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Summary
Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We per-

formed gene-based association testing of blood lipid levels with rare (minor allele frequency< 1%) predicted damaging coding variation

by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African,

16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some

of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples.

We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three

(EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence

of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein

cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate

that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based

GWAS index SNP is often the functional gene for blood lipid levels.
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Introduction

Blood lipid levels are heritable complex risk factors

for atherosclerotic cardiovascular diseases.1 Array-based

genome-wide association studies (GWASs) have identified

>400 loci as associated with blood lipid levels, explaining

9%–12% of the phenotypic variance of lipid traits.2–8

These studies have identified mostly common (minor

allele frequency [MAF] > 1%) noncoding variants with

modest effect sizes and have been instrumental in defining

the causal roles of lipid fractions on cardiovascular dis-
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The Am
ease.9–13 Despite these advances, the mechanisms and

causal genes for most of the identified variants and loci

can be difficult to determine.

Genetic association studies testing rare coding variants

have potential to directly implicate causal genes. Advances

in next-generation sequencing over the last decade have

facilitated increasingly larger studies with improved power

to detect associations of rare variants with complex dis-

eases and traits.14,15 However, most exome sequencing

studies to date have been insufficiently powered for rare

variant discovery; for example, Flannick et al. estimated
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that it would require 75,000 to 185,000 sequenced cases of

type 2 diabetes (T2D) to detect associations at known drug

target genes at exome-wide significance.15

Identifying rare variants with impact on protein func-

tion has helped elucidate biological pathways underlying

dyslipidemia and atherosclerotic diseases such as coronary

artery disease (CAD).14,16–25 Successes with this approach

have led to the development of novel therapeutic targets

to modify blood lipid levels and lower risk of atheroscle-

rotic diseases.26,27

The vast majority of participants in previous studies

have been of European ancestry, highlighting the need

for more diverse study sample. Such diversity can

identify associated variants absent or present at very

low frequencies in European populations and help impli-

cate new genes with generalizability extending to all

populations.

We have assembled exome sequence data from

>170,000 individuals across multiple ancestries and sys-

tematically tested the association of rare variants in each

gene with six circulating lipid phenotypes: low-density li-

poprotein cholesterol (LDL-C), high density lipoprotein

cholesterol (HDL-C), non-HDL-C, total cholesterol (TC),

triglycerides (TG), and the ratio of TG to HDL-C (TG:HDL).

We find 35 genes associated with blood lipid levels, show

evidence of gene-based signals in array-based GWAS loci,

show enrichment of lipid gene-based associations in

LDL-C drug targets and genes in close proximity of

GWAS index variants, and test lipid genes for association

with CAD, T2D, and liver enzymes.
Subjects and methods

Study overview
Our study samples were derived from four major data sources with

exome or genome sequence data and blood lipid levels: CAD case-

control studies from the Myocardial Infarction Genetics Con-

sortium28,29 (MIGen, n ¼ 44,208) and a UK Biobank (UKB) nested

case-control study of CAD28 (n ¼ 10,689); T2D cases-control

studies from the AMP-T2D-GENES exomes15 (n¼ 32,486); popula-

tion-based studies from the TOPMed project30,31 freeze 6a data

(n ¼ 44,101) restricted to the exome; and the UKB first tranche

of exome sequence data32,33 (n ¼ 40,586) (see supplemental infor-

mation). Informed consent was obtained from all subjects, and

committees approving the studies are available in the supple-

mental information.

Within each data source, individuals were excluded if they failed

study-specific sequencing quality metrics, lacked lipid phenotype

data, or were duplicated in other sources. Sequencing and quality

control performed in each study is available in the supplemental

methods. We additionally removed first- and second-degree rela-

tives across data sources while we kept relatives within each data

source because we were able to adjust for relatedness within

each data source by using kinshipmatrices in linearmixedmodels.

If samples from the same study were present in different data sour-

ces, we used the samples in the data source that has the largest

sample size from the study and removed the overlapping set

from the other data source. For instance, samples from the Athero-
84 The American Journal of Human Genetics 109, 81–96, January 6, 2
sclerosis Risk in Communities (ARIC) Study were removed from

TOPMed and kept in MIGen, which had more sequenced samples

from ARIC. Similarly, samples from the Jackson Heart Study were

kept in TOPMed and removed from MIGen. To obtain duplicate

and kinship information across data sources, we used 14,834 com-

mon (MAF > 1%) and no more than weakly dependent (r2 < 0.2)

variants by using the make-king flag in PLINK v2.0.

Single-variant association analyses were performed within each

data source, case status, and ancestry combination. The data were

sequenced and variant calling was performed separately by data

source, and this allowed us to look for effects by case status and

genetically inferred and/or reported ancestry groups. We per-

formed gene-based meta-analyses by combining single-variant

summary statistics and covariance matrices generated from

RVTESTS.34 We performed ancestry-specific gene-based meta-ana-

lyses by combining single-variant summary data from five major

ancestries with >10,000 individuals across all data sources: Euro-

pean, South Asian, African, Hispanic, and East Asian ancestries.
Phenotypes
We studied six lipid phenotypes; total cholesterol (TC), LDL-C,

HDL-C, non-HDL-C, triglycerides (TG), and TG:HDL. TC was

adjusted by dividing the value by 0.8 in individuals reporting

lipid-lowering medication use after 1994 or statin use at any

time point. If LDL-C levels were not directly measured, then

they were calculated via the Friedewald equation for individuals

with TG levels < 400 mg/dL with adjusted TC levels. If LDL-C

levels were directly measured then, their values were divided by

0.7 in individuals reporting lipid-lowering medication use after

1994 or statin use at any time point.5 TG and TG:HDL levels

were natural logarithm transformed. Non-HDL-C was obtained

by subtracting HDL-C from adjusted TC levels. Residuals for

each trait in each cohort, ancestry, and case status grouping

were created after adjustment for age, age2, sex, principal compo-

nents, sequencing platform, and fasting status (when available)

in a linear regression model. We then inverse-normal trans-

formed the residuals and multiplied them by the standard

deviation of the trait to scale the effect sizes to the interpretable

units.
Variant annotation
We compiled autosomal variants with call rate > 95% within each

case and ancestry-specific analysis dataset with minor allele count

(MAC) R 1 (across the combined data). Variants were annotated

with the Ensembl Variant Effect Predictor35 and its associated

Loss-of-Function Transcript Effect Estimator (LOFTEE)36 and the

dbNSFP37 version 3.5a plugins. We limited our annotations to

the canonical transcripts. The LOFTEE plugin assesses stop-gained,

frameshift, and splice-site-disrupting variants. Loss-of-function

variants are classified as either high confidence or low confidence.

The dbNSFP is a database that provides functional prediction data

and scores for non-synonymous variants by using multiple algo-

rithms.37 We used this database to classify missense variants as

damaging by using two different definitions based on bio-

informatic prediction algorithms. The first is based on

MetaSVM,38 which is derived from ten different component scores

(SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERPþþ, Muta-

tionTaster, Mutation Assessor, FATHMM, LRT, SiPhy, PhyloP).

The second is based on five variant prediction algorithms

including SIFT, PolyPhen-2 HumVar, PolyPhen-2 HumDiv, Muta-

tionTaster, and LRT scores. Additionally, we ran a deep neural
022



network analysis (Splice AI) to predict splice-site-altering vari-

ants.39 Variant descriptive analysis was performed with a maximal

set of variants that were used for analysis of the lipid phenotype

with the largest sample size. The counts and proportions of vari-

ants—annotated according to the different predicted conse-

quences described above—were obtained out of an overall set of

variants.
Single-variant association analysis
Each data source was sub-categorized on the basis of ancestry and

CAD or T2D case status in the studies ascertained by disease status.

Subgrouping data sources yielded a total of 23 distinct sample sub-

categories. As relatives were kept within each sub-group, we per-

formed generalized linear mixedmodels to analyze the association

of single autosomal variants with standard-deviation corrected-in-

verse-normal transformed traits by using RVTESTS.34 We used

RVTESTS to generate summary statistics and covariance matrices

using 500 kb sliding windows. To obtain the single-variant associ-

ations, we performed a fixed-effects inverse-variance weighted

meta-analysis for multi-ancestry and within each of the five major

ancestries. We used an exome-wide significance threshold of p <

7.23 10�8 (Bonferroni correction for six traits and with previously

recommended threshold for coding variants p < 4.3 3 10�7)40 to

determine significant coding variants.
Gene-based association analysis
We used summary level score statistics and covariance matrices

from autosomal single-variant association results to perform

gene-based meta-analyses among all individuals and within each

ancestry by using RAREMETALS version 7.2.41 Samoan individuals

only contributed to the overall analysis. Gene-based association

testing aggregates variants within each gene unit by using burden

tests and sequence kernel association tests (SKATs), which allows

variable variant effect direction and size.42 The ‘‘rareMETALS.

range.group’’ function was used with MAF < 1%, which filters

out all variants with combined MAF > 1% in all meta-analytic da-

tasets. All variants with call rates < 95% and not annotated as loss

of function (LOF) via LOFTEE, splice-site variants or damaging

missense as defined by MetaSVM or by all SIFT, PolyPhen-2

HumVar, PolyPhen-2 HumDiv, MutationTaster, and LRT predic-

tion algorithms (damaging 5 out of 5) were excluded in the

gene-based meta-analyses.

We used six different variant groupings to determine the set of

damaging variants within each gene, (1) high-confidence LOF

via LOFTEE, (2) LOF and predicted splice-site-altering variants,

(3) LOF and MetaSVM missense variants, (4) LOF, MetaSVM

missense, and predicted splice-site-altering variants, (5) LOF and

damaging 5 out of 5 missense variants, and (6) LOF, damaging 5

out of 5 missense, and predicted splice-site-altering variants. We

used an exome-wide significance threshold of p< 4.33 10�7, Bon-

ferroni corrected for the maximum number of annotated genes

(n ¼ 19,540) and six lipid traits, to determine significant coding

variants. Two gene transcripts, DOCK6 and DOCK7, that overlap

with two well-studied lipid genes, ANGPTL8 and ANGPTL3,

respectively, met our exome-wide significance threshold. After

excluding variation observed in ANGPTL8 and ANGPTL3,

DOCK6 and DOCK7, respectively, were no longer significant and

have been excluded as associated genes.

We performed a series of sensitivity analyses for our results. We

repeated the multi-ancestry gene-based analyses by using an MAF

< 0.1% and compared our exome-wide significant gene-based re-
The Am
sults by using an MAF < 1% to using an MAF < 0.1%. We

compared the single variants in our top gene-based associations

with respective traits by using GWAS summary data.8 Gene-based

tests were repeated excluding variants identified in GWASs with

p < 5 3 10�8. Furthermore, all single variants included in each

of the top gene-based associations were analyzed in relation to

the respective trait. For each exome-wide significant gene-based

association, we obtained the association of each single variant

within the gene-specific variant groups with the respective pheno-

type. Then we determined—out of each gene’s overall set of vari-

ants—those that had p values at different significance thresholds

to identify the percentages of variants contributing to each

gene-based signal. To assess whether the most significant variant

within each gene was driving the association, we repeated gene-

based analyses after removing the respective top single variant

from gene-specific variant groups.

To understand whether variants contributing to top gene-based

signals were similar or different across different ancestries, we

determined the degree of overlap across ancestries for all variants

incorporated and then for those with p< 0.05. Finally, we checked

for overlap across the most significant (lowest p value) variant

from each of the gene-based signals.

Heterogeneity of gene-based estimates in all gene-trait-variant

grouping combinations passing exome-wide significant levels

was assessed across the five main ancestries (European, South

Asian, African, Hispanic, and East Asian) and between T2D and

CAD cases and controls via Cochran’s Q.

We performed replication of our top gene-based associations

with blood lipid levels in the Penn Medicine BioBank (PMBB)

and UK Biobank samples that did not contribute to the discovery

analysis (see supplemental methods).
Gene-based analysis of GWAS loci and drug targets
We obtained variants associated with LDL-C, HDL-C, and TG from

a recent GWAS in the Million Veterans Program.8 Then we identi-

fied genes within 5200 kb of each GWAS index variant and per-

formed gene-based analysis for each of those genes by using the

six variant groups. In-silico lookup of gene-based associations for

respective lipid traits was then performed for all genes within

defined GWAS loci. Drug target genes were obtained from the

drug bank database43 with the following search categories: ‘‘hypo-

lipidemic agents,’’ ‘‘lipid regulating agents,’’ ‘‘anticholesteremic

agents,’’ ‘‘lipidmodifying agents,’’ and/or ‘‘hypercholesterolemia.’’

A liberal definition for drug targets was used—drugs with any

number of targets and targets targeted by any number of drugs—

and then in-silico lookups were performed for gene-based

associations.
Gene-set enrichment analysis
Gene-set enrichment analyses were performed for sets of Mende-

lian-, protein-altering- and non-protein-altering GWASs, and

drug target genes with LDL-C, HDL-C, and TG. 21 genes associated

withMendelian lipid conditions were included on the basis of pre-

vious literature:2 LDLR, APOB, PCSK9, LDLRAP1, ABCG5, ABCG8,

CETP, LIPC, LIPG, APOC3, ABCA1, APOA1, LCAT, APOA5, APOE,

LPL, APOC2, GPIHBP1, LMF1, ANGPTL3, and ANGPTL4. We

analyzed GWAS gene sets on the basis of their coding status and

their proximity to the most significant signal in the GWAS. Cod-

ing variants were defined as missense, frameshift, or stop-gained

variants. Gene sets for coding or non-coding variants were then

stratified into three categories on the basis of proximity to the
erican Journal of Human Genetics 109, 81–96, January 6, 2022 85



Figure 1. Study samples and design
Flow chart of the different stages of the
study. Exome sequence genotypes were
derived from four major data sources:
the Myocardial Infarction Genetics con-
sortium (MIGen), the Trans-Omics from
Precision Medicine (TOPMed), the UK Bio-
bank, and the Type 2 Diabetes Genetics
(AMP-T2D-GENES) consortium. Single-
variant association analyses were per-
formed by ancestry and case status in
case-control studies and meta-analyzed.
Single-variant summary estimates and
covariance matrices were used in gene-
based analyses with six different variant
groups and in multi-ancestry and each of
the five main ancestries. AFR, African
ancestry; EAS, East Asian ancestry; EUR,
European ancestry; HIS, Hispanic ancestry;
SAM, Samoan ancestry; SAS, South Asian
ancestry.
most significant variant within each locus—closest, second

closest, and greater than second closest gene. For each gene within

each set, we obtained themost significant association in themulti-

ancestry or ancestry-specific meta-analysis set by using any of the

six different variant groups. Then each gene within each gene set

was matched to ten other genes on the basis of sample size, total

number of variants, cumulative MAC, and variant grouping near-

est neighbors via the matchit R function. Then we compared the

proportions by using Fisher’s exact test between the main and

matched gene sets by applying different p value thresholds.

Association of lipid genes with CAD and T2D data and

liver fat/markers
We determined the associations of 40 genes identified in the main

and GWAS loci analyses with CAD, T2D, and glycemic and liver

enzyme blood measurements. The association with T2D was ob-

tained from the latest gene-based exome association data from

the AMP-T2D-GENES consortium.15 The reported associations

were obtained from different variant groups on the basis of their

previous analyses. We additionally performed gene-based associa-

tion analyses with CAD by using the MIGen case-control, UKB

case-control, and UKB cohort samples with the variant groups

described above. Further, six traits including fasting plasma
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glucose, HbA1c, alanine aminotransferase,

aspartate aminotransferase, gamma glu-

tamyl transferase, and albumin were

analyzed in the UKB dataset. Single-variant

association analyses were performed with

RVTESTS. We used linear mixed models

incorporating kinship matrices to adjust

for relatedness within each study. Covari-

ance matrices were generated with 500 kb

sliding windows. We used RAREMETALS

to assess associations between aggregated

variants (MAF < 1%) in SKATs and burden

tests with CAD and each of the six quanti-

tative traits. We used six different variant

groupings to determine the set of

damaging variants within each gene, (1)

high-confidence LOF with LOFTEE, (2)
LOF and predicted splice-site-altering variants, (3) LOF and

MetaSVMmissense variants, (4) LOF, MetaSVMmissense, and pre-

dicted splice-site-altering variants, (5) LOF and damaging 5 out of

5 missense variants, and (6) LOF, damaging 5 out of 5 missense,

and predicted splice-site-altering variants.
Results

Sample and variant characteristics

Individual-level, quality-controlleddatawereobtained from

four sequenced study sources with circulating lipid data for

individuals of multiple ancestries (Figure 1). Characteristics

of the study samples are detailed in Table S1. We analyzed

data on up to 172,000 individuals with LDL-C, non-HDL-

C (a calculated measure of TC minus HDL-C), TC, HDL-C,

TG, and TG:HDL ratio (a proxy for insulin resistance).44,45

56.7% (n¼ 97,493) of the sample are of European ancestry,

17.4% (n¼ 30,025) South Asian, 9.6% (n¼ 16,507) African

American, 9.6% (n ¼ 16,440) Hispanic, 6.1% (n ¼ 10,420)

East Asian, and 0.7% (n ¼ 1,182) Samoan, based on geneti-

cally estimated and/or self-reported ancestry.



After sequencing, we observed 15.6 million variants

across all studies; we classified 5.0 million (32.6%) as tran-

script-altering codingvariants on the basis of an annotation

of frameshift, missense, nonsense, or splice-site acceptor/

donor by using the Variant Effect Predictor (VEP).35 A total

of 340,214 (6.7%) of the coding variants were annotated as

high-confidence LOF via the LOFTEE VEP plugin,36

238,646 (4.7%) as splice-site-altering identified by Splice

AI,39 729,098 (14.3%) as damaging missense as predicted

by the MetaSVM algorithm,38 and 1,106,309 (21.8%)

as damaging missense as predicted by consensus in all

five prediction algorithms (SIFT, PolyPhen-2 HumVar,

PolyPhen-2 HumDiv, MutationTaster, and LRT).37 As ex-

pected, we observed a trend of decreasing proportions of

putatively deleterious variants with increasing allele count

(Figure S2, Table S3).

Single-variant association

We performed inverse-variance weighted fixed-effects

meta-analyses of single-variant association results of LDL-

C, non-HDL-C, TC, HDL-C, TG, and TG:HDL ratio from

each consortium and ancestry group. Meta-analysis results

were well controlled with genomic inflation factors

ranging between 1.01 and 1.04 (Table S4). Single-variant

results were limited to the 425,912 protein-altering coding

variants with a total MAC > 20 across all 172,000 individ-

uals. We defined significant associations by a previously es-

tablished exome-wide significance threshold for coding

variants (p < 4.3 3 10�7)40 that was additionally corrected

for testing six traits (p¼ 4.33 10�7 divided by 6) within all

study samples or within each of the five major ancestries

(Tables S5–S10); this yielded in each analysis a significance

threshold of p < 7.23 10�8. A total of 104 rare coding var-

iants in 57 genes were associated with LDL-C, 95 in 54

genes with non-HDL-C, 109 in 65 genes with TC, 92 in

56 genes with HDL-C, 61 in 36 genes with TG, and 68 in

42 genes with TG:HDL. We identified six missense variants

in six genes (TRIM5 p.Val112Phe, ADH1B p.His48Arg,

CHUK p.Val268Ile, ERLIN1 p.Ile291Val [rs2862954],

TMEM136 p.Gly77Asp, and PPARA p.Val227Ala) >1 Mb

away from any index variant previously associated with a

lipid phenotype (LDL-C, HDL-C, TC, or TG) in previous ge-

netic discovery efforts (Tables S5–S10).3,7,8 PPARA p.Va-

l227Ala has previously been associated with blood lipids

at a nominal significance level in East Asians (p < 0.05),

where it is more common than in other ancestries.46

Both TRIM5 and ADH1B LDL-C increasing alleles have

been associated with higher risk of CAD in a recent

GWAS from CARDIOGRAM (odds ration [OR]: 1.08, p ¼
2 3 10�9; OR ¼ 1.08, p ¼ 4 3 10�4).47 Single-variant asso-

ciations were further performed in each of the five main

ancestries (Table S11).

Gene-based association

Next, we performed gene-based testing of transcript-

altering variants in aggregated SKATs and burden tests42

in all study participants and within each of the five ances-
The Am
tries for six lipid traits: LDL-C, HDL-C, non-HDL-C, TC,

TG, and TG:HDL. We excluded the Samoans from the sin-

gle-ancestry analysis given the small number of individ-

uals. We limited attention to variants with MAF % 1%

for each of six variant groups: (1) LOF, (2) LOF and pre-

dicted splice-site-altering variants via Splice AI, (3) LOF

and MetaSVM missense variants, (4) LOF, MetaSVM

missense, and predicted splice-site-altering variants, (5)

LOF and damaging 5 out of 5 missense variants, and (6)

LOF, damaging 5 out of 5 missense, and predicted splice-

site-altering variants. Meta-analyses results were well

controlled (Table S12).

We identified 35 genes reaching exome-wide signifi-

cance (p ¼ 4.3 3 10�7) for at least one of the six variant

groupings (Tables S13–S19). Most of the significant results

were from the multi-ancestry analysis where multiple an-

cestries contributed to the top signals (Figure 2A), and

most of the 35 genes were associated with more than one

lipid phenotype (Figure 2B). Ten of the 35 genes did not

have prior evidence of gene-based links with blood lipid

phenotypes (Table 1), and seven genes, including ALB,

SRSF2, CREB3L3, NR1H3, PLA2G12A, PPARG, and STAB1,

have evidence for a biological connection to circulating

lipid levels (Box 1).

We performed a series of sensitivity analyses on our re-

sults. To determine whether low-frequency variants be-

tween 0.1%–1% frequency were driving our gene-based

association results, we performed the gene-based multi-

ancestry meta-analyses by using a maximum MAF

threshold of 0.1% instead of 1%. We observed exome-

wide significant associations (p < 4.3 3 10�7) for 29 genes

with a 0.1%MAF threshold, all observed in our primary an-

alyses with an MAF threshold of 1% (Table S20). We then

intersected our 35 lipid-associated genes from 85 gene-

based associations observed in the primary analysis with

our results with an MAF threshold of 0.1%. All genes re-

mained at least nominally significant (p < 0.05) with an

0.1%MAF threshold, except the A1CF and TMEM136 asso-

ciations (Table S21). Furthermore, we determined whether

those signals were driven by previously reported GWAS

hits. We identified a total of seven HDL-C associated vari-

ants in six genes, seven LDL-C variants in three genes,

three TC variants in one gene, and seven TG variants in

six genes that were previously found to be genome-wide

significant in the Million Veterans Program (MVP) GWAS

results (Table S22).8 Respective gene-based analyses were

repeated without those variants. Gene-based signals at

A1CF and BUD13 were lost after removal of one variant

in each of those genes (Table S23).

The JAK2 signal was further investigated after splitting

the 136 contributing variants into those annotated as so-

matic via the Catalogue of Somatic Mutations in Cancer

(COSMIC)64 database and not annotated as a somatic

variant. We observed an association only among a set of

26 variants annotated as somatic, while we observed no as-

sociation when using the remaining 110 variants (Table

S24). We also observed that after removal of the most
erican Journal of Human Genetics 109, 81–96, January 6, 2022 87



Figure 2. Exome-wide significant associ-
ations with blood lipid phenotypes
(A) Circular plot highlighting the evidence
of association between the exome-wide
significant 35 genes with any of the six
different lipid traits (p < 4.3 3 10�7). The
most significant associations from any of
the six different variant groups are plotted.
For almost all of the genes, themost signif-
icant associations were obtained from the
multi-ancestry meta-analysis.
(B) Strength of association of the 35
exome-wide significant genes based on
the most significant variant grouping and
ancestry across the six lipid phenotypes
studied. Beta (effect size) is obtained from
the corresponding burden test for SKAT re-
sults. Most of the genes indicated associa-
tions with more than one phenotype.
Sign(beta)*�log10(p value) displayed for
associations that reached a p < 4.3 3
10�7. When the Sign(beta)*�log10(p) >
50, they were trimmed to 50.
significant variant in JAK2 (p.Val617Phe; rs77375493), a

somatic variant, there is no association between JAK2

and total cholesterol (p ¼ 0.10, Table S13).

We also determined which of the 35 genes were outside

GWAS regions defined as those within 5200 kb flanking

regions of GWAS-indexed single-nucleotide polymor-

phisms (SNPs) for TC (487 SNPs), LDL-C (531 SNPs),

HDL-C, and TG (471 SNPs).8 We identified 1,295 unique

genes included in these lipid GWAS regions. Eight out of

the 35 associated genes (23%) were not within a GWAS re-

gion (Table S13).

To understand whether the gene-based signals were

driven by variants that could be identified through sin-

gle-variant analyses, we looked at the proportion of the

35 genes that were associated with each trait that have at

least one single contributing variant that passed the

genome-wide significance threshold of 5 3 10�8. Seven-

teen genes were associated with HDL-C at exome-wide sig-

nificance (Table S13); eight genes had at least one variant
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with p < 5 3 10�8 (Table S8). Simi-

larly, we observed 4/9 for LDL-C, 4/

10 non-HDL-C, 4/14 TC, 7/18 TG,

and 6/17 TG:HDL genes with at least

one genome-wide significant variant

(Tables S5–S10).

For genes with both gene-based and

single-variant signals, we determined

the variants that were driving these

signals and determined the single-

variant associations for all variants

contributing to the top 35 genes (Ta-

ble S25). From a total of 85 gene-

based associations, 33 had at least

one and 19 had only one single

variant with p < 5 3 10�8 (Tables

S25 and S26). All of the 19 had at least
two variants passing nominal significance (p < 0.05) and

13 had at least ten variants with p < 0.05. Finally, gene-

based associations in A1CF, BUD13, JAK2, and TMEM136

were lost after removal of the respective most-significant

single variant from the group of variants aggregated in

each gene-based association (Table S13).

Comparison of gene-based associations across

ancestries

We determined the overlap between single variants

included in gene-based signals, which additionally were

nominally significant (p< 0.05) in each of the fivemain an-

cestries. A large proportion of variants from each ancestry

did not overlap with any other ancestry (Figure S3). For

example, a total of four genes (CETP, ABCA1, CD36, and

LCAT) were observed to have significant gene-based associ-

ations with HDL-C inmulti-ancestrymeta-analyses. A total

68% of variants from European ancestry samples that

contributed to HDL-C gene-based associations did not



Table 1. Genes associated with blood lipids identified in this study

Gene Name Trait N cMAC nVAR b SE p Mask Test Ancestry
UKBB
replication

PMBB
replication

ALB albumin LDL-C 165,003 51 18 29.51 5.11 7.76 3 10�9 LOF burden multi-ancestry <0.005 N/A

ALB albumin non-HDL-C 166,327 50 17 33.91 6.07 2.27 3 10�8 LOF burden multi-ancestry N/A N/A

ALB albumin TC 172,103 54 18 33.37 5.89 1.48 3 10�8 LOF burden multi-ancestry N/A N/A

SRSF2 serine and arginine rich splicing
factor 2

TC 172,103 59 14 �30.59 5.49 2.46 3 10�8 LOF/DAM5of5/SPLICE AI burden multi-ancestry N/A <0.005

JAK2 janus kinase 2 TC 975,33 441 136 �7.10 1.98 1.71 3 10�7 LOF/DAM5of5/SPLICE AI SKAT EUR <0.05 <0.05

CREB3L3 camp responsive element binding
protein 3 like 3

TG 170,239 874 71 0.12 0.02 2.43 3 10�15 LOF/DAM5of5/SPLICE AI burden multi-ancestry <0.005 <0.005

CREB3L3 camp responsive element binding
protein 3 like 3

TG/HDL-C 165,380 855 69 0.14 0.02 5.76 3 10�13 LOF/DAM5of5/SPLICE AI burden multi-ancestry N/A N/A

TMEM136 transmembrane protein 136 TG 29,571 157 24 �0.15 0.04 3.39 3 10�9 LOF/DAM5of5/SPLICE AI SKAT SAS N/A N/A

TMEM136 transmembrane protein 136 TG/HDL-C 29,517 157 24 �0.20 0.05 1.76 3 10�11 LOF/DAM5of5/SPLICE AI SKAT SAS N/A N/A

VARS valyl-trna synthetase 1 TG 56,140 67 51 0.32 0.06 4.30 3 10�7 LOF/MetaSVM burden EUR N/A N/A

NR1H3 nuclear receptor subfamily 1
group h member 3

HDL-C 93,044 521 111 3.47 0.60 1.45 3 10�11 LOF/MetaSVM/SPLICE AI SKAT EUR <0.005 <0.05

PLA2G12A phospholipase a2 group xiia HDL-C 166,441 1,975 47 �2.28 0.31 8.12 3 10�14 LOF/DAM5of5 burden multi-ancestry <0.005 <0.005

PLA2G12A phospholipase a2 group xiia TG 170,239 2,047 47 0.06 0.01 1.17 3 10�8 LOF/DAM5of5 burden multi-ancestry N/A N/A

PLA2G12A phospholipase a2 group xiia TG/HDL-C 165,380 1,969 46 0.11 0.01 7.56 3 10�13 LOF/DAM5of5 burden multi-ancestry N/A N/A

PPARG peroxisome proliferator activated
receptor gamma

HDL-C 166,441 147 72 �6.24 1.07 4.71 3 10�9 LOF/DAM5of5/SPLICE AI burden multi-ancestry <0.005 <0.005

STAB1 stabilin 1 HDL-C 166,441 6,550 804 0.83 0.16 2.58 3 10�7 LOF/MetaSVM/SPLICE AI burden multi-ancestry <0.005 N/A

cMAC, cumulative minor allele count; nVAR, number of variants in test; EUR, European ancestry; SAS, South Asian ancestry; N/A, not applicable.
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Box 1. Genes with biological links to lipid metabolism

ALB

The association between mutations in the albumin gene and elevated cholesterol levels has been previously

observed in rare cases of congenital analbuminemia.48 This has been mainly suggested to result from compensatory

increases in hepatic production of other non-albumin plasma proteins to maintain colloid osmotic pressure, partic-

ularly apolipoprotein B-100, leading to elevations in TC and LDL-C but normal HDL-C levels—which is consistent

with our findings—although the exact mechanisms remain uncertain.49 A lipodystrophy-like phenotype has also

been linked to analbuminemia, which is consistent with the suggestive tendency for increased risk of T2D with

LOF and predicted damaging variants in albumin in the population (OR ¼ 1.85; p ¼ 0.007) (Table S30).

SRSF2

SRSF2 encodes a highly conserved serine/arginine-rich splicing factor and has previously been linked to acute liver

failure in liver-specific knockout in mice with accumulation of TC in the mutant liver.50 Thus, this gene could be

linked to a non-alcoholic fatty liver phenotype with accumulation of lipids in the liver as observed with other genes

as PNPLA3 and TM6SF2.7 Therefore, we looked at association with liver functionmarkers and we found an association

between SRSF2 and higher albumin levels (p¼ 13 10�4) and a suggestive tendency for higher gamma glutamyl trans-

ferase (GGT) (p ¼ 0.05), consistent with potential liver involvement (Tables S46–S49).

CREB3L3

The association between CREB3L3 and higher TG supports previous evidence from a single family and cohorts with

severe hypertriglyceridemia but not sufficient evidence to be classified as a Mendelian lipid gene.51–53 This has been

additionally supported by functional studies where Creb3l3-knockout mice showed hypertriglyceridemia partly due

to deficient expression of lipoprotein lipase coactivators (Apoc2, Apoa4, and Apoa5) and increased expression of acti-

vator Apoc3.52

NR1H3

The observed association of NR1H3with higher HDL-C and lower TG is supported by previous evidence of a role in

non-alcoholic fatty liver disease in mice.54 This gene encodes a liver X receptor alpha (LXRa), which is a nuclear re-

ceptor that acts as a cholesterol sensor and protects from cholesterol overload.55,56 It has previously been shown that

disrupting the LXRa phosphorylation at Ser196 in mice prevents non-alcoholic fatty liver disease.54

PLA2G12A

PLA2G12A is in the secretory phospholipase A2 (sPLA2) family, which liberates fatty acids in the �sn2 position of

phospholipids. This pattern suggests a previously unreported possible lipolytic role of this phospholipase in amanner

similar to another member of the adipose-specific phospholipases, PLA2G16, which has been shown to have a lipo-

lytic role in mice.57,58 Further studies are needed to confirm whether PLA2G12A has a lipolytic role.

PPARG

Rare LOF mutations in PPARG have been previously found to be associated with reduced adipocyte differentiation,

lipodystrophy, and increased risk of T2D.59–61

STAB1

STAB1 is a scavenger receptor that has been shown tomediate uptake of oxidized LDL-C.62,63 There was a suggestive

association between LOF variants and higher LDL-C (b ¼ 4.3 mg/dL, p ¼ 2 3 10�3), consistent with its role in LDL-C

uptake.
overlap with any other ancestry and nor did 62% in South

Asian, 44% in African, 41% in Hispanic, and 59% in East

Asian ancestry. When restricted to variants with p < 0.05

in themulti-ancestrymeta-analysis, the overlap among an-

cestries increased (Figure S4). A total of 61%of variants from

European ancestry did not overlap with any other ancestry

and nor did 46% in South Asian, 27% in African, 27% in

Hispanic, and 32% in East Asian ancestry. Finally, we deter-

mined the top single variant contributing to each gene-

based association (Figure S5). Out of the four HDL-C or

the three LDL-C genes, none of the top variants overlapped

among any of the ancestries, and at least one out of three

variants from the TG genes was shared between two

ancestries.
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But, the gene-based associations were mostly consistent

across the five ancestry groupings: European, South Asian,

African, Hispanic, and East Asian. Three of the 17 HDL-C

genes showed association in at least two different ancestries

at exome-wide significance level (p¼ 4.33 10�7). Similarly,

3/9 LDL-C, 4/10 non-HDL-C, 5/14 TC, 2/18 TG, and 2/17

TG:HDL genes showed association in at least two different

ancestries at an exome-wide significance level. Using a less

stringent significance level (p < 0.01), across the six lipid

traits, 59%–89% of associated genes from the joint analysis

were associated in at least two different ancestries.

We tested the top 35 genes for heterogeneity across all

303 gene-trait-variant grouping combinations passing the

exome-wide significance threshold (p < 4.3 3 10�7). We
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observed heterogeneity in effect estimates (pHet < 1.7 3

10�4, accounting for 303 combinations) in 19 (6%)

different gene-trait-variant grouping combinations and

in six different genes: LIPC, LPL, LCAT, ANGPTL3, APOB,

and LDLR (Table S27). Although the LOF gene-based effect

sizes were largely consistent across ancestries, there were

differences in the cumulative frequencies of LOF variants

for several genes, including PCSK9, NPC1L1, HBB, and

ABCG5 (Figures S6–S8).

We observed LOF and predicted-damaging variants in

TMEM136 associated with TG and TG:HDL only among in-

dividuals of South Asian ancestry (pSKAT ¼ 3 3 10�9 and

2 3 10�11, respectively) (Table 1, Figure 2A). With the

same variant grouping and ancestry, we observed associa-

tions with reduced TG by burden tests (b ¼ �15%, p ¼
3 3 10�4) and TG:HDL (b ¼ �20%, p ¼ 6 3 10�5) (Tables

S18 and S19). Additionally, a single missense variant was

associated only among South Asians (rs760568794,

11:120327605-G/A, p.Gly77Asp) with TG (b ¼ �36.9%,

p ¼ 2 3 10�8) (Table S9). This variant was present only

among individuals with South Asian (MAC ¼ 24) and His-

panic ancestry (MAC ¼ 8) but showed no association

among the Hispanic population (p ¼ 0.86). This gene en-

codes a transmembrane protein of unknown function.

Replication of gene-based associations

We performed replication by using the PMBB and UKB

samples that did not contribute to the initial analysis. In

PMBB, we observed four out of ten genes without prior ev-

idence of gene-based links with blood lipid phenotypes to

have a p < 0.005 (Bonferroni correction for testing ten

genes) and in the same direction as the discovery (SRSF2,

CREB3L3, PLA2G12A, PPARG) with their respective blood

lipids with an additional two genes that met a nominal sig-

nificance level (p< 0.05; JAK2 and NR1H3). For TMEM136,

we found an association of nominal significance for TG

and TG:HDL as well but with a beta in the opposite and

positive direction. For the other three genes, ALB, VARS,

and STAB1, we did not find associations at a nominal sig-

nificance level for their respective blood lipid traits (Table

S28). In UKB, we found six of the ten genes were associated

at a p< 0.005 and in the same direction of effect as the dis-

covery analysis (ALB, CREB3L3, NR1H3, PLA2G12A,

PPARG, STAB1) (Table S29) with JAK2 reaching a nominal

significance threshold (p < 0.05). The only two genes

that did not show any evidence of replication in at least

one of the replication studies were TMEM136 and VARS.

This may indicate these associations are false positives or

that we lack power for replication for these associations.

Our replication studies did not include individuals of

South Asian ancestry, and we observed that our association

of TMEM136with TG and TG:HDL is driven by individuals

of South Asian ancestry.

Comparison of gene-based associations by case status

We analyzed heterogeneity by CAD or T2D case status for

the top 35 genes. The top 85 signals presented in Table
The Am
S13 determined in case-status-specific meta-analyses for

CAD and T2D. Out of the 85 different gene-based associa-

tions, we observed minimal heterogeneity in the results by

case status. LDLR, LCAT, and LPL showed significant het-

erogeneity by CAD case status and LCAT and ANGPTL4

by T2D status (pHet < 6 3 10�4) (Tables S30 and S31).

Gene-based associations in GWAS loci

We determined whether genes near lipid array-based

GWAS signals8 were associated with the corresponding

lipid measure by using gene-based tests of rare variants

with the same traits. We obtained genes from 200 kb flank-

ing regions on both sides of each GWAS signal: 487 anno-

tated to LDL-C GWAS signals, 531 to HDL-C signals, and

471 to TG signals. We analyzed genes within these three

sets for gene-based associations with their associated traits.

A total of 13, 19, and 13 genes were associated (p < 3.4 3

10�5, corrected for the number of genes tested for the three

traits) with LDL-C, HDL-C, or TG, and 32 unique genes

were identified in the GWAS loci (Tables S32–S37).

Three of the 32 genes had no prior aggregate rare variant

evidence of blood lipid association. Variants annotated as

LOF or predicted damaging in EVI5 were associated with

LDL-C (pSKAT ¼ 23 10�5). The burden test showed associa-

tion with higher LDL-C levels (b ¼ 1.9 mg/dL, p ¼ 0.008)

(Table S32). Variants annotated as LOF or predicted

damaging in SH2B3 were associated with lower HDL-C

(b¼�2.5mg/dL, p¼ 13 10�6) among Europeans, and var-

iants that were annotated as LOF in PLIN1 were associated

with higher HDL-C (b ¼ 3.9 mg/dL, p ¼ 1 3 10�5) (Table

S33). Other genes in the regions of EVI5, SH2B3, and

PLIN1 did not show an association with the corresponding

lipid traits (p> 0.05) in multi-ancestry analyses. A previous

report implicated twoheterozygous frameshiftmutations in

PLIN1 in three families with partial lipodystrophy.65 The

gene encodes perilipin, the most abundant protein that

coats adipocyte lipid droplets and is critical for optimal TG

storage.66 We observed a nominal associations of PLIN1

with TG (b ¼ �7.0%, p ¼ 0.02). Our finding is contrary to

what would be expected with hypertriglyceridemia in a lip-

odystrophyphenotype given the associationwith lowerTG.

This gene has an additional role where silencing in cow ad-

ipocytes has been shown to inhibit TG synthesis and pro-

mote lipolysis,67 which may explain those contradictions.

Enrichment of Mendelian, GWAS, and drug targets

genes

Wenext sought to test theutility of genes that showed some

evidence for association but did not reach exome-wide sig-

nificance. Within the genes that reached a sub-threshold

level of significant association in this study via SKATs or

burden tests (p < 0.005), we determined the enrichment

of (1) Mendelian dyslipidemia (N ¼ 21 genes);2 (2) lipid

GWAS (N ¼ 487 for LDL-C, N ¼ 531 for HDL-C, and N ¼
471 for TG);8 and (3) drug target genes (N¼ 53).43We strat-

ified genes in GWAS loci according to coding status of the

index SNP and proximity to the index SNP (nearest gene,
erican Journal of Human Genetics 109, 81–96, January 6, 2022 91



Figure 3. Enrichment of Mendelian, GWAS, and drug target
genes in the gene-based lipid associations
Enrichment of gene sets of Mendelian genes (n ¼ 21), GWAS loci
for LDL-C (n ¼ 487), HDL-C (n ¼ 531), and triglycerides (TG) (n ¼
471) genes, and drug target genes (n ¼ 53). Error bars denote 95%
confidence intervals.
second nearest gene, and genes further away).We tested for

enrichment of gene-based signals (p < 0.005) in the gene

sets compared to matched genes (Figure 3). For each gene

within each gene set, the most significant association in

the multi-ancestry or an ancestry-specific analysis was ob-

tained and then matched to ten genes on the basis of sam-

ple size, total number of variants, cumulative MAC, and

variant grouping. The strongest enrichment was observed

for Mendelian dyslipidemia genes within the genes that

reached p < 0.005 in our study. For example, 52% of the

HDL-C Mendelian genes versus 1.4% of the matched set

reached p < 0.005 (OR: 71, 95% CI: 16–455). We also

observed that 45.5% of the set of genes closest to an HDL-

C protein-altering GWAS variant reached p < 0.005 versus

1.4% in thematched gene set (OR: 57, 95%CI: 13–362). Re-

sults were significant but much less striking for genes at

non-coding index variants. We observed that 8.9% of the

set of genes closest to an HDL-C non-protein-altering

GWAS variant reached p < 0.005 versus 2.3% in the

matched set (OR: 4.1, 95% CI: 1.8–8.7), while 8% of the

set of genes in the second closest to an HDL-C non-pro-

tein-altering GWAS variant reached p < 0.005 versus 2.6%

in the matched set (OR: 3, 95% CI: 1.1–8.3). There was no

significant enrichment in second closest or R third closest

genes to protein-altering GWAS signals and in R third

closest genes to non-protein-altering GWAS signals. Drug

target genes were significantly enriched in LDL-C gene-

based associations (OR: 5.3, 95% CI: 1.4–17.8) but not in

TG (OR: 2.2, 95% CI: 0.2–11.2) or HDL-C (OR: 1.0, 95%

CI: 0.1–4.3) (Figure 3 and Tables S38–S41).
Association of lipid genes with CAD, T2D, glycemic

traits, and liver enzymes

We tested the genes identified through our discovery (35

genes) and GWAS loci genes (32 genes) for associations
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with CAD or T2D in our gene-based analyses (40 genes

across the two sets). The CAD analyses were restricted to

a subset of the overall exome sequence data with informa-

tion on CAD status, which included the MIGen CAD case-

control, UKBCADnested case-control, and the UKB cohort

with a total of 32,981 cases and 79,879 controls. We

observed four genes significantly associated with CAD

(pCAD < 0.00125, corrected for 40 genes). The four genes

associated with lipids and CAD were all primarily associ-

ated with LDL-C: LDLR (OR: 2.97, p ¼ 7 3 10�24), APOB

(pSKAT ¼ 4 3 10�5), PCSK9 (OR: 0.5, p ¼ 2 3 10�4), and

JAK2 (pSKAT ¼ 0.001). Several other known CAD-associated

genes (NPC1L1, CETP, APOC3, and LPL) showed nominal

significance for association with lipids (p < 0.05). We

observed nominal associations with CAD for two of the

newly identified lipid genes: PLIN1 (pSKAT ¼ 0.002) and

EVI5 (OR: 1.29, p ¼ 0.002; Table S42). None of the 40

lipid genes reached significance for association with

T2D in the latest AMP-T2D exome sequence results. We

observed nominal associations of T2D with STAB1 (OR:

1.05, pT2D ¼ 0.002) and APOB (OR: 1.08, pT2D ¼ 0.005)

(Table S43).15

We additionally tested the 40 genes for association with

six glycemic and liver biomarkers in the UKB: blood

glucose, HbA1c, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), gamma glutamyl transferase

(GGT), and albumin (Tables S44–S49). Using a significance

threshold of p ¼ 0.0012, we found associations between

PDE3B and elevated blood glucose, JAK2 and SH2B3 and

lower HbA1c, and APOC3 and higher HbA1c. However,

JAK2 was no longer associated with Hba1c after removal

of the p.Val617Phe missense variant that is known to

frequently occur as a somatic mutation (b ¼ 0.22, SE ¼
0.40, p ¼ 0.47).

We found associations between CREB3L3 and lower ALT

and ALB and higher AST and between A1CF and higher

GGT. ALB and SRSF2were associated with lower and higher

albumin levels, respectively (Tables S44–S49).
Discussion

We conducted a large multi-ancestry study to identify

genes in which protein-altering variants demonstrated as-

sociation with blood lipid levels. First, we confirm previous

associations of genes with blood lipid levels and show that

we detect associations across multiple ancestries. Second,

we identified gene-based associations that were not

observed previously. Third, we show that along with Men-

delian lipid genes, the genes closest to both protein-

altering and non-protein-altering GWAS signals and LDL-

C drug target genes have the highest enrichment of

gene-based associations. Fourth, of the new gene-based

lipid associations, PLIN1 and EVI5 showed suggestive evi-

dence of an association with CAD.

Our study found evidence of gene-based associations for

the same gene in multiple ancestries. The heterogeneity in
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genetic association with common traits and complex dis-

eases has been discussed extensively. A recent study has

shown significant heterogeneity across different ancestries

in the effect sizes of multiple GWAS-identified variants.68

However, our study shows that gene-based signals are de-

tected in multiple ancestries with limited heterogeneity

in the effect sizes.

Our study highlights enrichment of gene-based associa-

tions for Mendelian dyslipidemia genes, genes with pro-

tein-altering variants identified by GWASs, and genes

that are closest to non-protein-altering GWAS index vari-

ants. A previous transcriptome-wide Mendelian randomi-

zation study of eQTL variants indicated that most of the

genes closest to top GWAS signals (>71%) do not show sig-

nificant association with the respective phenotype.69 In

contrast, our study provides evidence from sequence data

that the closest gene to each top non-coding GWAS signal

is most likely to be the causal one, indicating an allelic se-

ries in associated loci. This has implications for GWAS re-

sults, suggesting the prioritization of the closest genes for

follow-up studies. We also observed enrichment of drug

target genes only among LDL-C gene-based associations

and not for HDL-C and TG gene-based associations, consis-

tent with the fact that most approved therapeutics for car-

diovascular disease target LDL-C

The gene-based analyses of lipid genes with CAD

confirmed previously reported and known associations

(LDLR, APOB, and PCSK9). Using a nominal p threshold

of 0.05, we also confirmed associations with NPC1L1,

CETP, APOC3, and LPL. Of the identified lipid-associated

genes, we observed borderline significant signals with

EVI5 and higher risk of CAD and between PLIN1 and lower

risk of CAD. The putative cardio-protective role of PLIN1

deficiency is supported by previous evidence in mice,

which has indicated reduced atherosclerotic lesions with

Plin1 deficiency in bone-marrow-derived cells.70 This sug-

gests PLIN1 as a putative target for CAD prevention; how-

ever, replication of the CAD association would be needed

for confirmation of those signals.

There are limitations to our results. First, we had lower

sample sizes for the non-European ancestries, limiting

our power to detect ancestry-specific associations and

detect replication for TMEM136 that was driven by a

variant in South Asians. However, we find consistency of

results across ancestries, and when we relax our signifi-

cance threshold, the majority of associations (59%–89%)

are observed in more than one ancestry. Second, it has

been reported that there was an issue with the UKB func-

tionally equivalent WES calling.71 This mapping issue

may have resulted in under-calling alternative alleles and

therefore should not increase false positive findings. Third,

we relied on a meta-analysis approach by using summary

statistics to perform our gene-based testing because of dif-

ferences in sequencing platforms and genotyping calling

within the multiple consortia contributing to the results.

This approach has been shown to be equivalent to a pooled

approach for continuous outcomes.41
The Am
In summary, we demonstrated association between rare

protein-altering variants with circulating lipid levels in

>170,000 individuals of diverse ancestries. We identified

35 genes associated with blood lipids, including ten genes

not previously shown to have gene-based signals. Our re-

sults support the hypothesis that genes closest to a

GWAS index SNP are enriched for evidence of association.
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Figure S1. Comparison of effect sizes and p-value in UK Biobank including and 
excluding individuals on statin treatment. 

 

  



 

Figure S2. Descriptive variant characteristics by type, ancestry, and minor 
allele count. 

 

Figure S2: A) Our study included 15,599,513 genetic variants. Variants were 
annotated as high confidence loss-of-function by LOFTEE (n=340,214), splice site 
altering variants using a deep neural network prediction (SPLICE AI) (n=238,646), 
damaging missense variants according to the MetaSVM algorithm (n=729,098) and 
damaging missing in 5 out of 5 prediction algorithms (n=1,106,309). Most of the 
variants had a minor allele count of less than 5 in all (n=1,171,5189) and within each 
of the four different annotations. B) The proportion of specific annotations out of the 
total number of variants that were annotated as coding (n=5,085,712). Each of the 
four annotations demonstrated the highest enrichment among the variants with the 
lowest frequency. ALL=multi-ancestry, AFR=African ancestry, EAS=East Asian 
ancestry, EUR=European ancestry, HIS=Hispanic ancestry, SAS=South Asian 
ancestry.  



 

Figure S3. Overlap among different ancestries for all variants contributing to 
significant gene-based associations with HDL-C, TG and LDL-C 

 

 
Figure S3. Venn Diagram for the overlap of all variants included in the significant 
gene-based association analysis among different ancestries. A) A total of 4 genes 
(CETP, ABCA1, CD36, and LCAT) showed significant gene-based associations in 
multi-ancestry and each of the 5 different ancestries analyses with P < 0.05 with HDL 
cholesterol (HDL-C). Ancestry-specific single-variant contributions included a total of 
781 from European-, 380 from South Asian-, 302 African-, 253 Hispanic- and 175 
East Asian ancestries. B) A total of 3 genes (APOC3, ANGPTL3, and APOB) showed 
significant gene-based associations in multi-ancestry and each of the 5 different 
ancestries analyses with P < 0.05 with triglycerides (TG). Ancestry-specific single-
variant contributions included a total of 119 from European-, 39 from South Asian-, 
34 African-, 32 Hispanic- and 15 East Asian ancestries. C) A total of 3 genes (LDLR, 
PCSK9, and APOB) showed significant gene-based associations in multi-ancestry 
and each of the 5 different ancestries analyses with P < 0.05 with LDL cholesterol 
(LDL-C). Ancestry-specific single-variant contributions included a total of 306 from 
European-, 108 from South Asian-, 98 African-, 73 Hispanic- and 68 East Asian 
ancestries.  
 
  



 

Figure S4. Overlap among different ancestries for variants contributing to 
significant gene-based associations with HDL-C, TG and LDL-C with P value 
less than 0.05 

 

 
Figure S4. Venn Diagram for the overlap of variants with P<0.05 included in the 
significant gene-based association analysis among different ancestries. A) A total of 
4 genes (CETP, ABCA1, CD36, and LCAT) showed significant gene-based 
associations in multi-ancestry and each of the 5 different ancestries analyses with P 
< 0.05 with HDL cholesterol (HDL-C). Ancestry-specific single-variant contributions 
included a total of 142 from European-, 54 from South Asian-, 56 African-, 41 
Hispanic- and 22 East Asian ancestries. B) A total of 3 genes (APOC3, ANGPTL3, 
and APOB) showed significant gene-based associations in multi-ancestry analyses 
with triglycerides (TG). Ancestry-specific single-variant contributions included a total 
of 42 from European-, 13 from South Asian-, 11 African-, 11 Hispanic- and 4 East 
Asian ancestries. C) A total of 3 genes (LDLR, PCSK9, and APOB) showed 
significant gene-based associations in multi-ancestry and each of the 5 different 
ancestries analyses with P < 0.05 with LDL cholesterol (LDL-C). Ancestry-specific 
single-variant contributions included a total of 157 from European-, 45 from South 
Asian-, 44 African-, 42 Hispanic- and 28 East Asian ancestries.  
 
  



 

Figure S5. Overlap among different ancestries for the top variant contributing 
to significant gene-based associations with HDL-C, TG and LDL-C 

 

 
 
 
Figure S5. Venn Diagram for the overlap of the top variant included in each of the 
significant gene-based association analysis among different ancestries. A) 4 genes 
(CETP, ABCA1, CD36, and LCAT) showed significant gene-based associations in 
multi-ancestry and each of the 5 different ancestries analyses with P < 0.05 with HDL 
cholesterol (HDL-C). B) A total of 3 genes (APOC3, ANGPTL3, and APOB) showed 
significant gene-based associations in multi-ancestry analyses with triglycerides 
(TG). C) A total of 3 genes (LDLR, PCSK9, and APOB) showed significant gene-
based associations in multi-ancestry and each of the 5 different ancestries analyses 
with P < 0.05 with LDL cholesterol (LDL-C). 
 

 
  



 

Figure S6. Cumulative loss-of-function minor allele count and effect size on 
LDL cholesterol by ancestry  

 

Figure S6: A) Cumulative minor allele frequencies and B) burden test effect sizes on 
LDL cholesterol levels for exome-wide significant genes (P < 4.3×10-7) within each of 
the five major ancestries using variants from the high confidence loss-of-function 
grouping (LOFTEE). AFR=African ancestry, EAS=East Asian ancestry, 
EUR=European ancestry, HIS=Hispanic ancestry, SAS=South Asian ancestry. 

  



 

Figure S7. Cumulative loss-of-function minor allele count and effect size on 
triglycerides by ancestry 

 

Figure S7: A) Cumulative minor allele frequencies and B) burden test effect sizes on 
triglyceride levels for exome-wide significant genes (P < 4.3×10-7) within each of the 
five major ancestries using variants from the high confidence loss-of-function 
grouping (LOFTEE). AFR=African ancestry, EAS=East Asian ancestry, 
EUR=European ancestry, HIS=Hispanic ancestry, SAS=South Asian ancestry. 

 
  



 

Figure S8. Cumulative loss-of-function minor allele count and effect size on 
HDL cholesterol by ancestry 

 

Figure S8: A) Cumulative minor allele frequencies and B) burden test effect sizes on 
HDL cholesterol levels for exome-wide significant genes (P < 4.3×10-7) within each of 
the five major ancestries using variants from the high confidence loss-of-function 
grouping (LOFTEE). AFR=African ancestry, EAS=East Asian ancestry, 
EUR=European ancestry, HIS=Hispanic ancestry, SAS=South Asian ancestry. 

  



 

Supplemental Methods 
 
Sequencing and Quality Control 

Myocardial Infarction Genetics Consortium (MIGen) 

A set of common variants was extracted for sample quality control including relative 

inference, principal component analysis, and estimation of heterozygosity. SNPs on 

autosomes and not in low complexity regions or segmental duplications were 

extracted. SNPs with quality of depth (QD)> 2, call rate >98%, self-reported-race-

specific Hardy-Weinberg equilibrium (HWE) p-value >1×10-8, Variant Quality Score 

Recalibration (VQSR) of PASS and MAF>1% were retained. Sample relatedness 

was estimated with KING and duplicate samples removed. Genetically inferred 

ancestry was assigned to each individual by calculating principal components jointly 

with 1000 Genomes phase 3 version 5 and building a 5-Nearest Neighbor classifier1 

using the top 6 principal components. Heterozygosity was estimated within each 

genetic ancestry group and samples with F statistic above 0.3 were removed. 

Genetic sex was inferred based on high quality X-chromosome variation including 

variants with call rate >0.95, MAF>2%, a PASS VQSR, QD>3 if the variant is an 

insertion or deletion and QD>2 if it is SNP. Samples with discordant phenotypic sex 

and genetic sex were removed. Finally, sample quality control metrics were 

calculated using Hail and samples with call rate<0.9a mean depth (DP)<30 and 

mean genotype quality (GQ)<0.8 were excluded. A total of 44,240 samples with lipid 

data measurements were included after further excluding duplicates and relatives 

with other data sources (Table S1). 

 

Variant quality control was performed amongst remaining samples and a total of 

8,716,575 autosomal variants were included after removing those that fail HWE as 



 

calculated by genetic ancestry group (p-value<1×10-8), lie in low complexity regions 

or segmental duplications, with inbreeding coefficient< -0.3, are insertions or 

deletions with QD ≤ 3 or SNPs with QD ≤ 2 or variants where VQSR does not PASS 

with the exception of singletons where variants with VQSRTrancheSNP99.60to99.80 

were retained. 

 

Trans-Omics for Precision Medicine (TOPMed) 

Whole genome sequencing at 30X mean depth was performed at one of six 

sequencing centers: Broad Institute of MIT and Harvard, Northwest Genomics 

Center, New York Genome Center, Illumina Laboratory Services, Psomagen, Inc. 

(formerly Macrogen USA), Baylor College of Medicine Human Genome Sequencing 

Center. For most studies, all individuals in the study were sequenced at the same 

center. Sequence reads were aligned to human genome build GRCh37 or GRCh38 

at each center using similar, but not identical, processing pipelines. The resulting 

sequence data files were transferred from all centers to the TOPMed Informatics 

Research Center (IRC), where they were re-aligned to build GRCh38, using a 

common pipeline to produce a set of ‘harmonized’ .cram files. Processing was 

coordinated and managed by the ‘GotCloud’ processing pipeline. The IRC performed 

joint genotype calling on all samples. Quality control was performed at each stage of 

the process by the Sequencing Centers, the IRC, and the TOPMed Data 

Coordinating Center (DCC). Only samples that passed QC were included in the call 

set. 

 

The two sequence quality criteria that were used to pass sequence data on for joint 

variant discovery and genotyping are: estimated DNA sample contamination below 



 

3%, and fraction of the genome covered at least 10x 95% or above. DNA sample 

contamination was estimated from the sequencing center read mapping using 

software verifyBamId.2 

 

The genotype used for analysis are from “freeze 6a” of the variant calling pipeline 

performed by the TOPMed Informatics Research Center (Center for Statistical 

Genetics, University of Michigan, Hyun Min Kang, Tom Blackwell and Gonçalo 

Abecasis). Variant detection (SNPs and indels) from each sequenced (and aligned) 

genome was performed by the vt discover2 software tool. The variant calling 

software tools are under active development; updated versions can be accessed at 

http://github.com/atks/vt, http://github.com/hyunminkang/apigenome, and 

https://github.com/statgen/topmed_variant_calling. 

 

One individual from duplicate pairs identified by the DCC was removed, retaining the 

individual with lipid levels available when one did not have lipid levels. If both 

individuals had lipid levels, one individual was randomly selected. Individuals were 

excluded when their genotype determined sex did not match phenotype reported sex 

(n=6) and individuals <18 years old were excluded (n=865). Ancestry was defined as 

reported ancestry, which showed, generally, good concordance with PCs 

 

AMP-T2D-GENES 

Sequencing and quality control of the AMP-T2D-GENES study has been previously 

described.3 Sequencing reads were processed and aligned to the human genome 

(build hg19) using the Picard (broadinstitute.github.io/picard/), BWA, and 

GATKsoftware packages, following best-practice pipelines. Single nucleotide and 



 

short indel variants were then called using a series of GATK commands (version 

nightly-2015-07-31-g3c929b0): ApplyRecalibration, CombineGVCFs, CombineVari- 

ants, GenotypeGVCFs, HaplotypeCaller, SelectVariants, and VariantFiltration. 

Variants were called within 50bp of any region targeted for capture in any sequenced 

cohort. Following variant calling, all sites were then lifted over to build GRCh38 using 

CrossMap. 

 

To perform data quality control, we first calculated a range of metrics measuring 

sample sequencing quality. We then stratified samples by ancestry and sequence 

capture technology and excluded from further analysis samples that were outliers 

according to any metric, based on visual inspection by comparison to other samples 

within the same stratum. After exclusion of samples, we calculated an additional set 

of variant metrics and excluded any variant with overall call rate <0.3, heterozygosity 

of 1, or heterozygote allele balance of 0 or 1 (i.e. 100% or 0% of reads called non-

reference for heterozygous genotypes). After these initial quality control steps, 

49,484 samples and 7.02M variants remained in our dataset.  

 

Following initial sample and variant quality control, we performed additional 

exclusions of samples from association analysis. First, we computed a set of 

“transethnic” SNPs for use in identity-by-descent (IBD) and principal component (PC) 

analysis. We began this analysis with variants in the clean dataset (a) with genotype 

call rate >95%, (b) with minor allele frequency (MAF) >1% in each ancestry, and (c) 

further than 250Kb from the HLA region or an established T2D association signal. 

We LD-pruned variants using PLINK based on maximum r2 = 0.2 (parameters –

indep-pairwise 50 5 0.2). We used the remaining 171K variants to estimate pairwise 



 

individual IBD using PLINK, and the top 10 PCs of genetic ancestry using 

EIGENSTRAT. For each pair of individuals with IBD>0.9, we excluded the individual 

with the lower call rate (337 duplicate exclusions). We then excluded, for each of the 

five ancestries, any individual who appeared, based on visual inspection of the first 

two transethnic PCs, to lie outside of the main PC cluster corresponding to that 

ancestry (133 ethnic outliers). Finally, we used the subset of transethnic ancestry 

SNPs on the X chromosome to compare genetic sex to reported sex, using PLINK, 

and excluded all discordant individuals (273 sex discordances). Exclusion of the 

samples failing quality control, and variants that became monomorphic as a result of 

these sample exclusions, yielded a dataset of 45,231 individuals and 6.33M variants.  

 

After these three rounds of sample exclusions, we identified five sets of ancestry-

specific “ancestry” SNPs. We used the same procedure as for the transethnic SNPs 

(described above), except that we applied the MAF threshold only within the 

appropriate ancestry. We used these ancestry SNPs to estimate, for each ancestry, 

pairwise IBD values, genetic relatedness matrices (GRMs), and PCs for use in 

downstream association analysis. Additionally, from the IBD values, we generated a 

list of unrelated individuals within each ancestry by excluding the individual with the 

lower call rate in any pair of individuals with IBD>0.3 (leading to 2,157 excluded 

individuals). The final “unrelated analysis” set consisted of 43,090 individuals and 

yielded 6.29M non-monomorphic variants.  

 

UK Biobank 

We used two UKB datasets with exome sequence data. The first is a CAD case 

control study with 12,938 individuals. 29 samples were removed as they had 



 

discordant genotypes with genotyping array data, 17 showed mismatch between the 

reported and genetically inferred sex, 4 had excess heterozygosity and 6 had a call 

rate <95%. To perform the sex-mismatch analyses, variants on the X-chromosome 

were selected after filtering out low quality genotypes, call rate<95%, MAF<2%, low 

QD score (3 for INDELs and 2 for SNPs), low confidence regions and segmental 

duplications and those that do not have PASS VQSR. A set of high quality common 

autosomal variants were extracted for relative inference, principal component 

analysis, and estimation of heterozygosity after removing low confidence regions and 

segmental duplications, low quality genotypes, QD<2, call rate<98%, self-reported 

ancestry-specific HWE p>1x10-6 among controls, MAF<1% and do not have PASS 

VQSR. Heterozygosity was estimated within each ancestry and samples with F 

statistic>2 were removed. Genetically inferred ancestry was obtained using the 1000 

Genomes as reference. Sample QC metrics were then calculated in HAIL using 

autosomal variants after filtering out low-quality genotypes, variants with ancestry-

specific HWE p<1×10-6, low confidence regions and segmental duplications, low QD 

score (3 for INDELs and 2 for SNPs) and those that do not have PASS VQSR. 

Samples with call rate below 95%, mean DP below 30 and mean GQ below 80 were 

removed. Variant QC was done through filtering out monomorphic variants, call rate 

below 95%, those with HWE (p < 1 × 10-6), lie in low confidence regions or segmental 

duplications, are insertions or deletions with QD <= 3 or SNPs with QD <= 2 or 

variants where VQSR does not PASS unless singleton in which case retain those 

with VQSRTrancheSNP99.60to99.80. A total of 11,216 PC-identified European 

ancestry participants were included after additional removal of duplicates and 

relatives across data sources. A total of 2,734,519 variants were included. 

 



 

The second UKB data set is a population-based dataset. Samples were filtered out if 

they showed mismatch between genetically determined and reported sex, high rates 

of heterozygosity or contamination (D-stat > 0.4), low sequence coverage (<85% of 

targeted bases achieving >20X coverage), duplicates, and exome sequence variants 

discordant with genotyping chip. More details are described elsewhere.4 The 

"Functionally Equivalent" (FE) call set was used.5 A total of 43,243 PC-identified 

European ancestry individuals were included after additional removal of duplicates 

and relatives across data sources. 

 

Replication of gene-based associations 

We performed replication of our top gene-based associations with blood lipid levels in 

the Penn Medicine BioBank (PMBB) and UK Biobank samples that did not contribute 

to the discovery analysis. 

 

The PMBB is a repository of genotype and phenotype data for 43,731 patients at the 

University of Pennsylvania Perelman School of Medicine. All individuals recruited for 

PMBB are patients of clinical practice sites of the University of Pennsylvania Health 

System. Appropriate consent was obtained from each participant regarding storage 

of biological specimens, genetic sequencing, and access to all available EHR data. 

The study was approved by the Institutional Review Board of the University of 

Pennsylvania and complied with the principles set out in the Declaration of Helsinki. 

The six lipid phenotypes studied were HDL-C (n=21,247), LDL-C (n=21,040), non-

HDL-C (n=21,087), TC (n=21,153), TG (n=21,418), and TG:HDL (n=21,213). All 

available lipid trait measurements up to July 2020 were included. HDL-C, LDL-C, TC, 

and TG levels were measured directly and accessible via PMBB. Non-HDL-C levels 



 

were obtained by subtracting HDL-C from TC levels. TG and TG:HDL levels were 

logarithmically transformed to normalize their distribution for association testing. Due 

to the clinical nature of the biobank, samples often had multiple phenotype values 

corresponding to a patient’s various clinical appointments. Gene-based associations 

were performed on the minimum, median, and maximum phenotype values to 

account for both potentially protective and pathogenic effects. Conceptually, the idea 

behind using minimum, median, and maximum phenotype values is to better capture 

the full range of phenotypes, given that lipid levels can vary over time, including the 

effects of lipid-lowering medications. For example, in the common situation in which a 

patient has initiated statin therapy during the course of their EHR record, the 

maximum LDL-C is more likely to reflect the untreated ‘basal’ level than the median 

or the minimum LDL-C. Genetic variants that elevate a specific lipid phenotype are 

likely to be stronger for maximum values, while genetic variants that reduce a specific 

lipid phenotype are likely to be stronger for minimum values. For the gene-based 

association analysis, 10 different variant groupings were used to determine the set of 

damaging variants within each gene including the six groupings used in the initial 

study. The additional four groupings used predicted loss-of-function (pLOF) variants 

that included frameshift, stop gain, and splicing variants as annotated by RefGene. 

Missense variants were annotated using Rare Exome Variant Ensemble Learner 

(REVEL) and filtered for those with a pathogenicity score>0.5. The four additional 

groupings consisted of, 1) pLOF, MAF≤0.1%, 2) pLOF, MAF≤0.1%, REVEL 

missense, 3) pLOF, MAF≤1%, and 4) pLOF, MAF≤1%, and REVEL missense. Each 

of the 10 groupings were used in a gene-based association test with the minimum, 

median, and maximum values of the 6 lipid phenotypes. Furthermore, ancestry-

specific associations were also performed to elucidate any potential ancestry-specific 



 

effects. This included associations among African and European ancestries 

separately, and then the two populations meta-analyzed. All associations were 

adjusted for sex, age, and principal components. The number of PCs chosen for 

each ancestry were determined according to ancestry-specific scree plots. The first 5 

principal components were used for African ancestry associations, and the first 10 

principal components were used for European ancestry associations. 

 

In UK Biobank, we analyzed the association of rare variant aggregates from the 10 

genes against four lipid phenotypes in the UK biobank whole exome sequencing 

(WES) data. Variant aggregates were obtained for the following four categories 1) 

LOFTEE – HC 2) LOFTEE - HC & predicted splice site altering 3) LOFTEE - HC & 

deleterious-METAsvm 4) LOFTEE - HC & deleterious-METAsvm & predicted splice 

site altering. We removed UK Biobank individuals used in the discovery analysis, 

resulting in 150,694 individuals for replication. The phenotypes were adjusted for lipid 

lowering medications, where total cholesterol was adjusted by dividing by 0.8 and 

LDL-C by dividing by 0.7. Triglycerides were natural log transformed for analysis. The 

phenotypes were inverse rank normalized and scaled by the standard deviation of 

the trait and adjusted for covariates (sex, age, age2, PC1-PC10, if British ancestry).  

Rare variant aggregate test was conducted using STAAR6 with a MAF of 0.01 for the 

four lipids. Effect estimates were calculated using glmm.wald burden test.  

 

References for Supplemental Methods: 

1. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine Learning in Python. J Mach Learn Res 12, 2825–2830. 

2. Jun, G., Flickinger, M., Hetrick, K.N., Romm, J.M., Doheny, K.F., Abecasis, G.R., 
Boehnke, M., and Kang, H.M. (2012). Detecting and estimating contamination 



 

of human DNA samples in sequencing and array-based genotype data. Am J 
Hum Genet 91, 839-848. 

3. Flannick, J., Mercader, J.M., Fuchsberger, C., Udler, M.S., Mahajan, A., Wessel, 
J., Teslovich, T.M., Caulkins, L., Koesterer, R., Barajas-Olmos, F., et al. 
(2019). Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 
controls. Nature 570, 71-76. 

4. Van Hout, C.V., Tachmazidou, I., Backman, J.D., Hoffman, J.X., Ye, B., Pandey, 
A.K., Gonzaga-Jauregui, C., Khalid, S., Liu, D., Banerjee, N., et al. (2019). 
Whole exome sequencing and characterization of coding variation in 49,960 
individuals in the UK Biobank. bioRxiv, 572347. 

5. Regier, A.A., Farjoun, Y., Larson, D.E., Krasheninina, O., Kang, H.M., Howrigan, 
D.P., Chen, B.J., Kher, M., Banks, E., Ames, D.C., et al. (2018). Functional 
equivalence of genome sequencing analysis pipelines enables harmonized 
variant calling across human genetics projects. Nature communications 9, 
4038. 

6. Li, X., Li, Z., Zhou, H., Gaynor, S.M., Liu, Y., Chen, H., Sun, R., Dey, R., Arnett, 
D.K., Aslibekyan, S., et al. (2020). Dynamic incorporation of multiple in silico 
functional annotations empowers rare variant association analysis of large 
whole-genome sequencing studies at scale. Nat Genet 52, 969-983. 

 

  



 

Study Participant Descriptions 

Myocardial Infarction Genetics Consortium (MIGen) study participants 

MIGen studies included the Atherosclerosis Risk in Communities study 
(ARIC), Italian Atherosclerosis Thrombosis and Vascular Biology (ATVB) study,1 
Bangladesh Risk of Acute Vascular Events study (BRAVE),2 the Exome Sequencing 
Project Early-Onset Myocardial Infarction (ESP-EOMI) study,3 a nested case-control 
cohort of the Jackson Heart Study (JHS),4 the South German Myocardial Infarction 
study,5 the Ottawa Heart Study (OHS),6 the Precocious Coronary Artery Disease 
Study (PROCARDIS),7 the Pakistan Risk of Myocardial Infarction Study (PROMIS),8 
the Registre Gironi del COR (Gerona Heart Registry or REGICOR) study,9 the 
Leicester Myocardial Infarction study,10 and the North German Myocardial Infarction 
study11 (Supplemental Table 37). Clinical data were assessed in each study.  

All participants in the study provided written informed consent for genetic 
studies. The institutional review boards at the Broad Institute and each participating 
institution approved the study protocol.  

In order to minimize the possibility of unintentionally sharing information that 
can be used to re-identify private information, a subset of the data generated for this 
study are available at dbGaP and can be accessed at through dbGaP Study 
Accessions: phs000090.v1.p1 (ARIC), phs000814.v1.p1 (ATVB), phs001398.v1.p1 
(BRAVE), phs000279.v2.p1 (EOMI), phs001098.v1.p1 (JHS), phs001000.v1.p1 
(Leicester), phs000990.v1.p1 (NorthGermanMI), phs000916.v1.p1 
(SouthGermanMI), phs000806.v1.p1 (OHS), phs000883.v1.p1 (PROCARDIS), 
phs000917.v1.p1 (PROMIS), phs000902.v1.p1(Regicor). 
 

TOPMed program study participants 

Atherosclerosis Risk in Communities study (ARIC, 2868) 

TOPMed dbGaP accession#: phs001211, Parent dbGaP accession#: phs000280 

ARIC is a large population-based prospective longitudinal cohort study (began 
1987) from four U.S. communities: Forsyth County, NC; Jackson, MS; the northwest 
suburbs of Minneapolis, MN; and Washington County, MD. ARIC was designed to 
investigate the etiology and natural history of atherosclerosis, its consequences, and 
related medical care by race, gender, location, and time as previously described.12 A 
total of 15,792 participants (55% female and 27% African American) aged 45-64 
years were recruited between 1987 and 1989 and received extensive examination, 
including medical, social and demographic data. The baseline visit was conducted 
between 1987 and1989, the second visit in 1990-1992, the third visit in 1993-1995, 
the fourth visit in 1996-1998, the fifth visit in 2011-2013, the sixth visit in 2016-2017, 
and the seventh visit in 2018-2019. Follow-up is also conducted semi-annually since 
2012 (annually prior to that) by telephone to maintain contact with participants and to 
assess the health status of the cohort.  

The Atherosclerosis Risk in Communities study has been funded in whole or 
in part with Federal funds from the National Heart, Lung, and Blood Institute, National 
Institutes of Health, Department of Health and Human Services (contract numbers 
HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, 
HHSN268201700004I and HHSN268201700005I). The authors thank the staff and 
participants of the ARIC study for their important contributions. 



 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine 
(TOPMed) program was supported by the National Heart, Lung and Blood Institute 
(NHLBI). WGS for “NHLBI TOPMed: Atherosclerosis Risk in Communities (ARIC)” 
(phs001211) was performed at the Baylor College of Medicine Human Genome 
Sequencing Center (HHSN268201500015C and 3U54HG003273-12S2) and the 
Broad Institute for MIT and Harvard (3R01HL092577-06S1). Centralized read 
mapping and genotype calling, along with variant quality metrics and filtering were 
provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1). 
Phenotype harmonization, data management, sample-identity QC, and general study 
coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-
120393-02S1). We gratefully acknowledge the studies and participants who provided 
biological samples and data for TOPMed.  

The Genome Sequencing Program (GSP) was funded by the National Human 
Genome Research Institute (NHGRI), the National Heart, Lung, and Blood Institute 
(NHLBI), and the National Eye Institute (NEI). The GSP Coordinating Center (U24 
HG008956) contributed to cross-program scientific initiatives and provided logistical 
and general study coordination. The Centers for Common Disease Genomics 
(CCDG) program was supported by NHGRI and NHLBI, and whole genome 
sequencing was performed at the Baylor College of Medicine Human Genome 
Sequencing Center (UM1 HG008898 and R01HL059367). 

Old Order Amish (Amish, 1,083) 

TOPMed dbGaP accession#: phs000956, Parent dbGaP accession#: phs000391 

The Amish Complex Disease Research Program includes a set of large 
community-based studies focused largely on cardiometabolic health carried out in the 
Old Order Amish (OOA) community of Lancaster, Pennsylvania.13 The OOA 
population of Lancaster County, PA immigrated to the Colonies from Western Europe 
in the early 1700's. There are now over 30,000 OOA individuals in the Lancaster 
area, nearly all of whom can trace their ancestry back 12-14 generations to 
approximately 700 founders. Investigators at the University of Maryland School of 
Medicine have been studying the genetic determinants of cardiometabolic health in 
this population since 1993. To date, over 7,000 Amish adults have participated in one 
or more of our studies.  

The Amish studies upon which these data are based were supported by NIH 
grants R01 AG18728, U01 HL072515, R01 HL088119, R01 HL121007, U01 
HL137181, and P30 DK072488, American Heart Association grant AHA 
17GRNT33661168 WGS for “NHLBI TOPMed: Genetics of Cardiometabolic Health in 
the Amish” (phs000956) was performed at the Broad Institute of MIT and Harvard 
(3R01HL121007-01S1). 

 

Mt Sinai BioMe Biobank (BioMe, 3257) 

TOPMed dbGaP accession#: phs001644, Parent dbGaP accession#: phs000925 

The Mount Sinai Institute for Personalized Medicine BioMe Biobank is a 
consented, EMR-linked medical care setting biorepository of the Mount Sinai Medical 
Center drawing from a population of over 70,000 inpatients and 800,000 outpatient 
visits annually.14 The Mount Sinai Medical Center services diverse local communities      
of upper Manhattan, including Central Harlem (86% African American), East Harlem 



 

(88% Hispanic Latino), and Upper East Side (88% European ancestry/white) with 

broad health disparities. Biobank operations are fully integrated in clinical care 
processes, including direct recruitment from clinical sites waiting areas and 
phlebotomy stations by dedicated Biobank recruiters independent of clinical care 
providers, prior to or following a clinician standard of care visit. Recruitment currently 
occurs at a broad spectrum of over 30 clinical care sites. 

The Mount Sinai BioMe Biobank has been supported by The Andrea and 
Charles Bronfman Philanthropies and in part by Federal funds from the NHLBI and 
NHGRI (U01HG00638001; U01HG007417; X01HL134588). WGS for “NHLBI 
TOPMed: Mount Sinai BioMe Biobank” (phs001644) was performed at the Baylor 
College of Medicine Human Genome Sequencing Center (HHSN268201600033I). 
We thank all participants in the Mount Sinai Biobank. We also thank all our recruiters 
who have assisted and continue to assist in data collection and management and are 
grateful for the computational resources and staff expertise provided by Scientific 
Computing at the Icahn School of Medicine at Mount Sinai. 

 

Coronary Artery Risk Development in Young Adults (CARDIA, 2724) 

TOPMed dbGaP accession#: phs001612, Parent dbGaP accession#: phs000285 

The Coronary Artery Risk Development in Young Adults Study (CARDIA) is a 
study examining the etiology and natural history of cardiovascular disease beginning 
in young adulthood.15 In 1985-1986, a cohort of 5115 healthy black and white men 
and women aged 18-30 years were selected to have approximately the same 
number of people in subgroups of age (18-24 and 25-30), sex, race, and education 
(high school or less and more than high school) within each of four US Field Centers. 
These same participants were asked to participate in follow-up examinations during 
1987-1988 (Year 2), 1990-1991 (Year 5), 1992-1993 (Year 7), 1995-1996 (Year 10), 
2000-2001 (Year 15), 2005-2006 (Year 20), 2010-2011 (Year 25); and 2015-2016 
(Year 30). A majority of the group has been examined at each of the follow-up 
examinations (91%, 86%, 81%, 79%, 74%, 72%, 72%, and 71%, respectively).  In 
addition to the follow-up examinations, participants are contacted regularly for the 
ascertainment of information on out-patient procedures and hospitalizations 
experienced between contacts. 

The Coronary Artery Risk Development in Young Adults Study (CARDIA) is 
conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in 
collaboration with the University of Alabama at Birmingham (HHSN268201800005I & 
HHSN268201800007I), Northwestern University (HHSN268201800003I), University 
of Minnesota (HHSN268201800006I), and Kaiser Foundation Research Institute 
(HHSN268201800004I). CARDIA was also partially supported by the Intramural 
Research Program of the National Institute on Aging (NIA) and an intra‐agency 
agreement between NIA and NHLBI (AG0005). WGS for “NHLBI TOPMed: Coronary 
Artery Risk Development in Young Adults” (phs001612) was performed at the Baylor 
College of Medicine Human Genome Sequencing Center (HHSN268201600033I). 

 

Cleveland Family Study (CFS, 532) 

TOPMed dbGaP accession#: phs000954, Parent dbGaP accession#: phs000284 



 

The Cleveland Family Study (CFS) is a family-based study of sleep apnea, 
comprising of 2,284 individuals (46% African American) from 361 families studied up 
to 4 occasions over 16 years, 1990-2006.16-19 Index probands (n=275) were recruited 
from 3 area hospital sleep labs if they had a confirmed diagnosis of sleep apnea and 
at least 2 first-degree relatives available to be studied. In the first 5 years of the 
study, neighborhood control probands (n=87) with at least 2 living relatives available 
for study were selected at random from a list provided by the index family and also 
studied. All available first-degree relatives and spouses of the case and control 
probands also were recruited. Second-degree relatives, including half-sibs, aunts, 
uncles and grandparents, were also included if they lived near the first-degree 
relatives (cases or controls), or if the family had been found to have two or more 
relatives with sleep apnea. Blood was sampled and DNA isolated for participants 
seen in the last two exam cycles (n=1,447). 

CFS is supported by grants from the NHLBI (HL046389, HL113338, and 
1R35HL135818). WGS for “NHLBI TOPMed: Cleveland Family Study - WGS 
Collaboration” (phs000954) was performed at the University of Washington 
Northwest Genomics Center (3R01HL098433-05S1 and HHSN268201600032I). 

 

Cardiovascular Health Study (CHS, 2070) 

TOPMed dbGaP accession#: phs001368, Parent dbGaP accession#: phs000287 

The Cardiovascular Health Study (CHS) originated in 1988 and is a study of 
risk factors for development and progression of coronary heart disease and stroke in 
people aged 65 years and older.20-22 The 5,888 study participants were recruited 
from four U.S. communities and have undergone extensive clinic examinations for 
evaluation of markers of subclinical cardiovascular disease. The original cohort 
totaled 5,201 participants. A new cohort was recruited in 1992. The 687 participants 
in the new cohort are predominately African-American and were recruited at three of 
the four field centers. Starting in 1989, and continuing through 1999, participants 
underwent annual extensive clinical examinations. Measurements included traditional 
risk factors such as blood pressure and lipids as well as measures of subclinical 
disease, including echocardiography of the heart, carotid ultrasound, and cranial 
magnetic-resonance imaging (MRI). At six-month intervals between clinic visits, and 
once clinic visits ended, participants were contacted by phone to ascertain 
hospitalizations and health status. The main outcomes are coronary heart disease 
(CHD), angina, heart failure (HF), stroke, transient ischemic attack (TIA), 
claudication, and mortality. Participants continue to be contacted by phone every 6 
months. 

This CHS research was supported by NHLBI contracts 
HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, 
N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, 
N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, 
R01HL105756, R01HL103612, R01HL120393, R01HL130114, and R01 HL059367, 
with additional contribution from the National Institute of Neurological Disorders and 
Stroke (NINDS). Additional support was provided through R01AG023629 from the 
National Institute on Aging (NIA). A full list of principal CHS investigators and 
institutions can be found at CHS-NHLBI.org. WGS for “NHLBI TOPMed: 
Cardiovascular Health Study” (phs001368) was performed at the Baylor College of 
Medicine Human Genome Sequencing Center (3U54HG003273-12S2, 



 

HHSN268201500015C, and HHSN268201600033I). The content is solely the 
responsibility of the authors and does not necessarily represent the official views of 
the National Institutes of Health. 

 

Diabetes Heart Study (DHS, 345) 

TOPMed dbGaP accession#: phs001412, Parent dbGaP accession#: phs001012 

The Diabetes Heart Study (DHS) is a family-based study enriched for type 2 
diabetes (T2D).23 The cohort included 1443 European American and African 
American participants from 564 families with multiple cases of type 2 diabetes. The 
cohort was recruited between 1998 and 2006. Participants were extensively 
phenotyped for measures of subclinical CVD and other known CVD risk factors. 
Primary outcomes were quantified burden of vascular calcified plaque in the coronary 
artery, carotid artery, and abdominal aorta all determined from non-contrast 
computed tomography scans. 

This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, 
R01 AR48797, R01 DK071891, R01 AG058921, the General Clinical Research 
Center of the Wake Forest University School of Medicine (M01 RR07122, F32 
HL085989), the American Diabetes Association, and a pilot grant from the Claude 
Pepper Older Americans Independence Center of Wake Forest University Health 
Sciences (P60 AG10484). WGS for “NHLBI TOPMed: Diabetes Heart Study” 
(phs001412) was performed at the Broad Institute of MIT and Harvard 
(HHSN268201500014C). 

 

Framingham Heart Study (FHS, 3,961) 

TOPMed dbGaP accession#: phs000974, Parent dbGaP accession#: phs000007 

The Framingham Heart Study (FHS) is a prospective cohort study of 3 
generations of subjects who have been followed up to 65 years to evaluate risk 
factors for cardiovascular disease.24-27 Its large sample of ~15,000 men and women 
who have been extensively phenotyped with repeated examinations make it ideal for 
the study of genetic associations with cardiovascular disease risk factors and 
outcomes. DNA samples have been collected and immortalized since the mid-1990s 
and are available on ~8000 study participants in 1037 families. These samples have 
been used for collection of GWAS array data and exome chip data in nearly all with 
DNA samples, and for targeted sequencing, deep exome sequencing and light 
coverage whole genome sequencing in limited numbers. Additionally, mRNA and 
miRNA expression data, DNA methylation data, metabolomics and other 'omics data 
are available on a sizable portion of study participants. This project will focus on deep 
whole genome sequencing (mean 30X coverage) in ~4100 subjects and imputed to 
all with GWAS array data to more fully understand the genetic contributions to 
cardiovascular, lung, blood and sleep disorders. 

FHS acknowledges the support of contracts NO1-HC-25195 and 
HHSN268201500001I from the National Heart, Lung and Blood Institute and grant 
supplement R01 HL092577-06S1 for this research. WGS for “NHLBI TOPMed: 
Whole Genome Sequencing and Related Phenotypes in the Framingham Heart 
Study” (phs000974) was performed at the Broad Institute of MIT and Harvard 
(HHSN268201500014C, 3R01HL092577-06S1, and 3U54HG003067-12S2). We also 



 

acknowledge the dedication of the FHS study participants without whom this 
research would not be possible. 

 

Genetic Epidemiology Network of Arteriopathy (GENOA, 391) 

TOPMed dbGaP accession#: phs001345, Parent dbGaP accession#: phs001238 

The Genetic Epidemiology Network of Arteriopathy (GENOA) is one of four 
networks in the NHLBI Family-Blood Pressure Program (FBPP).28 GENOA's long-
term objective is to elucidate the genetics of target organ complications of 
hypertension, including both atherosclerotic and arteriolosclerotic complications 
involving the heart, brain, kidneys, and peripheral arteries.29 The longitudinal 
GENOA Study recruited European-American and African-American sibships with at 
least 2 individuals with clinically diagnosed essential hypertension before age 60 
years. All other members of the sibship were invited to participate regardless of their 
hypertension status. Participants were diagnosed with hypertension if they had either 
1) a previous clinical diagnosis of hypertension by a physician with current anti-
hypertensive treatment, or 2) an average systolic blood pressure ≥ 140 mm Hg or 
diastolic blood pressure ≥ 90 mm Hg based on the second and third readings at the 
time of their clinic visit. Only participants of the African-American Cohort were 
sequenced through TOPMed. 

Support for GENOA was provided by the National Heart, Lung and Blood 
Institute (HL054457, HL054464, HL054481, and HL087660) of the National Institutes 
of Health. WGS for “NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy” 
(phs001345) was performed at the Broad Institute of MIT and Harvard 
(HHSN268201500014C) and the University of Washington Northwest Genomics 
Center (3R01HL055673-18S1). 

 

Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN, 594) 

TOPMed dbGaP accession#: phs001359, Parent dbGaP accession#: phs000741 

The Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study was 
initiated to assess how genetic factors interact with environmental (diet and drug) 
interventions to influence blood levels of triglycerides and other atherogenic lipid 
species and inflammation markers (registered at clinicaltrials.gov, number 
NCT00083369).30 The study recruited participants of European ancestry primarily 
from three-generational pedigrees from two NHLBI Family Heart Study (FHS) field 
centers (Minneapolis, MN and Salt Lake City, UT).31 Only families with at least two 
siblings were recruited and only participants who did not take lipid-lowering agents 
(pharmaceuticals or nutraceuticals) for at least 4 weeks prior to the initial visit were 
included. The diet intervention followed the protocol of Patsch et al.32 The whipping 
cream (83% fat) meal had 700 Calories/m2 body surface area (2.93 mJ/m2 body 
surface area): 3% of calories were derived from protein (instant nonfat dry milk) and 
14% from carbohydrate (sugar). The ratio of polyunsaturated to saturated fat was 
0.06 and the cholesterol content of the average meal was 240 mg. The mixture was 
blended with ice and flavorings. Blood samples were drawn immediately before 
(fasting) and at 3.5 and 6 hours after consuming the high-fat meal. The diet 
intervention was administered at baseline as well as after a 3-week treatment with 
160 mg micronized fenofibrate. Participants were given the option to complete one or 



 

both (diet and drug) interventions. Of all participants, 1079 had phenotypic data and 
provided appropriate consent, and underwent whole genome sequencing through the 
TOPMed program. 

GOLDN biospecimens, baseline phenotype data, and intervention phenotype 
data were collected with funding from National Heart, Lung and Blood Institute 
(NHLBI) grant U01 HL072524. WGS for “NHLBI TOPMed: Genetics of Lipid Lowering 
Drugs and Diet Network” (phs001359) was performed at the University of 
Washington Northwest Genomics Center (3R01HL104135-04S1 and R01 
HL104135). 

 

Genetic Epidemiology Network of Salt Sensitivity (GenSalt, 1,749) 

TOPMed dbGaP accession#: phs001217, Parent dbGaP accession#: phs000784 

The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study, using a 
family feeding-study design, aims to identify genes which interact with dietary sodium 
and potassium intake to influence blood pressure in Han Chinese participants from 
rural north China.33 The dietary intervention included a 7-day low-sodium feeding 
(51.3 mmol/day), a 7-day high-sodium feeding (307.8 mmol/day) and a 7-day high-
sodium feeding with an oral potassium supplementation (60 mmol/day). Microsatellite 
markers for genome-wide linkage scan and single nucleotide polymorphism (SNP) 
markers in candidate genes will be genotyped. Overall, 3153 participants from 658 
families were recruited for GenSalt. Whole genome sequencing has been conducted 
for 1,860 participants as a part of TOPMed. 

GenSalt was supported by research grants (U01HL072507, R01HL087263, 
and R01HL090682) from the National Heart, Lung and Blood Institute, National 
Institutes of Health, Bethesda, MD. WGS for “NHLBI TOPMed: Genetic Epidemiology 
Network of Salt Sensitivity” (phs001217) was performed at the Baylor College of 
Medicine Human Genome Sequencing Center (HHSN268201500015C). 

 

Genetic Studies of Atherosclerosis Risk (GeneSTAR, 1,749) 

TOPMed dbGaP accession#: phs001218, Parent dbGaP accession#: phs000375 

GeneSTAR began in 1982 as the Johns Hopkins Sibling and Family Heart 
Study, a prospective longitudinal family-based study conducted originally in healthy 
adult siblings of people with documented early onset coronary disease under 60 
years of age.34,35 Commencing in 2003, the siblings, their offspring, and the coparent 
of the offspring participated in a 2 week trial of aspirin 81 mg/day with pre and post 
ex vivo platelet function assessed using multiple agonists in whole blood and platelet 
rich plasma. Extensive additional cardiovascular testing and risk assessment was 
done at baseline and serially. Follow-up was carried out to determine incident 
cardiovascular disease, stroke, peripheral arterial disease, diabetes, cancer, and 
related comorbidities, from 5 to 30 years after study entry. The goal of several 
additional phenotyping and interventional substudies has been to discover and 
amplify understanding of the mechanisms of atherogenic vascular diseases and 
attendant comorbidities. 



 

GeneSTAR was supported by grants from the National Institutes of 
Health/National Heart, Lung, and Blood Institute (U01 HL72518, HL087698, 
HL49762, HL58625, HL071025, HL112064), the 

National Institutes of Health/National Institute of Nursing Research (NR0224103), and 
by a grant from the National Institutes of Health/National Center for Research 
Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center. 
WGS for “NHLBI TOPMed: Genetic Studies of Atherosclerosis Risk” (phs001218) 
was performed at the Broad Institute of MIT and Harvard (HHSN268201500014C), 
the Macrogen Corp. (3R01HL112064-04S1), and Illumina (R01HL112064). 

 

Hispanic Community Health Study - Study of Latinos (HCHS/SOL, 2540) 

TOPMed dbGaP accession#: phs001395, Parent dbGaP accession#: phs000810 

The Hispanic Community Health Study / Study of Latinos (HCHS/SOL) is a 
multi-center epidemiologic study in Hispanic/Latino populations to determine the role 
of acculturation in the prevalence and development of disease, and to identify risk 
factors playing a protective or harmful role in Hispanics/Latinos.36 The goals of the 
HCHS/SOL include studying the prevalence and development of disease in 
Hispanics/Latinos, including the role of acculturation, and identifying disease risk 
factors that play protective or harmful roles in Hispanics/Latinos. A total of 16,415 
persons of Cuban, Dominican, Mexican, Puerto Rican, Central American, and South 
American backgrounds were recruited through four Field Centers affiliated with San 
Diego State University, Northwestern University in Chicago, Albert Einstein College 
of Medicine in the Bronx area of New York, and the University of Miami. Seven 
additional academic centers serve as scientific and logistical support centers. Study 
participants aged 18-74 years took part in an extensive clinic exam and assessments 
to ascertain socio-demographic, cultural, environmental and biomedical 
characteristics. Annual follow-up interviews are conducted to determine a range of 
health outcomes. 

The Hispanic Community Health Study/Study of Latinos was carried out as a 
collaborative study supported by contracts from the National Heart, Lung, and Blood 
Institute (NHLBI) to the University of North Carolina (N01-HC65233), University of 
Miami (N01-HC65234), Albert Einstein College of Medicine (N01-HC65235), 
Northwestern University (N01-HC65236), and San Diego State University (N01-
HC65237). The following Institutes/Centers/Offices contribute to the HCHS/SOL 
through a transfer of funds to the NHLBI: National Center on Minority Health and 
Health Disparities, the National Institute of Deafness and Other Communications 
Disorders, the National Institute of Dental and Craniofacial Research, the National 
Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of 
Neurological Disorders and Stroke, and the Office of Dietary Supplements. WGS for 
“NHLBI TOPMed: Hispanic Community Health Study - Study of Latinos” (phs001395) 
was performed at the Baylor College of Medicine Human Genome Sequencing 
Center (HHSN268201600033I). 

 

Hypertension Genetic Epidemiology Network and Genetic Epidemiology Network of 
Arteriopathy (HyperGEN, 1,797) 

TOPMed dbGaP accession#: phs001293, Parent dbGaP accession#: phs001293 



 

The Hypertension Genetic Epidemiology Network Study (HyperGEN) - 
Genetics of Left Ventricular (LV) Hypertrophy is a familial study aimed to understand 
genetic risk factors for LV hypertrophy by conducting genetic studies of continuous 
traits from echocardiography exams.37 The originating HyperGEN study aimed to 
understand genetic risk factors for hypertension.38 HyperGEN recruited 470 multiply-
affected population-based hypertensive AA sibships (N=1224 siblings) from 1996-
1999. HyperGEN probands were ascertained by early onset hypertension (i.e., 
before 60 years); to participate, they had to have at least one hypertensive sibling 
who was also willing to participate. Data from detailed clinical exams as well as 
genotyping data for linkage studies, candidate gene studies and GWAS have been 
collected and is shared between HyperGEN and the ancillary HyperGEN - Genetics 
of LV Hypertrophy study. 

The HyperGEN Study is part of the National Heart, Lung, and Blood Institute 
(NHLBI) Family Blood Pressure Program; collection of the data represented here was 
supported by grants U01 HL054472 (MN Lab), U01 HL054473 (DCC), U01 
HL054495 (AL FC), and U01 HL054509 (NC FC). The HyperGEN: Genetics of Left 
Ventricular Hypertrophy Study was supported by NHLBI grant R01 HL055673 with 
whole-genome sequencing made possible by supplement -18S1. WGS for “NHLBI 
TOPMed: Hypertension Genetic Epidemiology Network” (phs001293) was performed 
at the University of Washington Northwest Genomics Center (3R01HL055673-18S1). 

 

Jackson Heart Study (JHS, 1722) 

TOPMed dbGaP accession#: phs000964, Parent dbGaP accession#: phs000286 

The purpose of the Jackson Heart Study (JHS) is to explore the reasons for 
heightened cardiovascular disease prevalence among African Americans and to 
uncover new approaches to reduce it. The JHS is a large, community-based, 
observational study whose 5,306 participants were recruited from among the non-
institutionalized African-American adults from urban and rural areas of the three 
counties (Hinds, Madison, and Rankin) that make up the Jackson, MS, metropolitan 
statistical area (MSA).4,39,40 The JHS design included participants from the Jackson 
ARIC study who had originally been recruited through random selection from a 
drivers' license registry. New JHS participants were chosen randomly from the 
Accudata America commercial listing, which provides householder name, address, 
zip code, phone number (if available), age group in decades, and family components. 
In addition, a family component was included in the JHS. The sampling frame for the 
family study was a participant in any one of the ARlC, random, or volunteer samples 
whose family size met eligibility requirements. Recruitment was limited to persons 
35-84 years old except in the family cohort, where those 21 years old and above 
were eligible. 

The Jackson Heart Study (JHS) is supported and conducted in collaboration 
with Jackson State University (HHSN268201800013I), Tougaloo College 
(HHSN268201800014I), the Mississippi State Department of Health 
(HHSN268201800015I) and the University of Mississippi Medical Center 
(HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts 
from the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute 
on Minority Health and Health Disparities (NIMHD). WGS for “NHLBI TOPMed: The 
Jackson Heart Study” (phs000964) was performed at the University of Washington 



 

Northwest Genomics Center (HHSN268201100037C). The authors also wish to 
thank the staffs and participants of the JHS. 

 

Multi-Ethnic Study of Atherosclerosis (MESA, 5,185) 

TOPMed dbGaP accession#: phs001416, Parent dbGaP accession#: phs000209 

The Multi-Ethnic Study of Atherosclerosis (MESA) is a study of the 
characteristics of subclinical cardiovascular disease (disease detected non-invasively 
before it has produced clinical signs and symptoms) and the risk factors that predict 
progression to clinically overt cardiovascular disease or progression of the subclinical 
disease.41 MESA researchers study a diverse, population-based sample of 6,814 
asymptomatic men and women aged 45-84. Thirty-eight percent of the recruited 
participants are white, 28 percent African-American, 22 percent Hispanic, and 12 
percent Asian, predominantly of Chinese descent. Participants were recruited from 
six field centers across the United States: Wake Forest University, Columbia 
University, Johns Hopkins University, University of Minnesota, Northwestern 
University and University of California - Los Angeles. Each participant received an 
extensive exam and determination of coronary calcification, ventricular mass and 
function, flow-mediated endothelial vasodilation, carotid intimal-medial wall thickness 
and presence of echogenic lucencies in the carotid artery, lower extremity vascular 
insufficiency, arterial wave forms, electrocardiographic (ECG) measures, standard 
coronary risk factors, sociodemographic factors, lifestyle factors, and psychosocial 
factors. Selected repetition of subclinical disease measures and risk factors at follow-
up visits allows study of the progression of disease. Blood samples have been 
assayed for putative biochemical risk factors and stored for case-control studies. 
DNA has been extracted and lymphocytes cryopreserved (for possible 
immortalization) for study of candidate genes and possibly, genome-wide scanning, 
expression, and other genetic techniques. Participants are being followed for 
identification and characterization of cardiovascular disease events, including acute 
myocardial infarction and other forms of coronary heart disease (CHD), stroke, and 
congestive heart failure; for cardiovascular disease interventions; and for mortality. 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine 
(TOPMed) program was supported by the National Heart, Lung and Blood Institute 
(NHLBI). WGS for “NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” 
(phs001416.v1.p1) was performed at the Broad Institute of MIT and Harvard 
(3U54HG003067-13S1). Centralized read mapping and genotype calling, along with 
variant quality metrics and filtering were provided by the TOPMed Informatics 
Research Center (3R01HL-117626-02S1). Phenotype harmonization, data 
management, sample-identity QC, and general study coordination, were provided by 
the TOPMed Data Coordinating Center (3R01HL-120393-02S1). MESA and the 
MESA SHARe project are conducted and supported by the National Heart, Lung, and 
Blood Institute (NHLBI) in collaboration with MESA investigators. The MESA project 
is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) 
in collaboration with MESA investigators. Support for MESA is provided by contracts 
75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-
HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 
75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 
75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, 
N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420. Support is 



 

provided by grants and contracts R01HL071051, R01HL071205, R01HL071250, 
R01HL071251, R01HL071258, R01HL071259, by the National Center for Research 
Resources, Grant UL1RR033176. The provision of genotyping data was supported in 
part by the National Center for Advancing Translational Sciences, CTSI grant 
UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney 
Disease Diabetes Research Center (DRC) grant DK063491 to the Southern 
California Diabetes Endocrinology Research Center. 
 

Massachusetts General Hospital Atrial Fibrillation Study (MGH_AF, 682) 

TOPMed dbGaP accession#: phs001062, Parent dbGaP accession#: phs001001 

The Massachusetts General Hospital (MGH) Atrial Fibrillation Study was 
initiated in 2001.42,43 The study has enrolled serial probands, unaffected and affected 
family members with atrial fibrillation. At enrollment participants undergo a structured 
interview to systematically capture their past medical history, AF treatments, and 
family history. An electrocardiogram is performed; the results of an echocardiogram 
are obtained; and blood samples are obtained. For the TOPMed whole genome 
sequencing project only early-onset atrial fibrillation cases were sequenced. Early-
onset atrial fibrillation was defined as an age of onset prior to 66 years of age. 

The MGH AF Study was supported by grants to Dr. Ellinor from the Fondation 
Leducq (14CVD01), the National Institutes of Health to Dr. Ellinor (1RO1HL092577, 
R01HL128914, K24HL105780) and Dr. Lubitz (1R01HL139731) and by grants from 
the American Heart Association to Dr. Ellinor (18SFRN34110082) and to Dr. Lubitz 
(18SFRN34250007). WGS for “NHLBI TOPMed: Massachusetts General Hospital 
Atrial Fibrillation Study” (phs001062) was performed at the Broad Institute of MIT and 
Harvard (3R01HL092577-06S1, 3U54HG003067-12S2, 3U54HG003067-13S1, and 
3UM1HG008895-01S2) 

 

San Antonio Family Study (SAFS, 575) 

TOPMed dbGaP accession#: phs001215, Parent dbGaP accession#: phs000462 

 The San Antonio Family Heart Study is a complex pedigree-based mixed 
longitudinal study designed to identify low frequency or rare variants influencing 
susceptibility to cardiovascular disease, using whole genome sequence (WGS) 
information from 3,000 individuals in large Mexican American pedigrees from San 
Antonio, Texas.44 The major objectives of this study are to identify low frequency or 
rare variants in and around known common variant signals for CVD, as well as to find 
novel low frequency or rare variants influencing susceptibility to CVD. The study 
began in 1991, and included 1,431 individuals in 42 extended families at baseline. 
Probands were 40 to 60 year old low-income Mexican Americans selected at random 
without regard to presence or absence of disease, almost exclusively from Mexican 
American census tracts in San Antonio, Texas. All first, second, and third -degree 
relatives of the proband and of the proband's spouse, aged 16 years or above, were 
eligible to participate in the study. 1,200 WGS at 30X WGS were obtained through 
Illumina funded by a supplement as part of the NHLBI's TOPMed program. 

Collection of the San Antonio Family Study data was supported in part by 
National Institutes of Health (NIH) grants R01 HL045522, MH078143, MH078111 
and MH083824; and whole genome sequencing of SAFS subjects was supported by 



 

U01 DK085524 and R01 HL113323. We are very grateful to the participants of the 
San Antonio Family Study for their continued involvement in our research programs. 
WGS for “NHLBI TOPMed: Whole Genome Sequencing to Identify Causal Genetic 
Variants Influencing CVD Risk - San Antonio Family Studies” (phs001215) was 
performed at Illumina (3R01HL113323-03S1 and R01HL113322). 

 

Samoan Adiposity Study (Samoan, 1,182) 

TOPMed dbGaP accession#: phs000972, Parent dbGaP accession#: phs000914 

 The research goal of the Samoan Adiposity Study is to identify genetic 
variation that increases susceptibility to obesity and cardiometabolic phenotypes 
among adult Samoans using genome-wide association (GWAS) methods.45,46 DNA 
from peripheral blood and phenotypic information were collected from 3,119 adult 
Samoans, 23 to 70 years of age. The participants reside throughout the independent 
nation of Samoa, which is experiencing economic development and the nutrition 
transition. Genotyping was performed with the Affymetrix Genome-Wide Human SNP 
6.0 Array using a panel of approximately 900,000 SNPs. Anthropometric, fasting 
blood biomarkers and detailed dietary, physical activity, health and socio-
demographic variables were collected. Whole genome sequencing of a subset was 
motivated by the opportunity to create a Samoan-specific reference panel for 
imputation into the larger parent study. 

Data collection was funded by NIH grant R01-HL093093 and R01-HL133040. 
WGS for “NHLBI TOPMed: Samoan Adiposity Study” (phs000972) was performed at 
the University of Washington Northwest Genomics Center (HHSN268201100037C 
and HHSN268201500016C). We thank the Samoan participants of the study and 
local village authorities. We acknowledge the support of the Samoan Ministry of 
Health and the Samoa Bureau of Statistics for their support of this research. 

The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group: 

Ranjan Deka, Dept. of Environmental Health,  University of Cincinnati; 

Nicola L. Hawley, Dept. of Chronic Disease Epidemiology, Yale University; 

Stephen T McGarvey, Dept. of Epidemiology and International Health Institute, 
and Dept. of Anthropology, Brown University; 

Ryan L Minster, Dept. of Human Genetics,   University of Pittsburgh; 

Take Naseri, Ministry of Health, Government of Samoa; 

Muagututi‘a Sefuiva Reupena, Lutia I Puava Ae Mapu I Fagalele; 

Daniel E. Weeks, Depts. of Human Genetics and Biostatistics, University of 
Pittsburgh 

 

Taiwan Study of Hypertension using Rare Variants (THRV, 1,979) 

TOPMed dbGaP accession#: phs001387, Parent dbGaP accession#: phs001387 

The THRV-TOPMed study consists of three cohorts: The SAPPHIRe Family 
cohort (N=1,271), TSGH (Tri-Service General Hospital, a hospital-based cohort, 
N=160), and TCVGH (Taichung Veterans General Hospital, another hospital-based 
cohort, N=922), all based in Taiwan.47,48 1,271 subjects were previously recruited as 



 

part of the NHLBI-sponsored SAPPHIRe Network (which is part of the Family Blood 
Pressure Program, FBPP). The SAPPHIRe families were recruited to have two or 
more hypertensive sibs, some families also with one normotensive/hypotensive sib. 
The two Hospital-based cohorts (TSGH and TCVGH) both recruited unrelated 
subjects with different recruitment criteria (matched with SAPPHIRe subjects for age, 
sex, and BMI category). 

The Rare Variants for Hypertension in Taiwan Chinese (THRV) is supported by the 
National Heart, Lung, and Blood Institute (NHLBI) grant (R01HL111249) and its 
participation in TOPMed is supported by an NHLBI supplement (R01HL111249-
04S1). THRV is a collaborative study between Washington University in St. Louis, LA 
BioMed at Harbor UCLA, University of Texas in Houston, Taichung Veterans General 
Hospital, Taipei Veterans General Hospital, Tri-Service General Hospital, National 
Health Research Institutes, National Taiwan University, and Baylor University. THRV 
is based (substantially) on the parent SAPPHIRe study, along with additional 
population-based and hospital-based cohorts. SAPPHIRe was supported by NHLBI 
grants (U01HL54527, U01HL54498) and Taiwan funds, and the other cohorts were 
supported by Taiwan funds.  WGS for “NHLBI TOPMed: Taiwan Study of 
Hypertension using Rare Variants” (phs001387) was performed at the Baylor College 
of Medicine Human Genome Sequencing Center (3R01HL111249-04S1, 
HHSN26820150015C) 

 

Women’s Health Initiative (WHI, 8,188) 

TOPMed dbGaP accession#: phs001237, Parent dbGaP accession#: phs000200 

The Women's Health Initiative (WHI) is a long-term national health study that 
has focused on strategies for preventing heart disease, breast and colorectal cancer, 
and osteoporotic fractures in postmenopausal women (clinicaltrials.gov 
NCT00000611).49-51 The original WHI study included 161,808 postmenopausal 
women enrolled between 1993 and 1998. The Fred Hutchinson Cancer Research 
Center in Seattle, WA serves as the WHI Clinical Coordinating Center for data 
collection, management, and analysis of the WHI. The WHI has two major parts: a 
partial factorial randomized Clinical Trial (CT) and an Observational Study (OS); both 
were conducted at 40 Clinical Centers nationwide. The CT enrolled 68,132 
postmenopausal women between the ages of 50-79 into trials testing three 
prevention strategies. If eligible, women could choose to enroll in one, two, or all 
three of the trial components. The components are: hormone therapy trials, dietary 
modification trial, and calcium / vitamin D trial. The Observational Study (OS) 
examines the relationship between lifestyle, environmental, medical and molecular 
risk factors and specific measures of health or disease outcomes. This component 
involves tracking the medical history and health habits of 93,676 women not 
participating in the CT. Recruitment for the observational study was completed in 
1998 and participants were followed annually for 8 to 12 years. 

The WHI program is funded by the National Heart, Lung, and Blood Institute, 
National Institutes of Health, U.S. Department of Health and Human Services through 
contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, 
HHSN268201600003C, and HHSN268201600004C. WGS for “NHLBI TOPMed: 
Women's Health Initiative” (phs001237) was performed at the Broad Institute of MIT 
and Harvard (HHSN268201500014C) 



 

 

UK Biobank (external to TOPMed) 

The UK Biobank analyses were conducted using the UK Biobank resource 
under application 7089. 
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