � ðmþGbþ XgÞk22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Loss function

þ lkbk1|fflffl{zfflffl}
Penalisation

;

where m is an intercept,G is the genotypematrix,X is thematrix of

covariates, y is the (quantitative) phenotype of interest, and l is a

hyper-parameter that controls the strength of the regularization

and needs to be chosen. We use sex (field 22001), age (field

21022), birth date (fields 34 and 52), Townsend deprivation index

(field 189), and the first 16 genetic principal components (field

22009),20 as unpenalized covariates when fitting the lasso models.

We have extended our implementation in two ways by allowing

for using different penalties for the variants (i.e., having
P
j

lj

�����bj
�����

instead of lkbk1). First, this enables us to use a different scaling

for genotypes. By default, variants in G are implicitly scaled. By us-

ing ljfðSDjÞðx�1Þ, this effectively scales variant j by dividing it by

ðSDjÞx in our implementation. The default uses x ¼ 1 but we also

test x ¼ 0 (no scaling) and x ¼ 0:5 (Pareto scaling). We introduce

a new parameter power_scale for which the user can provide a vec-

tor of values to test; the best value is chosen within the Cross-

Model Selection and Averaging (CMSA) procedure.4 We also intro-

duce a second parameter, power_adaptive, which can be used to

put less penalizition on variants with the largest marginal ef-

fects;44 we try three values here (0 the default, 0.5, and 1.5) and

the best one is also chosen within the CMSA procedure.

LDpred2-auto
Using the individual-level data from the training set in the UK Bio-

bank, we run a linear regressionGWAS using function big_univLin-
14 The American Journal of Human Genetics 109, 12–23, January 6, 2
Regof Rpackagebigstatsr,19 accounting for the samecovariates as in

the penalized regression above. As LD reference,weuse the one pro-

vided inPrivé et al.32 based onUKBBdata for European ancestry.We

use these summary statistics and this LD reference as input for

LDpred2-auto. LDpred2 assumes a point-normal mixture distribu-

tion for effect sizes,whereonly aproportionof causal variants p con-

tributes to the SNP heritability h2. In LDpred2-auto, these two

parameters are directly estimated from the data.32We use the sparse

option in LDpred2-auto to also obtain a vector of effects that is

potentially sparse, i.e., effects of some variants are exactly 0. Also

note that, as we use linear regression for all phenotypes, we use

the total sample size instead of the effective sample size

ð4 =ð1 =ncase þ1 =ncontrolÞÞ for binary phenotypes as input to

LDpred2. Thismeans that heritability estimates fromboth LD score

regression and LDpred2-auto must be transformed to the liability

scale using both the prevalence in theGWASand in the population;

this can be performed using function coef_to_liab from R package

bigsnpr. For simplicity, we assume here that the prevalence in the

population is the same as the prevalence in the training set.

New formula used in LDpred2
We also slightly modify the formula used in Privé et al.;32 we have

previously used

se
�bg j

�2 ¼�
�y � bgj

�Gj

�T�
�y � bgj

�Gj

�
ðn�K�1Þ �GT

j
�Gjz�yT �y

n �G
T
j
�Gjz

varðyÞ
nvarðGjÞ;

where bgj is the marginal effect of variant j, and where �y and �Gj are

the vectors of phenotypes and genotypes for variant j residualized

from K covariates, e.g., centering them. The first approximation

expects bgj to be small, while the second approximation assumes

the effects from covariates are small. However, we have found

here that some variants can have very large effects, e.g., one

variant explains about 30% of the variance in bilirubin log-con-

centration. Then, instead we compute

�
�y � bgj

�Gj

�T�
�y� bgj

�Gj

�
¼ �yT�y � 2bg j

�G
T

j
�y þ bg2

j
�G

T

j
�Gj

¼ �yT�y � bg2
j
�G

T

j
�Gj;

which now gives

ðn�K�1Þse�bgj

�2 ¼ �yT �y � bg2
j
�G

T

j
�Gj

�G
T
j
�Gj¼�yT �y

�G
T
j
�Gj�bg2

j z
varð�yÞ

varðGjÞ�bg2

j ;

finally giving (note the added term bg2
j )

sd
�
Gj

�
z

sdð�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nse

�bgj

�2 þ bg2
j

q : (Equation 1)

Figure S23 shows that the updated formula Equation 1 is better; we

now use it in the code of LDpred2, and also recommend using it

for the QC procedure proposed in Privé et al.32

Using more than HapMap3 variants in LDpred2
Here we also run LDpred2 using more than HapMap3 variants,

based on a set of 8Mþ variants (see above). However, LDpred2

cannot be run on 8M variants because the implementation is

quadratic with the number of variants in terms of time and
022



Table 1. Overview of sets of individuals used in this study

Set UK1 UK2 UK3 Poland Italy Iran India China Caribbean Nigeria Ashkenazi Jewish

Training 1 367,063 24,061 – – – – – – – – –

Test 1 – – 20,000 4,136 6,660 1,200 6,331 1,810 2,484 3,924 1,709

Training 2 367,063 – – 4,136 6,660 1,200 6,331 1,810 – 3,924 –

Test 2 – – 20,000 – – – – – 2,484 – –

In total, 439,378 unrelated individuals are used here. Most analyses in this paper use UK1 þ UK2 (391,124 individuals) as training set and the other groups as test
sets. Secondary analyses in section ‘‘Training with a mixture of ancestries’’ involve multiple ancestry training and keep only the UK3 and Caribbean groups as test
sets; UK2 is removed from the training so that sample size from training 2 is the same as training 1 (391,124 individuals). Note that the names of the first eight
ancestry groups we define here refer to the country names from the UK Biobank (field 20115) that we use to define the centers of each ancestry group; therefore,
these groups also include individuals from nearby countries. For example, the ‘‘United Kingdom’’ ancestry group also includes many individuals who self-identify
as Irish, and the ‘‘India’’ ancestry group also includes many individuals who self-identify as Pakistani (Note A).
memory requirements. Thus, we employ another strategy consist-

ing in keeping only the 1Mmost significant variants. To correct for

winner’s curse, we employ the maximum likelihood estimator

used in Zhong and Prentice45 and Shi et al.:46

Z¼Z� þ fðZ� � ZthrÞ � fð � Z� � ZthrÞ
FðZ� � ZthrÞ þFð � Z� � ZthrÞ;

where f is the standard normal density function,F is the standard

normal cumulative density function, Z is the Z-score obtained

from the GWAS, Zthr is the threshold used on (absolute) Z-scores

for filtering, and Z� is the corrected Z-score that we estimate and

use. As input for LDpred2, instead of using b (along with SEðbÞ
and N), we use b� ¼ b$Z�=Z where Z ¼ b=SEðbÞ. This is now imple-

mented in function snp_thr_correct of package bigsnpr.
Performance metric
Here we use the partial correlation as the performance metric,

which is the correlation between the PGS and the phenotype after

they have been both residualized using the covariates used in this

paper, i.e., sex, age, birth date, deprivation index, and 16 PCs. To

derive 95% confidence intervals for these correlations, we use

Fisher’s Z-transformation. We implement this in function pcor

of R package bigstatsr and use it here.
Results

Overview of study

Here, we use the UK Biobank (UKBB) data only.5 We first

infer nine ancestry groups in the UKBB. Then we use

391,124 individuals of Northwestern European ancestry

to train polygenic scores (PGSs) for 245 phenotypes (about

half being diseases; see categories in Figure S1) based on

UKBB individual-level genotypes and phenotypes, and

we assess portability of these PGSs in the remaining indi-

viduals of diverse ancestries (Table 1). As additional ana-

lyses, we also investigate using more variants than the

HapMap3 variants used in the main analyses, and we train

models using a mixture of multiple ancestries. To derive

PGSs in this study, we use two different methods, penal-

ized regression and LDpred2-auto, and finally compare

them.
The Am
Ancestry grouping

We investigate various approaches to classify individuals in

ancestry groups based on principal component analysis

(PCA) of genome-wide genotype data. Detailed results

can be found in the corresponding Note A; we recall

main results here. First, we show that (squared) Euclidean

distances in the PCA space of genetic data are approxi-

mately proportional to FST between populations, and we

therefore recommend using this simple distance. We also

provide evidence that using only two PCs, or even four

PCs, is not enough to distinguish between some less-

distant populations, and we recommend using all PCs visu-

ally capturing some population structure. Then, we use

this PCA-based distance to infer ancestry in the UK Bio-

bank and the POPRES datasets. We propose two solutions

to do so, either relying on projection of PCs to reference

populations such as the 1000 Genomes Project, or by

directly using internal data only. We show that these

solutions are simple, robust, and effective methods for

inferring global ancestry and for grouping genetically ho-

mogeneous individuals.

Here, we first use the second solution presented in Note

A, relying on PCs computed within the UK Biobank and in-

dividual information on the countries of birth, for infer-

ring the first eight ancestry groups presented in Table 1.

These groups were chosen on the basis of being distant

enough from the other groups, and including enough indi-

viduals (e.g., >1,000) to draw meaningful conclusions.

Note that the names of the ancestry groups we define

here refer to the country names from the UK Biobank (field

20115) that we use to define the centers of each ancestry

group; therefore, these groups also include individuals

from nearby countries. For example, the ‘‘United

Kingdom’’ ancestry group also includes many individuals

who self-identify as Irish, and the ‘‘India’’ ancestry group

also includes many individuals who self-identify as Pakis-

tani (Note A). Then, for inferring the ‘‘Ashkenazi Jewish’’

ancestry group, we use the first solution, projecting

UKBB individuals onto the PCA space of a reference dataset

composed of many Jewish and non-Jewish individuals.43

We identify a ninth group of 1,709 unrelated individuals,

which is entirely non-overlapping with the other eight

groups previously defined (Material and methods). This
erican Journal of Human Genetics 109, 12–23, January 6, 2022 15



Figure 1. The first eight PC scores of the UK Biobank (field 22009) colored by the homogeneous ancestry group we infer for these
individuals
Only 50,000 individuals are represented at random. ‘‘NA’’ means that the corresponding individual is not categorized in any of the nine
ancestry groups.
group is largely overlapping with the 1,719 presumably

British Jews identified from IBD segments in Naseri

et al.47 (personal correspondence with the authors).

Finally, we run ADMIXTURE (with k ¼ 8 and k ¼ 5) on

200 individuals from each of the nine ancestry groups

defined here.24 The results are consistent with the PCA

analysis (Figure 1), e.g., showing that the Caribbean group

we define is mostly composed of admixed individuals with

mostly African ancestry and some small percentage of Eu-

ropean ancestry (Figure S2). Moreover, the other groups we

define have distinct ADMIXTURE profiles (consistently

with being distinct on PCA), except for the ‘‘United

Kingdom’’ and ‘‘Poland’’ ancestry groups, which cannot

be distinguished based on this analysis.

Portability of polygenic scores to other ancestries

Figure 2 presents the results when fitting penalized regres-

sion using a training set composed of Northwestern Euro-

pean individuals from the UK Biobank (‘‘United Kingdom,’’

hereinafter also referred to as ‘‘the UK individuals’’ or ‘‘the

UK’’ for simplicity purposes) and testing in nine different

ancestry groups from the same cohort (Table 1). Averaged

over 245 phenotypes, compared to prediction performance

in individuals of Northwestern European ancestry, relative

predictive ability in terms of partial-r2 (Material and
16 The American Journal of Human Genetics 109, 12–23, January 6, 2
methods) is 93.8% in the ‘‘Poland’’ ancestry group (North-

east Europe), 85.6% in ‘‘Italy’’ (South Europe), 72.2% in

‘‘Iran’’ (Middle East), 64.7% in ‘‘India’’ (South Asia), 48.6%

in ‘‘China’’ (East Asia), 25.2% in the ‘‘Caribbean,’’ 18% in

‘‘Nigeria’’ (West Africa), and 85.7% for the Ashkenazi Jewish

group.As a follow-upanalysis to ensure that thisdrop inper-

formance in other ancestries is not due to differences in

imputation quality across ancestries, we perform the same

analysis for 83 of the continuous phenotypes using high-

quality genotyped variants only (Material and methods)

instead of the (mostly imputed) HapMap3 variants; results

are highly consistent (Figure S3). We also run the previous

follow-up analysis while removing third-degree relatives,

which leaves us with 349,991 individuals for training

(instead of 391,124) and 43,631 for testing (instead of

46,545); results are practically unchanged (Figure S4). These

results are also very similar when using LDpred2-auto

instead of penalized regression for training predictive

models for all phenotypes (Figure S5). A few phenotypes

deviate from this global trend, e.g., prediction of bilirubin

concentration ranges between 0.537 and 0.619 (partial-r)

for all ancestries except for ‘‘China,’’ for which it is 0.415

(95% CI: 0.374–0.453, see Material and methods). In

contrast, for example for hair and skin color, partial correla-

tions decrease quickly and are not significantly different
022
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Figure 2. Partial correlation and 95% CI in the UK test set versus in a test set from another ancestry group
Each point represents a phenotype and training has been performed with penalized regression on UK individuals (training 1 in Table 1)
and HapMap3 variants. The slope (in blue) is computed using Deming regression accounting for standard errors in both x and y, fixing
the intercept at 0. The square of this slope is provided above each plot, which we report as the relative predictive performance compared
to testing in the ‘‘United Kingdom’’ ancestry group.
from0 for both ‘‘China’’ and ‘‘Nigeria,’’ while of 0.420 (95%

CI: 0.409–0.432) for ‘‘darker hair’’ in the ‘‘United Kingdom’’

ancestry group (Figure 2). Overall, relative predictive perfor-

mancedecreases approximately linearlywithPCdistance to

the training set (Figure 3). A similar pattern is observed

when computing PCA based on more balanced ancestry

groups, as recommended in Privé et al.20 (Figure S6).

Using more than HapMap3 variants?

We investigate some of the outlier phenotypes in Figure 2,

especially the ones from blood biochemistry which have

some variants with large effects.We hypothesize that using

a denser set of variants could improve tagging of the causal

variants with large effect sizes, resulting in an improved

prediction in all ancestries. We focus on ‘‘total bilirubin,’’

‘‘lipoprotein(a)’’ (lipoA), and ‘‘apolipoprotein B’’ (apoB).

We perform a localized GWAS which includes all variants

around the most significant variant (hereinafter denoted

as ‘‘top hit’’) from the GWAS in the training set 1 (UK indi-

viduals and HapMap3 variants only) in each of the first

eight ancestry groups defined here. More precisely, we

include all variants with an imputation INFO score larger

than 0.3 and within a window of 500 kb from the

HapMap3 top hit in the UK; there are approximately 30K

such variants for all three phenotypes. For bilirubin, the

overall top hit is a HapMap3 variant and explains around

30% of the phenotypic variance (Figure S8). Effects from

the three top hits are fairly consistent within all ancestry
The Am
groups (Figure S9) explaining why genetic prediction is

highly consistent in all ancestries, except for ‘‘China’’

(Figure 2), for which these variants are rarer. For lipoA, re-

sults are very different across ancestries; HapMap3 variants

are far from being the top hits for the UK individuals,

where the top HapMap3 variant explains 5% of pheno-

typic variance compared to 29% for the (non-HapMap3)

top hit (Figure 4). Note that this top hit is more than 200

kb away from the HapMap3 top hit from the UK group.

Moreover, the three top hits for lipoA do not have very

consistent effect sizes across ancestries (Figure S10). Finally,

for apoB, effects from the three top hits, which are not part

of HapMap3 variants, are fairly consistent across ancestries

and explain up to 8.5% of the phenotypic variance (Figures

S11 and S12).

We then investigate whether the use of a larger set of var-

iants than the HapMap3 set is beneficial; we use more than

8M common variants (Material and methods) and apply

LDpred2-auto after restricting to the 1M most significant

variants and applying winner’s curse correction (Material

and methods). Except for lipoA for which we get a large

improvement in predictive accuracy compared to using

HapMap3 variants only, it is not beneficial for the other

seven phenotypes analyzed here (Figure 5). Remarkably,

while the partial correlation for lipoA is about 75% in the

UK test set when using this prioritized set of variants, it

is still not different from 0 when applied to the ‘‘Nigeria’’

group. For height and BMI, estimated SNP heritability is
erican Journal of Human Genetics 109, 12–23, January 6, 2022 17
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Figure 3. Relative variance explained compared to the UK
versus PC distance from the UK
PC distances are computed using Euclidean distance between geo-
metric medians of the first 16 reported PC scores (field 22009) of
each ancestry group. Relative performance values are the ones re-
ported in Figure 2. The slope and standard errors are computed
internally by function geom_smooth(method ¼ ‘‘lm’’) of R pack-
age ggplot2.
reduced when using this set of most significant variants

only, and all these variants are estimated to be causal,

i.e., the estimate of the proportion of causal variants p is

1 (Table S1). As height and BMI are very polygenic traits

(p is estimated to be �2% and �4%, respectively, when us-

ing HapMap3 variants), contribution from less significant

causal variants is missed due to this thresholding selection.

For the three binary phenotypes of breast cancer (phecode:

174.1), prostate cancer (185), and coronary artery disease

(411.4), although heritability estimates are larger when us-

ing this set of prioritized variants (Table S1), predictive ac-

curacy does not improve compared to when using

HapMap3 variants (Figure 5).

Training with a mixture of ancestries

We hypothesize that using individuals from diverse ances-

tries could improve tagging of the causal variants, resulting

in an improved prediction in all ancestries. Indeed, power

improvements for both association and prediction have

been reported when using even a small set of individuals

from different ancestries.11,48,49 Here we use all ancestry

groups except for the Caribbean and Ashkenazi for

training penalized regressions; we remove the same num-

ber of UK individuals to keep the same training sample

size as before (training 2 in Table 1). We recall that Carib-

bean individuals are mostly admixed between African, Eu-

ropean, and Native American ancestries,50 which are

almost all represented here in the training set 2. In

Figure S13, we investigate nine phenotypes of interest,

either because they are highly studied diseases or are out-

liers in Figure 2: breast cancer (phecode: 174.1), prostate

cancer (186), type 2 diabetes (250.2), hypertension (401),
18 The American Journal of Human Genetics 109, 12–23, January 6, 2
coronary artery disease (411.4), skin tone, total bilirubin

concentration, lipoprotein(a) concentration, and years of

education. We predict in the test sets from the UK and

the Caribbean (test set 2); overall, the predictive perfor-

mance is highly similar when using this multi-ancestry

training compared to when using only UK individuals, in

both the UK and the Caribbean target samples. Prediction

is only improved for lipoprotein(a) concentration when

the mixed ancestry training data is used in application to

the Caribbean target data (Figure S13). Discrepancies be-

tween our results and results from Márquez-Luna et al.51

and Cavazos and Witte11 may be explained by the fact

that we use the exact same sample size when training

with multiple ancestries (by removing some UK individ-

uals; see Table 1), whereas these studies use extra (non-Eu-

ropean) individuals, making it hard to know if the

improved predictions come from using non-European in-

dividuals, or just from using more individuals. We also

run the newly developed PRS-CSx method49 using individ-

uals from training 2, deriving the GWAS summary statistics

from the UK Biobank individual-level data (as for LDpred2-

auto). PRS-CSx provides lower predictive performance

than using the penalized regression on training 2 for

both the UK and Caribbean test sets, except when predict-

ing years of education for both sets as well as ‘‘darker skin’’

and coronary artery disease (phecode 411.4) in the

Caribbean test set (Figure S13). Predictive performance of

PRS-CSx is particularly lower for traits with large effects

(bilirubin and lipoprotein(a) concentrations) and moder-

ate effects (breast and prostate cancers; phecodes 174.1

and 185).

Comparison of predictive models

Penalized regression and LDpred2-auto provide approxi-

mately similar predictive performance across all traits

and ancestries considered here (Figure S14); there are

only four pairs of phenotype-ancestry (out of nearly

2,000 pairs) for which 95% CIs for partial-r from penalized

regression and LDpred2 are not overlapping: ‘‘615: endo-

metriosis’’ in the ‘‘China’’ ancestry group with 0.065

(0.0074 to 0.122) versus �0.051 (�0.108 to 0.0068);

‘‘hard falling asleep’’ in UK with �0.0349 (�0.742 to

0.0045) versus 0.071 (0.031 to 0.110); height in UK with

0.634 (0.626 to 0.643) versus 0.613 (0.605 to 0.622); and

log-bilirubin in ‘‘Nigeria’’ with 0.546 (0.523 to 0.569)

versus 0.475 (0.449 to 0.500). For prediction in UK

ancestry, penalized regression tends to provide better pre-

dictive performance than LDpred2 for phenotypes for

which partial-r > 0.3, and LDpred2 tends to outperform

penalized regression for phenotypes harder to predict

(Figure S14).

Bothmethods allow for fitting sparse effects, i.e., some re-

sulting effects are exactly 0. Sparsemodelsmaybe beneficial

because they may be more easily implemented. The sparse

option in LDpred2-auto provides similar performance as

LDpred2-auto without this option (Figure S15). Sparsity of

resulting effects follows a very different pattern for
022



Figure 4. Zoomed Manhattan plot for lipoprotein(a) concentration
The phenotypic variance explained per variant is computed as r2 ¼ t2=ðnþt2Þ, where t is the t-score from GWAS and n is the degrees of
freedom (the sample size minus the number of variables in the model, i.e., the covariates used in the GWAS, the intercept, and the
variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within a 500 kb radius around the top
hit from the GWAS performed in the UK training set and on the HapMap3 variants, represented by a vertical dotted line.
penalized regression compared to LDpred2-auto-sparse.

Indeed, penalized regression tends not to include variants

if it is uncertain that they have a non-zero effect, i.e.,

when effects are very small and prediction is difficult

(Figure S16). In contrast, LDpred2-auto-sparse tends not to

discard variants, only when h2 is large enough it sets lots

of effects to 0 if p is small (Figure S17). Finally, running

each penalized regression model takes between a few mi-

nutes and a few days depending on the number of non-

zero effects in the resulting model (Figure S18). In contrast,

LDpred2-auto should take the same computation time for

all phenotypes; it completedunder 7h formost phenotypes

(Figure S19).
Discussion

In this paper, we have conducted an extensive assessment

of PGS portability across ancestries using hundreds of phe-

notypes. Our analysis demonstrates a canonical relation

between genetic distance and predictive performance for

most phenotypes. The reported poor portability is in agree-

ment with three previous studies;9,52,53 we show a relative

predictive performance compared to Europeans of �18%

for Africans (versus 22%, 42%, and 24%), �49% for East

Asians (versus 50%, 95%, and 64%), and �65% for South

Asians (versus 60%, 62.5%, and 72%). However, our results

also provide a significant addition to the current literature
The Am
in many ways. First, we show that the portability issue re-

mains strong even when PGSs are derived and applied in

the same cohort. Second, the presented results are aver-

aged over 245 phenotypes, which is much more than

what has been typically used, and should capture a broad

range of the phenotypic spectrum. Portability results are

highly consistent across most phenotypes (with a few ex-

ceptions) and could therefore be used to predict the ex-

pected loss of accuracy for other phenotypes. Third, we

provide this result at a finer scale than the usual continen-

tal level by proposing a simple, robust, and effective

method for grouping UKBB individuals in nine ancestry

groups. This allows us to show, for example, that predictive

performance already decreases within Europe with only

�94% for Northeast Europe and �86% for South Europe

of the performance reached within Northwest Europe.

We showcase two methods for deriving polygenic scores

when large individual-level datasets are available. Although

LDpred2-auto is a method based on summary statistics, it

provides good predictive performance compared to penal-

ized regression, when applied to individual-level data.

Moreover, portability results shown here are similar when

using either the individual-level penalized regression or

the summary statistics based LDpred2 method. Fitting of

penalized models is relatively fast when using 1M

HapMap3 variants. We have also tried fitting penalized

regression using 8M variants (>3 TB of data); this was

possible but took several days for the phenotypes we tried,
erican Journal of Human Genetics 109, 12–23, January 6, 2022 19
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Figure 5. Predictive performance with LDpred2-auto for eight phenotypes, when using either HapMap3 variants or the 1M most
significant variants
One phenotype shown in each panel. Bars represent the 95% confidence intervals. Phecode 174.1: breast cancer; 185: prostate cancer;
411.4: coronary artery disease. HM3, HapMap3; top1M, the 1M most significant variants out of more than 8M common variants (see
Material and methods).
so we have not investigated this further. To the best of our

knowledge, we use the most efficient penalized regression

implementation currently available. Recently, Qian et al.7

proposed snpnet, a new R package for fitting penalized re-

gressions on large individual-level genetic datasets, but we

have found it to be much less efficient than R package big-

statsr on UKBB data (Note B). As for LDpred2, it currently

cannot be run using 8M variants, but we show how to use

a subset of 1M prioritized variants out of these 8M. Using

thisnewset of variantsprovides a large improvement inpre-

dicting lipoprotein(a) concentration (lipoA), but not for the

other seven phenotypes studied in this analysis. This

improvement for lipoA is not surprising given that the top

HapMap3 variant explains 5% of phenotypic variance

compared to 29% for the (non-HapMap3) top hit (Figure 4).

Here we use only the UK Biobank data to fit polygenic

scores. We do not use external information such as func-

tional annotations; those could be used to improve the her-

itability model assumed by predictive methods in order to

improve predictive performance.54 Moreover, we do not

use external summary statistics, which means that poly-

genic scores derived from large GWASmeta-analyses would

probably outperform the ones we derived here. Neverthe-
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less, Albiñana et al.55 have shown that an efficient strategy

to improve predictive ability of polygenic scores consists in

combining two different polygenic scores, one derived us-

ing external summary statistics and another one derived us-

ing internal individual-level data. Therefore, the polygenic

scores we derived here could be combined with polygenic

scores derived using external summary statistics; we will

release these PGSs publicly and share them in databases

such as the PGS Catalog and the Cancer-PRSweb.56,57
Data and code availability

The UK Biobank data are available through a procedure described at

https://www.ukbiobank.ac.uk/using-the-resource/. All code used for

this paper is available at https://github.com/privefl/UKBB-PGS/tree/

main/code. Links to the codeused for theNotesA andB are provided

there. Code to reproduce our nine ancestry groups is available at

https://github.com/privefl/UKBB-PGS#code-to-reproduce-ancestry-

groups.

We have extensively used R packages bigstatsr and bigsnpr19 for

analyzing large genetic data, packages from the future frame-

work58 for easy scheduling and parallelization of analyses on the

HPC cluster, and packages from the tidyverse suite59 for shaping
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and visualizing results. We have also used R package deming for

fitting Deming regressions.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.11.008.
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Web resources

bigsnpr, tutorial on LDpred2, https://privefl.github.io/bigsnpr/

articles/LDpred2.html

bigstatsr, tutorial on penalized regressions, https://privefl.

github.io/bigstatsr/articles/penalized-

regressions.html

PGS Catalog, effect sizes of PGSs derived here, https://www.

pgscatalog.org/publication/PGP000263/

UK Biobank, quality control information on genetic variants,

https://biobank.ctsu.ox.ac.uk/crystal/crystal/auxdata/ukb_snp_

qc.txt

UKBB-PGS, description of the 245 phenotypes used in this study,

https://github.com/privefl/UKBB-PGS/blob/main/phenotype-

description.xlsx

UKBB-PGS,other informationonthephenotypes (e.g., sample sizes),

https://github.com/privefl/UKBB-PGS/blob/main/phenotype-

info.xlsx
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Kar, S., Lemaçon, A., Soucy, P., Glubb, D., Rostamianfar, A.,

et al.; NBCS Collaborators; ABCTB Investigators; and

ConFab/AOCS Investigators (2017). Association analysis iden-

tifies 65 new breast cancer risk loci. Nature 551, 92–94.

40. Schumacher, F.R., Al Olama, A.A., Berndt, S.I., Benlloch, S.,

Ahmed,M., Saunders, E.J.,Dadaev, T., Leongamornlert,D., Ano-

kian, E., Cieza-Borrella, C., et al.; Profile Study; Australian Pros-

tate Cancer BioResource (APCB); IMPACT Study; Canary PASS

Investigators; Breast and Prostate Cancer Cohort Consortium

(BPC3); PRACTICAL (Prostate Cancer Association Group to

Investigate Cancer-Associated Alterations in theGenome) Con-

sortium; Cancer of the Prostate in Sweden (CAPS); Prostate

CancerGenome-wideAssociation Study ofUncommonSuscep-

tibility Loci (PEGASUS); and Genetic Associations and Mecha-

nisms in Oncology (GAME-ON)/Elucidating Loci Involved in

ProstateCancer Susceptibility (ELLIPSE)Consortium(2018).As-

sociation analyses of more than 140,000 men identify 63 new

prostate cancer susceptibility loci. Nat. Genet. 50, 928–936.

41. Nikpay, M., Goel, A., Won, H.-H., Hall, L.M., Willenborg, C.,

Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C.P., Hopewell,

J.C., et al. (2015). A comprehensive 1,000 Genomes-based

genome-wide associationmeta-analysis of coronary artery dis-

ease. Nat. Genet. 47, 1121–1130.

42. Censin, J.C., Nowak, C., Cooper, N., Bergsten, P., Todd, J.A.,

and Fall, T. (2017). Childhood adiposity and risk of type 1 dia-

betes: A Mendelian randomization study. PLoS Med. 14,

e1002362.

43. Behar, D.M., Metspalu, M., Baran, Y., Kopelman, N.M., Yunus-

bayev, B., Gladstein, A., Tzur, S., Sahakyan, H., Bahmanimehr,

A., Yepiskoposyan, L., et al. (2013). No evidence from genome-

wide data of a Khazar origin for the Ashkenazi Jews. Hum.

Biol. 85, 859–900.

44. Zou, H. (2006). The adaptive lasso and its oracle properties.

J. Am. Stat. Assoc. 101, 1418–1429.

45. Zhong, H., and Prentice, R.L. (2008). Bias-reduced estimators

and confidence intervals for odds ratios in genome-wide asso-

ciation studies. Biostatistics 9, 621–634.

46. Shi, J., Park, J.-H., Duan, J., Berndt, S.T., Moy, W., Yu, K., Song,

L., Wheeler, W., Hua, X., Silverman, D., et al.; MGS (Molecular

Genetics of Schizophrenia) GWAS Consortium; GECCO (The

Genetics and Epidemiology of Colorectal Cancer Con-

sortium); GAME-ON/TRICL (Transdisciplinary Research in

Cancer of the Lung) GWAS Consortium; PRACTICAL (PRos-

tate cancer AssoCiation group To Investigate Cancer Associ-

ated aLterations) Consortium; PanScan Consortium; and
022

http://refhub.elsevier.com/S0002-9297(21)00420-1/sref19
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref19
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref19
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref19
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref20
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref20
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref20
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref20
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref21
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref21
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref21
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref22
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref22
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref22
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref22
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref23
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref23
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref23
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref23
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref23
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref24
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref24
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref24
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref25
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref25
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref25
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref26
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref26
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref26
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref27
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref27
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref27
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref28
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref28
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref28
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref28
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref28
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref28
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref29
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref29
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref29
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref30
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref30
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref30
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref30
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref31
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref31
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref31
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref32
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref32
https://doi.org/10.1101/2020.11.30.20237768
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref34
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref34
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref34
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref35
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref35
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref35
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref35
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref35
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref36
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref36
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref36
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref36
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref36
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref37
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref37
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref37
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref37
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref37
https://doi.org/10.1101/2020.08.03.235150
https://doi.org/10.1101/2020.08.03.235150
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref39
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref39
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref39
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref39
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref39
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref40
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref41
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref41
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref41
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref41
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref41
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref42
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref42
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref42
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref42
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref43
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref43
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref43
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref43
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref43
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref44
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref44
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref45
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref45
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref45
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46
http://refhub.elsevier.com/S0002-9297(21)00420-1/sref46


GAME-ON/ELLIPSE Consortium (2016). Winner’s curse

correction and variable thresholding improve performance

of polygenic risk modeling based on genome-wide association

study summary-level data. PLoS Genet. 12, e1006493.

47. Naseri, A., Tang, K., Geng, X., Shi, J., Zhang, J., Shakya, P., Liu,

X., Zhang, S., and Zhi, D. (2021). Personalized genealogical

history of UK individuals inferred from biobank-scale IBD seg-

ments. BMC Biol. 19, 32.

48. Wojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haessler, J.,

Gignoux, C.R., Highland, H.M., Patel, Y.M., Sorokin, E.P., Av-

ery, C.L., et al. (2019). Genetic analyses of diverse populations

improves discovery for complex traits. Nature 570, 514–518.

49. Ruan, Y., Lin, Y.-F., Feng, Y.-C.A., Chen, C.-Y., Lam, M., Guo,

Z., Stanley Global Asia Initiatives, He, L., Sawa, A., Martin,

A.R., Qin, S., Huang, H., and Ge, T. (2021). Improving poly-

genic prediction in ancestrally diverse populations. medRxiv.

https://doi.org/10.1101/2020.12.27.20248738.

50. Moreno-Estrada, A., Gravel, S., Zakharia, F., McCauley, J.L.,

Byrnes, J.K., Gignoux, C.R., Ortiz-Tello, P.A., Martı́nez, R.J.,

Hedges, D.J., Morris, R.W., et al. (2013). Reconstructing the

population genetic history of the Caribbean. PLoS Genet. 9,

e1003925.

51. Márquez-Luna, C., Loh, P.-R., Price, A.L.; South Asian Type 2

Diabetes (SAT2D) Consortium; and SIGMA Type 2 Diabetes

Consortium (2017). Multiethnic polygenic risk scores

improve risk prediction in diverse populations. Genet. Epide-

miol. 41, 811–823.

52. Martin,A.R., Kanai,M.,Kamatani, Y.,Okada,Y.,Neale, B.M., and

Daly, M.J. (2019). Clinical use of current polygenic risk scores

may exacerbate health disparities. Nat. Genet. 51, 584–591.
The Am
53. Duncan, L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feld-

man, M., Peterson, R., and Domingue, B. (2019). Analysis of

polygenic risk score usage and performance in diverse human

populations. Nat. Commun. 10, 3328.
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Supplementary Tables and Figures

Figure S1: Pie chart of the categories of the 245 phenotypes used in this study. A full description of
these phenotypes can be downloaded at https://github.com/privefl/UKBB-PGS/blob/main/
phenotype-description.xlsx.

1

https://github.com/privefl/UKBB-PGS/blob/main/phenotype-description.xlsx
https://github.com/privefl/UKBB-PGS/blob/main/phenotype-description.xlsx


Nigeria Poland United Kingdom

India Iran Italy

Ashkenazi Caribbean China

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Individual # (ordered by main component of group)

A
nc

es
tr

y 
pr

op
or

tio
n

(a) with K = 8 components

Nigeria Poland United Kingdom

India Iran Italy

Ashkenazi Caribbean China

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Individual # (ordered by main component of group)

A
nc

es
tr

y 
pr

op
or

tio
n

(b) with K = 5 components

Figure S2: Results of running ADMIXTURE (Alexander et al. 2009) on 200 individuals from each of the nine
ancestry groups we define in this study.
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Figure S3: Partial correlation (and 95% CI) in the UK test set versus in a test set from another ancestry group.
Each point represents a phenotype (only 83 of the continuous phenotypes here) and training has been performed
with penalized regression on UK individuals (training 1 in table 1) and genotyped variants. The slope (in blue)
is computed using Deming regression accounting for standard errors in both x and y, fixing the intercept at 0.
The square of this slope is provided above each plot, which we report as the relative predictive performance
compared to testing in UK.
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Figure S4: Results from identical analyses as in figure S3 except that we also remove third-degree relatives in
the UK Biobank data we use (instead of second-degree and closer before).
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Figure S5: Partial correlation (and 95% CI) in the UK test set versus in a test set from another ancestry group.
Each point represents a phenotype and training has been performed with LDpred2-auto on UK individuals
(training 1 in table 1) and HapMap3 variants. The slope (in blue) is computed using Deming regression ac-
counting for standard errors in both x and y, fixing the intercept at 0. The square of this slope is provided above
each plot, which we report as the relative predictive performance compared to testing in UK.
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Figure S6: Relative predictive performance compared to the UK (ratio of variance explained in one group
compared to in the UK group) versus PC distance from the UK. PCA is computed using individuals from
test 1 (Table 1), and PC distances are computed using Euclidean distance between geometric medians of the
first 32 PC scores of each ancestry group (shown in figure S7). Relative performance values are the ones
reported in figure 2 of the main text. The slope and standard errors are computed internally by function
geom_smooth(method = "lm") of R package ggplot2.

5



Figure S7: PC scores 19 to 40 when PCA is computed using individuals from test 1 (Table 1). PCs 19 to 32
visually capture some population structure, so we use first 32 PCs when computing the PC distances.
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Figure S8: Zoomed Manhattan plot for total bilirubin concentration. The phenotypic variance explained per
variant is computed as r2 = t2/(n+ t2), where t is the t-score from GWAS and n is the degrees of freedom (the
sample size minus the number of variables in the model, i.e. the covariates used in the GWAS, the intercept
and the variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within
a 500Kb radius around the top hit from the GWAS performed in the UK training set and on the HapMap3
variants, represented by a vertical dotted line.
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Figure S9: Effect sizes and variance explained for the top three variants from figure S8.
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Figure S10: Effect sizes and variance explained for the top three variants from figure 4.
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Figure S11: Zoomed Manhattan plot for apolipoprotein B concentration. The phenotypic variance explained
per variant is computed as r2 = t2/(n+ t2), where t is the t-score from GWAS and n is the degrees of freedom
(the sample size minus the number of variables in the model, i.e. the covariates used in the GWAS, the intercept
and the variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within
a 500Kb radius around the top hit from the GWAS performed in the UK training set and on the HapMap3
variants, represented by a vertical dotted line.
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Figure S12: Effect sizes and variance explained for the top three variants from figure S11.
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Figure S13: Partial correlation achieved per phenotype (each panel) and per ancestry group (x-axis) when
training penalized regressions either with UK individuals only (training 1 in table 1) or when using individuals
of multiple ancestries (training 2). We also run PRS-CSx on training 2, grouping the UK, Italy and Poland
groups as a common European group, and removing the small Iran group as it does not have a similar ancestry
as the four LD references provided for PRS-CSx. PRS-CSx-Eur corresponds to the raw prediction from PRS-
CSx corresponding to the European ancestry data, while PRS-CSx-comb-Eur corresponds to the best prediction
from the linear combination of the predictions for all four global ancestries on the UK test data. Phecode 174.1:
breast cancer; 185: prostate cancer; 250.2: type 2 diabetes; 401: hypertension; 411.4: coronary artery disease.

12



●
●

●●

●

●

●●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●

●
●

●

●
●

●●
●●●

●●●●

●

●

●

●

●●●●●

●
●

●●●

●

●
●

●●●

●

●

●

●
●

●●●

●

●●
●

●

●

●

●
●

●
●●

●

●●
●

●●

●●
●

●
●

●
●

●
●●
●
●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●●
●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●
●●●

●
●

●

●●
●

●●

●
●

●

●
●
●
●

●

●

●●

●●
●

●●
●

●
●

●●

●

●
●

●
●●
●●●
●
●

●
● ●

●
●●●●
●
●
●

● ●

●●
●●●

●

●●
●

●●
●
●

●●
●●●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●
●●

● ●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●
●
●●

●

●●

●

●

●

●●
●
●

●

●

●●
●

●●
●

●

●●
●
●

●
●

●

●

●●●

●●●
●

●

●
●
●

●
●

●
●

●

●

●

●● ●

● ●

●

●

●
●

●
●

●
●

●●●
●●

●

●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●●

●

●

●

●●

●●
●

●

●

●

●●
●
●

●

●●●
●●

●

●

●
●

●
●
●

●
●

●

●

●

●

●
●● ●●

●

●
●

●
●
●

●

●

●
● ●

●
●●

●●

●
●

●
●

●

●

●
●●

● ●

●

●

●

●●●●
●

●
●

●

●

●

●
●

●
●

●●●
●●●

●
●●

●●

●●
●●
●●●

●

●

●
●

●

●

●

● ●

●

●●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●
●
●
●●

●

●
●

●●

●
●

●

●●●

●

●
●

●●

●●
●●
●

●

●

●
●

●

●●
●

●
●

●
●

●●

●

●

●

●

●●●● ●
●
●●

●●

●

●●

●●
●

●

●●

●●

●●●

●

●

● ●

●

●

●

●
●

●

●
●

●
●●●

●●●
●●

●●

●
●

●

●
●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●●
●●●

●

●
● ●

●

●
●

●●
●

●
●●

● ●
●●
●
●●

●●
●
●

●

●

●
●

●
●

● ●●

●
●●●●●

●●●
●●

●

●
●
●
●

●

●

●

●

●
●

●
●●

●

●
●

●● ●●

●
●

●
●

●
●

●

●●
● ●
●
●

●

●
●
●●
●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●●

●
●

●

●
●

●

●

●

●
●

●

●●
●
●

●●

●

●
●

●
●

●
●

●

● ●●

●
●●

●

●
●●

●●
●●●

●

●

●

●

●
●●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●
●
●

●●

●

● ●

●

●●

●●●
● ●

●
●

●●●

●●

●

●
●●

●●
●

●

●

●

●●

●●
●

●

●
●

●
● ●●●

●
●

●

●●

●
●

●
●●

●

●

●

●
●

●●●

●

● ●
●●●●

●

●●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●
●

●

●
●

●

●

●

● ●

●●

●●

●●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●
●

●●
●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

India China Caribbean Nigeria

United Kingdom Poland Italy Iran

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

LASSO

LD
pr

ed
2−

au
to

−
sp

A

●

●
●

●

●

●●

●

●

●

●

●●

●

●●●
●

●●

●●

●●

●●●●

●

●●

●

●

●●

●

●●●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●●
●

●

●●●●
●

●

●

●
●●

●

●

●
●●

●●

●

●

●●
●

●●
●

●
●●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●
●

●
●

●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

(0.001,0.01] (0.01,0.1] (0.1,1]

(1e−06,1e−05] (1e−05,0.0001] (0.0001,0.001]

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

LASSO

LD
pr

ed
2−

au
to

−
sp

0.001

0.010

0.100

h2

B

Figure S14: A) Partial correlations (and 95% CI) achieved per phenotype (each point) and per ancestry group
(each panel) when training either with LASSO or with LDpred2-auto. B) Focusing now on the UK panel from
A), each panel represents a range of proportion of causal variants p and points are colored by SNP heritability
h2 (estimates from LDpred2-auto). Penalized regression tends to provide better predictive performance than
LDpred2 for phenotypes for which partial-r > 0.3, and inversely.
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Figure S15: Partial correlations achieved per phenotype (each point) and per ancestry group (each panel) when
training either with LDpred2-auto or with LDpred2-auto-sparse (sparse option enabled).
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Figure S16: Proportion of variants with non-zero effects in the penalized regression models for each phenotype
(point) versus the proportion of causal variants p estimated from LDpred2-auto, colored by the partial correla-
tion achieved in the UK test set.
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Figure S17: Proportion of variants with non-zero effects in LDpred2-auto-sparse for each phenotype (point)
versus the proportion of causal variants p estimated from LDpred2-auto, colored by the SNP heritability h2

estimated from LDpred2-auto.
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Figure S18: Computation times for all penalized regression models run using the 1M HapMap3 variants. We
recall that we usually run 90 models for each phenotype because we use 9 sets of hyper-parameters and K=10
folds. Computation time is largely quadratic with the number of non-zero effects in the model. It is also
dependent on the compute node and the loading of the HPC cluster at the time of running (Figure S19).
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Figure S19: Computation times for fitting LDpred2-auto (with default 1000 burn-in iterations + 500 more +
sparse option running 150 more) using the 1M HapMap3 variants. Running times should be the same for all
phenotypes, yet we see some variability depending on the node used. Some fitting had to be run again because
it exceeded the 12-hour timeout, which happened a few times when and the HPC cluster was particularly
crowded.
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Figure S20: Comparison between frequencies in the UK Biobank and frequencies in external data.
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Figure S21: Differences in MAF between the first 100,000 variants in UK Biobank and external data. These
differences (likely errors in UKBB) are hypothetically grouped around errors in the genotyped data that prop-
agated to the imputed data.
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Figure S22: First 24 PC scores for the PCA computed in the reference dataset composed of several Jewish and
non-Jewish individuals (Behar et al. 2013). Orange triangles represent the Ashkenazi Jews, pink points the
Italian and Sephardi Jews, green points the Maghrebian Jews, and blue points the Iranian and Iraqi Jews.
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Figure S23: Comparison of the standard deviations (SD) computed from both genotypes and summary statistics
for the 1000 most associated variants with bilirubin concentration. A) uses the previous formula sd(Gj) ≈

sd(y)√
n se(γ̂j)2

proposed in Privé et al. (2020) while B) uses the updated formula sd(Gj) ≈ sd(y)√
n se(γ̂j)2+γ̂2j

proposed

here, which does one less approximation. The slope slightly larger than 1 can be explained by sd(y) > sd(y̆).
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Phenotype Set of variants h2 [2.5%-97.5%] p [2.5%-97.5%]
174.1 top1M 0.0889 [0.086-0.092] 0.0076 [0.00678-0.00841]
174.1 HM3 0.0299 [0.0264-0.0334] 0.000881 [0.000636-0.00117]
185 top1M 0.113 [0.109-0.116] 0.00819 [0.00743-0.00906]
185 HM3 0.0381 [0.0343-0.0423] 0.000784 [0.000588-0.00105]

411.4 top1M 0.0641 [0.0624-0.0659] 0.0152 [0.0138-0.0168]
411.4 HM3 0.0401 [0.0379-0.0422] 0.00457 [0.00397-0.00526]
apoB top1M 0.269 [0.265-0.272] 0.0533 [0.0498-0.0568]
apoB HM3 0.163 [0.16-0.166] 0.00132 [0.00119-0.00145]
height top1M 0.482 [0.479-0.486] 1 [1-1]
height HM3 0.546 [0.541-0.552] 0.0226 [0.0218-0.0235]

log_bilirubin top1M 0.301 [0.267-0.363] 0.214 [0.195-0.227]
log_bilirubin HM3 0.361 [0.357-0.365] 0.000481 [0.000423-0.000545]

log_BMI top1M 0.173 [0.171-0.176] 1 [1-1]
log_BMI HM3 0.263 [0.26-0.266] 0.0426 [0.0404-0.0446]
log_lipoA top1M 0.696 [0.689-0.702] 0.0116 [0.011-0.0122]
log_lipoA HM3 0.34 [0.336-0.345] 0.000229 [0.000192-0.000268]

Table S1: Estimates of SNP heritability h2 and proportion of causal variants p from LDpred2-auto, when using
either 1,040,096 HapMap3 variants or when prioritizing 1M variants out of 8M+ common variants, for eight
phenotypes. Quantiles of all estimates are also reported. Phecode 174.1: breast cancer; 185: prostate cancer;
411.4: coronary artery disease.
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Supplementary Note: Ancestry inference and grouping from
principal component analysis of genetic data

† Further defined in section “Definitions † and methods”.

Measures of genetic dissimilarity between populations

We first compare four measures of genetic dissimilarity using populations of the 1000 Genomes Project (1000G†,
1000 Genomes Project Consortium et al. (2015)). The FST

† is an ubiquitous measure of genetic dissimilarity
between populations and the first measure we use in this comparison. We report FST between the 26 1000G
populations in tables SA2-SA6, and the clustering of these populations based on FST in figure SA3. The other
three measures compared are distances applied to the PC scores† of the genetic data: 1) the Bhattacharyya
distance†; 2) the distance between the centers (geometric medians†) of the two populations; and 3) the shortest
distance between pairs of PC scores, one from each of the two populations. The (squared) Euclidean distance
between population centers appears to be an appropriate PCA-based distance as it is approximately propor-
tional to the FST (Figure SA1) and provides an appropriate clustering of populations (Figure SA6). However,
future work is needed to understand why residuals are bimodal for large distances (e.g. in figure SA1). This
relation between FST and (squared) Euclidean distances in the PCA space has been previously shown for two
populations only (McVean 2009).

Previously, we and others proposed to use (robust) Mahalanobis distances to infer ancestry or identify a
single homogeneous group of individuals (Peterson et al. 2017; Privé et al. 2020). When looking at distances
between two populations, this corresponds to using the Bhattacharyya distance. However, in contrast to Eu-
clidean distances, the two other Bhattacharyya and shortest distances do not provide as satisfactory results
(Figures SA4, SA5, SA8 and SA9). For example, African Caribbeans in Barbados (ACB) and Americans of
African Ancestry in SW USA (ASW) and the four admixed American (AMR) populations are close to all
European (EUR), South Asian (SAS) and African (AFR) populations when using the Bhattacharyya distance
(Figure SA4). We hypothesize that the main issue with this approach is that an admixed population covers
a large volume in the PCA space, therefore all distances to this population cluster are small because of the
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Figure SA1: Comparing FST to the squared Euclidean distance on the PCA space (i.e. using PC scores†)
between centers of pairs of the 26 1000G populations.

covariance component from the Mahalanobis distance. In contrast, the global scale of the PC scores used when
using Euclidean distances is invariant from the cluster scattering.

We also vary the number of PCs used for computing the Euclidean distances and how they compare with
FST in figure SA7. With 2 to 4 PCs, we are able to adequately separate distant populations, but not the closest
ones. For example, when using 4 PCs, there are pairs of populations with an FST of ~0.02 while their PC
centers are superimposed (Figure SA7). When using more PCs (8, 16 or 25) to compute the distances, results
remain mostly similar.

PCA-based ancestry inference

We project the dataset of interest onto the PCA space of the 1000G data using the fast tools developed in Privé
et al. (2020). We recall that this uses an automatic removal of LD when computing PCA and a correction for
shrinkage in projected PC scores, which has been shown to be particularly important when using PC scores for
ancestry estimation (Zhang et al. 2020). Based on the results from the previous section, we propose to assign
individual ancestry to one of the 26 1000G populations based on the Euclidean distance to these reference
population centers in the PCA space (geometric medians† of PC scores†). Since we showed previously that
(squared) distances in the PCA space are proportional to FST , we can set a threshold on these distances that
would correspond approximately to an FST of e.g. 0.002. This threshold is close to the dissimilarity between
Spanish and Italian people (FST (IBS, TSI) of 0.0015). When an individual is not close enough to any of the

2



26 1000G populations, we leave its ancestry inference as unknown, otherwise we assign this individual to the
closest reference population center.

We first perform ancestry estimation for the individuals in the UK Biobank†. For 488,371 individuals,
this procedure takes less than 20 minutes using 16 cores. These individuals seem to originate from many
parts of the world when we project onto the PCA space of the 1000G (Figure SA10). Self-reported ancestry
(Field 21000) is available for almost all individuals, with only 1.6% with unknown or mixed ancestry. When
using the threshold defined before, we could not infer ancestry for 4.6% of all 488,371 individuals. More
precisely, among “British”, “Irish” and “White” ancestries, this represented respectively 2.2%, 3.3% and 7.9%
(Tables SA7 and SA9). This also represented 3.3% for “Chinese”, 13.8% for “Indian” and 17.8% for “African”
ancestries. Finally, mixed ancestries were particularly difficult to match to any of the 1000G populations, e.g.
97.3% unmatched within “White and Black Africa” and 93.0% within “White and Asian” ancestries. Only
47 individuals were misclassified in “super” population of the 1000G; e.g. six “British” were classified as
South Asians, one “Chinese” as European and 25 “Caribbean” as South Asian by our method (Table SA7).
However, when comparing the location of these mismatched individuals to the rest of individuals on the PCA
space computed within the UK Biobank (Bycroft et al. 2018), it seems more probable that our genetic ancestry
estimate is exact while the self-reported ancestry is not matching the underlying genetic ancestry for these
individuals (Figure SA11). This possible discrepancy between self-reported ancestry and genetic ancestry has
been reported before (Mersha and Abebe 2015).

We also test the approach proposed in Zhang et al. (2020) which consists in finding the 20 nearest neighbors
in 1000G and computing the frequency of (super) population membership, weighted by the inverse distance
to these 20 closest 1000G individuals. When this probability is less than 0.875, they leave the ancestry as
unknown, aiming at discarding admixed individuals. Less than 0.5% could not be matched by their method
(Table SA8). Of note, they could match much more admixed individuals, whereas they set a high probability
threshold aiming at discarding such admixed individuals. Morever, there are many more discrepancies between
their method and the self-reported ancestry in the UK Biobank (Table SA8) compared to the previous results
with our method (Table SA7). The global scale used in Euclidean distances makes it more robust to infer
ancestry as compared to using relative proportions from k=20 nearest neighbors (kNN, Zhang et al. (2020)).
Indeed, consider e.g. an admixed individual of say 25% European ancestry and 75% African ancestry. The
kNN-based method is likely to identify this individual as of African ancestry, while our method will probably
be unable to match it, which is a beneficial feature when we are interested in defining genetically homogeneous
groups. We also believe our proposed method to be more robust than machine learning methods, because a
machine learning method would try e.g. to differentiate between GBR and CEU 1000G populations, which are
two very close populations of Northwest Europe (FST of 0.0002). In other words, our distance-based method
should benefit from the inclusion of any new reference population, whereas it would make it increasingly
complex to apply machine learning methods.

Finally, our method is able to accurately differentiate between sub-continental populations such as differen-
tiating between Pakistani, Bangladeshi and Chinese people (Table SA9). We also applied our ancestry detection
technique to the European individuals of the POPRES data (Nelson et al. 2008). Only 16 out of the 1385 indi-
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viduals (1.2%) could not be matched, of which 11 were from East or South-East Europe (Table SA10). Note
that all individuals that we could match were identified as of European ancestry. We could also identify accu-
rately sub-regions of Europe; e.g. 261 out of 264 Spanish and Portugese individuals were identified as “Iberian
Population in Spain” (EUR_IBS, Table SA10).

The proposed method has two possible limitations. First, since we match target individuals to 1000G
populations, if individuals are far from all 26 1000G populations, then they would not be matched. When
looking at the POPRES data, more individuals from East Europe could not be matched. This is not surprising
because there are no East European population in the 1000G data. Moreover, if we look at the location of
the 1000G populations on a map, we can see that it lacks representation of many parts of the world (Figure
SA12). This issue has also been reported e.g. for Asian populations (Lu and Xu 2013). Therefore more
diverse populations should be aggregated to better cover the worldwide genome diversity, such as with the
Simons Genome Diversity Project (Mallick et al. 2016), which would also improve the proposed method. A
second potential limitation of the proposed method is that it has two hyper-parameters: the number of PCs
used to compute the distances and the threshold on the minimum distance to any cluster center above which
the ancestry is not matched. Several studies have used only the first two PCs for ancestry inference. We
have shown here that using two PCs (or even four) is not enough for distinguishing between populations at
the sub-continental level (Figure SA7). As in Privé et al. (2020), we recommend to use all PCs that visually
separate some populations. Moreover, we believe our proposed method to be robust to increasing the number
of PCs used because contribution to the Euclidean distance is smaller for later PCs than for first PCs. As
for the distance limit, we have shown here how to define it to approximately correspond to an FST of 0.002.
Alternatively, a threshold can be chosen based on the visual inspection of the histogram of distances (on a log
scale). This threshold can also be adjusted depending on how homogeneous one want each cluster to be.

PCA-based ancestry grouping

Finally, we show several ways how to use our ancestry inference method for grouping genetically homogeneous
individuals. One first possible approach is to simply match individuals that are close enough to one of the
1000G populations, as described previously. Alternatively, one could use the internal PC scores and the self-
reported ancestries or countries of birth, e.g. available in the UK Biobank (Fields 21000 and 20115). This
solution does not require projecting individuals to the 1000G, but does require computing PC scores
within the dataset instead. In the UK Biobank data, we can define centers of the seven self-reported ancestry
groups: British, Indian, Pakistani, Bangladeshi, Chinese, Caribbean and African; then match all individuals to
one of these centers (or none if an individual is far from all centers). This enables e.g. to capture a larger set
of individuals who are close enough to British people (e.g. Irish people), while discarding individuals whose
genetic ancestry is not matching the self-reported ancestry (Table SA11). Only 3.7% of all individuals could
not be matched. The resulting clusters are presented in the PCA space in figure SA13.

One could do the same using the countries of birth instead of the self-reported ancestries, which we
use in the main text. Again, the country of birth may sometime not reflect the ancestral origin. Therefore, we
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first compute the robust centers (geometric medians) of all countries with at least 300 individuals. Then, we
cluster these countries based on their distance in the PCA space to make sure of their validity as proxies for
genetic ancestry and to choose a small subset of centers with good coverage of the overall dissimilarities (Fig-
ure SA14). Based on the previous clustering and the available sample sizes, we choose to use the centers from
the following eight countries as reference: the United Kingdom, Poland, Iran, Italy, India, China, “Caribbean”
and Nigeria. Only 2.8% of all individuals could not be matched to one of these eight groups (Table SA1).
The resulting clusters are presented in the PCA space in figure SA2. Note that these clusters probably include
individuals from nearby countries as well. Moreover, more clusters could probably be defined, e.g. the indi-
viduals with large values for PC6 in figure SA2 seem to originate from South America with many people from
Colombia, Chile, Mexico, Peru, Ecuador, Venezuela, Bolivia, Brazil, and Argentina. However, here we decide
to restrict to large enough clusters (e.g. with more than 1000 individuals). The cluster with small values for
PC4 corresponds to Ashkenazi ancestry, and is described in the main text.

Finally, when we know that the data is composed of a predominant ancestry, we can define a single homo-
geneous cluster by simply restricting to individuals who are close enough to the overall center of all individuals
(Figure SA15). When doing so, we can cluster 91% of the data into one cluster composed of 421,871 British,
12,039 Irish, 8351 “Other White”, 1814 individuals of unknown ancestry, 467 “White” and 41 individuals of
other self-reported ancestries. This is made possible because we use the geometric median which is robust to
outliers.
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Table SA1: Self-reported ancestry (left) of UKBB individuals and their matching to country groups (top) by
our method.

United Kingdom Poland Iran Italy India China Caribbean Nigeria Not matched
British 423509 1412 30 3152 18 1 2 2890
Irish 12683 14 29 27
White 472 13 8 38 1 13
Other White 8102 2754 239 3259 2 1459
Indian 6 33 4296 1381
Pakistani 1 2 1672 73
Bangladeshi 4 217
Chinese 1 1441 62
Other Asian 4 1 226 3 299 93 1 1120
Caribbean 3 2306 1245 743
African 1 2 71 2281 849
Other Black 2 36 34 46
Asian or Asian British 4 23 2 13
Black or Black British 2 11 9 4
White and Black Caribbean 7 3 13 1 573
White and Black African 6 4 1 2 389
White and Asian 56 12 30 54 650
Unknown 1827 116 680 462 345 315 215 513 3347

Figure SA2: The first eight PC scores† computed from the UK Biobank (Field 22009) colored by the homoge-
neous ancestry group we infer for these individuals.
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Definitions † and methods

Note that the code used in this supplementary note is available at https://github.com/privefl/
paper-ancestry-matching/tree/master/code.

• The 1000 Genomes Project (1000G) data is composed of approximately 100 individuals for each of 26
populations worldwide (described at https://www.internationalgenome.org/category/
population/), including 7 African (AFR), 5 East Asian (EAS), 5 South Asian (SAS), 5 European
(EUR) and 4 admixed American (AMR) populations. Here we used the transformed data in PLINK
format provided in Privé et al. (2020).

• The FST measures the relative amount of genetic variance between populations compared to the total
genetic variance within these populations (Wright 1965). We use the weighted average formula proposed
in Weir and Cockerham (1984), which we now implement in our package bigsnpr (Privé et al. 2018).

• The Principal Component (PC) scores are defined as U∆, where U∆V T is the singular value decompo-
sition of the (scaled) genotype matrix (Privé et al. 2020). They are usually truncated, e.g. corresponding
to the first 20 principal dimensions only.

• The Bhattacharyya distance between two multivariate normal distributionsN (µ1, Σ1) andN (µ2, Σ2)

is defined as DB = 1
8
(µ2 − µ1)

TΣ−1(µ2 − µ1) + 1
2

log

(
|Σ|√
|Σ1| |Σ2|

)
, where Σ = Σ1+Σ2

2
and |M | is

the absolute value of the determinant of matrix M (Bhattacharyya 1943; Fukunaga 1990). The mean
and covariance parameters for each population are computed using the robust location and covariance
parameters as proposed in Privé et al. (2020).

• The geometric median of points is the point that minimizes the sum of all Euclidean distances to these
points. We now implement this as function geometric_median in our R package bigutilsr.

• The UK Biobank is a large cohort of half a million individuals from the UK, for which we have access
to both genotypes and multiple phenotypes (https://www.ukbiobank.ac.uk/). We apply some
quality control filters to the genotyped data; we remove individuals with more than 10% missing values,
variants with more than 1% missing values, variants having a minor allele frequency < 0.01, variants with
P-value of the Hardy-Weinberg exact test < 10−50, and non-autosomal variants. This results in 488,371
individuals and 504,139 genetic variants.
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Additional Figures and Tables

Measures of genetic dissimilarity between populations

Table SA2: FST values between African populations of the 1000G and all 26 1000G populations.

LWK ESN YRI ACB ASW GWD MSL
LWK 0.0000 0.0077 0.0071 0.0064 0.0090 0.0108 0.0093
ESN 0.0077 0.0000 0.0008 0.0034 0.0088 0.0075 0.0051
YRI 0.0071 0.0008 0.0000 0.0025 0.0080 0.0062 0.0039
ACB 0.0064 0.0034 0.0025 0.0000 0.0020 0.0060 0.0044
ASW 0.0090 0.0088 0.0080 0.0020 0.0000 0.0098 0.0094
GWD 0.0108 0.0075 0.0062 0.0060 0.0098 0.0000 0.0036
MSL 0.0093 0.0051 0.0039 0.0044 0.0094 0.0036 0.0000
JPT 0.1475 0.1564 0.1545 0.1344 0.1194 0.1517 0.1574
CHB 0.1456 0.1546 0.1527 0.1324 0.1174 0.1499 0.1556
CHS 0.1466 0.1555 0.1536 0.1335 0.1186 0.1509 0.1565
CDX 0.1456 0.1544 0.1526 0.1324 0.1178 0.1498 0.1555
KHV 0.1435 0.1525 0.1507 0.1304 0.1154 0.1479 0.1535
GIH 0.1101 0.1200 0.1186 0.0954 0.0773 0.1156 0.1200
PJL 0.1069 0.1167 0.1154 0.0920 0.0735 0.1124 0.1167
BEB 0.1077 0.1174 0.1161 0.0934 0.0755 0.1131 0.1174
ITU 0.1096 0.1195 0.1181 0.0954 0.0778 0.1151 0.1195
STU 0.1091 0.1189 0.1175 0.0949 0.0774 0.1145 0.1189
PEL 0.1472 0.1559 0.1541 0.1325 0.1144 0.1515 0.1567
MXL 0.1125 0.1219 0.1205 0.0972 0.0772 0.1175 0.1218
CLM 0.0970 0.1063 0.1051 0.0816 0.0620 0.1021 0.1061
PUR 0.0849 0.0938 0.0927 0.0699 0.0515 0.0898 0.0935
FIN 0.1219 0.1319 0.1306 0.1044 0.0837 0.1272 0.1319
CEU 0.1189 0.1291 0.1278 0.1014 0.0805 0.1244 0.1290
GBR 0.1193 0.1295 0.1282 0.1017 0.0808 0.1248 0.1294
IBS 0.1145 0.1247 0.1234 0.0975 0.0772 0.1199 0.1247
TSI 0.1154 0.1258 0.1245 0.0986 0.0783 0.1210 0.1258
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Table SA3: FST values between admixed American populations of the 1000G and all 26 1000G populations.

PEL MXL CLM PUR
LWK 0.1472 0.1125 0.0970 0.0849
ESN 0.1559 0.1219 0.1063 0.0938
YRI 0.1541 0.1205 0.1051 0.0927
ACB 0.1325 0.0972 0.0816 0.0699
ASW 0.1144 0.0772 0.0620 0.0515
GWD 0.1515 0.1175 0.1021 0.0898
MSL 0.1567 0.1218 0.1061 0.0935
JPT 0.0795 0.0643 0.0707 0.0773
CHB 0.0786 0.0628 0.0689 0.0752
CHS 0.0811 0.0650 0.0708 0.0769
CDX 0.0849 0.0675 0.0719 0.0773
KHV 0.0817 0.0643 0.0689 0.0744
GIH 0.0725 0.0370 0.0278 0.0269
PJL 0.0688 0.0327 0.0230 0.0220
BEB 0.0669 0.0344 0.0278 0.0282
ITU 0.0732 0.0391 0.0308 0.0303
STU 0.0728 0.0390 0.0309 0.0305
PEL 0.0000 0.0170 0.0380 0.0548
MXL 0.0170 0.0000 0.0090 0.0180
CLM 0.0380 0.0090 0.0000 0.0056
PUR 0.0548 0.0180 0.0056 0.0000
FIN 0.0772 0.0338 0.0178 0.0149
CEU 0.0804 0.0334 0.0143 0.0100
GBR 0.0809 0.0338 0.0146 0.0102
IBS 0.0820 0.0339 0.0134 0.0081
TSI 0.0825 0.0345 0.0143 0.0090
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Table SA4: FST values between East Asian populations of the 1000G and all 26 1000G populations.

JPT CHB CHS CDX KHV
LWK 0.1475 0.1456 0.1466 0.1456 0.1435
ESN 0.1564 0.1546 0.1555 0.1544 0.1525
YRI 0.1545 0.1527 0.1536 0.1526 0.1507
ACB 0.1344 0.1324 0.1335 0.1324 0.1304
ASW 0.1194 0.1174 0.1186 0.1178 0.1154
GWD 0.1517 0.1499 0.1509 0.1498 0.1479
MSL 0.1574 0.1556 0.1565 0.1555 0.1535
JPT 0.0000 0.0068 0.0086 0.0166 0.0140
CHB 0.0068 0.0000 0.0010 0.0084 0.0062
CHS 0.0086 0.0010 0.0000 0.0047 0.0031
CDX 0.0166 0.0084 0.0047 0.0000 0.0016
KHV 0.0140 0.0062 0.0031 0.0016 0.0000
GIH 0.0693 0.0673 0.0685 0.0685 0.0650
PJL 0.0669 0.0647 0.0660 0.0660 0.0626
BEB 0.0542 0.0518 0.0528 0.0527 0.0494
ITU 0.0656 0.0636 0.0647 0.0646 0.0611
STU 0.0642 0.0623 0.0634 0.0633 0.0598
PEL 0.0795 0.0786 0.0811 0.0849 0.0817
MXL 0.0643 0.0628 0.0650 0.0675 0.0643
CLM 0.0707 0.0689 0.0708 0.0719 0.0689
PUR 0.0773 0.0752 0.0769 0.0773 0.0744
FIN 0.0924 0.0901 0.0920 0.0925 0.0893
CEU 0.0985 0.0960 0.0977 0.0978 0.0946
GBR 0.0993 0.0968 0.0985 0.0985 0.0953
IBS 0.0981 0.0957 0.0973 0.0973 0.0942
TSI 0.0981 0.0956 0.0972 0.0972 0.0940
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Table SA5: FST values between European populations of the 1000G and all 26 1000G populations.

FIN CEU GBR IBS TSI
LWK 0.1219 0.1189 0.1193 0.1145 0.1154
ESN 0.1319 0.1291 0.1295 0.1247 0.1258
YRI 0.1306 0.1278 0.1282 0.1234 0.1245
ACB 0.1044 0.1014 0.1017 0.0975 0.0986
ASW 0.0837 0.0805 0.0808 0.0772 0.0783
GWD 0.1272 0.1244 0.1248 0.1199 0.1210
MSL 0.1319 0.1290 0.1294 0.1247 0.1258
JPT 0.0924 0.0985 0.0993 0.0981 0.0981
CHB 0.0901 0.0960 0.0968 0.0957 0.0956
CHS 0.0920 0.0977 0.0985 0.0973 0.0972
CDX 0.0925 0.0978 0.0985 0.0973 0.0972
KHV 0.0893 0.0946 0.0953 0.0942 0.0940
GIH 0.0343 0.0325 0.0328 0.0334 0.0317
PJL 0.0289 0.0269 0.0272 0.0278 0.0262
BEB 0.0372 0.0368 0.0372 0.0375 0.0362
ITU 0.0393 0.0380 0.0384 0.0384 0.0367
STU 0.0398 0.0385 0.0389 0.0389 0.0373
PEL 0.0772 0.0804 0.0809 0.0820 0.0825
MXL 0.0338 0.0334 0.0338 0.0339 0.0345
CLM 0.0178 0.0143 0.0146 0.0134 0.0143
PUR 0.0149 0.0100 0.0102 0.0081 0.0090
FIN 0.0000 0.0062 0.0066 0.0101 0.0116
CEU 0.0062 0.0000 0.0002 0.0022 0.0034
GBR 0.0066 0.0002 0.0000 0.0024 0.0037
IBS 0.0101 0.0022 0.0024 0.0000 0.0015
TSI 0.0116 0.0034 0.0037 0.0015 0.0000
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Table SA6: FST values between South Asian populations of the 1000G and all 26 1000G populations.

GIH PJL BEB ITU STU
LWK 0.1101 0.1069 0.1077 0.1096 0.1091
ESN 0.1200 0.1167 0.1174 0.1195 0.1189
YRI 0.1186 0.1154 0.1161 0.1181 0.1175
ACB 0.0954 0.0920 0.0934 0.0954 0.0949
ASW 0.0773 0.0735 0.0755 0.0778 0.0774
GWD 0.1156 0.1124 0.1131 0.1151 0.1145
MSL 0.1200 0.1167 0.1174 0.1195 0.1189
JPT 0.0693 0.0669 0.0542 0.0656 0.0642
CHB 0.0673 0.0647 0.0518 0.0636 0.0623
CHS 0.0685 0.0660 0.0528 0.0647 0.0634
CDX 0.0685 0.0660 0.0527 0.0646 0.0633
KHV 0.0650 0.0626 0.0494 0.0611 0.0598
GIH 0.0000 0.0035 0.0042 0.0039 0.0043
PJL 0.0035 0.0000 0.0035 0.0033 0.0036
BEB 0.0042 0.0035 0.0000 0.0022 0.0021
ITU 0.0039 0.0033 0.0022 0.0000 0.0013
STU 0.0043 0.0036 0.0021 0.0013 0.0000
PEL 0.0725 0.0688 0.0669 0.0732 0.0728
MXL 0.0370 0.0327 0.0344 0.0391 0.0390
CLM 0.0278 0.0230 0.0278 0.0308 0.0309
PUR 0.0269 0.0220 0.0282 0.0303 0.0305
FIN 0.0343 0.0289 0.0372 0.0393 0.0398
CEU 0.0325 0.0269 0.0368 0.0380 0.0385
GBR 0.0328 0.0272 0.0372 0.0384 0.0389
IBS 0.0334 0.0278 0.0375 0.0384 0.0389
TSI 0.0317 0.0262 0.0362 0.0367 0.0373
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Figure SA3: Heatmap with clustering based on the FST between pairs of the 26 1000G populations. Corre-
sponding values are reported in tables SA2-SA6.
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Figure SA4: Heatmap with clustering based on the Bhattacharyya distances between pairs of the 26 1000G
populations.
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Figure SA5: Comparing FST to the Bhattacharyya distance on the PCA space between pairs of the 26 1000G
populations.
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1000G populations.
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Figure SA7: Comparing FST to the squared Euclidean distances on the PCA space between centers of pairs of
the 26 1000G populations. Distances are computed using different numbers of Principal Components (PCs).
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Figure SA8: Heatmap with clustering based on the shortest distances between individuals in pairs of the 26
1000G populations.
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Figure SA9: Comparing FST to the shortest distances between individuals in pairs of the 26 1000G populations.
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PCA-based ancestry inference

Figure SA10: First 18 PC scores of the 1000G data (in black), onto which the UK Biobank data has been
projected (in red).

21



Table SA7: Self-reported ancestry (left) of UKBB individuals and their matching to 1000G continen-
tal populations (top) by our method. See the description of 1000G populations at https://www.
internationalgenome.org/category/population/.

AFR AMR EAS EUR SAS Not matched
British 2 1 421457 6 9548
Irish 12328 425
White 1 1 1 499 43
Other White 40 11334 1 4440
Indian 5 4922 789
Pakistani 1421 327
Bangladeshi 217 4
Chinese 1453 1 50
Other Asian 1 279 939 528
Caribbean 3848 25 424
African 2633 1 570
Other Black 74 2 42
Asian or Asian British 2 20 20
Black or Black British 20 2 4
White and Black Caribbean 24 1 8 1 563
White and Black African 5 6 391
White and Asian 1 2 27 26 746
Unknown 835 173 576 2296 633 3307
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Figure SA11: PC scores (computed in the UK Biobank) colored by self-reported ancestry. On the left, these
are 50,000 random individuals. On the right, these are the 47 individuals with some discrepancy between their
self-reported-ancestry and our ancestry estimation (see table SA7).
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Table SA8: Self-reported ancestry (left) of UKBB individuals and their matching to 1000G conti-
nental populations (top) using 20-wNN. See the description of 1000G populations at https://www.
internationalgenome.org/category/population/.

AFR AMR EAS EUR SAS Not matched
British 4 50 6 430696 95 163
Irish 12748 3 2
White 1 2 1 540 1
Other White 170 1 15533 18 93
Indian 21 5680 15
Pakistani 3 1742 3
Bangladeshi 220 1
Chinese 7 1483 3 3 8
Other Asian 1 1 359 216 1138 32
Caribbean 4117 1 36 143
African 3000 1 2 2 199
Other Black 90 1 1 5 21
Asian or Asian British 2 4 34 2
Black or Black British 23 2 1
White and Black Caribbean 93 16 74 11 403
White and Black African 102 13 52 4 231
White and Asian 42 10 242 349 159
Unknown 1024 541 712 3774 1020 749
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Table SA9: Self-reported ancestry (top) of UKBB individuals and their matching to 1000G populations (left)
by our method. See the description of 1000G populations at https://www.internationalgenome.
org/category/population/.

British Irish White Other White Indian Pakistani Bangladeshi Chinese Other Asian Caribbean African Other Black Unknown
AFR_ACB 2024 66 34 198
AFR_ASW 2 1072 31 11 134
AFR_ESN 1 270 1 47
AFR_GWD 42 9
AFR_LWK 1 284 1 69
AFR_MSL 3 144 3 23
AFR_YRI 1 748 1796 24 404
AMR_CLM 18 27
AMR_MXL 21 117
AMR_PEL 1 1 30
AMR_PUR 1
EAS_CDX 4 15 10
EAS_CHB 218 23 33
EAS_CHS 1 1 907 17 42
EAS_JPT 10 53 221
EAS_KHV 314 171 274
EUR_CEU 183646 854 181 5802 2 1 883
EUR_FIN 1 126 1
EUR_GBR 235579 11461 294 2446 3 1 1066
EUR_IBS 68 7 775 24
EUR_TSI 2163 13 17 2185 365
SAS_BEB 1 229 17 215 92 20 1 209
SAS_GIH 416 4
SAS_ITU 1 813 12 220 4 135
SAS_PJL 5 3332 1392 2 203 1 1 238
SAS_STU 132 424 94
Not matched 9548 425 43 4440 789 327 4 50 528 424 570 42 5031

Table SA10: Ancestry (left) of POPRES individuals and their matching to 1000G populations (top) by our
method. See the description of 1000G populations at https://www.internationalgenome.org/
category/population/.

EUR_CEU EUR_FIN EUR_GBR EUR_IBS EUR_TSI Not matched
Anglo-Irish Isles 136 127 2 1
Belgium 43
Central Europe 47 8
Eastern Europe 27 1 2
France 49 3 35 2
Germany 67 3 1
Italy 1 11 204 3
Netherlands 13 4
Scandinavia 13 1 1
SE Europe 12 3 70 9
SW Europe 1 261 1 1
Switzerland 179 32 11
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Figure SA12: Percentage of individuals from the UK Biobank that could not been matched to any of the
26 1000G populations using our method, per country of birth (Field 20115). Countries in grey contain less
than 30 individuals, therefore their percentages are not represented. Red points represent the locations of the
1000G populations, accessed from https://www.internationalgenome.org/data-portal/
population. Note that “Gujarati Indian from Houston, Texas” were manually moved to Gujarat (22.309425,
72.136230), “Sri Lankan Tamil from the UK” to Sri Lanka (6.927079, 79.861244), and “Indian Telugu from the
UK” to (16.5, 79.5) to better reflect the location of their ancestors. Also note that “Utah Residents with North-
ern and Western European Ancestry”, “Americans of African Ancestry in SW USA”, “African Caribbeans in
Barbados” and “Mexican Ancestry from Los Angeles USA” are probably not located at their ancestral location.
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PCA-based ancestry grouping

Table SA11: Self-reported ancestry (left) of UKBB individuals and their matching to ancestry groups (top) by
our method.

British Indian Pakistani Bangladeshi Chinese Caribbean African Not matched
British 426210 6 4 1 1 2 4790
Irish 12712 41
White 492 1 52
Other White 10932 1 1 1 4880
Indian 6 1764 2488 1321 137
Pakistani 1 362 1299 63 23
Bangladeshi 3 215 3
Chinese 1 1 1437 65
Other Asian 4 113 169 745 62 1 653
Caribbean 2 23 2325 1148 799
African 1 1 74 2271 857
Other Black 1 1 1 36 33 46
Asian or Asian British 7 16 3 1 15
Black or Black British 2 11 9 4
White and Black Caribbean 7 1 10 1 578
White and Black African 6 1 2 393
White and Asian 59 31 7 19 686
Unknown 2008 129 189 421 114 214 505 4240
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Figure SA13: The first eight PC scores computed from the UK Biobank (Field 22009) colored by the homoge-
neous ancestry group we infer for these individuals.
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Figure SA14: Heatmap with clustering based on the distances in the PCA space between centers of pairs of the
countries of birth in the UK Biobank.
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Figure SA15: Histogram of (log) squared distances from the UK Biobank PC scores to the geometric median
of the all UKBB individuals. Here we use a threshold at 7, based on visual inspection. Alternatively, a more
stringent threshold at 6 could also be used.
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Supplementary Note: Comparison between bigstatsr and snpnet
for fitting penalized regressions on very large genetic data

Penalized regression with L1 penalty, also known as “lasso”, has been widely used since it proved to be
an effective method for simultaneously performing variable selection and model fitting (Tibshirani 1996). R
package glmnet is a popular software to fit the lasso efficiently (Friedman et al. 2010). However, glmnet cannot
handle very large datasets such as biobank-scale data that are now available in human genetics, where both the
sample size and the number of variables are very large. One strategy used to run penalized regressions on large
datasets such as the UK Biobank (Bycroft et al. 2018) has been to apply a variable pre-selection step before
fitting the lasso (Lello et al. 2018). Recently, authors of the glmnet package have developed a new R package,
snpnet, to fit penalized regressions on the UK Biobank without having to perform any pre-filtering (Qian
et al. 2020). Earlier, we developed two R packages for efficiently analyzing large-scale (genetic) data, namely
bigstatsr and bigsnpr (Privé et al. 2018). We then specifically derived a highly efficient implementation of
penalized linear and logistic regressions in R package bigstatsr, and showed how these functions were useful for
genetic prediction with some applications to the UK Biobank (Privé et al. 2019). Here we benchmark bigstatsr
against snpnet for fitting penalized regressions on large genetic data. Through some theoretical expectations
and empirical comparisons, we show that package bigstatsr is generally much faster than snpnet. We also take
that opportunity to provide more recommendations on how to fit penalized regressions in the context of genetic
data.

Main motivation for snpnet

Before we can present the main motivation behind snpnet developed by Qian et al. (2020), let us recall how
the lasso regression is fitted. Fitting the lasso consists in finding regression coefficients β that minimize the
following regularized loss function

L(λ) =
n∑
i=1

(
yi − β0 −

p∑
j=1

Xi,jβj

)2

︸ ︷︷ ︸
Loss function

+λ

p∑
j=1

|βj|︸ ︷︷ ︸
Penalization

, (SS1)
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where X denotes the matrix composed of p (standardized) genotypes and possible covariates (e.g. sex, age
and principal components) for n individuals, y is the (continuous) trait to predict, λ (> 0) is a regularization
hyper-parameter that control the strength of the penalty. For a sequence of λ, one can find argminβ L(λ) using
cyclical coordinate descent (Friedman et al. 2010). To speed up the coordinate descent, one can use sequential
strong rules for discarding lots of variables, i.e. setting lots of βj to 0, a priori (Tibshirani et al. 2012). Therefore
the cyclical coordinate descent used to solve the lasso can be performed in a subset of the data only thanks to
these strong rules. However, the main drawback of these strong rules is that they require checking Karush-
Kuhn-Tucker (KKT) conditions a posteriori, usually in two phases. These KKT conditions are first checked in
the ever-active set, i.e. the set of all variables j with βj 6= 0 for any previous λ. Then, the cyclical coordinate
descent has to be rerun while adding the new variables that do not satisfy these KKT conditions (if any). In
a second phase, the KKT conditions are also checked for all the remaining variables, i.e. the ones not in the
ever-active set. This last step requires to pass over the whole dataset at least once again for every λ tested.
Then, when the available random access memory (RAM) is not large enough to cache the whole dataset, data
has to be read from disk, which can be extremely time consuming. To alleviate this particular issue, Qian et al.

(2020) have developed a clever approach called batch screening iterative lasso (BASIL) to be able to check
these KKT conditions on the whole dataset only after having fitted solutions for many λ, instead of performing
this operation for each λ. Hence, for very large datasets, the BASIL procedure enables to fit the exact lasso
solution faster than when checking the KKT conditions for all variables at each λ, as performed in e.g. R
package biglasso (Zeng and Breheny 2017).

A more pragmatic approach in bigstatsr

In our R package bigstatsr, we proposed a different strategy. We also check the KKT conditions for variables in
the ever-active set, i.e. for a (small) subset of all variables only; this first checking is therefore fast. However,
KKT conditions almost always hold when p > n (Tibshirani et al. 2012), which is particularly the case for the
remaining variables in the second phase of checking. Because of this, we decided in Privé et al. (2019) to skip
this second checking when designing functions big_spLinReg and big_spLogReg for fitting penalized
regression on very large datasets in R package bigstatsr. Thanks to this approximation, these two functions
effectively access all variables only once at the very beginning to compute the statistics used by the strong
rules, and then access a subset of variables only (the ever-active set). As we show later, this means that fitting
penalized regressions using the approximation we proposed in Privé et al. (2019) is computationally more
efficient than using the BASIL procedure proposed by Qian et al. (2020), and yet provides equally accurate
predictors. Moreover, as bigstatsr uses memory-mapping, data that resides on disk is accessed only once from
disk to memory and then stays in memory while there is no need to free memory. Only when the ever-active set
becomes very large, e.g. for very polygenic traits, memory can become an issue, but this extreme case would
become a problem for package snpnet as well. Please refer to the Discussion section of Privé et al. (2019) for
more details on these matters. In summary, bigstatsr effectively performs only one pass on the whole dataset
while snpnet performs many passes, even though the number of passes in snpnet is reduced thanks to the
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BASIL approach. Moreover, bigstatsr still uses a single pass even when performing CMSA (a variant of cross-
validation (CV), see figure SS1) internally, whereas performing CV with snpnet would multiply the number of
passes to the data by the number of folds used in the CV.

Figure SS1: Illustration of one turn of the Cross-Model Selection and Averaging (CMSA) procedure. This
figure comes from Privé et al. (2019); the Genetics Society of America has granted us permission to re-use
it. First, this procedure separates the training set in K folds (e.g. 10 folds). Secondly, in turn, each fold
is considered as an inner validation set (red) and the other (K − 1) folds form an inner training set (blue). A
“regularization path” of models is trained on the inner training set and the corresponding predictions (scores) for
the inner validation set are computed. The model that minimizes the loss on the inner validation set is selected.
Finally, the K resulting models are averaged; this is different to standard cross-validation where the model is
refitted on the whole training set using the best-performing hyper-parameters. We also use this procedure to
derive an early stopping criterion so that the algorithm does not need to evaluate the whole regularization paths,
making this procedure much faster.
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Benchmark

Before, we have presented why we expect bigstatsr to be more efficient than snpnet. To practically support
this claim, we perform comparisons for the four real traits used in the UK Biobank analyses of Qian et al.

(2020). We compare R package snpnet (v0.3) with bigstatsr (v1.3) and bigsnpr (v1.5). We use similar quality
controls as Qian et al. (2020) (see “Data & Methods”). We also use the same splitting strategy: 20% test,
20% validation and 60% training. To use the same sets for bigstatsr as for snpnet, we use the same test set,
use K=4 folds for training with bigstatsr while making sure the first split is composed of the same 20% of the
data used for validation in snpnet. Moreover, we use penalty factors to effectively use unscaled genotypes in
bigstatsr (see “Conclusion & further recommendations”), as performed by default in snpnet. This enables us to
compare predictions from snpnet and bigstatsr using the exact same model and the same single validation fold.
Note that, to make the most of the training set, bigstatsr uses CMSA (Figure SS1) while Qian et al. (2020)
propose to refit the model (on the whole training + validation) using the best λ identified using the validation
set in snpnet. Also note that the parallelism used by snpnet and bigstatsr is different; snpnet relies on PLINK
2.0 to check KKT conditions in parallel, while bigstatsr parallelizes fitting of models from different folds and
hyper-parameters. Because bigstatsr uses memory-mapping, the data is shared across processes and therefore
it can fit these models in parallel without multiplying the memory needed. We allow for 16 cores to be used in
these comparisons; bigstatsr effectively uses only 4 here (the number of folds). We allow for 128 GB of RAM
for bigstatsr, but allow for 500 GB of RAM for snpnet because we had memory issues running it with only 128
GB or 256 GB.

Table SS1 presents the results of this benchmark. Fitting lasso is 35 times faster using bigstatsr than using
snpnet for high cholesterol, 29 times faster for asthma, 16 times faster for BMI, and 4.5 times faster for height.
When using only one validation fold for choosing the best-performing λ and no refitting, snpnet and bigstatsr
provide the same predictive performance, validating the use of the approximation in bigstatsr. When using
the whole training set, i.e. when refitting in snpnet and using CMSA in bigstatsr, predictive performance is
much higher than when the validation set is not used for training. For example, partial correlation for height
is of 0.6116 with CMSA (i.e. using the average of 4 models) compared to 0.5856 when using only one of
these models, showing how important it is to make the most of the training + validation sets. Also, CMSA can
provide slightly higher predictive performance than the refitting strategy in snpnet, with e.g. a partial correlation
of 0.3324 vs 0.3221 for BMI.

Conclusion & further recommendations

We have found the BASIL approach derived in Qian et al. (2020) to be a clever approach that alleviates the I/O
problem of other penalized regression implementations for very large datasets. BASIL makes significant and
valuable contributions to the important problem of fitting penalized regression models efficiently. However, we
also find that the implementation of BASIL in snpnet is still an order of magnitude slower than our package
bigstatsr, which uses a simpler and more pragmatic approach (Privé et al. 2019). Hereinafter we also come
back to some statements made in Qian et al. (2020) and provide more recommendations on how to best use
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Table SS1: Benchmark of snpnet against bigstatsr in terms of predictive performance and computation time.
Predictive performance is reported in terms of partial correlations between the polygenic scores and the pheno-
types, residualized using the covariates. Timings are reported in minutes. Timings for snpnet report the training
for 60% of the data (using the training set only) + the refitting for 80% of the data (using both the training and
validation sets). Timings for bigstatsr report the time taken by the CMSA procedure (fitting K=4 models here).

snpnet bigstatsr
Trait Perf. (1 fold) Perf. (refit) Time Perf. (1 fold) Perf. (CMSA) Time
Asthma 0.1349 0.1438 188 + 101 0.1348 0.1493 10
High cholesterol 0.1254 0.1366 101 + 146 0.1257 0.1387 7
BMI 0.3031 0.3231 161 + 893 0.3018 0.3324 65
Height 0.5871 0.6106 409 + 715 0.5856 0.6116 249

penalized regression for deriving polygenic scores based on very large individual-level genetic data. This also
enables us to highlight further similarities and differences between implementations from snpnet and bigstatsr.

First, in their UK Biobank applications, Qian et al. (2020) have tried using elastic-net regularization (a
combination of L1 and L2 penalties) instead of lasso (only L1), i.e. introducing a new hyper-parameter α
(0 < α < 1, with the special case of α = 1 being the L1 regularization). They show that L1 regularization is
very effective for very large sample sizes, and elastic-net regularization is not needed in this case, which we
have also experienced. Yet, in smaller sample sizes and for very polygenic architectures, we showed through
extensive simulations that using lower values for α can significantly improve predictive performance (Privé
et al. 2019). In Qian et al. (2020), they tried α ∈ {0.1, 0.5, 0.9, 1}; we recommend to use a grid on the log
scale with smaller values (e.g. 1, 0.1, 0.01, 0.001, and even until 0.0001) for smaller sample sizes. Note that
using a smaller α leads to a larger number of non-zero variables and therefore more time and memory required
to fit the penalized regression. In functions big_spLinReg and big_spLogReg of R package bigstatsr,
we allow to directly test many α values in parallel within the CMSA procedure. Therefore an optimal α value
can be chosen automatically within the CMSA framework, without the need for more passes on the data.

Second, for large datasets, one should always use early-stopping. We have not found this to be emphasized
enough in Qian et al. (2020). Indeed, while fitting the regularization path of decreasing λ values on the training
set, one can monitor the predictive performance on the validation set, and stop early in the regularization path
when the model starts to overfit (Figure SS1). For large datasets, performance on the validation sets is usually
very smooth and monotonic (before and after the minimum) along the regularization path, then one can safely
stop very early, e.g. after the second iteration for which prediction becomes worse on the validation set. This
corresponds to setting n.abort=2 in bigstatsr and stopping.lag=2 in snpnet. This is particularly useful
because, when we move down the regularization path of λ values, more and more variables enter the model and
the cyclical coordinate descent takes more and more time and memory. Therefore, the early-stopping criterion
used in both bigstatsr and snpnet prevents from fitting very costly models, saving a lot of time and memory.

Third, Qian et al. (2020) recommend not to use scaled genotypes when applying lasso to genetic data.
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However, using scaled genotypes is common practice in genetics, and is the assumption behind models in
popular software such as GCTA and LDSC (Yang et al. 2011; Bulik-Sullivan et al. 2015). Scaling genotypes
assumes that, on average, all variants explain the same amount of variance and that low-frequency variants have
larger effects. Speed et al. (2012) argued that this assumption might not be reasonable and proposed another
model: E[h2j ] ∝ [pj(1− pj)]ν , where h2j is the variance explained by variant j and pj is its allele frequency.
In Speed et al. (2017), they estimated ν to be between −0.25 and −0.5 for most traits. Note that scaling
genotypes by dividing them by their standard deviations SDj as done by default in bigstatsr assumes ν = −1
while not using any scaling as argued by Qian et al. (2020) assumes ν = 0. Therefore, using a trade-off between
these two approaches can provide higher predictive performance and is therefore recommended (Zhang et al.

2020). In the case of L1 regularization, using a different scaling can be obtained by using different penalty
factors λj in equation (SS1), which is an option available in both bigstatsr and snpnet. For example, using
λj = 1/SDj allows to effectively use unscaled genotypes. Recently, we have implemented a new parameter
power_scale to allow for different scalings when fitting the lasso in bigstatsr. Note that a vector of values
to try can be provided, and the best-performing scaling is automatically chosen within the CMSA procedure.

Fourth, Qian et al. (2020) stated that bigstatsr “do not provide as much functionality as needed in [their]
real-data application”, mainly because bigstatsr requires converting the input data and cannot handle missing
values. It is true that bigstatsr uses an intermediate format, which is a simple on-disk matrix format accessed via
memory-mapping. However, package bigsnpr provides fast parallel functions snp_readBed2 for converting
from ‘.bed’ files and snp_readBGEN for converting from imputed ‘.bgen’ files, the two formats used by
the UK Biobank. For example, it took 6 minutes only to read from the UK biobank ‘.bed’ file used in this
paper. We then used function snp_fastImputeSimple to impute by the variant means in 5 minutes only,
which is also the imputation strategy used in snpnet. When reading imputed dosages instead, it takes less than
one hour to access and convert 400K individuals over 1M variants using function snp_readBGEN with 15
cores, and less than three hours for 5M variants. When available, we recommend to directly read from ‘.bgen’
files to get dosages from external reference imputation. As for package snpnet, it uses the PLINK 2.0 ‘.pgen‘
format, which is still under active development (in alpha testing, see https://www.cog-genomics.

org/plink/2.0/formats#pgen). This format is not currently provided by the UK Biobank, and can
therefore be considered as an intermediate format as well.

Data & Methods

As in Qian et al. (2020), we use the UK Biobank data (Bycroft et al. 2018), which is a large cohort of half
a million individuals from the UK, for which we have access to both genotypes and multiple phenotypes
(https://www.ukbiobank.ac.uk/). We apply some quality control filters to the genotyped data; we
remove individuals with more than 10% missing values, variants with more than 1% missing values, variants
having a minor allele frequency < 0.01, variants with P-value of the Hardy-Weinberg exact test < 10−50, and
non-autosomal variants. We restrict individuals to the ones used for computing the principal components in
the UK Biobank (Field 22020); these individuals are unrelated and have passed some quality control (Bycroft
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et al. 2018). We also restrict to the “White British” group defined by the UK Biobank (Field 22006) to get a
set of genetically homogeneous individuals. These filters result in 337,475 individuals and 504,139 genotyped
variants.

We use the same four phenotypes as used in Qian et al. (2020), namely height, body mass index (BMI),
high cholesterol and asthma. We define height using field 50, BMI using field 21001, high cholesterol using
field 20002 (“Non-cancer illness code, self-reported”). Asthma is defined using field 20002 as well as fields
40001, 40002, 41202 and 41204 (ICD10 codes); please see code for further details at https://github.
com/privefl/paper2-PRS/tree/master/response-snpnet/code. For height and BMI, L1-
penalized linear regressions are fitted using function big_spLinReg from bigstatsr and using parameter
family=“gaussian” in snpnet. For high cholesterol and asthma, L1-penalized logistic regressions are
fitted using function big_spLogReg from bigstatsr and using parameter family=“binomial” in snpnet.
We use sex (Field 22001), age (Field 21022), and the first 16 principal components (Field 22009) as unpenalized
covariates when fitting the lasso models.
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