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Summary
Lack of diversity in human genomics limits our understanding of the genetic underpinnings of complex traits, hinders precision med-

icine, and contributes to health disparities. To map genetic effects on gene regulation in the underrepresented Indonesian population,

we have integrated genotype, gene expression, and CpG methylation data from 115 participants across three island populations that

capture themajor sources of genomic diversity in the region. In a comparisonwith European datasets, we identify eQTLs shared between

Indonesia and Europe as well as population-specific eQTLs that exhibit differences in allele frequencies and/or overall expression levels

between populations. By combining local ancestry and archaic introgression inference with eQTLs and methylQTLs, we identify regu-

latory loci driven by modern Papuan ancestry as well as introgressed Denisovan and Neanderthal variation. GWAS colocalization con-

nects QTLs detected here to hematological traits, and further comparison with European datasets reflects the poor overall transferability

of GWAS statistics across diverse populations. Our findings illustrate how population-specific genetic architecture, local ancestry, and

archaic introgression drive variation in gene regulation across genetically distinct and in admixed populations and highlight the

need for performing association studies on non-European populations.
Introduction

As we move into the age of precision medicine, the system-

atic undersampling of global genetic diversity limits our abil-

ity tobroadly applybiomedical researchefforts acrossdiverse

ethnicities and population backgrounds.1,2 Indeed, the vast

majority of human genomics studies to date have been con-

ducted in individuals with European ancestry, who account

for a minority of the global population.3 To gain a compre-

hensive understanding of the genetic architecture of

complex diseases and deliver on the promise of genomic

medicine, it is critical to expand human genomics studies

into diverse populations. The collection of multi-modal

genomic data from traditionally undersampled populations

will allow for the mapping of genetic associations with mo-

lecular phenotypes and integration with genome-wide asso-

ciation studies (GWASs) to fully understand the degree to

which population differences impact genetic architecture.4

The Indonesian archipelago is one such undersampled re-

gion, absent from all existing large-scale catalogs of human

diversity. Genetically and geographically structured, with a

genomic cline of Asian to Papuan ancestry stretching from

west to east,5,6 Indonesia is the fourth largest country in
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the world by population. Its tropical location makes it an

epicenter of infectious disease diversity both past and pre-

sent, making it possible that individuals from the region

have adapted to local immune challenges over evolutionary

time.7 We have previously described differences in gene

expression and CpG methylation between Indonesian is-

land populations associated with their genome-wide

proportions of Papuan ancestry.8 To investigate the effects

of modern and archaic local ancestry on gene regulation in

Indonesians, here we integrate genome-wide genotype data

with gene expression and DNA methylation measurements

from 115 Indonesian individuals. Using this rich multi-

modal dataset,we constructmapsof eQTLs andmethylQTLs

and identify variants contributing to population differ-

ences—both within Indonesia and globally—in regulatory

architecture.
Material and methods

Ethical approvals and dataset description
All samples were obtained from adult humanmale subjects. For full

information about the new and published samples used in this

study, refer to Tables S1 and S2. All samples used in this study
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were previously collected by H.S., J. Stephen Lansing, and an Indo-

nesian team from the Eijkman Institute for Molecular Biology, Ja-

karta, Indonesia, with the assistance of Indonesian Public Health

clinic staff. Collections followed protocols for the protection of hu-

man subjects established by institutional review boards at the Eijk-

man Institute (EIREC #90 and EIREC #126) and the University of

Melbourne (Human Ethics Sub-Committee approval 1851639.1).

All individuals gave written informed consent for participation in

the study. Permission to conduct research in Indonesia was granted

by the Indonesian Institute of Sciences and by the Ministry for

Research, Technology, and Higher Education. Whole blood sample

collection was carried out as described.8 The gene expression and

methylation data were previously published.8

Here, we report two new genomic datasets: (1) 42 samples gen-

otyped with the Illumina Infinium Omni2.5-8 v1.3 BeadChip

array, including five Korowai samples from New Guinea, 18 sam-

ples from Mentawai, western Indonesia, and 19 samples from

Sumba, eastern Indonesia and (2) complete genomes for 70 sam-

ples, including 11 Korowai, 30 Mentawai, and 29 Sumba samples.
Whole-genome sequencing and data processing
Whole blood DNA from all individuals was extracted with Gentra

Puregene for human whole blood kit (QIAGEN) and MagAttract

HMWDNA kit (QIAGEN) according to the manufacturer’s instruc-

tions. Approximately 1.3 mg of DNA from each of the 73 individ-

uals were sent to Garvan and sequenced with TruSeq Nano v2.5

to an expected mean depth of 303.

The newly generated genome sequences were processed closely

following a previously described protocol6 with the resources of

the University of Tartu High Performance Computing Center.9

Briefly, we first aligned the reads to the ‘‘decoy’’ version of the

GRCh37 human reference sequence (hs37d5). After alignment,

and keeping only properly paired reads that mapped to the same

chromosome, the autosomal sequencing depth across the samples

used in downstream analyses was as follows: min ¼ 31.53, Q1 ¼
35.33, median ¼ 363, Q3 ¼ 36.53, max ¼ 39.53. Base-calling

was undertaken with GATK best practices.10,11 Following the gen-

eration of per-sample gVCF files with GATK4 HaplotypeCaller, sin-

gle sample gVCFs were combined into multi-sample files with

CombineGVCFs, and joint genotyping was performed with

GATK4 GenotypeGVCFs, outputting all sites to a multi-sample

VCF. To maximize the SNP discovery and phasing power, we

used approximately 900 complete genomes in a multi-sample call-

ing pipeline. In addition to the newly generated genomes, these

included complete genome sequences from SGDP12 and IGDP6

projects, Malaspinas et al.,13 Vernot et al.,14 Lan et al.,15 and the

HiSeqX Diversity Cohort of Polaris project (web resources) as

well as approximately 100 unpublished genome sequences from

Estonia and Papua. SNP calling was performed on the combined

dataset and published genomes were analyzed from raw reads

exactly as they were for the new sequence data. Using bcftools

v1.9,16 we applied the following filters to each genotype call in

multisample VCF files: base depth (DP)R 83 and% 4003 and ge-

notype quality (GQ) R 30. Only bi-allelic SNPs and invariable

reference sites were kept.

The published data included seven Korowai and ten Mentawai

samples, however, two first-degree relatives (MTW-024 and

MTW-066) were excluded from further analysis.6 Our final

whole-genome sequencing (WGS) dataset, therefore, included 84

samples from three target groups: 17 Korowai, 38 Mentawai, and

29 Sumba.
The Am
Next, modern human multi-sample VCF files were merged with

two archaic individuals: Denisovan17 and Neanderthal.18 Posi-

tions with missing or low-quality calls (marked as ‘‘LowQual’’ in

the original archaic VCF files) in one of the archaic samples were

excluded during the merging procedure. We kept only sites that

had high-quality variant calls in at least 99% of samples in the

combined modern/archaic dataset. Applying this 99% call-rate fil-

ter yielded a total of 52,443,217 SNPs. However, we removed sites

within segmental duplications, repeats, and low complexity re-

gions, thus retaining 49,374,343 SNPs. These masks were down-

loaded from the UCSC and Broad Institute genome resources

(web resources). Phasing was performedwith Eagle v2.4.19 Because

our final dataset included complete genomes from very diverse hu-

man populations together with a large number of localWest Island

Southeast Asian and Papuan groups, we did not use any reference

datasets to avoid potential phasing bias.
Genotype array data processing
Approximately 1 mg of DNA from each of 42 individuals were sent

to Macrogen for genotyping on the Illumina Infinium Omni2.5-8

v1.3 BeadChip array. Samples were processed according to the

manufacturer’s instructions. Array data was processed in PLINK

v1.9.20 The average missing rate per person in the raw dataset

was around 0.45% (min 0.27%, max 2.5%); 2,194,297 autosomal

positions were kept after excluding SNPs with more than 5% of

missing data.

Array data were imputed with Beagle v5.121 with complete

genome sequences as a reference. Two imputation reference

panels were generated containing both published6 and unpub-

lished data. For the imputation of 18 Mentawai samples, we

applied a reference panel that included 97 complete genome se-

quences from western Indonesia (Bali, Borneo, Java, Mentawai,

Nias, Sulawesi, and Sumatra), the Philippines, and Taiwan. For

the imputation of 24 Korowai and Sumba samples, we applied a

reference panel made of 249 complete genomes sequence from

eastern Indonesia (Alor, Flores, Kei, Lembata, Sumba, and Tanim-

bar) and Papua (Bougainville, New Britain, New Guinea, including

Korowai, and New Ireland).

We filtered variant sites with bcftools and VCFtools22 to retain

only high-quality imputed sites with dosage R2 > 0.95 (estimated

squared correlation between the estimated allele dose and the true

allele dose, DR2). We extracted these positions from the complete

genomes fromKorowai, Mentawai, and Sumba (n¼ 84) to produce

a new combined SNP set made of imputed and WGS data. We

filtered these data to retain SNPs with a proportion of missing

data < 0.3 and minor allele frequency (MAF) > 0.05, which re-

sulted in 4,077,164 variants. Imputed genotypes were further

filtered to retain genotypes with genotype probability (GP)> 0.90.
RNA sequencing and data processing
RNA sequencing and data processing were carried out as previ-

ously described.8 Whole blood RNA was collected and extracted

with the Tempus Blood RNA tube and Tempus Spin RNA Isolation

Kit (Invitrogen). The quality and concentration of all extracted

RNA samples were assessed with a Bioanalyzer 2100 (Agilent)

and a Qubit device (Life Technologies). We selected samples for

sequencing on the basis of their RIN (RNA integrity number) by

focusing on villages with at least 10 samples with RINR 6. Library

preparation was performed by Macrogen (South Korea) with

750 ng of RNA and the Globin-Zero Gold rRNA Removal Kit (Illu-

mina) according to the manufacturer’s instructions. Samples were
erican Journal of Human Genetics 109, 50–65, January 6, 2022 51



sequenced with a 100 bp paired-end configuration on an Illumina

HiSeq 2500 to an average depth of 30 million read pairs per indi-

vidual in three batches (Table S2).

FASTQ read files underwent quality control with FastQC v0.11.5

(web resources), and leading and trailing bases below a Phred score

of 20 were removed with Trimmomatic v0.36.23 Reads were aligned

to the human genome (GRCh38 Ensembl release 90, web resources)

with STAR v2.5.3a24 and a two-pass alignment mode. Read counts

were quantified with featureCounts v1.5.325 against a subset of

GENCODE basic (release 27) annotations26 (web resources) that

included only transcripts with support levels 1–3. Coordinates

were converted to hg19 with the R package liftOver v1.8.0 (web re-

sources). Gene expression data were filtered to retain 12,539 genes

with FPKM (fragments per kilobase of transcript per million map-

ped reads) > 0.1 and a read count of >6 in at least 50 samples.

The distributions of FPKM in each sample and gene were trans-

formed into the quantiles of the standard normal distribution.
DNA methylation data processing
1 mg of DNA from each sample was shipped toMacrogen, bisulfite-

converted, and hybridized to Illumina EPIC BeadChips according

to the manufacturer’s instructions. We randomized samples with

respect to village and island across two array batches, and three

samples were processed on both batches to control for technical

variation (Table S1). DNA methylation data were obtained and

processed as previously described8 with minfi v1.30.027 We com-

bined and preprocessed the two arrays to correct for array back-

ground signal. Signal strength across all probes was evaluated

and probes with signal p< 0.01 in>75% of samples were retained.

To avoid potential spurious signals due to differences in probe hy-

bridization affinity, we discarded 6,072 probes overlapping known

SNPs segregating in any of the study populations based on previ-

ously published genotype data.6 The final number of probes re-

tained was 859,404. Subset-quantile within array normalization

(SWAN) was carried out with the ‘‘preprocessSWAN’’ function.28

Methylated and unmethylated signals were quantile normalized

with lumi v2.36.0.29
Local ancestry inference
We used ChromoPainter v230 (CP) to perform local ancestry (LA)

inference and detect Asian and Papuan ancestry in all published

and newly generated complete genomes from Korowai (n ¼ 17),

Mentawai (n ¼ 38), and Sumba (n ¼ 29). This method relies on

phased haplotype data and describes each individual recipient

chromosome as a mixture of genetic blocks from the set of prede-

fined donor individuals.

First, East Asian and Papuan reference panels were generated to

assign local genomic ancestry in target samples. We selected unad-

mixed East Asian and Papuan samples by running ADMIXTURE

v1.331 at K ¼ 3 with all available East and Southeast Asian, Euro-

pean, and Papuan samples from the combined WGS dataset. For

the East Asian reference panel, we kept only Asian samples (n ¼
102) with less than 0.05% of non-East Asian ancestry. For the

Papuan reference panel, we kept only Papuan samples (n ¼ 63)

with less than 0.05% of non-Papuan ancestry and excluded all

Korowai samples. To balance the sample size of the two reference

panels, we randomly selected 63 East Asian samples from the un-

admixed reference dataset.

Next, we painted each of 84 target genomes individually with

the East Asian and Papuan reference panels as donors. We used

the following protocol.
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(1) We performed the initial CP run with ten expectation-

maximization steps to estimate prior copying probabilities

for each individual and chromosome separately.

(2) Estimated prior copying probabilities were averaged across

the genome for each individual. The main CP run was per-

formed with a recombination scaling constant and global

mutation probability from the first step and genome-wide

average prior copying probability.

(3) Either East Asian or Papuan ancestry was then assigned to

individual SNPs with a probability threshold of 0.85. Un-

known ancestry was assigned to SNPs with intermediate

copying probability.
Identifying archaic introgression
We defined the high-confidence Denisovan archaic haplotypes as

outlined previously6 but with a larger group of sub-Saharan Afri-

can individuals (61 sub-Saharan Africans in total, Table S3) For

each individual, we started with Denisovan-introgressed haplo-

types as inferred by CP, then filtered out those that did not overlap

(by >0.001%) the Denisovan-introgressed haplotypes as inferred

by a previously published hidden Markov model (HMM),6 then

filtered out those that did not overlap (by >0.001%) archaic intro-

gressed haplotypes inferred by another HMM approach,32 and

finally filtered out any of the remaining haplotypes that did over-

lap (by>0.001%) Neanderthal-introgressed haplotypes as inferred

by CP.We then annotated each SNP found in several target sample

groups (i.e., monomorphic SNPs in that group are skipped, as are

any that are masked out by the alignability/gap mask) according

to how often the reference/alternative (REF/ALT) state appears

on an inferred high-confidence Denisovan-introgressed haplotype

in that group. This was done for three separate groups: (1) all

Korowai individuals, (2) all Korowai individuals and Sumba indi-

viduals and those Mentawai individuals who are from the new da-

taset, and (3) all individuals in the ‘‘Papuan’’ continental group,

which includes all Papuans and Melanesians except Baining. We

used an analogous process to annotate Neanderthal ancestry

SNPs, beginning instead with Neanderthal-introgressed haplo-

types inferred by CP before requiring intersection with Neander-

thal-introgressed haplotypes inferred by the HMM and archaic

haplotypes inferred by HMMArchaic and removing those intersect-

ing CP Denisovan haplotypes.

Accounting for population structure and non-genetic

sources of variation in the QTL analyses
Principal-component analysis (PCA) of the genotype data was car-

ried out with the R package SNPRelate v1.18.1.33 We included five

genotype principal components (PCs) as covariates in QTL ana-

lyses to account for population structure. We used a probabilistic

estimation of expression residuals34 (PEER) to infer hidden sources

of variation in expression and methylation data. These latent fac-

tors were used as surrogate variables for unknown technical batch

effects and included as covariates in the QTL analyses. 29 hidden

factors (25% of the number of samples) were included in models,

as recommended in Stegle et al. (2012)34 (for technical details, see

Stegle et al. [2010]35).

eQTL and methylQTL analyses
Variant effects on gene expression and CpG methylation were

identified by linear regression as implemented in QTLtools.36 Ge-

notype, gene expression, and methylation data were available for
2



115 individuals: 48 Mentawai, 48 Sumba, and 19 Korowai (Tables

S1 and S2). Variants within 1 Mb of the gene/CpG under investi-

gation were considered for testing. p values of top associations

adjusted for the number of variants tested in cis were obtained

from 10,000 permutations. We calculated false discovery rate

(FDR)-adjusted p values to adjust for multiple phenotypes tested.

Significant associations were selected with an FDR-adjusted p

value threshold of 0.01. Nominal p values for all sites within the

cis-window were obtained with the QTLtools nominal pass. QTL

power calculations were carried out with the R package powerEQTL

v0.1.7.37
Variant annotation and variant set enrichment analyses
To understand the genomic context of the putative eQTLs and

methylQTLs, we annotated top SNPs from the permutation-based

analyses and the target CpGs of methylQTLs by using the R pack-

age annotatr v1.10.0.38 Genic annotations (1–5 kb upstream of the

transcription start site (TSS), the promoter [<1 kb upstream of the

TSS], 5ʹ UTR, first exons, exons, introns, coding sequences [CDS],

3ʹ UTR, and intergenic regions) were obtained with the TxDb.

Hsapiens.UCSC.hg19.knownGene R package v3.2.2 (web resources),

CpG annotations with the AnnotationHub R package v2.16.1 (web

resources), and enhancer annotations from FANTOM5.39

We tested for the enrichment of the eQTL and methylQTL var-

iants among genomic features by using the VSE R package v0.99.40

A null-distribution was constructed on the basis of 100 matched

random variant sets. Consolidated chromatin immunoprecipita-

tion sequencing (ChIP-seq) peaks for histone marks derived from

primary mononuclear cells from peripheral blood were down-

loaded from the NIH Epigenomics Roadmap FTP site.41 Addition-

ally, annotations for DNaseI hypersensitivity peaks and histone

marks for K562 and GM12878 cell lines were downloaded from

the ENCODE portal.42

We tested for the overrepresentation of the population-specific

eGenes among Gene Ontology (GO) terms and canonical path-

ways by using clusterProfiler 3.14.3.43 We used a background set

of all eGenes to test for overrepresentation.
eQTL-methylQTL colocalization analysis
We used a Bayesian test, as implemented in the R package coloc

v4,44,45 to assess the probability of colocalization of methylQTL

and eQTL signals between 3,057 pairs of CpGs and genes. We

used masking to allow for multiple causal loci for each trait. Mask-

ing implemented in coloc allows for multiple causal variants per

trait with the assumption that if multiple causal variants exist

for any individual trait, they are in linkage equilibrium. All SNPs

independently associated within a dataset were identified with

the function ‘‘finemap.signals.’’ For the pairs of CpGs and genes

with multiple signals, colocalization analysis was performed for

each pair of signals, restricting the search space to SNPs not in link-

age disequilibrium (LD) with any-but-one of each signal SNP. The

p value threshold for calling a signal was set to 1 3 10�6, and the

maximum r2 between two SNPs for them to be considered inde-

pendent was 0.01.

Pairs with the posterior probability for a common causal variant

(CCV) > 0.8 and the ratio of the posterior probability for a CCV

and different causal variants (DCVs) CCV/DCV > 5 were consid-

ered to show strong evidence of colocalization. As the posterior

probability for colocalization is dependent on the prior probabil-

ity, we used the coloc post hoc sensitivity analysis to determine

the range of prior probabilities (1.0 3 10�8 to 1.0 3 10�4) for
The Am
which colocalization is supported. Pairs passing the colocalization

thresholdwith a range of ppCCV values from<1.03 10�6 to 1.03

10�4 (lower bound of ppCCV below 1.0 3 10�6) were considered

as showing robust support for colocalization.

eQTL sharing with European eQTLs
Similarly to eQTL-methylQTL colocalization, we used coloc v4 to

test for colocalization between 3,300 permutation-based eQTLs

detected here with an FDR-adjusted p < 0.10 and three European

whole blood eQTL studies: GTEx46 (n ¼ 670), the Estonian Bio-

bank cohort47 (n¼ 491), and Twins UK48 (n ¼ 384). The European

eQTL summary statistics were obtained from the EBI eQTL cata-

log.49 The methods used to call the eQTLs in the EBI eQTL catalog

are comparable to themethods used in this study. Out of the 3,300

genes selected for testing, 3,049 were present in the European data

and had shared variants with the Indonesian data. We identified

colocalized genes with the threshold CCV > 0.8 and a ratio

CCV/DCV > 5. To identify genes that do not show support for co-

localization even with a relaxed threshold, we used a threshold of

CCV > 0.5 and CCV/DCV > 2.

To compare the alternative and minor allele frequencies of

eSNPs between populations, European genotype data were ob-

tained from the 1000 Genomes dataset.50 After subsetting the

VCFs for the samples belonging to the European superpopulation,

alternative allele counts and frequencies were recalculated with

VCFtools.22 Minor allele frequencies in Indonesia and Europe

were calculated in relation to the minor allele in the Indonesian

data.

Estimating and testing for differences in effect sizes

between populations
We used multivariate adaptive shrinkage as implemented in the R

package mashr51 to more reliably estimate effect sizes and to iden-

tify shared and population-specific eQTLs. The model was fit

with both data-driven and canonical covariances. The data-driven

covariance matrix was constructed by identifying strong signals

based on a significance threshold of 0.05, by obtaining the initial

data-driven covariance matrix for the first two PCs of the strong

signals, and then applying the built-in extreme deconvolution al-

gorithm. To facilitate computational limitations, we fit the model

by using a random subset of 100,000 SNP-gene pairs. For the calcu-

lation of pairwise sharing of eQTLs, an eQTL was considered

shared between datasets if the effects are the same sign and within

a factor of 0.5.

Colocalization with blood trait GWAS loci
To connect the QTLs detected here to blood traits, we tested for co-

localization between the FDR-significant permutation-based QTLs

(FDR-p< 0.1 eQTLs and FDR-p < 0.01 methylQTLs) and 36 hema-

tological traits by using genome-wide summary statistics from As-

tle et al.52 GWAS summary statistics were downloaded from the

GWAS catalog.53 As no LD information was available, these coloc-

alization analyses were carried out without allowing for multiple

causal variants. Similarly, eQTL-GWAS colocalization analysis

was carried out with the European datasets.

Selection scan
We performed a selection scan using a haplotype-based statistic

(number of segregating sites by length, nSL),54 as implemented

in Selscan v1.2.0.55 This test identifies ongoing positive selection

in the genome by looking for the tracts of extended haplotype
erican Journal of Human Genetics 109, 50–65, January 6, 2022 53
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Figure 1. Genetic ancestry and QTL features across 115 Indonesian individuals
(A) Map of the sampling locations of the three study populations: Mentawai, blue; Sumba, yellow; Korowai, red. The numbers of samples
used in the QTL analyses are indicated.
(B) PCA of genotype data from study samples as well as Han Chinese from Beijing (CHB), Southern Han Chinese (CHS), and individuals
of European ancestry (CEU) from the 1000 Genomes project.

(legend continued on next page)
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homozygosity and is capable of identifying both sweeps from

standing variation and incomplete sweeps. To identify the traces

of positive selection in three target populations, we used our

combined dataset ofWGS and imputed genotyping array data rep-

resented by approximately 4M SNPs. The following Selscan pa-

rameters were used: the maximum allowed gap between loci of

50 kb, the gap scale parameter of 5 kb, and the maximum extent

of haplotype homozygosity decay curve of 1,333 loci (approxi-

mately 1 Mb given the obtained SNP density). Raw nSL results

were normalized with Selscan’s norm package in 50 kb non-over-

lapping genomic windows with ten allele frequency bins.

Windows with less than 21 SNPs were discarded. The proportion

of absolute nSL scores > 2 in each 50 kb genomic window was

used as a test statistic. Windows with a proportion of SNPs with

an absolute nSL > 2 of 30% were considered to be outliers and

showing evidence of past positive selection.

To identify regulatory loci under positive selection, we used a co-

localization-based method to detect shared signals between the

QTL p values and nSL values. We calculated empirical p values

for the nSL values by using an outlier approach by sorting all

the scores genome-wide and then dividing the rank by the total

number of values in the distribution.
Identifying eQTL effects driven by local ancestry
We calculated the variance explained by modern LA in the geno-

type of each significant (FDR-p < 0.01) permutation-based eQTL

and methylQTL as previously described.56 For each eVariant and

methylVariant, we fit the linear model V ¼ a 3 PAP þ b, where

V is the genotype vector (number of QTL B alleles) and PAP is

the LA covariate, representing the number of alleles assigned to

the Papuan population. This analysis was carried out with the 73

WGS (30 Mentawai, 29 Sumba, 14 Korowai) samples included in

the LA inference. Variants with an absolute R2 > 0.7 were consid-

ered to exhibit a high correlation with LA. Similarly, we calculated

the variance explained by archaic Denisovan and Neanderthal

ancestry.
Results

Genetic determinants of gene expression and CpG

methylation levels in Indonesia

To contextualize the genetic diversity in our dataset,

we began by clustering the 115 Indonesian samples

(Figure 1A) through PCA of genotype data, along with Eu-

ropean and Han Chinese samples from the 1000 Genomes

project. The first two PCs clearly separate the three study

populations (Figure 1B). The Mentawai, of West Island

Southeast Asian ancestry, cluster closest to mainland Chi-

nese populations, whereas the Korowai, representative of
(C) Global and local ancestry across 73 Indonesian individuals (bars)
tion of West Island Southeast Asian and Papuan ancestry genome wid
haplotypes in each individual in chr1.
(D) Genomic locations of eQTLs (orange) and methylQTLs (blue). Ea
(E) Enrichment of eQTLs (orange) and methylQTLs (blue) among his
eral blood in the Epigenomics Roadmap project compared to a null-
(F) An example of a colocalized eQTL-methylQTL pair exhibiting an o
the �log10(p values) of the associations between variants in cis and G
middle plot shows the relationship between the top-SNP genotype an
ship between the top-SNP genotype and GSTM4 expression.
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Papuan ancestry (not well represented in existing public

datasets), form a distinct cluster from all other popula-

tions. Individuals from Sumba—a mixture of the two

ancestries—fall between Mentawai and Korowai, as

expected.8

We genotyped our samples by using two separate plat-

forms, whole-genome sequencing (WGS, n ¼ 73) and the

Illumina Omni 2.5M genotyping array (n ¼ 42; material

and methods, Table S1). Using only the complete genome

sequences, we inferred patterns of global and local ancestry

(LA) and archaic introgression across the three popula-

tions. On average, the proportion of the genome for which

we can make a confident ancestry assignment is 80% for

Mentawai, 71% for Sumba, and 85% for Korowai. The

average proportion of ancestry-called individual haploid

genomes assigned as Papuan is 5.3% in Mentawai, 26.8%

in Sumba, and 95.0% in Korowai (Figure 1C). In addition,

we were able to identify Denisovan-introgressed haplo-

types covering, on average, 0.13%, 0.48%, and 1.44%, of

each haploid genome in Mentawai, Sumba, and Korowai,

respectively, consistent with a previous study6 showing

a high frequency of Denisovan sequence in Korowai

(Figure S1). Proportions of inferred Papuan ancestry and

Denisovan introgression are highly correlated (Pearson’s

r ¼ 0.995, Figure S1). Further, we identified Neanderthal-

introgressed haplotypes covering on average 1.08%,

1.19%, and 1.40% of each haploid genome from the three

study populations, raising the possibility that either

archaic ancestry source has made contributions to gene

regulatory architecture in these populations.

To identify genetic variants associated with changes in

expression (eQTL) and methylation (methylQTL) levels,

we used a linear regression-based approach (material and

methods). At an FDR of 0.01, we detect a total of 1,975 sig-

nificant cis-eQTLs (Data S1) and 48,014 cis-methylQTLs

(Data S2). As expected, the majority of QTLs are located

in non-coding parts of the genome, enriched among tran-

scriptionally active histone marks and accessible chro-

matin, and mostly depleted from marks associated with

heterochromatin and repression of transcription across

three blood cell lines (Figures 1D and 1E, Figure S2). We

then tested for colocalization between 4,639 pairs of

CpGs and genes that potentially harbor a common causal

variant by using a Bayesian approach (material and

methods, supplemental note 1) to better understand how

genetic regulation of methylation levels contributes to

the regulation of gene expression. Over a wide range of
with available WGS data. The top plot shows the average propor-
e. The bottom plot shows patterns of local ancestry across the two

ch QTL can have multiple annotations.
tone marks derived from primary mononuclear cells from periph-
distribution of 100 matched random variant sets.
pposing effect direction on the target trait. The left-side plot shows
STM4 expression (orange) or cg22247664 methylation (blue). The
d cg22247664 methylation, and the right-side shows the relation-
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prior probabilities, 720 (15.5%) of the tested pairs show

robust support for a common causal variant (material

and methods, Figure S3, Data S4), corresponding to 621

unique CpGs and 222 unique genes. As expected, CpGs

located on promoters are more likely to show an opposite

direction of effect with the gene than CpGs located outside

regulatory regions (Fisher’s test p¼ 3.8353 10�6, Figure 1F,

supplemental note 1, Figure S4); additionally, we had pre-

viously identified 80 (36.0%) of the 222 genes as showing a

negative correlation between expression and promoter

methylation levels.8

Population specificity of Indonesian eQTLs

The bulk of eQTL studies to date have been carried out in

European populations. To better understand the impact

of ancestry on the genetic architecture of gene regulation,

we compared eQTLs detected here with those identified in

three comparable mostly European datasets with publicly

available genome-wide summary statistics: GTEx46 (n ¼
670), the Estonian Biobank cohort47 (n ¼ 491), and Twins

UK48 (n ¼ 384). While 996 (9.8%) of the 10,214 unique

eGenes were shared across cohorts, the same number of

eGenes were detected in all European cohorts but not in

Indonesia (Figure 2A). Furthermore, 698 (6.8%) were

only detected in the Indonesian data. After relaxing our

FDR threshold to p < 0.10 to account for differences in po-

wer, we tested 3,300 Indonesian eGenes for eQTL colocal-

ization with any of the European datasets. On average,

26.9% of tested genes showed some evidence of colocaliza-

tion and 6.71% showed robust support across a wide range

of prior probabilities with each European dataset (Table

S4). In total, 1,177 (35.7%) of tested genes showed some

evidence of colocalization and 318 (9.6%) robust support

for colocalization with a wide range of prior probabilities

for a common causal variant with at least one European da-

taset. Of these, 105 (33.0%) genes (Table S4), including Ras

suppressor RSU1 (Figure 2E, Figure S5), showed robust sup-

port for colocalization between Indonesia and all European

datasets. In contrast, we found much higher levels of co-

localization when comparing between European datasets

at a similarly relaxed FDR: on average, 46.3% of tested

genes colocalized across at least one pair of datasets with

some support and 17.8% with robust support (Table S4).

These results suggest a true difference in eQTL architecture

between the Indonesian and European data. Indeed, 1,081

(32.8%) of genes exhibited no evidence of colocalization

between Indonesia and any European dataset, even with

relaxed thresholds (material and methods). We followed

up on these results by using a multivariate adaptive

shrinkage model (material andmethods) that enables joint

analysis of all the datasets simultaneously and is geared

toward more accurately estimating effect sizes and identi-

fying shared and specific effects. Concordant with the co-

localization results above, we found eQTL effects were

largely shared between the European datasets (Figure 2B).

We also identified 2,411 Indonesia-specific eSNP-eGene

pairs, corresponding to a total of 1,599 eGenes. To generate
56 The American Journal of Human Genetics 109, 50–65, January 6, 2
a robust set of Indonesia-specific eQTLs, we intersected the

results from the colocalization and multivariate analyses

and identified 245 genes that harbored Indonesia-specific

eQTLs and had no evidence of colocalization with Euro-

pean eQTLs. It should be noted that these Indonesia-spe-

cific eQTLs are likely to be present in some unsurveyed

populations and thus specific to particular populations

and not only Indonesia. As our comparison using the avail-

able datasets is between European and Indonesian eQTLs,

we are calling this set of eQTLs Indonesia specific in the

current study.

To identify the attributes of Indonesia-specific eQTLs,

we compared these 245 genes to the set of 105 genes

with robust support for colocalization between Indonesia

and all European datasets. Although there is no overall

enrichment for GO or KEGG terms among Indonesian-

specific eGenes, there are clinically relevant genes in this

set (Table S5), including the NRAS proto-oncogene

(Figure 2F, Figure S5). Concordant with previous reports,

eQTLs that are shared between populations exhibit larger

effect sizes than other eQTLs (t test p < 2.2 3 10�16),

and most (97%–100%) shared eQTLs show the same direc-

tion of effect in both populations57 (Figure S6). Indonesia-

specific eQTLs exhibit significantly larger effect sizes in

Indonesia than in the European datasets, while colocalized

eQTLs show no statistically significant differences in effect

sizes between datasets, as expected (Figure 2D). We hy-

pothesized that differences in genetic trait architecture

may underlie these population-specific eQTLs. Indeed,

when we compared the MAF of eSNPs between Indone-

sians and Europeans, we found no significant difference

among the colocalized eQTLs but a significantly higher

MAF in Indonesians for the Indonesian-specific eQTLs

(t test; mean MAF in Indonesia 0.26; in the 1000 Genomes

European super population 0.22; p ¼ 0.0099), suggesting

population differences in haplotype structure contribute

to our observation. However, they alone were insufficient

to explain the entirety of Indonesia-specific eQTLs. Thus,

we also examined the role of gene expression levels—i.e.,

whether a gene is highly expressed in Indonesian samples

but expressed at low levels or not at all in European ones.

Indeed, as with MAF, we observed no significant difference

in expression levels of colocalized eGenes across the data-

sets, but there was a significant increase in expression of

the Indonesia-specific eGenes (t test; mean log2(TPM) in

Indonesia 3.5, in GTEx whole blood 2.6, p < 2.8 3 10�12

, Figure S7). Interestingly, there were a number of

Indonesia-specific eQTLs where little or no difference in

MAF or gene expression was observed, highlighting the

need for a deeper mechanistic investigation of these loci

(Figure S8).

While some of the population specificity we detect may

be attributable to limited statistical power across all data-

sets, our findings illustrate the value of performing ana-

lyses on diverse populations to achieve a comprehensive

understanding of the genetic regulation of molecular

traits. Importantly, of all datasets under consideration,
022
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Figure 2. Sharing of eQTLs between Indonesian and European populations
(A) Overlap of permutation-significant (FDR-p < 0.1) eGenes between Indonesia and three European eQTL cohorts.
(B) Pairwise sharing of eQTLs between the datasets across all tested SNP-gene pairs.
(C) Minor allele frequencies of shared and Indonesia-specific eSNPs in Indonesia and the 1000 Genomes European super-population.
MAFs are reported relative to the minor allele in Indonesia.
(D) Absolute effect sizes of the shared and Indonesia-specific eQTLs. In (C) and (D), ANOVA p values and t test p values between
Indonesia and the European datasets are indicated.
(E) An example of a colocalized gene, RSU1.
(F) An example of an Indonesia-specific eQTL for the gene NRAS. In (E) and (F), �log10(p values) for Indonesia are indicated in blue and
for the European datasets are indicated in gray.
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Figure 3. Integrating local ancestry inference at regulatory loci to detect QTLs driven by ancestry and archaic introgression
(A) Schematic illustrations of variation in QTL genotype (A ¼major allele, B ¼minor allele) and local ancestry are shown across the two
haplotypes in three individuals in three populations. In the first example, QTL genotype variation is independent of local ancestry and
allele frequencies are equal between populations. In the second example, QTL B allele closely segregates with the ancestry informative
marker and allele frequencies differ between populations. There is an expected correlation between the genotype and themolecular trait,
as well as inferred ancestry and the trait.
(B and C) Linear regression between the numbers of QTL B alleles and numbers of inferred Papuan, Denisovan, and Neanderthal alleles
reveal subsets of (B) eQTLs and (C) methylQTLs largely driven bymodern LA and archaic introgression. The numbers of QTLs exceeding
the R2 threshold of 0.7 are indicated.
(D) An example of an eQTL independent of modern LA.

(legend continued on next page)
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the Indonesian one is the smallest, making our inability to

replicate Indonesian eQTLs in European studies more

likely to be biologically meaningful and clear candidates

for functional follow-up.

Subsets of expression and methylation QTLs are largely

driven by modern local ancestry and archaic

introgression

In addition to differences between Indonesians and Euro-

peans, we sought to understand the extent to which the

two distinct sources of LA in modern Indonesians, as

well as introgression from archaic hominins, have

impacted gene regulatory architecture. We examined the

haplotype background on which our QTLs occur and

asked whether there was a relationship between the in-

ferred ancestral source of the genotype and expression/

methylation levels (material and methods, Figures 3A,

3D, and 3E). We find nine, two, and 31 instances

where variance in eQTL genotype is largely driven (R2 >

0.7) by modern LA, archaic Denisovan introgression,

and archaic Neanderthal introgression, respectively

(Figure 3B, Data S5, Data S6, Data S7), directly linking

ancestry-informative alleles to expression differences be-

tween individuals. Similarly, we find 301, 112, and 477

instances where the methylQTL genotype is driven by

modern LA, Denisovan introgression, and Neanderthal

introgression, respectively (Figure 3C, Data S8, Data S9,

Data S10). In total, 2.1% of eQTLs and 2.29% of meth-

ylQTLs are driven by modern LA or archaic introgression;

given the unbalanced representation of the two ancestries

in our dataset (Figure S1) this number represents only a

lower boundary, and the true number is likely to be

much greater.

Of the nine and 373 unique Papuan-driven QTL target

genes and CpGs, we had previously identified seven

(77.8%) and 270 (72.4%) as differentially expressed/meth-

ylated in at least one of the pairwise comparisons between

the three study populations.8 Further, 42 out of the 122

(34.4%) Denisovan-driven methylQTL targets were differ-

entially methylated and seven (22.6%) and 149 (25.6%)

of the Neanderthal-driven eQTL and methylQTL targets

are differentially expressed/methylated. However, despite

multiple lines of evidence suggesting that some intro-

gressed Neanderthal and Denisovan alleles have been

positively selected for in human populations,58–60 we

were unable to identify evidence of recent positive selec-

tion among these loci (supplemental note 3, Table S6, Ta-

ble S7). Altogether, our findings highlight the potential

for local sources of genetic ancestry, whether modern or

archaic, to variably impact gene expression architecture

across populations and again emphasize the importance

of truly diverse sampling.
(E) An example of an eQTL highly correlated with modern LA. In (D)
ber of inferred Papuan alleles and eQTL B alleles. rs ID and R2 are indi
on the normalized expression level of the target gene. The rightmos
target gene.
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Connecting regulatory variants to complex traits

Differences in genetic architecture between populations,

including differences in allele frequencies and patterns of

LD, are known to limit the transferability of GWASs and

polygenic risk scores across populations.1,4 Thus, we

sought to examine how the differences in QTL architecture

between Indonesian and European populations propagate

through to the genetic underpinnings of complex traits.

First, using the same Bayesianmethodology as above, we

tested for colocalization between the significant Indone-

sian QTLs and 36 hematological traits by using genome-

wide summary statistics from a GWAS on 173,480

participants of European ancestry.52 We detected 30

(1.5%) and 614 (1.3%) unique eGenes and methylCpGs,

respectively, that colocalize with at least one trait (Table

S8); in total, we identified 78 significant trait-eGene pairs.

The genes and CpGs colocalized with the most unique

traits were ITGA4 and cg18815117, colocalizing with ten

and 16 traits, respectively. ITGA4 has been previously

implicated in blood trait GWASs across diverse popula-

tions.61–65 The CpG cg18815117 is located in the body of

CRHR1, an important regulator of the hypothalamic–pitu-

itary–adrenal (HPA) axis. Epigenetic changes in the body

and promoter of CRHR1 have been found to be highly pre-

dictive of major depressive disorder and panic disorder in

some cohorts.66–68

Next, we repeated the GWAS colocalization analysis, this

time by using the three European eQTL datasets alone.

Compared to the 30 eGenes that colocalized with at least

one GWAS trait, here we found an average of 55 unique

eGenes colocalizing with at least one trait (45 in GTEx,

48 in TwinsUK, and 77 in the Estonian Biobank). Focusing

on pairs of colocalized GWAS-eQTLs—rather than unique

eGenes—we found that 72 (28%) of the 257 unique signif-

icant trait-gene pairs detected across all datasets were

shared across all three European datasets (Figure 4A) and

an average of 25.7% of colocalized genes were shared be-

tween datasets for a given trait (Table S9). Furthermore,

31 GWAS-eQTL pairs (12%) were shared between all three

European datasets and Indonesia. The GWAS-eQTLs

shared between Indonesia and Europe show robust sup-

port for eQTL colocalization, indicative of a shared genetic

architecture underlying the regulation of these genes and

the biological association identified by GWAS (Figure 4B).

Among the shared GWAS-eQTLs, we identify SLC12A7,

which colocalized with red blood cell distribution width,

a biomarker representing the variability in the size of circu-

lating erythrocytes (Figure 4C). Variants annotated with

SLC12A7 have previously been uncovered in GWASs on

this and other datasets.52,69,70

In addition to these population-shared GWAS-eQTLs, we

also identified population-specific colocalized pairs of
and (E), the leftmost plot shows the correlation between the num-
cated. The middle plot shows the effect of the eQTL B allele dosage
t plot shows the effect of the inferred Papuan allele dosage on the
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Figure 4. GWAS colocalization with
eQTLs fromdiverse populations identifies
shared and population-specific variant-
gene-trait associations
(A) Overlap of colocalized trait-gene pairs.
The horizontal bar plot shows the
numbers of significant colocalized pairs
for each dataset. The dot plot shows the
intersections and the vertical bar plot
shows the numbers of shared trait-gene
pairs for each intersection.
(B) European GWAS shows more colocali-
zation with European eQTLs than Indone-
sian eQTLs. The x axis shows the�log10 of
the lower bound of the prior probability of
colocalization where the gene passes the
colocalization threshold, and larger values
indicate a more robust support for eQTL
colocalization. Theminimum prior proba-
bility threshold of 1.0 3 10�6 for robust
colocalization is indicated.
(C) An example of a GWAS-eQTL signifi-
cantly colocalized across Indonesia and
all European datasets. �log10(p values)
for red blood cell component distribution
width (top), SLC12A7 eQTLs in Indonesia
(middle), and SLC12A7 eQTLs in the three
European datasets (bottom) are shown.
(D) Population-specific GWAS-colocalized
eGenes are less likely to show eQTL
colocalization between Indonesia and
Europe than shared GWAS-genes. The
y axis shows the �log10 of the lower
bound of the prior probability of colocali-
zation where the gene passes the coloc-
alization threshold, and larger values
indicate more robust support for eQTL
colocalization.
GWAS-eQTLs. Overall, European eQTLs show more evi-

dence for colocalization with GWAS traits than Indonesian

eQTLs (Figures 4A and 4B). Indeed, 208 (80.9%) of the 257

unique eGene-trait pairs that were detected across at least

one of the European datasets could not be replicated in

Indonesia. Intriguingly, although the GWAS was per-

formed in a predominantly European sample, 29 GWAS-

eQTL pairs colocalized exclusively in the Indonesian data

and not in any of the European datasets (Figure 4A). Out

of these, eight were not colocalized in any of the European

datasets even with a relaxed significance threshold (see

material and methods). Reassuringly, these population-

specific GWAS genes show low support for eQTL colocali-

zation (Figure 4D), again strongly arguing for differences

in the genetic architecture underlying gene regulation,

while simultaneously supporting the importance of the
60 The American Journal of Human Genetics 109, 50–65, January 6, 2022
genes in question in contributing to

the overall trait. The striking differ-

ence in GWAS colocalization be-

tween European and Indonesian

eQTLs reflects the poor transferability

of genetic association studies be-

tween populations.

Finally, we sought to identify local
ancestry or archaic introgression-driven QTLs that are

associated with hematological traits. Among the GWAS-co-

localizing QTLs were a Papuan-driven methylQTL that co-

localizes with hemoglobin measurements, and notably,

four Denisovan-associated methylQTLs that colocalize

with platelet count. We further examined these four meth-

ylQTLs to gain insight into possible mechanisms underly-

ing the connection with platelet count (supplemental note

4, Table S10). All four target CpGs are located near the HLA

superlocus. While these methylQTLs do not significantly

colocalize with eQTLs in our data, all four methylSNPs

are nominally associated with the expression of the nearby

gene ZFP57 (lowest p value¼ 5.853 10�6). ZFP57 is a tran-

scriptional regulator known to have an important role in

DNA methylation, epigenetic regulation, and imprinting

during development.71 Expression of ZFP57 is dependent



on underlying genetic variation, and while the biology

of ZFP57 in adults is not well studied, it has been impli-

cated as the causal gene connecting some GWAS variants

to cancer and HIV/AIDS progression.72 As above, the

geographically restricted ancestry of the methylSNPs and

their linkage structure suggests that the regulatory interac-

tions may not be fully shared between populations.

Further GWASs and functional studies on diverse popula-

tions are needed for the fine-mapping of causal variants

underlying gene regulation and complex traits.
Discussion

Indonesia is the world’s fourth most populous country and

a region that has been vastly understudied, but it is also

one that is undergoing a rapid demographic and lifestyle

shift giving rise to an expanding middle class and where

non-infectious, complex diseases are already contributing

substantially to mortality and morbidity. As is happening

elsewhere in the Global South, this transition accelerates

the need to understand the molecular underpinnings of

complex disease, and in this context, our study adds to a

growing literature demonstrating the importance of char-

acterizing functional genomics within traditionally under-

studied populations.73,74

We have explored the degree to which functional varia-

tion differs between Europeans and Indonesians, andmore

broadly, the difficult problem of translating eQTL knowl-

edge across populations. Focusing largely on a set of eQTLs

that had strong evidence of being colocalized between

populations and a set of eQTLs with strong evidence of be-

ing specific to Indonesia, we were able to examine poten-

tial drivers of population specificity. At least some portion

of the population-specific effects we observe are explained

by population-specific genomic architecture at cis-regula-

tory regions. The future identification of such eQTLs is

fully contingent on performing large-scale QTL studies in

underrepresented populations, and our work demonstrates

the value of such approaches. Other drivers of population

differences in architecture are likely to include trans effects

(themselves most likely driven by population-specific cis

effects),75 as well as environmental differences between

populations.76 The identification of 245 putative popula-

tion-specific eQTLs—a number of which implicate genes

involved with biological processes such as immunity and

cancer progression—coupled with the insights gained

from exploring the genetic underpinnings of these eQTLs

advances our understanding of the genetic architecture

of gene regulation. In the future, the collection of multi-

modal data andmapping of QTLs across tissues and diverse

populations can allow a more comprehensive assessment

of population specificity and the exact mechanisms under-

lying population differences in gene regulation. In partic-

ular, future surveys across South East Asia can further

clarify the genomic and environmental drivers of gene reg-

ulatory variation in the area.
The Am
In addition to comparisons between Indonesian and Eu-

ropean populations, we were able to leverage the unique

cline of Asian and Papuan ancestry in Indonesia to identify

both QTLs driven by local ancestry or introgression from

archaic hominin species. A large proportion of the target

genes and CpGs of these LA-driven QTLs were previously

identified as differentially expressed or methylated be-

tween islands, demonstrating how between-island differ-

ences in genetic ancestry can contribute to differences in

molecular phenotypes in the region. Notably, these loci,

whichmight a priori appear to be prime candidates for local

adaptation, showed no evidence of having been targets of

positive selection. This suggests that the relationship

between trait architecture, demographic history, and

adaptation to local pressures such as pathogens is not

straightforward. However, our analysis demands a strong

correlation between allelic state and ancestry, making our

estimates of LA-driven QTLs highly conservative and iden-

tifies loci that have evolved under specific scenarios, e.g.,

drift to high frequency in the Papuan population. Relaxing

these demands may lead to the discovery of other regulato-

ry variants that arose within Papua after divergence from

Asia. Furthermore, our analysis is limited by the small sam-

ple size. Future sample collection efforts across diverse pop-

ulations will address this limitation. Understanding how

complex gene regulatory landscapes and the polygenicity

of most traits constrain the action of natural selection is

an open challenge in human genomics, one underscored

by the difficulty many studies of genome-wide positive se-

lection in humans have encountered in linking evidence

of selection at the DNA level to tangible phenotypes.77,78

Similarly, the modest overlap of GWAS hits with the

population-specific QTLs represents a non-trivial chal-

lenge in the field of functional genomics: how do we

connect population-specific functional variation to loci

associated with complex traits identified in European pop-

ulations? From a practical perspective, we do not anticipate

a robust expansion of traditional GWASs’ being carried out

in understudied populations. To this end, the field will

need to move away from simple intersections of GWASs

and QTL hits, which rely upon shared LD structure,

and instead integrate genetic variation, GWAS results,

context-specificmulti-omics (in simulated or actual disease

states and in a range of cell types), and robust func-

tional validations to define common sets of regulatory ele-

ments that contribute to disease and are shared across

populations.
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3654. The RNA sequencing data are deposited in study EGA:
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Supplementary Figure 1. Proportions of inferred Papuan ancestry and Denisovan 

introgression are highly correlated (Pearson’s correlation coefficient 0.995). 

 



 

 

Supplementary Figure 2. Enrichment of methylQTLs (A) and eQTLs (B) among DNase 

hypersensitive sites (DHS) and histone marks in ENCODE GM12878 and K562 cell lines. 

Supplementary Note 1. Colocalized cis-eQTLs and cis-methylQTLs indicate shared 
causal variants. We integrated the methylQTL and eQTL calls to gain insight into how genetic 

regulation of CpG methylation may contribute to the regulation of gene expression. 1,140 of the 

unique permutation significant eVariants were also nominally associated (nominal p<1×10-7) 

with the methylation of at least one CpG, and 2,015 of the unique permutation-significant 

methylVariants were also nominally associated with the expression of at least one gene, 



 

suggesting that a substantial number of causal eVariants may also be causal methylVariants, 

and vice versa. This overlap corresponds to 4,639 CpG-gene combinations potentially harboring 

a common causal variant (CCV). We tested for colocalization between these pairs of CpGs and 

genes using a Bayesian method as implemented in coloc v4. Among the tested pairs, we 

detected  720 (15.5%) eQTL-methylQTL pairs that showed robust support for colocalization with 

a wide range of prior probabilities for a common causal variant (Supplementary Figure 3, 

Methods). 

We explored the direction of the effects of top-SNPs associated with the 720 CpG and gene 

pairs that exhibit a high probability of a single shared causal variant. Concordant with previous 

studies1,2, 56.1% of these eQTL-methylQTL pairs show an opposite effect direction. This 

proportion is 61.9% when only including pairs that had the same top-SNP based on QTL p-

values, and 69.1% when further limiting to CpGs that are located on promoter regions. Pairs 

that show an opposite effect also show a high correlation between the absolute effect sizes 

(Pearson’s correlation 0.49, p < 2.2×10-16), while pairs with the same effect directions don’t 

(Pearson’s correlation 0.03, p=0.64) (Supplementary Figure 4). Colocalized CpGs located on 

promoters are more likely to show an opposite direction in effect with the gene than CpGs 

located outside promoters or enhancers (Fisher’s test p=3.835×10-6), but the same is not 

observed for CpGs located on enhancers when compared to those located outside promoters or 

enhancers (Fisher’s test p=0.6808). 



 

 

Supplementary Figure 3. Distribution of the lower bounds of the prior probabilities (p12) that 

suggest colocalization across 4,639 tested methylQTL-eQTL pairs. As the posterior probability 

for colocalization is dependent on the prior probability, a post-hoc sensitivity analysis was used 

to determine the range of prior probabilities for which colocalization is supported. Pairs passing 

the colocalization threshold with a range of p12 values from <1.0×10−6 to 1.0×10−4 (lower bound 

of p12 below 1.0×10−6) were considered to show robust support for colocalization. 

  



 

 
Supplementary Figure 4. Genetically regulated promoter methylation alters target gene 
expression levels. Relationship between the absolute effect sizes of colocalized methylQTLs 

and eQTLs that show the same direction of effect (A) and opposing direction of effect (B) on the 

target trait. Pairs that share the same top-SNP are plotted and variants located on promoter 

regions are highlighted. Smoothed means based on linear models in the form y ~ x and 95% 

confidence intervals are shown for each set. 

 



 

 
Supplementary Figure 5. Manhattan plots of the eQTL -log10(p-values) for a colocalized gene 

and an Indonesia-specific gene in the Indonesian data and three European eQTL datasets. 



 

 

Supplementary Figure 6. Effect sizes of colocalized eQTLs in the Indonesian and European 

datasets. 

 

Supplementary Figure 7. Expression levels of colocalized and Indonesia-specific eGenes in 

the Indonesian data and GTEx whole blood data. 



 

 

Supplementary Figure 8. Relationship between absolute differences in ALT allele frequencies 

and expression levels of the Indonesia-specific eQTLs between Indonesia and Europe. 

Supplementary Note 2. Qualities of eQTLs driven by archaic ancestry. We compared the 

absolute effect sizes of the archaic ancestry-driven QTLs and the effect sizes of the significant 

QTLs not driven by archaic ancestry. Denisovan and Neanderthal ancestry-driven eQTLs 

(Supplementary Figure 9) and methylQTLs (Supplementary Figure 10) exhibit significantly 

larger absolute effect sizes than methylQTLs not driven by archaic ancestry. However, as the 

minor allele frequencies of the archaic driven QTLs are lower, we are less powered to detect 

small effect QTLs driven by archaic ancestry (Supplementary Figure 11). We performed allele 

frequency matching with the nearest neighbor matching method of the R package MatchIt 

v3.0.23. There were no significant differences in the mean absolute effect sizes of the MAF 

matched sets and the archaic driven QTLs. 



 

 
Supplementary Figure 9. Minor allele frequencies (MAF) and absolute effect sizes of eQTLs 

driven by Denisovan or Neanderthal introgression and eQTLs not driven by archaic 



 

introgression (“other”) before (A) and after (B, C) allele frequency matching. t-test p-values are 

indicated for each pairwise comparison. 

 
 



 

Supplementary Figure 10. Minor allele frequencies (MAF) and absolute effect sizes of 

methylQTLs driven by Denisovan or Neanderthal introgression and methylQTLs not driven by 

archaic introgression (“other”)  before (A) and after (B, C) allele frequency matching. t-test p-

values are indicated for each pairwise comparison. 

 

 
Supplementary Figure 11. A: Power to detect QTLs as a function of MAF when N=115. B: 
Minimum detectable slope in simple linear regression as a function of MAF, with various power 

levels. In both models, the type I error rate was set to 0.01 and the SD of the linear model to 

0.2. 

 

Supplementary Note 3. Identifying ancestry-driven QTLs under positive selection. We 

asked whether positive selection on ancestry informative regulatory variants may have 

contributed to the between-population variation in molecular phenotypes in the region. We used 

a haplotype-based nSL selection scan (Methods) to identify genomic regions that show signs of 

past selective sweeps and found 4.7%, 4.6%, and 5.0% of the genome to be under positive 

selection in Mentawai, Sumba, and Korowai, respectively. We used a colocalization-based 

method (Methods) to identify shared signals between the QTLs and nSL and detect no 

significant overlap between QTLs and selection. 

 

Additionally, we overlapped the ancestry-driven QTLs with genomic regions with strong 

evidence of positive selection. We detect no clear overrepresentation of ancestry-driven QTLs 

among these regions (Supplementary Table 5). However, we find individual QTLs that overlap 

them (Supplementary Table 6, Supplementary Figures 10, 11), including one Papuan-driven 



 

eQTL under selection in Mentawai, one Neanderthal-driven eQTL in Korowai, and one in 

Mentawai, as well as Papuan-driven methylQTLs under selection in Mentawai (2), Sumba (2), 

and Korowai (12).  

 

Moreover, we detect one Denisovan-driven methylQTL under selection in Korowai, associated 

with a CpG located on the promoter of ZNF426. Genetic variation associated with ZNF426 and 

other KRAB-ZNF genes has previously been identified on candidate regions for positive 

selection in multiple human populations4,5. Further, we identified 13, 6, and 3 Neanderthal-

driven methylQTLs under selection in Mentawai, Sumba, and Korowai (Supplementary Table 6). 

For example, a Neanderthal-driven methylQTL under selection in Mentawai was also nominally 

associated (p = 2.596×10-7) with CATSPER3 (Cation Channel Sperm Associated 3) expression, 

which was differentially expressed between Mentawai and Korowai, as well as Sumba and 

Korowai6. Neanderthal variation in sodium channel genes was recently linked to increased pain 

sensitivity in modern humans7. 

 



 

 

Supplementary Figure 12. Modern ancestry and archaic introgression -driven eQTLs 

overlapping genomic windows that show evidence of recent positive selection in each of the 

three study populations. Variance in QTL genotype explained (R2) is shown on the x-axis of 

each plot. Variants with R2 > 0.7 were considered to be highly correlated with ancestry (vertical 

line). The proportion of positions within 50Kb windows that show an nSL > 2 is shown on the y-

axis. Genomic windows with this proportion >0.3 were considered to be showing evidence of 

positive selection (horizontal line). The target genes of eQTLs showing both a significant 

correlation with ancestry and evidence of selection are labeled. 



 

 

Supplementary Figure 13. Modern ancestry and archaic introgression driven methylQTLs 

overlapping genomic windows that show evidence of recent positive selection in each of the 

three study populations. Variance in QTL genotype explained (R2) is shown on the x-axis of 

each plot. Variants with R2 > 0.7 were considered to be highly correlated with ancestry (vertical 

line). Proportion of positions within 50Kb windows that show an nSL > 2 is shown on the y-axis. 

Genomic windows with this proportion >0.3 were considered to be showing evidence of positive 

selection (horizontal line). The target CpGs of methylQTLs showing both a significant correlation 

with ancestry and evidence of selection are labeled. 



 

Supplementary Note 4. Qualities of the Denisovan-driven GWAS-eQTLs. We assessed the 

credibility of the four Denisovan-driven methylQTLs that colocalize with platelet count GWAS 

loci. First, we assessed our ability to correctly call genotypes on these positions, to correctly call 

methylQTLs, and to identify the correlation between the genotypes and the numbers of inferred 

Denisovan alleles. We used mappability scores generated with Umap8 to assess mappability on 

regions overlapping these methylVariants. Umap calculates the single-read mappability of 

genome for a range of sequencing read lengths, the single-read mappability of a genomic 

region being defined as a fraction of that region that overlaps with at least one uniquely 

mappable kmer. For a given sequence, mappability of 1 means that the sequence is uniquely 

mappable on the forward strand. Uniquely mappable regions with various kmers were 

downloaded from the Hoffman Lab website (Web Resources). All four variants are located on 

regions that are uniquely mappable with kmer lengths of 24, 36, 50, and 100bp, apart from 

chr6:29,799,383 which is on a region that is only uniquely mappable with kmers 36, 50, and 

100bp. All four variants were called with high read depth, ranging from 29,492 to 37,373. All four 

variants have adequate MAFs, ranging from 0.161 to 0.302. All four methylQTLs show large 

effect sizes, the absolute effect size ranging from 0.66 to 0.88. Furthermore, all methylVariants 

show a clear correlation with the number of inferred Denisovan alleles, R2 ranging from 0.73 to 

0.90. The methylVariants associated with cg03118604 and cg03861427 are located within 

741bp of each other and are in LD. 

Then, we assessed whether sequence similarity across the genome could lead to spurious 

signals in the CpG methylation measurements using the Illumina EPIC array. We used 

megablast of BLASTN9 to map the forward sequences flanking the CpGs to the human 

reference genome. All four sequences map to the HLA locus with high confidence and do not 

map to other regions (Supplementary Table 10). 
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