ARTICLE

Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease

Douglas R. Langbehn^{1,*} for the Registry Investigators of the European Huntington Disease Network

Summary

It is well known that the length of the CAG trinucleotide expansion of the huntingtin gene is associated with many aspects of Huntington disease progression. These include age of clinical onset and rate of initial progression of disease severity. The relationship between CAG length and survival in Huntington disease is less studied. To address this, we obtained the complete Registry HD database from the European Huntington Disease Network and reanalyzed the time from reported age of disease onset until death. We conducted semiparametric proportional hazards modeling of 8,422 participants who had experienced onset of clinical Huntington disease, either retrospectively or prospectively. Of these, 826 had a recorded age of death. To avoid biased model estimates, retrospective onset ages were represented by left truncation at study entry. After controlling for onset age, which tends to be younger in those with longer CAG repeat lengths, we found that CAG length had a substantial and highly significant influence upon survival time after disease onset. For a fixed age of onset, longer CAG expansions were predictive of shorter survival. This is consistent with other known relationships between CAG length and disease severity. We also show that older onset age predicts shorter lifespan after controlling for CAG length and that the influence of CAG on survival length is substantially greater in women. We demonstrate that apparent contradictions between these and previous analyses of the same data are primarily due to the question of whether to control for clinical onset age in the analysis of time until death.

Introduction

Huntington disease (HD) (MIM: 143100) is an autosomaldominant nervous system disease caused by abnormally long expansion of CAG trinucleotide repeats within the *huntingtin* (*HTT*) gene (MIM: 613004). The age of onset is well known to be strongly influenced by CAG expansionlength¹ (hereafter referred to as CAG length). Within the typically encountered range of approximately 40 to 50 CAG repeats, onset age ranges from 30 to 65 years² for most affected individuals. CAG lengths above this range are often associated with juvenile or young adult onset,³ whereas partial penetrance and late disease onset occurs for CAG lengths of 36 to 39.²

HD manifests by onset of cognitive decline, abnormal involuntary motor movements, and a less predictable range of behavioral-psychiatric problems that include severe apathy, impulsivity, and deterioration of executive function. HD develops insidiously within an affected individual, with brain changes detectable several decades before onset^{4–6} (and possibly from birth⁷). Upon careful examination, subtle loss of motor and cognitive function is often detectable a number of years prior to the point of clinically significant disease.^{8,9}

Confusingly, several overlapping and imprecise terms are used to discuss the onset of frank clinical illness (e.g., HD onset, motor onset, clinical diagnosis, motor diagnosis with 100% certainty). These differences have often been ignored in the HD literature regarding onset age. The issue is further confused because, as noted above, the onsets of many aspects of HD are gradual. Thus, there is some subjectivity in determining the degree of severity that constitutes "onset." Within large clinical HD databases, the most commonly reported of these measures is the age of motor symptom onset as either self-reported or as estimated by a clinician. This is usually a retrospective determination and is frequently listed as between 1 and 3 years prior to "diagnosis" of significantly limiting disease.¹⁰ Although imprecise, because of its widespread reporting, this onset age has been the measure most often used to document the relationship of HD "onset" to CAG repeat length and to secondary genetic factors.

CAG length has been shown to strongly influence not only onset age but also the rate of brain changes and motor and cognitive progression in the years before and shortly after onset.^{11–13} However, there is little literature addressing potential relationships between CAG length and the course of late-stage disease and death. Kieburtz and colleagues¹⁴ saw little or no relationship between CAG length and loss of functional capacity in moderately advanced HD. They did not, however, consider interactions of CAG length and patient age. In contrast, in a similarly advanced sample of patients, Rosenblatt and colleagues⁴ reported a strong relationship between CAG length and continuing progression when disease duration and onset age were controlled.

We are aware of only one large-scale study examining the relationship between CAG length and death in HD. Keum

*Correspondence: douglas-langbehn@uiowa.edu

¹Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA 52242, USA

https://doi.org/10.1016/j.ajhg.2021.12.002.

^{© 2021} American Society of Human Genetics.

and colleagues¹⁵ have reported that CAG length in HD does not predict the duration of illness from the time of disease onset until death. This finding, which the authors described as "counter-intuitive," was based on separate statistical analyses of two datasets and did not control for onset age. The first set of data was a mixture from a variety of academic brain and tissue banks. The second was a subset of 1,314 participants from the Registry-HD observational database of the European Huntington Disease Network (EHDN),¹⁶ 115 of whom had a recorded age of death. This represents but a fraction of more than 8,000 relevant participants available within the EHDN Registry study. The criteria for choosing this subset are not explained within the referenced work.

In analyses of early disease progression, the effect of CAG length is primarily manifested by its interaction with age.^{9,11,12} It thus seems relevant to ask whether CAG length influences time until death among patients who experienced onset at the same age. This overlooked consideration would potentially align our understanding of the effect of CAG length on post-onset survival with models of CAG length and disease progression. In this report, we reanalyze the length of time from HD onset until death using the complete Registry database. We use statistical modeling techniques that control for the age of onset, as well as for the retrospective reporting of onset ages before entry into the Registry study.

Subjects and methods

Upon application to the EHDN Executive Committee, we were granted access to pertinent data from the entire Registry database. The data was anonymized, including all information identifying subjects, sites, and countries. This anonymization exempted this project from local Human Subjects approval. The original study was approved by local institutional review boards at each particpating cite.

Registry was a multi-center, multi-national, prospective, observational study of HD with data collected between June 2004 and June 2017 (see web resources for clinicaltrials.gov description). Participants were recruited from HD-affected families who were known to study sites throughout Europe and thus are not a true epidemiological random sample. (To our knowledge, no such samples exist for this rare genetic disorder.) The observations used in the present analyses were collected at 156 different sites within 19 countries. Our analyses are based on 8,422 participants with expanded CAG repeat measurements (>35) with reported age of HD onset either prior to study entry (n = 8,205) or during the study (n = 217). Within this sample, 826 (9.8%) had an age of death reported. In addition to the 8,422 participants analyzed, the database contained 275 participants with onset age reported later than their age at last Registry visit. These were excluded from analyses, as there is no meaningful postonset survival to analyze. No deaths were reported among these. We also excluded two participants with HD onset age listed as 0.

The database consists of two subsets, labeled R2 and R3 by the original investigators, with some overlap of participants. R2 data were collected earlier than R3. There were 3,507 participants with data only in R2 and 2,111 participants with data only in R3. The other 2,808 participants had data in both R2 and R3. In the earlier subset R2, the only available HD onset age values

were from the "study rater's best estimate of onset age." In the later R3 subset, values were potentially reported for both the "rater's best estimate of onset age" and the "age of motor onset." The latter of these may also be the rater's estimate but is often based on reports from the participant or a secondary informant. (The source of the estimate is not given within the database.) There is no criterion by which to judge whether the "rater's best estimate" is objectively the better of the two onset measures. Regardless, the estimates are highly correlated. For the 6,582 participants from R3 for whom both rater and motor ages were recorded, the Pearson correlation between the two was 0.949 and the standard deviation of the age differences was 3.976 years. The correlation between R2 rater onset and R3 motor onset ages was 0.962 among 807 overlapping participants with ages recorded in both data subsets. The standard deviation of that difference was 3.302 years.

Our analyses used one observation per person after combining the two subsets. For participants included only in R2, we necessarily used the rater's best onset estimate. In the R3 data we used the age of motor onset because of its greater inclusiveness. There were 498 participants (5.9%) more with a reported motor age than with a rater age. For 22 deaths (2.7%) in which no rater age of onset was listed, the participants had substantial HD signs and symptoms recorded prospectively within the database. For participants with inconsistent onset age reported in R2 and R3, the earlier of the ages was used. During analyses, we verified that this decision had no notable effect on the key statistical estimates of age and CAG effects within the survival models. (Details are described later in this methods section.)

We performed Cox proportional hazards survival analyses of time from HD symptom onset until death. We checked plausibility of the proportional hazard assumption using Harrell's "zph" method¹⁷ of collapsing estimators containing a common term and then plotting and testing smoothed, scaled Schoenfeld residuals. As is customary, statistical inference and confidence intervals for proportional hazards were calculated using the log transform.

The predictor variables in the models were CAG repeat length, age of HD symptom onset, and sex. We also examined all potential two-way interactions among these variables. Further, we explored possible nonlinearity of onset age and CAG length using restricted cubic splines with up to four degrees of freedom.¹⁷ Final model selection was based on best AIC value within a predefined ordering of model complexity.

For those with reported onset earlier than their study entry, their data was considered left-truncated¹⁸ at the point of study entry. This means that the portion of their survival period before entry into Registry did not contribute to the statistical evidence used to estimate the survival model. The opportunity to observe such participants is conditional on the fact that they had already survived from the time of HD onset until entering the study. We cannot observe how often a potential participant with similar predictive characteristics would have died before having the chance to enroll. Left truncation avoids the bias that would arise from this discrepancy.

Nearly half of the analyzed sample (49.2%) had age of onset prior to the Registry study and only a single visit within the study. A participant's age at that visit is statistically informative because it indicates that the participant survived from their onset age up to at least their age at this observation. These participants were credited with a left-truncated interval of 1 day of survival before right censoring. (It can be shown that survival model estimates are insensitive to the precise length of this short observation interval.)

Measure	Mean	SD	5%ile	95%ile	Frequency (%)
HD onset age	44.68	12.70	23.96	65.00	-
Age of first observation	51.40	13.17	29.55	72.80	-
Time from onset until first observation	6.76	5.48	0.76	17.14	-
Age of death or of last observation	52.97	13.22	30.86	74.36	-
Right censoring time after onset	8.52	5.83	1.65	19.38	-
Age at death (n = 826)	58.73	13.52	37.38	80.78	-
Time from onset until death ($n = 826$)	13.35	6.27	4.47	24.07	-
CAG expansion length	44.58	4.72	40.00	53.00	-
Male	-	_	_	_	51.2 (n = 4108)
Death	_	_	_	_	9.8 (n = 826)

Model robustness was tested in a variety of ways. We refit the model excluding small amounts of data of doubtful validity: (1) onset less than 10 years of age when CAG length was 47 or less (n = 6); (2) study enrollment within 1 month of death (potentially biasing study entry, n = 10; (3) HD onset reported but no UHDRS motor scores of five or greater within the database (n = 105). We also checked model sensitivity by reanalysis after we controlled for data subset R2 versus R3 (earlier versus later data collection), after we used age of rater onset instead of motor onset age within the R3 subset, and after we controlled for minor allele length. Consistent with exclusions in analyses reported by Langbehn and colleagues,² we refit the final model excluding 774 individuals with CAG lengths less than 41 (because of suspected enrollment bias with short repeat lengths) and 216 individuals with CAG larger than 56 (due to potentially outsized influence on model estimates of CAG effect). Finally, we examined potential confounding effects of anonymized study site and country by refitting the models with cluster effects for either of these.

To assess the robustness of our analyses to imprecise determinations of onset age, we performed a simulation study in which we perturbed the reported onset ages with normally distributed random variation. The standard deviation was 3 years, which we derived as a plausible value based on discrepancies between the rater onset and motor onset ages within the R3 Registry subset. Discrepancies between the mean simulation results and the original analysis allowed estimation of possible bias due to measurement error in model parameters and their statistical significance. Full details of the simulation methods and results are given in the supplement.

All analyses were performed using base R 3.5.3 or 4.0.2, with the survival 2.43-3, and rms 5.1-3 packages added. Initial data processing and some descriptive statistics were done using SAS 9.4.

Results

Descriptive statistics are given in Table 1. The mean age at death or last censored observation is only slightly higher than the mean age of the first observation because nearly half of the sample (49.2%) had only one observation in the data. The role of these left-truncated observations, which still contain relevant survival information, is discussed in the Subjects and methods section above.

Controlling only for sex, we initially tested the otherwise unadjusted influence of CAG repeat length on time from symptom onset until death. The estimated hazard ratio was modest, but statistically significant. The estimated hazard ratio was 1.022, per increase in CAG, p value = 0.0014 (95% confidence interval 1.009 to 1.036) (see Table 2, model 1). Controlling for age of symptom onset (Table 2, model 2), the estimated influence of CAG length increased notably to a hazard ratio of 1.087 (95% confidence interval 1.068 to 1.105, $p = 8 \times 10^{-22}$) per increase in CAG.

Results of these initial models (Table 2, models 1 and 2) are very strong evidence against the null hypothesis assertion that CAG length had no influence on the length of time from symptom onset until death in HD. Having rejected this hypothesis, we wanted to describe the nature of these risk relationships in as much detail as the data would allow without over-fitting. We fit models with nonlinear restricted cubic spline terms of up to four degrees of freedom for CAG length and onset age. We also tested potential interactions of these spline transformations of onset age with linear CAG effects and of linear onset-age effects with nonlinear CAG effects. Among this hierarchy of models, AIC was maximized by a three degree-of-freedom spline transformation of the main effect of onset age. The main effect of CAG length and the CAG by onset-age interaction terms involved only linear terms in the final model (Table 2, model 3).

This final model also contained a significant interaction between sex and CAG length (hazard ratio 0.959 for men versus women [95% confidence interval = 0.935 to 0.983], p = 0.00089), with men having a lower decline in survival per CAG length. Potential interactions between CAG length and onset age (either linear or in spline form) were non-significant. Model diagnostics showed that proportional hazard assumptions for the final model were consistent with the data (Figure S1 and Table S1).

The estimated survival effect of CAG length at different onset ages is illustrated in Figure 1 for women and in Figure 2

Table 2. Proportional haza	rd models for tin	ne from HD onse	et until death				
Variable	log HR	SE	Z	p val	HR	95% CI	
Model 1							
CAG (per repeat)	0.022	0.007	3.195	1.40E-03	1.022	1.009	1.036
Men versus women	0.359	0.071	5.066	4.07E-07	1.432	1.246	1.645
Model 2							
CAG (per repeat)	0.083	0.009	9.604	7.69E-22	1.087	1.068	1.105
Men versus women	0.369	0.071	5.201	1.98E-07	1.446	1.259	1.662
Age of HD onset (per year)	0.036	0.004	8.980	2.71E-19	1.036	1.028	1.044
Model 3							
CAG (per repeat)	0.1227	0.0134	9.157	5.34E-20	1.131	1.101	1.161
Age of HD onset	0.0704	0.0124	5.677	1.37E-08	1.073	1.047	1.099
Age of HD onset'	-0.1191	0.0265	-4.494	6.99E-06	0.888	0.843	0.935
Age of HD onset''	0.5751	0.1113	5.167	2.38E-07	1.777	1.429	2.211
Men versus women	2.2965	0.5782	3.972	7.13E-05	9.939	3.200	30.868
CAG by (M versus W)	-0.0422	0.0127	-3.323	8.91E-04	0.959	0.935	0.983

Abbreviations: HR, hazard ratio; SE, standard error; CI, confidence interval; p val, p value; M, men; W, women. For age of HD onset in model 3, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD onset' and age of HD onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset. In model 3, the Wald test for the joint significance of the nonlinear cubic spline terms for age of HD onset = 30.62 (2 df), p = 2.24E-7. In model 3, the Wald test for the overall significance of the age of HD onset = 129.55 (3 df), p < 1E-16.

for men. Underlying statistical tables generated from model 3 of Table 2 for these plots, including confidence intervals, are contained within Tables S3–S10. Extrapolated predictions for hypothetical CAG lengths observed in fewer than 1% of cases at these onset ages are shown with dashed lines. Because the CAG hazard ratio does not vary significantly with onset age, all CAG-specific curves in Figure 2 show a similar shape that shifts with onset age. There is, however, clear separation of the CAG-specific survival curves, which is greater for women than for men.

The nonlinear effect of onset age on hazard ratios is difficult to interpret from inspection of either Figure 2 or of the spline coefficients in model 3 of Table 2. Instead, in Figure 3, we illustrate the predicted effect on 15-year survival for the commonly encountered HD CAG length of 43. Note that, because of the lack of interaction between CAG length and onset age, the pattern shown is the same, regardless of CAG length. The notable nonlinear aspect is that variation in symptom onset between approximately 40 and 50 years of age has little effect on survival. However, nearly linear effects are present both below and above this range. The magnitude of the negative slope is notably greater for onset greater than age 50 than for onset less than age 40.

As described in the Subjects and methods, we used a variety of model alterations to test the robustness of our final model (repeated in Table S11 for convenient reference). None of these alterations substantially affected the model parameters of primary interest. We refit the model after deletion of 105 questionable age-of-onset determinations (Table S12). We then refit after restricting the CAG range to 41 to 56 (Table S13). We demonstrate no appreciable effect of minor allele CAG length (Table S14). We then checked possible effects of cohort and onset definition differences between the earlier R2 versus later R3 Registry subsets. We refit the model controlling for data subset (Table S15) and after using raterestimated age of onset in place of motor onset for the R3 as well as the data (Table S16). Finally, we re-estimated the model after clustering adjustment for potential country effects (Table S17) or site effects (Table S18). The estimated hazard ratios for both CAG length and CAG length interaction with sex were little changed by any of these model adjustments (Tables S19 and S20).

Our simulations of potential bias due to inaccurate age of onset also showed little effect on the model results (Table S21). Most critically, the simulation suggested that the estimated log hazard ratio coefficient for the CAG-length effect in our final model (model 3 of) had an expected inflation of 6.9% and that the CAG-length interaction with sex had an expected under-estimation of 1.6%. The mean adjusted p value for the main CAG effect was 9×10^{-16} while the mean p value for the interaction with sex was 0.0012.

Discussion

We have demonstrated that the expansion length of the HTT CAG trinucleotide mutation has a substantial influence on time until death as measured from the onset of HD motor symptoms. The CAG influence is clearly present when age of HD onset is considered as a covariate, and we believe this is the context relevant for most clinical and research questions. However, with a larger sample than

was available to Keum and colleagues,¹⁵ we have also detected a small but significant influence of CAG length on survival even before controlling for onset age. The previously reported absence of association seems likely due to lack of statistical power and may represent an example of the difficulty of asserting the truth of a null hypothesis.

The data include participants with different CAG lengths who experience onset at the same age. The current analysis demonstrates that, under this circumstance, those with longer CAG repeats typically have shorter disease duration until death. We must caution, however, that the overlapping range of CAG repeat lengths at any fixed age is limited. For example, it would be a substantial extrapolation beyond the observed data if we were to estimate the impact of CAG length 59 instead of 39 for those with onset at age 55. We have emphasized the observed CAG ranges for various ages in Figures 1 and 2.

Our findings are consistent with the well-documented influence of CAG length upon both the age of clinical onset and rate of preclinical and early clinical progression. Although some important extrinsic risk factors (e.g., quality of care) and end-stage pathological processes that hasten death are unrelated to CAG length, the present analysis provides very strong evidence that the length of life after HD onset is not independent of CAG length.

We found an interaction with sex, showing that CAG length has a stronger influence on the age of all-cause mortality in women than in men. The only outcome we could analyze was death due to any cause, including deaths unrelated to HD. Matching for age, men are well known to have higher general mortality rates. This may dilute the apparent CAG effect in men and be the source of the statistical interaction. It is therefore unclear whether there is a sex difference in the CAG influence on the HD disease processes that lead to death.

Figure 1. Estimated CAG-specific survival curves in women for HD onset at ages 25, 35, 45, and 55

Estimated survival curves for the CAG repeat range 39 to 59 are shown in each plot. Dashed lines represent CAG lengths present in fewer than 1% of observations (sexes combined) in the 5-year period around the stated onset ages (e.g., 42.5 to 47.5 for the onset age 45 plot). The values of the minimum and maximum CAG lengths occurring with at least 1% frequency are printed in black within each plot. Also see Table S2.

Baseline age is often an important predictor in survival analyses of the time from a disease-related event until death. A classic example is the prognostic modeling of the Mayo Clinic primary biliary cirrhosis data,¹⁹ which is often used as a teach-

ing case for survival analysis methodology.^{17,18,20} Age does not become irrelevant just because it is not the metric used as the survival outcome. In the present case, if ignored, age of onset is a confounder because it is an additional important predictor of HD survival and is not independent of CAG length. Those with higher CAG lengths tend to become ill at an earlier age. One could hypothesize that more aggressive illness, driven by longer CAG repeat lengths, is imposed on a younger and essentially healthier body. This may approximately counterbalance the adverse effect on mortality of longer CAG repeats such that the apparent CAG length influence is small when onset age is not considered.

HD age of onset determination is somewhat subjective. Indeed, the underlying concept is imprecise, given the insidious initial presentation of HD signs and symptoms. One might question whether the idea of onset age is even meaningful. Despite a high correlation, there is not perfect agreement between the patient's, the caregiver's, and clinician's estimate of this age, all usually reported retrospectively. There is no standardized objective definition of "onset," and this age determination would vary somewhat from clinician to clinician as well. The underlying reality is that the clinically significant signs and symptoms of HD typically develop as a transition over a period of a very few years, while the range of ages when this happens varies over decades. Furthermore, death typically occurs 10 to 20 years after this onset transition. Considering these relative timescales, the ages of onset, though imperfectly defined and imprecise, nonetheless reflect information meaningful to the questions at hand.

The imprecision of onset age is seldom discussed and is perhaps underappreciated within the HD genetic literature. We have addressed the potential impact of rater discrepancies from the perspective of measurement error.

This is a special case of such error because survival length is measured from the age of onset. There is therefore a perfect negative correlation between measurement errors in age of onset (predictor) and length of survival (outcome). If onset is reported too early, then survival after onset is exaggerated. This may partially explain the fact that, for a constant CAG length, earlier reported onset predicts longer survival. Our simulation study suggested that measurement error tends to cause a slightly exaggerated bias in the estimated effect of CAG length, but this bias is far too weak to affect the conclusion that survival after onset has a substantial dependence upon CAG repeat length. With this conclusion in mind, we do not report simulation-adjusted estimates (Table S21) as our final best estimates, as they are only averages of a range of plausible but unmeasurable small biasing effects.

Consistent with the interpretation of Keum and colleagues,¹⁵ we found no notable evidence of a survival effect for the short allele CAG length. Despite earlier claims to the contrary,²¹ minor allele length has been convincingly shown to play no substantial role in determining age of HD onset.²² Our sensitivity analysis further supports the assertion that variation of minor CAG allele length within its usual range has no bearing on the course of HD.

Although we did not have access to the brain bank database studied by Keum and colleagues,¹⁵ it seems reasonable to hypothesize that lack of control for onset-age also confused the interpretation of that data. The use of standard linear regression methods may also have contributed to the lack of a detectable CAG effect. In many cases (including all cases when the proportional hazards assumption is correct), a statistical model based only on observed failures (i.e., deaths) biases the estimated magnitude of risk factor effects toward zero. If using a simple regression model, this can be avoided only if

Figure 2. Estimated CAG-specific survival curves in men for HD onset at ages 25, 35, 45, and 55

Estimated survival curves for the CAG repeat range 39 to 59 are shown in each plot. Dashed lines represent CAG lengths present in fewer than 1% of observations (sexes combined) in the 5-year period around the stated onset ages (e.g., 42.5 to 47.5 for the onset age 45 plot). The values of the minimum and maximum CAG lengths occurring with at least 1% frequency are printed in black within each plot.

a prospectively identified sample is followed until all members have died. Indeed, this bias is the motivation for survival analysis models that properly account for censored data from those who have not yet died.

Despite the overwhelming statistical significance of CAG length in the current analysis, Registry is not a random sample from the HD population. Rather, it is a sample drawn from willing HD research participants. Therefore, models based on this data may be biased relative to the general HD population. Replication is quite a challenging proposition, given the rarity of HD and its slow disease course. However, the ongoing, worldwide ENROLL-HD study²³ may eventually provide adequate mortality data to attempt such a confirmation.

The CAG association with survival is strong enough to suggest the presence of CAG-length-dependent pathological mechanisms, even in the later stages of disease. Ongoing pathological research should account for this instead of focusing on explanations of why end-stage disease is unrelated to CAG length. The relationship between CAG length and survival will also have relevance to future disease-modifying clinical trials. As these trials begin to target more advanced diseases stages, age-CAG combinations may help define patient risk groups appropriate for specific therapeutic approaches. The results also confirm that, as with current trials involving earlier disease stages, statistical control and balanced randomization of age and CAG length will be important in assuring unbiased and maximally powered trials.

As with other HD phenomena associated with CAG repeat length, we caution against clinical overinterpretation. Our findings suggest that clinicians should provide ongoing care with some expectation that adult-onset Huntington disease will progress more aggressively with longer CAG lengths. However, much individual variation in survival remains after accounting for CAG length. Despite the association of HD disease course with trinucleotide expansion length, within the contexts of personalized medicine and genetic counseling, we must continue to emphasize that CAG length is not destiny.

The American Journal of Human Genetics 109, 172–179, January 6, 2022 177

Figure 3. The nonlinear effect of onset age on 15-year HD survival

The general shape of the onset age effect remains the same regardless of CAG length or survival period. There is essentially no age effect between 40 and 50 years. However, outside of that range there is a marked negative relationship between onset age and survival.

Supplemental information

Supplemental information can be found online at https://doi.org/ 10.1016/j.ajhg.2021.12.002.

Acknowledgments

This work was supported by internal institutional support from the University of Iowa to the author. We acknowledge the data contributions of the Registry investigators of the European Huntington Disease Network, who are noted individually in both the supplemental information and at the EHDN site in web resources. We further acknowledge gratefully the contribution of the Registry participants. The Registry study is supported by the European Huntington Disease Network (EHDN), funded by CHDI Foundation, Inc. The funding source had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Declaration of interests

During the past 3 years, including the time in which this manuscript was written, the author received personal consulting and advisory board fees and non-financial support from Roche; personal consulting fees and non-financial support from Voyager Therapeutics; personal consulting and advisory board fees from Novartis; personal consulting and advisory board fees from Novartis; personal consulting and advisory board fees and non-financial support from Wave Life Sciences; personal consulting fees from Takeda; personal and advisory board fees from AskBio; personal consulting fees from Unique; advisory board and personal consulting fees from Spark Therapeutics, personal consulting fees from Axon Advisors and LifeEDIT, and advisory board fees from the Huntington Study Group. None of this outside support funded the currently submitted work. Received: July 28, 2021 Accepted: December 3, 2021 Published: December 22, 2021

Web resources

OMIM, https://www.omim.org/

Registry investigators of the European Huntington Disease Network, http://www.ehdn.org/wp-content/uploads/REGISTRYcontributors-full-list.pdf

Registry study registration and description, https://clinicaltrials. gov/ct2/show/NCT01590589

References

- 1. Langbehn, D.R., Hayden, M.R., Paulsen, J.S.; and and the PRE-DICT-HD Investigators of the Huntington Study Group (2010). CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 153B, 397–408.
- 2. Langbehn, D.R., Brinkman, R.R., Falush, D., Paulsen, J.S., Hayden, M.R.; and International Huntington's Disease Collaborative Group (2004). A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clin. Genet. *65*, 267–277.
- Quarrell, O.W., Nance, M.A., Nopoulos, P., Paulsen, J.S., Smith, J.A., and Squitieri, F. (2013). Managing juvenile Huntington's disease. Neurodegener. Dis. Manag. 3, 3.
- Rosenblatt, A., Kumar, B.V., Mo, A., Welsh, C.S., Margolis, R.L., and Ross, C.A. (2012). Age, CAG repeat length, and clinical progression in Huntington's disease. Mov. Disord. 27, 272– 276.
- Aylward, E.H., Nopoulos, P.C., Ross, C.A., Langbehn, D.R., Pierson, R.K., Mills, J.A., Johnson, H.J., Magnotta, V.A., Juhl, A.R., Paulsen, J.S.; and PREDICT-HD Investigators and Coordinators of Huntington Study Group (2011). Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry 82, 405–410.
- 6. van den Bogaard, S.J., Dumas, E.M., Acharya, T.P., Johnson, H., Langbehn, D.R., Scahill, R.I., Tabrizi, S.J., van Buchem, M.A., van der Grond, J., Roos, R.A.; and TRACK-HD Investigator Group (2011). Early atrophy of pallidum and accumbens nucleus in Huntington's disease. J. Neurol. *258*, 412–420.
- 7. van der Plas, E., Langbehn, D.R., Conrad, A.L., Koscik, T.R., Tereshchenko, A., Epping, E.A., Magnotta, V.A., and Nopoulos, P.C. (2019). Abnormal brain development in child and adolescent carriers of mutant huntingtin. Neurology *93*, e1021–e1030.
- 8. Tabrizi, S.J., Langbehn, D.R., Leavitt, B.R., Roos, R.A., Durr, A., Craufurd, D., Kennard, C., Hicks, S.L., Fox, N.C., Scahill, R.I., et al.; TRACK-HD investigators (2009). Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. *8*, 791–801.
- Paulsen, J.S., Langbehn, D.R., Stout, J.C., Aylward, E., Ross, C.A., Nance, M., Guttman, M., Johnson, S., MacDonald, M., Beglinger, L.J., et al.; Predict-HD Investigators and Coordinators of the Huntington Study Group (2008). Detection of Huntington's disease decades before diagnosis: the Predict-HD study. J. Neurol. Neurosurg. Psychiatry *79*, 874–880.

- Chen, T., Wang, Y., Ma, Y., Marder, K., and Langbehn, D.R. (2012). Predicting Disease Onset from Mutation Status Using Proband and Relative Data with Applications to Huntington's Disease. J. Probab. Stat. 2012, 375935.
- 11. Tabrizi, S.J., Scahill, R.I., Owen, G., Durr, A., Leavitt, B.R., Roos, R.A., Borowsky, B., Landwehrmeyer, B., Frost, C., Johnson, H., et al.; TRACK-HD Investigators (2013). Predictors of phenotypic progression and disease onset in premanifest and earlystage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. *12*, 637–649.
- Langbehn, D.R., Stout, J.C., Gregory, S., Mills, J.A., Durr, A., Leavitt, B.R., Roos, R.A.C., Long, J.D., Owen, G., Johnson, H.J., et al.; TRACK-HD and Track-On HD Groups (2019). Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurol. *76*, 1375–1385.
- Paulsen, J.S., Long, J.D., Ross, C.A., Harrington, D.L., Erwin, C.J., Williams, J.K., Westervelt, H.J., Johnson, H.J., Aylward, E.H., Zhang, Y., et al.; PREDICT-HD Investigators and Coordinators of the Huntington Study Group (2014). Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study. Lancet Neurol. *13*, 1193–1201.
- Kieburtz, K., MacDonald, M., Shih, C., Feigin, A., Steinberg, K., Bordwell, K., Zimmerman, C., Srinidhi, J., Sotack, J., Gusella, J., et al. (1994). Trinucleotide repeat length and progression of illness in Huntington's disease. J. Med. Genet. *31*, 872–874.
- Keum, J.W., Shin, A., Gillis, T., Mysore, J.S., Abu Elneel, K., Lucente, D., Hadzi, T., Holmans, P., Jones, L., Orth, M., et al. (2016). The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease. Am. J. Hum. Genet. 98, 287–298.
- Orth, M., Handley, O.J., Schwenke, C., Dunnett, S., Wild, E.J., Tabrizi, S.J., Landwehrmeyer, G.B.; and European Hunting-

ton's Disease Network (2011). Observing Huntington's disease: the European Huntington's Disease Network's REGIS-TRY. J. Neurol. Neurosurg. Psychiatry *82*, 1409–1412.

- 17. Harrell, J.F.E. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics, 2nd ed.
- **18.** Lawless, J.F. (2003). Statistical models and methods for lifetime data, Second Edition (Hoboken, N.J.: Wiley-Interscience).
- Dickson, E.R., Grambsch, P.M., Fleming, T.R., Fisher, L.D., and Langworthy, A. (1989). Prognosis in primary biliary cirrhosis: model for decision making. Hepatology *10*, 1–7.
- **20.** Fleming, T.R., and Harrington, D.P. (2005). Counting processes and survival analysis (Hoboken, N.J.: Wiley-Interscience).
- **21.** Djoussé, L., Knowlton, B., Hayden, M., Almqvist, E.W., Brinkman, R., Ross, C., Margolis, R., Rosenblatt, A., Durr, A., Dode, C., et al. (2003). Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am. J. Med. Genet. A. *119A*, 279–282.
- 22. Lee, J.M., Ramos, E.M., Lee, J.H., Gillis, T., Mysore, J.S., Hayden, M.R., Warby, S.C., Morrison, P., Nance, M., Ross, C.A., et al.; PREDICT-HD study of the Huntington Study Group (HSG); REGISTRY study of the European Huntington's Disease Network; HD-MAPS Study Group; and COHORT study of the HSG (2012). CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology *78*, 690–695.
- 23. Landwehrmeyer, G.B., Fitzer-Attas, C.J., Giuliano, J.D., Gonçalves, N., Anderson, K.E., Cardoso, F., Ferreira, J.J., Mestre, T.A., Stout, J.C., and Sampaio, C. (2016). Data Analytics from Enroll-HD, a Global Clinical Research Platform for Huntington's Disease. Mov. Disord. Clin. Pract. (Hoboken) *4*, 212–224.

The American Journal of Human Genetics, Volume 109

Supplemental information

Longer CAG repeat length is associated

with shorter survival after disease onset

in Huntington disease

Douglas R. Langbehn and for the Registry Investigators of the European Huntington Disease Network

Abbreviations: *cag* = main effect of CAG length, *sxage0* = Joint effect of 3 degree-of-freedom restricted cubic spline fit of age-at-onset; *sexf0m1* = main effect of men vs women; *sexcag* = interaction of CAG and men vs women.

The near linearity of the Beta(t) coefficients, especially up to 30 years from HD onset, indicate good fit of the proportional hazards assumptions in the main model (Table 2 of the paper).

Supplemental Table 1. ZPH Proportional Hazard Goodness-of-fit for the final model

Variables	rho	Chi-square	р
CAG Main Effect	0.0355	0.883	0.347
Age of HD Onset (3 df)	-0.0235	0.442	0.506
Men vs Women	-0.0191	0.278	0.598
CAG by (M vs W)	-0.0112	0.096	0.757

p = p value. (Also see Supplemental Figure 1.)

Supplemental Table 2. Frequency of CAG Lengths in 5-Year Windows Surrounding Plotted Ages in Figures 1 and 2 (Main Text)

Age 23-27

	39	40	41	42	43	44	45	46	47 4	18	49	50	51	52	53	54	55	56	57	58	59	60	62	63	63	tot
F	1	0	3	2	5	7	8	15	17 1	2	20	25	15	15	22	18	12	8	6	3	5	2	2	0	0	223
М	0	1	3	3	6	5	10	8	11 1	15	18	25	15	13	15	8	7	3	3	1	2	1	3	1	1	178
tot	1	1	6	5	11	12	18	23	28 2	27	38	50	30	28	37	26	19	11	9	4	7	3	5	1	1	401
Age 3	3-37																									
	36	38	39	40	41	42	43	44	45	4	46	47	48	49	50	51	52	53	54	55	56	58	68	tot	_	
F	2	1	2	5	7	22	38	44	69	10	00	82	43	37	22	10	3	0	3	0	0	0	0	490		
Μ	0	0	2	5	8	22	35	63	64	7	75	79	48	38	22	11	2	1	0	2	1	1	1	480	_	
tot	2	1	4	10	15	44	73	107	133	17	75	161	91	75	44	21	5	1	3	2	1	1	1	970		
Age 4	3-47																									
	37	38	39	40	41	42	43	34	.4 4	15	46	47	48	49	50	51	57		tot	-						
F	3	4	5	11	40	106	118	3 16	6 10)1	44	27	11	4	0	2	0	64	12							
Μ	1	2	8	11	28	108	154	14	2 8	30	34	18	7	5	3	0	1	60)2							
tot	4	6	13	22	68	214	272	2 30	8 18	31	78	45	18	9	3	2	1		1244							
Age 5	3-57																									
	36	37	38	39	40	41	42	2 4	3 44	1 4	45	46	47	48	49	50	52	54	tot							
F	0	3	5	12	35	113	162	2 10	9 34	1 1	16	2	3	1	0	0	0	1	496							
Μ	1	0	4	6	43	127	171	L 8	3 30) 1	11	3	2	3	1	1	1	0	487							
tot	1	3	9	18	78	240	333	3 19	2 64	1 2	27	5	5	4	1	1	1	1	983							

Supplemental Table 3. Survival curve estimates by CAG length for women with HD onset at age 25

CAG	39*			40*			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.991	0.986	0.995	0.989	0.985	0.994	0.988	0.983	0.993	0.987	0.981	0.992	0.985	0.979	0.991	0.983	0.976	0.989
10	0.960	0.944	0.976	0.955	0.938	0.971	0.949	0.932	0.967	0.943	0.924	0.961	0.935	0.916	0.955	0.927	0.907	0.948
15	0.889	0.850	0.929	0.875	0.835	0.918	0.860	0.818	0.905	0.844	0.800	0.890	0.825	0.780	0.873	0.805	0.758	0.854
20	0.756	0.683	0.837	0.729	0.654	0.812	0.699	0.623	0.785	0.667	0.591	0.754	0.633	0.557	0.720	0.596	0.520	0.684
25	0.613	0.514	0.732	0.575	0.477	0.695	0.535	0.438	0.654	0.493	0.399	0.610	0.450	0.359	0.564	0.405	0.319	0.515
CAG	45			46			47			48			49			50		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.981	0.974	0.988	0.978	0.970	0.986	0.975	0.967	0.984	0.972	0.963	0.981	0.968	0.958	0.979	0.964	0.953	0.976
10	0.918	0.896	0.940	0.908	0.885	0.931	0.897	0.872	0.921	0.884	0.858	0.910	0.870	0.842	0.898	0.854	0.824	0.885
15	0.782	0.734	0.833	0.757	0.708	0.810	0.730	0.680	0.785	0.701	0.649	0.757	0.669	0.616	0.728	0.635	0.579	0.697
20	0.558	0.483	0.644	0.517	0.443	0.602	0.474	0.402	0.558	0.430	0.360	0.513	0.385	0.318	0.467	0.340	0.275	0.421
25	0.360	0.279	0.465	0.315	0.240	0.414	0.271	0.202	0.364	0.229	0.167	0.315	0.189	0.133	0.268	0.152	0.103	0.225
CAG	51			52			53			54			55			56		
CAG years	51 surv	lower	upper	52 surv	lower	upper	53 surv	lower	upper	54 surv	upper	upper	55 surv	upper	upper	56 surv	upper	upper
CAG years 5	51 surv 0.947	lower 0.973	upper 0.955	52 surv 0.941	lower 0.969	upper 0.949	53 surv 0.933	lower 0.965	upper 0.943	54 surv 0.925	upper 0.961	upper 0.935	55 surv 0.915	upper 0.956	upper 0.927	56 surv 0.904	upper 0.951	upper 0.947
CAG years 5 10	51 surv 0.947 0.804	lower 0.973 0.870	upper 0.955 0.817	52 surv 0.941 0.782	lower 0.969 0.855	upper 0.949 0.796	53 surv 0.933 0.756	lower 0.965 0.838	upper 0.943 0.773	54 surv 0.925 0.728	upper 0.961 0.820	upper 0.935 0.747	55 surv 0.915 0.697	upper 0.956 0.801	upper 0.927 0.719	56 surv 0.904 0.662	upper 0.951 0.781	upper 0.947 0.804
CAG years 5 10 15	51 surv 0.947 0.804 0.540	lower 0.973 0.870 0.664	upper 0.955 0.817 0.560	52 surv 0.941 0.782 0.498	lower 0.969 0.855 0.630	upper 0.949 0.796 0.519	53 surv 0.933 0.756 0.453	lower 0.965 0.838 0.595	upper 0.943 0.773 0.477	54 surv 0.925 0.728 0.406	upper 0.961 0.820 0.559	upper 0.935 0.747 0.433	55 surv 0.915 0.697 0.358	upper 0.956 0.801 0.523	upper 0.927 0.719 0.388	56 surv 0.904 0.662 0.309	upper 0.951 0.781 0.487	upper 0.947 0.804 0.540
CAG years 5 10 15 20	51 surv 0.947 0.804 0.540 0.232	lower 0.973 0.870 0.664 0.376	upper 0.955 0.817 0.560 0.252	52 surv 0.941 0.782 0.498 0.191	lower 0.969 0.855 0.630 0.332	upper 0.949 0.796 0.519 0.210	53 surv 0.933 0.756 0.453 0.152	lower 0.965 0.838 0.595 0.290	upper 0.943 0.773 0.477 0.172	54 surv 0.925 0.728 0.406 0.117	upper 0.961 0.820 0.559 0.251	upper 0.935 0.747 0.433 0.136	55 surv 0.915 0.697 0.358 0.087	upper 0.956 0.801 0.523 0.215	upper 0.927 0.719 0.388 0.105	56 surv 0.904 0.662 0.309 0.061	upper 0.951 0.781 0.487 0.182	upper 0.947 0.804 0.540 0.232
CAG years 5 10 15 20 25	51 surv 0.947 0.804 0.540 0.232 0.076	lower 0.973 0.870 0.664 0.376 0.185	upper 0.955 0.817 0.560 0.252 0.090	52 surv 0.941 0.782 0.498 0.191 0.054	lower 0.969 0.855 0.630 0.332 0.150	upper 0.949 0.796 0.519 0.210 0.066	53 surv 0.933 0.756 0.453 0.152 0.036	lower 0.965 0.838 0.595 0.290 0.119	upper 0.943 0.773 0.477 0.172 0.046	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076
CAG years 5 10 15 20 25 CAG	51 surv 0.947 0.804 0.540 0.232 0.076 57	lower 0.973 0.870 0.664 0.376 0.185	upper 0.955 0.817 0.560 0.252 0.090	52 surv 0.941 0.782 0.498 0.191 0.054 58	lower 0.969 0.855 0.630 0.332 0.150	upper 0.949 0.796 0.519 0.210 0.066	53 surv 0.933 0.756 0.453 0.152 0.036 59	lower 0.965 0.838 0.595 0.290 0.119	upper 0.943 0.773 0.477 0.172 0.046	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076
CAG years 5 10 15 20 25 CAG years	51 surv 0.947 0.804 0.540 0.232 0.076 57 surv	lower 0.973 0.870 0.664 0.376 0.185 lower	upper 0.955 0.817 0.560 0.252 0.090 upper	52 surv 0.941 0.782 0.498 0.191 0.054 58 surv	lower 0.969 0.855 0.630 0.332 0.150 lower	upper 0.949 0.796 0.519 0.210 0.066 upper	53 surv 0.933 0.756 0.453 0.152 0.036 59 surv	lower 0.965 0.838 0.595 0.290 0.119 lower	upper 0.943 0.773 0.477 0.172 0.046 upper	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076
CAG years 5 10 15 20 25 CAG years 5	51 surv 0.947 0.804 0.540 0.232 0.076 57 surv 0.918	lower 0.973 0.870 0.664 0.376 0.185 lower 0.891	upper 0.955 0.817 0.560 0.252 0.090 upper 0.946	52 surv 0.941 0.782 0.498 0.191 0.054 58 surv 0.908	lower 0.969 0.855 0.630 0.332 0.150 lower 0.877	upper 0.949 0.796 0.519 0.210 0.066 upper 0.940	53 surv 0.933 0.756 0.453 0.152 0.036 59 surv 0.897	lower 0.965 0.838 0.595 0.290 0.119 lower 0.861	upper 0.943 0.773 0.477 0.172 0.046 upper 0.934	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076
CAG years 5 10 15 20 25 CAG years 5 10	51 surv 0.947 0.804 0.540 0.232 0.076 57 surv 0.918 0.689	lower 0.973 0.870 0.664 0.376 0.185 lower 0.891 0.625	upper 0.955 0.817 0.560 0.252 0.090 upper 0.946 0.760	52 surv 0.941 0.782 0.498 0.191 0.054 58 surv 0.908 0.656	lower 0.969 0.855 0.630 0.332 0.150 lower 0.877 0.584	upper 0.949 0.796 0.519 0.210 0.066 upper 0.940 0.738	53 surv 0.933 0.756 0.453 0.152 0.036 59 surv 0.897 0.621	lower 0.965 0.838 0.595 0.290 0.119 lower 0.861 0.540	upper 0.943 0.773 0.477 0.172 0.046 upper 0.934 0.715	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076
CAG years 5 10 15 20 25 CAG years 5 10 15	51 surv 0.947 0.804 0.540 0.232 0.076 57 surv 0.918 0.689 0.343	lower 0.973 0.870 0.664 0.376 0.185 lower 0.891 0.625 0.261	upper 0.955 0.817 0.560 0.252 0.090 upper 0.946 0.760 0.450	52 surv 0.941 0.782 0.498 0.191 0.054 58 surv 0.908 0.656 0.298	lower 0.969 0.855 0.630 0.332 0.150 lower 0.877 0.584 0.215	upper 0.949 0.796 0.519 0.210 0.066 upper 0.940 0.738 0.414	53 surv 0.933 0.756 0.453 0.152 0.036 59 surv 0.897 0.621 0.254	lower 0.965 0.838 0.595 0.290 0.119 lower 0.861 0.540 0.171	upper 0.943 0.773 0.477 0.172 0.046 upper 0.934 0.715 0.378	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51 Surv 0.947 0.804 0.540 0.232 0.076 57 Surv 0.918 0.689 0.343 0.078	lower 0.973 0.870 0.664 0.376 0.185 lower 0.891 0.625 0.261 0.041	upper 0.955 0.817 0.560 0.252 0.090 upper 0.946 0.760 0.450 0.151	52 surv 0.941 0.782 0.498 0.191 0.054 58 surv 0.908 0.656 0.298 0.056	lower 0.969 0.855 0.630 0.332 0.150 lower 0.877 0.584 0.215 0.025	upper 0.949 0.796 0.519 0.210 0.066 upper 0.940 0.738 0.414 0.125	53 surv 0.933 0.756 0.453 0.152 0.036 59 surv 0.897 0.621 0.254 0.039	lower 0.965 0.838 0.595 0.290 0.119 lower 0.861 0.540 0.171 0.015	upper 0.943 0.773 0.477 0.172 0.046 upper 0.934 0.715 0.378 0.101	54 surv 0.925 0.728 0.406 0.117 0.023	upper 0.961 0.820 0.559 0.251 0.093	upper 0.935 0.747 0.433 0.136 0.031	55 surv 0.915 0.697 0.358 0.087 0.013	upper 0.956 0.801 0.523 0.215 0.071	upper 0.927 0.719 0.388 0.105 0.020	56 surv 0.904 0.662 0.309 0.061 0.007	upper 0.951 0.781 0.487 0.182 0.054	upper 0.947 0.804 0.540 0.232 0.076

Data is plotted in Figure 1 of the main article. *surv* = survival rate, *lower* = lower 95% confidence bound, *upper* = upper 95% confidence bound.

Supplemental Table 4. Survival curve estimates by CAG length for women with HD onset at age 35

CAG	39*			40*			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.983	0.977	0.989	0.981	0.975	0.987	0.979	0.972	0.986	0.976	0.968	0.983	0.973	0.964	0.981	0.969	0.960	0.978
10	0.929	0.910	0.948	0.920	0.901	0.940	0.910	0.890	0.930	0.899	0.878	0.920	0.886	0.865	0.909	0.873	0.850	0.896
15	0.809	0.767	0.853	0.787	0.745	0.831	0.763	0.720	0.807	0.736	0.694	0.781	0.707	0.665	0.753	0.676	0.633	0.722
20	0.604	0.535	0.682	0.566	0.498	0.642	0.525	0.460	0.599	0.483	0.421	0.554	0.439	0.380	0.507	0.394	0.338	0.459
25	0.414	0.334	0.514	0.369	0.295	0.463	0.324	0.256	0.411	0.280	0.218	0.359	0.237	0.182	0.309	0.197	0.148	0.262
CAG	45			46			47			48			49			50		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.965	0.955	0.975	0.961	0.950	0.972	0.956	0.943	0.968	0.950	0.936	0.964	0.944	0.928	0.960	0.937	0.919	0.955
10	0.857	0.833	0.882	0.840	0.814	0.867	0.821	0.793	0.851	0.801	0.769	0.833	0.778	0.742	0.815	0.753	0.712	0.796
15	0.642	0.598	0.689	0.606	0.561	0.656	0.568	0.520	0.621	0.527	0.476	0.585	0.485	0.429	0.549	0.442	0.380	0.512
20	0.349	0.296	0.412	0.304	0.253	0.366	0.261	0.211	0.322	0.219	0.170	0.281	0.179	0.133	0.242	0.143	0.099	0.207
25	0.159	0.116	0.218	0.125	0.088	0.178	0.095	0.063	0.144	0.070	0.043	0.114	0.050	0.028	0.088	0.034	0.017	0.067
CAG	51			52			53 [*]			54*			55 [*]			56*		
CAG years	51 surv	lower	upper	52 surv	lower	upper	53 * surv	lower	upper	54 * surv	upper	upper	55 * surv	upper	upper	56* surv	upper	upper
CAG years 5	51 surv 0.929	lower 0.908	upper 0.950	52 surv 0.920	lower 0.896	upper 0.945	53* surv 0.910	lower 0.882	upper 0.939	54 * surv 0.899	upper 0.867	upper 0.933	55* surv 0.887	upper 0.849	upper 0.926	56* surv 0.873	upper 0.829	upper 0.918
CAG years 5 10	51 surv 0.929 0.725	lower 0.908 0.678	upper 0.950 0.775	52 surv 0.920 0.695	lower 0.896 0.641	upper 0.945 0.754	53 * surv 0.910 0.663	lower 0.882 0.601	upper 0.939 0.732	54 * surv 0.899 0.628	upper 0.867 0.557	upper 0.933 0.709	55* surv 0.887 0.592	upper 0.849 0.511	upper 0.926 0.685	56 * surv 0.873 0.552	upper 0.829 0.462	upper 0.918 0.660
CAG years 5 10 15	51 surv 0.929 0.725 0.397	lower 0.908 0.678 0.331	upper 0.950 0.775 0.476	52 surv 0.920 0.695 0.352	lower 0.896 0.641 0.281	upper 0.945 0.754 0.440	53 * surv 0.910 0.663 0.307	<i>lower</i> 0.882 0.601 0.233	upper 0.939 0.732 0.404	54 * surv 0.899 0.628 0.263	upper 0.867 0.557 0.188	upper 0.933 0.709 0.369	55 * surv 0.887 0.592 0.221	upper 0.849 0.511 0.146	upper 0.926 0.685 0.335	56 * surv 0.873 0.552 0.182	upper 0.829 0.462 0.109	upper 0.918 0.660 0.301
CAG years 5 10 15 20	51 surv 0.929 0.725 0.397 0.111	lower 0.908 0.678 0.331 0.071	upper 0.950 0.775 0.476 0.174	52 surv 0.920 0.695 0.352 0.083	<i>lower</i> 0.896 0.641 0.281 0.048	upper 0.945 0.754 0.440 0.145	53 * surv 0.910 0.663 0.307 0.060	<i>lower</i> 0.882 0.601 0.233 0.031	upper 0.939 0.732 0.404 0.119	54 * surv 0.899 0.628 0.263 0.042	upper 0.867 0.557 0.188 0.018	upper 0.933 0.709 0.369 0.096	55 * surv 0.887 0.592 0.221 0.028	upper 0.849 0.511 0.146 0.010	upper 0.926 0.685 0.335 0.077	56 * surv 0.873 0.552 0.182 0.017	upper 0.829 0.462 0.109 0.005	upper 0.918 0.660 0.301 0.060
CAG years 5 10 15 20 25	51 surv 0.929 0.725 0.397 0.111 0.022	lower 0.908 0.678 0.331 0.071 0.009	upper 0.950 0.775 0.476 0.174 0.050	52 surv 0.920 0.695 0.352 0.083 0.013	lower 0.896 0.641 0.281 0.048 0.005	upper 0.945 0.754 0.440 0.145 0.037	53 * surv 0.910 0.663 0.307 0.060 0.007	lower 0.882 0.601 0.233 0.031 0.002	upper 0.939 0.732 0.404 0.119 0.026	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55 * surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008
CAG years 5 10 15 20 25 CAG	51 surv 0.929 0.725 0.397 0.111 0.022 57 *	lower 0.908 0.678 0.331 0.071 0.009	upper 0.950 0.775 0.476 0.174 0.050	52 surv 0.920 0.695 0.352 0.083 0.013 58*	lower 0.896 0.641 0.281 0.048 0.005	upper 0.945 0.754 0.440 0.145 0.037	53 * surv 0.910 0.663 0.307 0.060 0.007 59 *	lower 0.882 0.601 0.233 0.031 0.002	upper 0.939 0.732 0.404 0.119 0.026	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55* surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008
CAG years 5 10 15 20 25 CAG years	51 surv 0.929 0.725 0.397 0.111 0.022 57 * surv	lower 0.908 0.678 0.331 0.071 0.009 lower	upper 0.950 0.775 0.476 0.174 0.050 upper	52 surv 0.920 0.695 0.352 0.083 0.013 58 * surv	lower 0.896 0.641 0.281 0.048 0.005 lower	upper 0.945 0.754 0.440 0.145 0.037 upper	53* surv 0.910 0.663 0.307 0.060 0.007 59* surv	lower 0.882 0.601 0.233 0.031 0.002 lower	upper 0.939 0.732 0.404 0.119 0.026 upper	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55* surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008
CAG years 5 10 15 20 25 CAG years 5	51 surv 0.929 0.725 0.397 0.111 0.022 57 * surv 0.857	lower 0.908 0.678 0.331 0.071 0.009 lower 0.807	upper 0.950 0.775 0.476 0.174 0.050 upper 0.911	52 surv 0.920 0.695 0.352 0.083 0.013 58* surv 0.840	lower 0.896 0.641 0.281 0.048 0.005 lower 0.782	upper 0.945 0.754 0.440 0.145 0.037 upper 0.903	53* surv 0.910 0.663 0.307 0.060 0.007 59* surv 0.821	lower 0.882 0.601 0.233 0.031 0.002 lower 0.755	upper 0.939 0.732 0.404 0.119 0.026 upper 0.894	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55* surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008
CAG years 5 10 15 20 25 CAG years 5 10	51 surv 0.929 0.725 0.397 0.111 0.022 57* surv 0.857 0.511	lower 0.908 0.678 0.331 0.071 0.009 lower 0.807 0.412	upper 0.950 0.775 0.476 0.174 0.050 upper 0.911 0.634	52 surv 0.920 0.695 0.352 0.083 0.013 58 * surv 0.840 0.468	lower 0.896 0.641 0.281 0.048 0.005 lower 0.782 0.361	upper 0.945 0.754 0.440 0.145 0.037 upper 0.903 0.608	53* surv 0.910 0.663 0.307 0.060 0.007 59* surv 0.821 0.424	lower 0.882 0.601 0.233 0.031 0.002 lower 0.755 0.310	upper 0.939 0.732 0.404 0.119 0.026 upper 0.894 0.581	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55* surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008
CAG years 5 10 15 20 25 CAG years 5 10 15	51 surv 0.929 0.725 0.397 0.111 0.022 57* surv 0.857 0.511 0.145	lower 0.908 0.678 0.331 0.071 0.009 lower 0.807 0.412 0.078	upper 0.950 0.775 0.476 0.174 0.050 upper 0.911 0.634 0.269	52 surv 0.920 0.695 0.352 0.083 0.013 58* surv 0.840 0.468 0.113	lower 0.896 0.641 0.281 0.048 0.005 lower 0.782 0.361 0.054	upper 0.945 0.754 0.440 0.145 0.037 upper 0.903 0.608 0.238	53* surv 0.910 0.663 0.307 0.060 0.007 59* surv 0.821 0.424 0.085	lower 0.882 0.601 0.233 0.031 0.002 lower 0.755 0.310 0.034	upper 0.939 0.732 0.404 0.119 0.026 upper 0.894 0.581 0.210	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55* surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51 Surv 0.929 0.725 0.397 0.111 0.022 57* Surv 0.857 0.511 0.145 0.010	lower 0.908 0.678 0.331 0.071 0.009 lower 0.807 0.412 0.078 0.002	upper 0.950 0.775 0.476 0.174 0.050 upper 0.911 0.634 0.269 0.046	52 surv 0.920 0.695 0.352 0.083 0.013 58* surv 0.840 0.468 0.113 0.006	lower 0.896 0.641 0.281 0.048 0.005 lower 0.782 0.361 0.054 0.001	upper 0.945 0.754 0.440 0.145 0.037 upper 0.903 0.608 0.238 0.035	53* surv 0.910 0.663 0.307 0.060 0.007 59* surv 0.821 0.424 0.085 0.003	lower 0.882 0.601 0.233 0.031 0.002 lower 0.755 0.310 0.034 0.000	upper 0.939 0.732 0.404 0.119 0.026 upper 0.894 0.581 0.210 0.026	54* surv 0.899 0.628 0.263 0.042 0.004	upper 0.867 0.557 0.188 0.018 0.001	upper 0.933 0.709 0.369 0.096 0.018	55* surv 0.887 0.592 0.221 0.028 0.002	upper 0.849 0.511 0.146 0.010 0.000	upper 0.926 0.685 0.335 0.077 0.012	56* surv 0.873 0.552 0.182 0.017 0.001	upper 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.660 0.301 0.060 0.008

Data is plotted in Figure 1 of the main article. *surv* = survival rate, *lower* = lower 95% confidence bound, *upper* = upper 95% confidence bound.

Supplemental Table 5. Survival curve estimates by CAG length for women with HD onset at age 45

CAG	39*			40			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.981	0.974	0.987	0.978	0.971	0.985	0.975	0.968	0.983	0.972	0.964	0.980	0.969	0.960	0.978	0.965	0.955	0.975
10	0.918	0.901	0.936	0.908	0.890	0.927	0.897	0.878	0.916	0.884	0.864	0.904	0.870	0.849	0.891	0.854	0.832	0.877
15	0.783	0.745	0.822	0.758	0.720	0.798	0.731	0.694	0.771	0.702	0.664	0.742	0.670	0.632	0.711	0.636	0.596	0.679
20	0.559	0.499	0.626	0.518	0.460	0.582	0.475	0.420	0.537	0.431	0.379	0.490	0.386	0.336	0.444	0.341	0.292	0.398
25	0.362	0.294	0.444	0.317	0.255	0.393	0.272	0.217	0.343	0.230	0.180	0.294	0.190	0.145	0.249	0.153	0.113	0.207
CAG	45			46			47			48			4 9 [*]			50 [*]		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.960	0.949	0.971	0.955	0.942	0.968	0.949	0.935	0.964	0.943	0.926	0.959	0.936	0.917	0.955	0.927	0.906	0.950
10	0.837	0.813	0.862	0.818	0.790	0.846	0.797	0.765	0.829	0.773	0.737	0.811	0.748	0.706	0.793	0.720	0.671	0.773
15	0.600	0.557	0.645	0.561	0.515	0.611	0.520	0.469	0.577	0.478	0.421	0.542	0.434	0.371	0.507	0.389	0.321	0.472
20	0.297	0.248	0.354	0.253	0.205	0.312	0.211	0.164	0.273	0.173	0.126	0.236	0.137	0.093	0.202	0.106	0.066	0.171
25	0.120	0.084	0.170	0.091	0.060	0.138	0.066	0.040	0.109	0.047	0.025	0.086	0.031	0.015	0.066	0.020	0.008	0.049
CAG	51 *			52 [*]			53 [*]			54*			55 [*]			56*		
CAG years	51 * surv	lower	upper	52 * surv	lower	upper	53 * surv	lower	upper	54 * surv	upper	upper	55 * surv	upper	upper	56* surv	upper	upper
CAG years 5	51* surv 0.918	lower 0.893	upper 0.944	52* surv 0.908	lower 0.879	upper 0.939	53 * surv 0.897	lower 0.863	upper 0.932	54 * surv 0.884	upper 0.845	upper 0.926	55* surv 0.870	upper 0.824	upper 0.919	56* surv 0.854	upper 0.801	upper 0.911
CAG years 5 10	51 * surv 0.918 0.690	lower 0.893 0.633	upper 0.944 0.752	52* surv 0.908 0.657	lower 0.879 0.591	upper 0.939 0.730	53 * surv 0.897 0.622	lower 0.863 0.547	upper 0.932 0.708	54 * surv 0.884 0.585	upper 0.845 0.500	upper 0.926 0.684	55 * surv 0.870 0.545	upper 0.824 0.450	upper 0.919 0.660	56 * surv 0.854 0.504	upper 0.801 0.400	upper 0.911 0.635
CAG years 5 10 15	51 * surv 0.918 0.690 0.344	<i>lower</i> 0.893 0.633 0.271	upper 0.944 0.752 0.437	52* surv 0.908 0.657 0.299	lower 0.879 0.591 0.223	upper 0.939 0.730 0.402	53 * surv 0.897 0.622 0.256	<i>lower</i> 0.863 0.547 0.178	upper 0.932 0.708 0.368	54 * surv 0.884 0.585 0.214	upper 0.845 0.500 0.137	upper 0.926 0.684 0.334	55 * surv 0.870 0.545 0.175	upper 0.824 0.450 0.101	upper 0.919 0.660 0.302	56 * surv 0.854 0.504 0.139	upper 0.801 0.400 0.072	upper 0.911 0.635 0.270
CAG years 5 10 15 20	51 * surv 0.918 0.690 0.344 0.079	lower 0.893 0.633 0.271 0.044	upper 0.944 0.752 0.437 0.143	52* surv 0.908 0.657 0.299 0.057	lower 0.879 0.591 0.223 0.027	upper 0.939 0.730 0.402 0.118	53 * surv 0.897 0.622 0.256 0.039	lower 0.863 0.547 0.178 0.016	upper 0.932 0.708 0.368 0.096	54 * surv 0.884 0.585 0.214 0.026	upper 0.845 0.500 0.137 0.009	upper 0.926 0.684 0.334 0.077	55 * surv 0.870 0.545 0.175 0.016	upper 0.824 0.450 0.101 0.004	upper 0.919 0.660 0.302 0.060	56 * surv 0.854 0.504 0.139 0.009	upper 0.801 0.400 0.072 0.002	upper 0.911 0.635 0.270 0.047
CAG years 5 10 15 20 25	51 * surv 0.918 0.690 0.344 0.079 0.012	lower 0.893 0.633 0.271 0.044 0.004	upper 0.944 0.752 0.437 0.143 0.036	52 * surv 0.908 0.657 0.299 0.057 0.007	lower 0.879 0.591 0.223 0.027 0.002	upper 0.939 0.730 0.402 0.118 0.026	53 * surv 0.897 0.622 0.256 0.039 0.003	lower 0.863 0.547 0.178 0.016 0.001	upper 0.932 0.708 0.368 0.096 0.018	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55 * surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005
CAG years 5 10 15 20 25 CAG	51 * surv 0.918 0.690 0.344 0.079 0.012 57 *	lower 0.893 0.633 0.271 0.044 0.004	upper 0.944 0.752 0.437 0.143 0.036	52 * surv 0.908 0.657 0.299 0.057 0.007 58 *	lower 0.879 0.591 0.223 0.027 0.002	upper 0.939 0.730 0.402 0.118 0.026	53* surv 0.897 0.622 0.256 0.039 0.003 59*	lower 0.863 0.547 0.178 0.016 0.001	upper 0.932 0.708 0.368 0.096 0.018	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55* surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56* surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005
CAG years 5 10 15 20 25 CAG years	51 * surv 0.918 0.690 0.344 0.079 0.012 57 * surv	lower 0.893 0.633 0.271 0.044 0.004 lower	upper 0.944 0.752 0.437 0.143 0.036 upper	52 * surv 0.908 0.657 0.299 0.057 0.007 58 * surv	lower 0.879 0.591 0.223 0.027 0.002 lower	upper 0.939 0.730 0.402 0.118 0.026 upper	53* surv 0.897 0.622 0.256 0.039 0.003 59* surv	lower 0.863 0.547 0.178 0.016 0.001 lower	upper 0.932 0.708 0.368 0.096 0.018 upper	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55* surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56* surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005
CAG years 5 10 15 20 25 CAG years 5	51 * surv 0.918 0.690 0.344 0.079 0.012 57 * surv 0.837	lower 0.893 0.633 0.271 0.044 0.004 lower 0.776	upper 0.944 0.752 0.437 0.143 0.036 upper 0.903	52 * surv 0.908 0.657 0.299 0.057 0.007 58 * surv 0.818	lower 0.879 0.591 0.223 0.027 0.002 lower 0.748	upper 0.939 0.730 0.402 0.118 0.026 upper 0.895	53* surv 0.897 0.622 0.256 0.039 0.003 59* surv 0.797	lower 0.863 0.547 0.178 0.016 0.001 lower 0.716	upper 0.932 0.708 0.368 0.096 0.018 upper 0.886	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55 * surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56* surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005
CAG years 5 10 15 20 25 CAG years 5 10	51 * surv 0.918 0.690 0.344 0.079 0.012 57 * surv 0.837 0.461	lower 0.893 0.633 0.271 0.044 0.004 lower 0.776 0.348	upper 0.944 0.752 0.437 0.143 0.036 upper 0.903 0.609	52* surv 0.908 0.657 0.299 0.057 0.007 58* surv 0.818 0.416	lower 0.879 0.591 0.223 0.027 0.002 lower 0.748 0.297	upper 0.939 0.730 0.402 0.118 0.026 upper 0.895 0.583	53* surv 0.897 0.622 0.256 0.039 0.003 59* surv 0.797 0.371	lower 0.863 0.547 0.178 0.016 0.001 lower 0.716 0.248	upper 0.932 0.708 0.368 0.096 0.018 upper 0.886 0.556	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55 * surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005
CAG years 5 10 15 20 25 CAG years 5 10 15	51* surv 0.918 0.690 0.344 0.079 0.012 57* surv 0.837 0.461 0.108	lower 0.893 0.633 0.271 0.044 0.004 lower 0.776 0.348 0.048	upper 0.944 0.752 0.437 0.143 0.036 upper 0.903 0.609 0.240	52* surv 0.908 0.657 0.299 0.057 0.007 58* surv 0.818 0.416 0.081	lower 0.879 0.591 0.223 0.027 0.002 lower 0.748 0.297 0.031	upper 0.939 0.730 0.402 0.118 0.026 upper 0.895 0.583 0.212	53* surv 0.897 0.622 0.256 0.039 0.003 59* surv 0.797 0.371 0.058	lower 0.863 0.547 0.178 0.016 0.001 lower 0.716 0.248 0.018	upper 0.932 0.708 0.368 0.096 0.018 upper 0.886 0.556 0.186	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55 * surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51* surv 0.918 0.690 0.344 0.079 0.012 57* surv 0.837 0.461 0.108 0.005	lower 0.893 0.633 0.271 0.044 0.004 lower 0.776 0.348 0.048 0.001	upper 0.944 0.752 0.437 0.143 0.036 upper 0.903 0.609 0.240 0.036	52* surv 0.908 0.657 0.299 0.057 0.007 58* surv 0.818 0.416 0.081 0.003	lower 0.879 0.591 0.223 0.027 0.002 lower 0.748 0.297 0.031 0.000	upper 0.939 0.730 0.402 0.118 0.026 upper 0.895 0.583 0.212 0.027	53* surv 0.897 0.622 0.256 0.039 0.003 59* surv 0.797 0.371 0.058 0.001	lower 0.863 0.547 0.178 0.016 0.001 lower 0.716 0.248 0.018 0.000	upper 0.932 0.708 0.368 0.096 0.018 upper 0.886 0.556 0.186 0.020	54* surv 0.884 0.585 0.214 0.026 0.002	upper 0.845 0.500 0.137 0.009 0.000	upper 0.926 0.684 0.334 0.077 0.013	55* surv 0.870 0.545 0.175 0.016 0.001	upper 0.824 0.450 0.101 0.004 0.000	upper 0.919 0.660 0.302 0.060 0.008	56 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.801 0.400 0.072 0.002 0.000	upper 0.911 0.635 0.270 0.047 0.005

Data is plotted in Figure 1 of the main article. *surv* = survival rate, *lower* = lower 95% confidence bound, *upper* = upper 95% confidence bound.

Supplemental Table 6. Survival curve estimates by CAG length for women with HD onset at age 55

CAG	39			40			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.976	0.968	0.984	0.973	0.964	0.981	0.969	0.960	0.979	0.965	0.955	0.976	0.961	0.949	0.972	0.956	0.943	0.969
10	0.898	0.877	0.921	0.886	0.863	0.909	0.872	0.848	0.896	0.857	0.832	0.882	0.839	0.813	0.867	0.820	0.791	0.850
15	0.735	0.690	0.783	0.706	0.661	0.754	0.674	0.629	0.723	0.641	0.595	0.690	0.605	0.557	0.656	0.566	0.517	0.620
20	0.481	0.415	0.557	0.437	0.374	0.510	0.392	0.333	0.462	0.347	0.290	0.415	0.302	0.248	0.368	0.259	0.207	0.323
25	0.278	0.212	0.365	0.235	0.176	0.314	0.195	0.143	0.266	0.157	0.112	0.222	0.124	0.084	0.181	0.094	0.061	0.146
CAG	45			46 *			47*			48 *			49 *			50 [*]		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.950	0.936	0.965	0.944	0.927	0.960	0.937	0.918	0.955	0.929	0.907	0.950	0.920	0.895	0.945	0.910	0.881	0.939
10	0.800	0.768	0.833	0.777	0.741	0.814	0.751	0.711	0.794	0.724	0.677	0.774	0.694	0.640	0.752	0.662	0.600	0.729
15	0.526	0.473	0.584	0.483	0.427	0.547	0.440	0.379	0.510	0.395	0.330	0.473	0.350	0.281	0.436	0.305	0.233	0.400
20	0.217	0.167	0.281	0.178	0.131	0.241	0.142	0.098	0.205	0.110	0.070	0.172	0.082	0.047	0.143	0.059	0.030	0.117
25	0.069	0.042	0.115	0.049	0.027	0.089	0.033	0.016	0.068	0.021	0.009	0.050	0.013	0.004	0.037	0.007	0.002	0.026
CAG	51*			52 [*]			53 [*]			54*			55 [*]			56*		
CAG years	51 * surv	lower	upper	52 * surv	lower	upper	53* surv	lower	upper	54 * surv	upper	upper	55* surv	upper	upper	56 * surv	upper	upper
CAG years 5	51* surv 0.898	lower 0.866	upper 0.932	52 * surv 0.886	lower 0.848	upper 0.925	53 * surv 0.872	lower 0.829	upper 0.918	54 * surv 0.857	upper 0.806	upper 0.910	55* surv 0.839	upper 0.782	upper 0.901	56* surv 0.820	upper 0.754	upper 0.893
CAG years 5 10	51* surv 0.898 0.627	lower 0.866 0.557	upper 0.932 0.706	52* surv 0.886 0.590	lower 0.848 0.511	upper 0.925 0.681	53 * surv 0.872 0.551	lower 0.829 0.462	upper 0.918 0.656	54 * surv 0.857 0.509	upper 0.806 0.412	upper 0.910 0.630	55* surv 0.839 0.466	upper 0.782 0.361	upper 0.901 0.603	56 * surv 0.820 0.422	upper 0.754 0.310	upper 0.893 0.575
CAG years 5 10 15	51 * surv 0.898 0.627 0.261	lower 0.866 0.557 0.187	upper 0.932 0.706 0.364	52* surv 0.886 0.590 0.219	lower 0.848 0.511 0.146	upper 0.925 0.681 0.329	53 * surv 0.872 0.551 0.180	<i>lower</i> 0.829 0.462 0.109	upper 0.918 0.656 0.295	54 * surv 0.857 0.509 0.144	upper 0.806 0.412 0.079	upper 0.910 0.630 0.263	55 * surv 0.839 0.466 0.112	upper 0.782 0.361 0.054	upper 0.901 0.603 0.232	56 * surv 0.820 0.422 0.084	upper 0.754 0.310 0.035	upper 0.893 0.575 0.203
CAG years 5 10 15 20	51 * surv 0.898 0.627 0.261 0.041	lower 0.866 0.557 0.187 0.018	upper 0.932 0.706 0.364 0.094	52 * surv 0.886 0.590 0.219 0.027	lower 0.848 0.511 0.146 0.010	upper 0.925 0.681 0.329 0.074	53 * surv 0.872 0.551 0.180 0.017	lower 0.829 0.462 0.109 0.005	upper 0.918 0.656 0.295 0.058	54 * surv 0.857 0.509 0.144 0.010	upper 0.806 0.412 0.079 0.002	upper 0.910 0.630 0.263 0.044	55 * surv 0.839 0.466 0.112 0.005	upper 0.782 0.361 0.054 0.001	upper 0.901 0.603 0.232 0.033	56 * surv 0.820 0.422 0.084 0.003	upper 0.754 0.310 0.035 0.000	upper 0.893 0.575 0.203 0.024
CAG years 5 10 15 20 25	51 * surv 0.898 0.627 0.261 0.041 0.004	lower 0.866 0.557 0.187 0.018 0.001	upper 0.932 0.706 0.364 0.094 0.018	52 * surv 0.886 0.590 0.219 0.027 0.002	lower 0.848 0.511 0.146 0.010 0.000	upper 0.925 0.681 0.329 0.074 0.012	53 * surv 0.872 0.551 0.180 0.017 0.001	lower 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.656 0.295 0.058 0.008	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55 * surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56 * surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002
CAG years 5 10 15 20 25 CAG	51 * surv 0.898 0.627 0.261 0.041 0.004 57 *	lower 0.866 0.557 0.187 0.018 0.001	upper 0.932 0.706 0.364 0.094 0.018	52 * surv 0.886 0.590 0.219 0.027 0.002 58 *	lower 0.848 0.511 0.146 0.010 0.000	upper 0.925 0.681 0.329 0.074 0.012	53* surv 0.872 0.551 0.180 0.017 0.001 59*	lower 0.829 0.462 0.109 0.005 0.000	upper 0.918 0.656 0.295 0.058 0.008	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55* surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56 * surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002
CAG years 5 10 15 20 25 CAG years	51 * surv 0.898 0.627 0.261 0.041 0.004 57 * surv	lower 0.866 0.557 0.187 0.018 0.001 lower	upper 0.932 0.706 0.364 0.094 0.018 upper	52 * surv 0.886 0.590 0.219 0.027 0.002 58 * surv	lower 0.848 0.511 0.146 0.010 0.000 lower	upper 0.925 0.681 0.329 0.074 0.012 upper	53* surv 0.872 0.551 0.180 0.017 0.001 59* surv	lower 0.829 0.462 0.109 0.005 0.000 lower	upper 0.918 0.656 0.295 0.058 0.008 upper	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55* surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56* surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002
CAG years 5 10 15 20 25 CAG years 5	51 * surv 0.898 0.627 0.261 0.041 0.004 57 * surv 0.800	lower 0.866 0.557 0.187 0.018 0.001 lower 0.724	upper 0.932 0.706 0.364 0.094 0.018 upper 0.883	52* surv 0.886 0.590 0.219 0.027 0.002 58* surv 0.777	lower 0.848 0.511 0.146 0.010 0.000 lower 0.690	upper 0.925 0.681 0.329 0.074 0.012 upper 0.873	53* surv 0.872 0.551 0.180 0.017 0.001 59* surv 0.751	lower 0.829 0.462 0.109 0.005 0.000 lower 0.654	upper 0.918 0.656 0.295 0.058 0.008 upper 0.863	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55* surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56* surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002
CAG years 5 10 15 20 25 CAG years 5 10	51 * surv 0.898 0.627 0.261 0.041 0.004 57 * surv 0.800 0.377	lower 0.866 0.557 0.187 0.018 0.001 lower 0.724 0.260	upper 0.932 0.706 0.364 0.094 0.018 upper 0.883 0.547	52* surv 0.886 0.590 0.219 0.027 0.002 58* surv 0.777 0.332	lower 0.848 0.511 0.146 0.010 0.000 lower 0.690 0.213	upper 0.925 0.681 0.329 0.074 0.012 upper 0.873 0.519	53* surv 0.872 0.551 0.180 0.017 0.001 59* surv 0.751 0.288	lower 0.829 0.462 0.109 0.005 0.000 lower 0.654 0.169	upper 0.918 0.656 0.295 0.058 0.008 upper 0.863 0.491	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55 * surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56* surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002
CAG years 5 10 15 20 25 CAG years 5 10 15	51* surv 0.898 0.627 0.261 0.041 0.004 57* surv 0.800 0.377 0.061	lower 0.866 0.557 0.187 0.018 0.001 lower 0.724 0.260 0.021	upper 0.932 0.706 0.364 0.094 0.018 upper 0.883 0.547 0.177	52* surv 0.886 0.590 0.219 0.027 0.002 58* surv 0.777 0.332 0.042	lower 0.848 0.511 0.146 0.010 0.000 lower 0.690 0.213 0.012	upper 0.925 0.681 0.329 0.074 0.012 upper 0.873 0.519 0.152	53* surv 0.872 0.551 0.180 0.017 0.001 59* surv 0.751 0.288 0.028	lower 0.829 0.462 0.109 0.005 0.000 lower 0.654 0.169 0.006	upper 0.918 0.656 0.295 0.058 0.008 upper 0.863 0.491 0.130	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55 * surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56* surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51* surv 0.898 0.627 0.261 0.041 0.004 57* surv 0.800 0.377 0.061 0.001	lower 0.866 0.557 0.187 0.018 0.001 lower 0.724 0.260 0.021 0.000	upper 0.932 0.706 0.364 0.094 0.018 upper 0.883 0.547 0.177 0.018	52* surv 0.886 0.590 0.219 0.027 0.002 58* surv 0.777 0.332 0.042 0.001	lower 0.848 0.511 0.146 0.010 0.000 lower 0.690 0.213 0.012 0.000	upper 0.925 0.681 0.329 0.074 0.012 upper 0.873 0.519 0.152 0.012	53* surv 0.872 0.551 0.180 0.017 0.001 59* surv 0.751 0.288 0.028 0.000	lower 0.829 0.462 0.109 0.005 0.000 lower 0.654 0.169 0.006 0.000	upper 0.918 0.656 0.295 0.058 0.008 upper 0.863 0.491 0.130 0.009	54* surv 0.857 0.509 0.144 0.010 0.000	upper 0.806 0.412 0.079 0.002 0.000	upper 0.910 0.630 0.263 0.044 0.005	55 * surv 0.839 0.466 0.112 0.005 0.000	upper 0.782 0.361 0.054 0.001 0.000	upper 0.901 0.603 0.232 0.033 0.003	56* surv 0.820 0.422 0.084 0.003 0.000	upper 0.754 0.310 0.035 0.000 0.000	upper 0.893 0.575 0.203 0.024 0.002

Data is plotted in Figure 1 of the main article. *surv* = survival rate, *lower* = lower 95% confidence bound, *upper* = upper 95% confidence bound.

Supplemental Table 7. Survival curve estimates by CAG length for men with HD onset at age 25

CAG	39*			40*			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.982	0.974	0.990	0.981	0.973	0.989	0.979	0.971	0.988	0.977	0.969	0.986	0.975	0.966	0.985	0.973	0.964	0.983
10	0.925	0.898	0.952	0.919	0.891	0.947	0.912	0.884	0.941	0.905	0.877	0.934	0.897	0.869	0.927	0.889	0.860	0.920
15	0.798	0.737	0.865	0.783	0.721	0.850	0.767	0.706	0.835	0.751	0.689	0.818	0.733	0.671	0.800	0.714	0.653	0.780
20	0.585	0.487	0.704	0.559	0.463	0.676	0.533	0.440	0.646	0.506	0.416	0.615	0.477	0.391	0.583	0.449	0.366	0.550
25	0.392	0.285	0.540	0.363	0.261	0.503	0.333	0.238	0.465	0.304	0.216	0.427	0.275	0.194	0.390	0.247	0.173	0.352
CAG	45			46			47			48			49			50		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.971	0.961	0.981	0.969	0.958	0.980	0.966	0.955	0.978	0.964	0.952	0.975	0.961	0.948	0.973	0.957	0.944	0.971
10	0.881	0.851	0.911	0.871	0.841	0.903	0.861	0.831	0.893	0.851	0.819	0.883	0.839	0.807	0.873	0.827	0.794	0.862
15	0.694	0.634	0.760	0.673	0.614	0.738	0.651	0.592	0.716	0.628	0.570	0.692	0.604	0.546	0.668	0.579	0.521	0.644
20	0.420	0.341	0.516	0.390	0.316	0.482	0.361	0.290	0.448	0.331	0.264	0.415	0.302	0.239	0.382	0.273	0.213	0.350
25	0.219	0.152	0.316	0.193	0.133	0.281	0.168	0.114	0.248	0.145	0.097	0.217	0.123	0.081	0.189	0.104	0.066	0.163
CAG	51			52			53			54			55			56		
CAG years	51 surv	lower	upper	52 surv	lower	upper	53 surv	lower	upper	54 surv	upper	upper	55 surv	upper	upper	56 surv	upper	upper
CAG years 5	51 surv 0.954	lower 0.940	upper 0.968	52 surv 0.950	lower 0.935	upper 0.965	53 surv 0.946	lower 0.930	upper 0.963	54 surv 0.942	upper 0.924	upper 0.960	55 surv 0.937	upper 0.918	upper 0.957	56 surv 0.932	upper 0.911	upper 0.954
CAG years 5 10	51 surv 0.954 0.814	lower 0.940 0.779	upper 0.968 0.850	52 surv 0.950 0.800	lower 0.935 0.763	upper 0.965 0.838	53 surv 0.946 0.785	lower 0.930 0.746	upper 0.963 0.826	54 surv 0.942 0.769	upper 0.924 0.727	upper 0.960 0.814	55 surv 0.937 0.753	upper 0.918 0.707	upper 0.957 0.801	56 surv 0.932 0.735	upper 0.911 0.685	upper 0.954 0.789
CAG years 5 10 15	51 surv 0.954 0.814 0.553	lower 0.940 0.779 0.494	upper 0.968 0.850 0.619	52 surv 0.950 0.800 0.527	lower 0.935 0.763 0.466	upper 0.965 0.838 0.595	53 surv 0.946 0.785 0.499	lower 0.930 0.746 0.437	upper 0.963 0.826 0.570	54 surv 0.942 0.769 0.471	upper 0.924 0.727 0.406	upper 0.960 0.814 0.546	55 surv 0.937 0.753 0.442	upper 0.918 0.707 0.374	upper 0.957 0.801 0.522	56 surv 0.932 0.735 0.413	upper 0.911 0.685 0.342	upper 0.954 0.789 0.499
CAG years 5 10 15 20	51 surv 0.954 0.814 0.553 0.245	lower 0.940 0.779 0.494 0.188	upper 0.968 0.850 0.619 0.320	52 surv 0.950 0.800 0.527 0.218	lower 0.935 0.763 0.466 0.163	upper 0.965 0.838 0.595 0.291	53 surv 0.946 0.785 0.499 0.192	lower 0.930 0.746 0.437 0.139	upper 0.963 0.826 0.570 0.264	54 surv 0.942 0.769 0.471 0.167	upper 0.924 0.727 0.406 0.116	upper 0.960 0.814 0.546 0.239	55 surv 0.937 0.753 0.442 0.144	upper 0.918 0.707 0.374 0.096	upper 0.957 0.801 0.522 0.216	56 surv 0.932 0.735 0.413 0.122	upper 0.911 0.685 0.342 0.077	upper 0.954 0.789 0.499 0.194
CAG years 5 10 15 20 25	51 surv 0.954 0.814 0.553 0.245 0.086	lower 0.940 0.779 0.494 0.188 0.052	upper 0.968 0.850 0.619 0.320 0.140	52 surv 0.950 0.800 0.527 0.218 0.070	lower 0.935 0.763 0.466 0.163 0.041	upper 0.965 0.838 0.595 0.291 0.119	53 surv 0.946 0.785 0.499 0.192 0.056	lower 0.930 0.746 0.437 0.139 0.031	upper 0.963 0.826 0.570 0.264 0.101	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060
CAG years 5 10 15 20 25 CAG	51 surv 0.954 0.814 0.553 0.245 0.086 57	lower 0.940 0.779 0.494 0.188 0.052	upper 0.968 0.850 0.619 0.320 0.140	52 surv 0.950 0.800 0.527 0.218 0.070 58	lower 0.935 0.763 0.466 0.163 0.041	upper 0.965 0.838 0.595 0.291 0.119	53 surv 0.946 0.785 0.499 0.192 0.056 59	lower 0.930 0.746 0.437 0.139 0.031	upper 0.963 0.826 0.570 0.264 0.101	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060
CAG years 5 10 15 20 25 CAG years	51 surv 0.954 0.814 0.553 0.245 0.086 57 surv	lower 0.940 0.779 0.494 0.188 0.052 lower	upper 0.968 0.850 0.619 0.320 0.140 upper	52 surv 0.950 0.800 0.527 0.218 0.070 58 surv	lower 0.935 0.763 0.466 0.163 0.041 lower	upper 0.965 0.838 0.595 0.291 0.119 upper	53 surv 0.946 0.785 0.499 0.192 0.056 59 surv	lower 0.930 0.746 0.437 0.139 0.031 lower	upper 0.963 0.826 0.570 0.264 0.101 upper	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060
CAG years 5 10 15 20 25 CAG years 5	51 surv 0.954 0.814 0.553 0.245 0.086 57 surv 0.926	lower 0.940 0.779 0.494 0.188 0.052 lower 0.903	upper 0.968 0.850 0.619 0.320 0.140 upper 0.950	52 surv 0.950 0.800 0.527 0.218 0.070 58 surv 0.920	lower 0.935 0.763 0.466 0.163 0.041 lower 0.895	upper 0.965 0.838 0.595 0.291 0.119 upper 0.947	53 surv 0.946 0.785 0.499 0.192 0.056 59 surv 0.914	<i>lower</i> 0.930 0.746 0.437 0.139 0.031 <i>lower</i> 0.885	upper 0.963 0.826 0.570 0.264 0.101 upper 0.944	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060
CAG years 5 10 15 20 25 CAG years 5 10	51 surv 0.954 0.814 0.553 0.245 0.086 57 surv 0.926 0.716	<i>lower</i> 0.940 0.779 0.494 0.188 0.052 <i>lower</i> 0.903 0.661	upper 0.968 0.850 0.619 0.320 0.140 upper 0.950 0.776	52 surv 0.950 0.800 0.527 0.218 0.070 58 surv 0.920 0.697	<i>lower</i> 0.935 0.763 0.466 0.163 0.041 <i>lower</i> 0.895 0.636	upper 0.965 0.838 0.595 0.291 0.119 upper 0.947 0.763	53 surv 0.946 0.785 0.499 0.192 0.056 59 surv 0.914 0.676	<i>lower</i> 0.930 0.746 0.437 0.139 0.031 <i>lower</i> 0.885 0.609	upper 0.963 0.826 0.570 0.264 0.101 upper 0.944 0.750	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060
CAG years 5 10 15 20 25 CAG years 5 10 15	51 surv 0.954 0.814 0.553 0.245 0.086 57 surv 0.926 0.716 0.383	<i>lower</i> 0.940 0.779 0.494 0.188 0.052 <i>lower</i> 0.903 0.661 0.309	upper 0.968 0.850 0.619 0.320 0.140 upper 0.950 0.776 0.476	52 surv 0.950 0.800 0.527 0.218 0.070 58 surv 0.920 0.697 0.354	<i>lower</i> 0.935 0.763 0.466 0.163 0.041 <i>lower</i> 0.895 0.636 0.276	upper 0.965 0.838 0.595 0.291 0.119 upper 0.947 0.763 0.454	53 surv 0.946 0.785 0.499 0.192 0.056 59 surv 0.914 0.676 0.324	<i>lower</i> 0.930 0.746 0.437 0.139 0.031 <i>lower</i> 0.885 0.609 0.243	upper 0.963 0.826 0.570 0.264 0.101 upper 0.944 0.750 0.432	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51 surv 0.954 0.814 0.553 0.245 0.086 57 surv 0.926 0.716 0.383 0.102	<i>lower</i> 0.940 0.779 0.494 0.188 0.052 <i>lower</i> 0.903 0.661 0.309 0.060	upper 0.968 0.850 0.619 0.320 0.140 upper 0.950 0.776 0.476 0.175	52 surv 0.950 0.800 0.527 0.218 0.070 58 surv 0.920 0.697 0.354 0.085	<i>lower</i> 0.935 0.763 0.466 0.163 0.041 <i>lower</i> 0.895 0.636 0.276 0.046	upper 0.965 0.838 0.595 0.291 0.119 upper 0.947 0.763 0.454 0.156	53 surv 0.946 0.785 0.499 0.192 0.056 59 surv 0.914 0.676 0.324 0.069	<i>lower</i> 0.930 0.746 0.437 0.139 0.031 <i>lower</i> 0.885 0.609 0.243 0.034	upper 0.963 0.826 0.570 0.264 0.101 upper 0.944 0.750 0.432 0.140	54 surv 0.942 0.769 0.471 0.167 0.044	upper 0.924 0.727 0.406 0.116 0.022	upper 0.960 0.814 0.546 0.239 0.086	55 surv 0.937 0.753 0.442 0.144 0.034	upper 0.918 0.707 0.374 0.096 0.016	upper 0.957 0.801 0.522 0.216 0.072	56 surv 0.932 0.735 0.413 0.122 0.025	upper 0.911 0.685 0.342 0.077 0.011	upper 0.954 0.789 0.499 0.194 0.060

Supplemental Table 8. Survival curve estimates by CAG length for men with HD onset at age 35

CAG	39*			40 *			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.968	0.958	0.979	0.965	0.955	0.977	0.963	0.951	0.974	0.960	0.948	0.972	0.956	0.944	0.969	0.953	0.939	0.966
10	0.868	0.838	0.899	0.858	0.828	0.889	0.847	0.817	0.878	0.835	0.806	0.866	0.823	0.793	0.854	0.810	0.779	0.841
15	0.666	0.608	0.731	0.644	0.587	0.706	0.621	0.566	0.681	0.596	0.543	0.654	0.571	0.520	0.627	0.545	0.495	0.600
20	0.381	0.309	0.470	0.351	0.285	0.433	0.322	0.260	0.397	0.293	0.236	0.362	0.264	0.212	0.328	0.236	0.189	0.296
25	0.185	0.128	0.268	0.161	0.111	0.234	0.138	0.094	0.202	0.117	0.079	0.172	0.098	0.065	0.146	0.080	0.053	0.122
CAG	45			46			47			48			49			50		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.949	0.935	0.963	0.945	0.929	0.960	0.940	0.924	0.957	0.935	0.918	0.953	0.930	0.911	0.950	0.924	0.903	0.949
10	0.795	0.764	0.828	0.780	0.748	0.814	0.764	0.730	0.800	0.747	0.710	0.786	0.729	0.689	0.772	0.710	0.666	0.795
15	0.518	0.469	0.572	0.490	0.441	0.545	0.462	0.411	0.518	0.433	0.380	0.492	0.403	0.348	0.467	0.374	0.315	0.518
20	0.209	0.165	0.265	0.184	0.142	0.237	0.159	0.120	0.211	0.137	0.099	0.188	0.116	0.080	0.167	0.096	0.063	0.209
25	0.065	0.041	0.102	0.052	0.032	0.084	0.040	0.023	0.070	0.031	0.017	0.057	0.023	0.011	0.047	0.017	0.007	0.065
CAG	51			52			53 [*]			54*			55 [*]			56*		
CAG years	51 surv	lower	upper	52 surv	lower	upper	53 * surv	lower	upper	54 * surv	upper	upper	55* surv	upper	upper	56 * surv	upper	upper
CAG years 5	51 surv 0.946	lower 0.918	upper 0.895	52 surv 0.942	lower 0.912	upper 0.886	53 * surv 0.939	lower 0.905	upper 0.876	54 * surv 0.935	upper 0.897	upper 0.865	55 * surv 0.930	upper 0.889	upper 0.854	56* surv 0.926	upper 0.881	upper 0.841
CAG years 5 10	51 surv 0.946 0.757	lower 0.918 0.690	upper 0.895 0.641	52 surv 0.942 0.743	lower 0.912 0.669	upper 0.886 0.614	53 * surv 0.939 0.729	lower 0.905 0.647	upper 0.876 0.586	54 * surv 0.935 0.714	upper 0.897 0.624	upper 0.865 0.556	55 * surv 0.930 0.700	upper 0.889 0.600	upper 0.854 0.525	56 * surv 0.926 0.685	upper 0.881 0.574	upper 0.841 0.492
CAG years 5 10 15	51 surv 0.946 0.757 0.443	lower 0.918 0.690 0.344	upper 0.895 0.641 0.282	52 surv 0.942 0.743 0.420	lower 0.912 0.669 0.315	upper 0.886 0.614 0.250	53 * surv 0.939 0.729 0.397	lower 0.905 0.647 0.286	upper 0.876 0.586 0.218	54 * surv 0.935 0.714 0.375	upper 0.897 0.624 0.257	upper 0.865 0.556 0.187	55 * surv 0.930 0.700 0.354	upper 0.889 0.600 0.230	upper 0.854 0.525 0.158	56 * surv 0.926 0.685 0.334	upper 0.881 0.574 0.203	upper 0.841 0.492 0.131
CAG years 5 10 15 20	51 surv 0.946 0.757 0.443 0.148	lower 0.918 0.690 0.344 0.079	upper 0.895 0.641 0.282 0.048	52 surv 0.942 0.743 0.420 0.131	lower 0.912 0.669 0.315 0.064	upper 0.886 0.614 0.250 0.036	53 * surv 0.939 0.729 0.397 0.115	lower 0.905 0.647 0.286 0.051	upper 0.876 0.586 0.218 0.026	54 * surv 0.935 0.714 0.375 0.101	upper 0.897 0.624 0.257 0.040	upper 0.865 0.556 0.187 0.018	55* surv 0.930 0.700 0.354 0.089	upper 0.889 0.600 0.230 0.030	upper 0.854 0.525 0.158 0.012	56* surv 0.926 0.685 0.334 0.077	upper 0.881 0.574 0.203 0.023	upper 0.841 0.492 0.131 0.008
CAG years 5 10 15 20 25	51 surv 0.946 0.757 0.443 0.148 0.038	lower 0.918 0.690 0.344 0.079 0.012	upper 0.895 0.641 0.282 0.048 0.005	52 surv 0.942 0.743 0.420 0.131 0.031	lower 0.912 0.669 0.315 0.064 0.008	upper 0.886 0.614 0.250 0.036 0.003	53 * surv 0.939 0.729 0.397 0.115 0.025	lower 0.905 0.647 0.286 0.051 0.006	upper 0.876 0.586 0.218 0.026 0.002	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56 * surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000
CAG years 5 10 15 20 25 CAG	51 surv 0.946 0.757 0.443 0.148 0.038 57 *	lower 0.918 0.690 0.344 0.079 0.012	upper 0.895 0.641 0.282 0.048 0.005	52 surv 0.942 0.743 0.420 0.131 0.031 58 *	lower 0.912 0.669 0.315 0.064 0.008	upper 0.886 0.614 0.250 0.036 0.003	53 * surv 0.939 0.729 0.397 0.115 0.025 59 *	lower 0.905 0.647 0.286 0.051 0.006	upper 0.876 0.586 0.218 0.026 0.002	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56 * surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000
CAG years 5 10 15 20 25 CAG years	51 surv 0.946 0.757 0.443 0.148 0.038 57 * surv	lower 0.918 0.690 0.344 0.079 0.012 lower	upper 0.895 0.641 0.282 0.048 0.005 upper	52 surv 0.942 0.743 0.420 0.131 0.031 58 * surv	lower 0.912 0.669 0.315 0.064 0.008 lower	upper 0.886 0.614 0.250 0.036 0.003 upper	53 * surv 0.939 0.729 0.397 0.115 0.025 59 * surv	lower 0.905 0.647 0.286 0.051 0.006 lower	upper 0.876 0.586 0.218 0.026 0.002 upper	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56* surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000
CAG years 5 10 15 20 25 CAG years 5	51 surv 0.946 0.757 0.443 0.148 0.038 57 * surv 0.871	lower 0.918 0.690 0.344 0.079 0.012 lower 0.827	upper 0.895 0.641 0.282 0.048 0.005 upper 0.918	52 surv 0.942 0.743 0.420 0.131 0.031 58 * surv 0.861	lower 0.912 0.669 0.315 0.064 0.008 lower 0.812	upper 0.886 0.614 0.250 0.036 0.003 upper 0.913	53 * surv 0.939 0.729 0.397 0.115 0.025 59 * surv 0.850	lower 0.905 0.647 0.286 0.051 0.006 lower 0.796	upper 0.876 0.586 0.218 0.026 0.002 upper 0.909	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56 * surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000
CAG years 5 10 15 20 25 CAG years 5 10	51 surv 0.946 0.757 0.443 0.148 0.038 57* surv 0.871 0.548	lower 0.918 0.690 0.344 0.079 0.012 lower 0.827 0.458	upper 0.895 0.641 0.282 0.048 0.005 upper 0.918 0.656	52 surv 0.942 0.743 0.420 0.131 0.031 58* surv 0.861 0.521	lower 0.912 0.669 0.315 0.064 0.008 lower 0.812 0.424	upper 0.886 0.614 0.250 0.036 0.003 upper 0.913 0.641	53 * surv 0.939 0.729 0.397 0.115 0.025 59 * surv 0.850 0.494	lower 0.905 0.647 0.286 0.051 0.006 lower 0.796 0.389	upper 0.876 0.586 0.218 0.026 0.002 upper 0.909 0.627	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56 * surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000
CAG years 5 10 15 20 25 CAG years 5 10 15	51 surv 0.946 0.757 0.443 0.148 0.038 57* surv 0.871 0.548 0.178	lower 0.918 0.690 0.344 0.079 0.012 lower 0.827 0.458 0.107	upper 0.895 0.641 0.282 0.048 0.005 upper 0.918 0.656 0.295	52 surv 0.942 0.743 0.420 0.131 0.031 58* surv 0.861 0.521 0.154	lower 0.912 0.669 0.315 0.064 0.008 lower 0.812 0.424 0.085	upper 0.886 0.614 0.250 0.036 0.003 upper 0.913 0.641 0.277	53 * surv 0.939 0.729 0.397 0.115 0.025 59 * surv 0.850 0.494 0.131	lower 0.905 0.647 0.286 0.051 0.006 lower 0.796 0.389 0.067	upper 0.876 0.586 0.218 0.026 0.002 upper 0.909 0.627 0.260	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56 * surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51 surv 0.946 0.757 0.443 0.148 0.038 57* surv 0.871 0.548 0.178 0.016	lower 0.918 0.690 0.344 0.079 0.012 lower 0.827 0.458 0.107 0.005	upper 0.895 0.641 0.282 0.048 0.005 upper 0.918 0.656 0.295 0.058	52 surv 0.942 0.743 0.420 0.131 0.031 58* surv 0.861 0.521 0.154 0.012	lower 0.912 0.669 0.315 0.064 0.008 lower 0.812 0.424 0.085 0.003	upper 0.886 0.614 0.250 0.036 0.003 upper 0.913 0.641 0.277 0.050	53* Surv 0.939 0.729 0.397 0.115 0.025 59* Surv 0.850 0.494 0.131 0.008	lower 0.905 0.647 0.286 0.051 0.006 lower 0.796 0.389 0.067 0.001	upper 0.876 0.586 0.218 0.026 0.002 upper 0.909 0.627 0.260 0.043	54 * surv 0.935 0.714 0.375 0.101 0.020	upper 0.897 0.624 0.257 0.040 0.004	upper 0.865 0.556 0.187 0.018 0.001	55 * surv 0.930 0.700 0.354 0.089 0.016	upper 0.889 0.600 0.230 0.030 0.002	upper 0.854 0.525 0.158 0.012 0.000	56 * surv 0.926 0.685 0.334 0.077 0.013	upper 0.881 0.574 0.203 0.023 0.001	upper 0.841 0.492 0.131 0.008 0.000

Supplemental Table 9. Survival curve estimates by CAG length for men with HD onset at age 45

CAG	39*			40			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.963	0.952	0.974	0.960	0.949	0.972	0.957	0.945	0.969	0.953	0.941	0.966	0.950	0.936	0.963	0.946	0.931	0.960
10	0.849	0.823	0.877	0.838	0.812	0.865	0.826	0.799	0.853	0.812	0.786	0.840	0.798	0.771	0.827	0.784	0.755	0.813
15	0.626	0.578	0.677	0.601	0.556	0.650	0.576	0.533	0.623	0.550	0.509	0.596	0.524	0.482	0.568	0.496	0.454	0.541
20	0.328	0.274	0.392	0.299	0.250	0.357	0.270	0.226	0.323	0.242	0.201	0.291	0.215	0.177	0.261	0.189	0.153	0.234
25	0.143	0.102	0.198	0.121	0.087	0.169	0.101	0.072	0.143	0.084	0.058	0.120	0.068	0.046	0.100	0.054	0.035	0.084
CAG	45			46			47			48			4 9*			50 [*]		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.941	0.925	0.957	0.936	0.919	0.954	0.931	0.913	0.950	0.926	0.905	0.947	0.920	0.897	0.943	0.913	0.888	0.939
10	0.768	0.737	0.799	0.751	0.718	0.785	0.733	0.696	0.772	0.714	0.673	0.758	0.694	0.648	0.744	0.673	0.621	0.730
15	0.468	0.424	0.515	0.439	0.393	0.491	0.410	0.359	0.467	0.380	0.326	0.443	0.350	0.292	0.421	0.321	0.258	0.399
20	0.164	0.129	0.209	0.141	0.107	0.187	0.120	0.086	0.167	0.100	0.068	0.148	0.083	0.052	0.132	0.067	0.039	0.117
25	0.043	0.026	0.069	0.033	0.019	0.057	0.025	0.013	0.047	0.018	0.008	0.039	0.013	0.005	0.032	0.009	0.003	0.026
CAG	51 *			52 [*]			53 [*]			54*			55 [*]			56*		
CAG years	51 * surv	lower	upper	52 * surv	lower	upper	53 * surv	lower	upper	54 * surv	upper	upper	55 * surv	upper	upper	56 * surv	upper	upper
CAG years 5	51* surv 0.906	lower 0.878	upper 0.935	52* surv 0.899	lower 0.868	upper 0.931	53 * surv 0.891	lower 0.856	upper 0.927	54 * surv 0.882	upper 0.843	upper 0.923	55* surv 0.873	upper 0.830	upper 0.919	56 * surv 0.863	upper 0.815	upper 0.915
CAG years 5 10	51* surv 0.906 0.652	lower 0.878 0.593	upper 0.935 0.716	52* surv 0.899 0.629	lower 0.868 0.563	upper 0.931 0.702	53 * surv 0.891 0.605	lower 0.856 0.531	upper 0.927 0.688	54 * surv 0.882 0.580	upper 0.843 0.498	upper 0.923 0.674	55* surv 0.873 0.554	upper 0.830 0.465	upper 0.919 0.660	56* surv 0.863 0.527	upper 0.815 0.430	upper 0.915 0.646
CAG years 5 10 15	51 * surv 0.906 0.652 0.292	lower 0.878 0.593 0.225	upper 0.935 0.716 0.378	52 * surv 0.899 0.629 0.263	lower 0.868 0.563 0.194	upper 0.931 0.702 0.358	53 * surv 0.891 0.605 0.235	lower 0.856 0.531 0.164	upper 0.927 0.688 0.338	54 * surv 0.882 0.580 0.209	upper 0.843 0.498 0.136	upper 0.923 0.674 0.319	55 * surv 0.873 0.554 0.183	upper 0.830 0.465 0.111	upper 0.919 0.660 0.301	56 * surv 0.863 0.527 0.159	upper 0.815 0.430 0.089	upper 0.915 0.646 0.283
CAG years 5 10 15 20	51 * surv 0.906 0.652 0.292 0.054	lower 0.878 0.593 0.225 0.028	upper 0.935 0.716 0.378 0.103	52* surv 0.899 0.629 0.263 0.042	lower 0.868 0.563 0.194 0.019	upper 0.931 0.702 0.358 0.091	53 * surv 0.891 0.605 0.235 0.032	lower 0.856 0.531 0.164 0.013	upper 0.927 0.688 0.338 0.080	54 * surv 0.882 0.580 0.209 0.024	upper 0.843 0.498 0.136 0.008	upper 0.923 0.674 0.319 0.070	55 * surv 0.873 0.554 0.183 0.018	upper 0.830 0.465 0.111 0.005	upper 0.919 0.660 0.301 0.061	56 * surv 0.863 0.527 0.159 0.013	upper 0.815 0.430 0.089 0.003	upper 0.915 0.646 0.283 0.053
CAG years 5 10 15 20 25	51 * surv 0.906 0.652 0.292 0.054 0.006	lower 0.878 0.593 0.225 0.028 0.002	upper 0.935 0.716 0.378 0.103 0.021	52 * surv 0.899 0.629 0.263 0.042 0.004	lower 0.868 0.563 0.194 0.019 0.001	upper 0.931 0.702 0.358 0.091 0.017	53 * surv 0.891 0.605 0.235 0.032 0.002	lower 0.856 0.531 0.164 0.013 0.000	upper 0.927 0.688 0.338 0.080 0.013	54 * surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007
CAG years 5 10 15 20 25 CAG	51 * surv 0.906 0.652 0.292 0.054 0.006 57 *	lower 0.878 0.593 0.225 0.028 0.002	upper 0.935 0.716 0.378 0.103 0.021	52 * surv 0.899 0.629 0.263 0.042 0.004 58 *	lower 0.868 0.563 0.194 0.019 0.001	upper 0.931 0.702 0.358 0.091 0.017	53 * surv 0.891 0.605 0.235 0.032 0.002 59 *	lower 0.856 0.531 0.164 0.013 0.000	upper 0.927 0.688 0.338 0.080 0.013	54 * surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007
CAG years 5 10 15 20 25 CAG years	51 * surv 0.906 0.652 0.292 0.054 0.006 57 * surv	lower 0.878 0.593 0.225 0.028 0.002 lower	upper 0.935 0.716 0.378 0.103 0.021 upper	52 * surv 0.899 0.629 0.263 0.042 0.004 58 * surv	lower 0.868 0.563 0.194 0.019 0.001 lower	upper 0.931 0.702 0.358 0.091 0.017 upper	53 * surv 0.891 0.605 0.235 0.032 0.002 59 * surv	lower 0.856 0.531 0.164 0.013 0.000 lower	upper 0.927 0.688 0.338 0.080 0.013 upper	54* surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007
CAG years 5 10 15 20 25 CAG years 5	51 * surv 0.906 0.652 0.292 0.054 0.006 57 * surv 0.853	lower 0.878 0.593 0.225 0.028 0.002 lower 0.799	upper 0.935 0.716 0.378 0.103 0.021 upper 0.910	52 * surv 0.899 0.629 0.263 0.042 0.004 58 * surv 0.841	lower 0.868 0.563 0.194 0.019 0.001 lower 0.782	upper 0.931 0.702 0.358 0.091 0.017 upper 0.906	53 * surv 0.891 0.605 0.235 0.032 0.002 59 * surv 0.829	lower 0.856 0.531 0.164 0.013 0.000 lower 0.763	upper 0.927 0.688 0.338 0.080 0.013 upper 0.902	54 * surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007
CAG years 5 10 15 20 25 CAG years 5 10	51 * surv 0.906 0.652 0.292 0.054 0.006 57 * surv 0.853 0.500	lower 0.878 0.593 0.225 0.028 0.002 lower 0.799 0.395	upper 0.935 0.716 0.378 0.103 0.021 upper 0.910 0.632	52 * surv 0.899 0.629 0.263 0.042 0.004 58 * surv 0.841 0.471	lower 0.868 0.563 0.194 0.019 0.001 lower 0.782 0.360	upper 0.931 0.702 0.358 0.091 0.017 upper 0.906 0.618	53* surv 0.891 0.605 0.235 0.032 0.002 59* surv 0.829 0.443	lower 0.856 0.531 0.164 0.013 0.000 lower 0.763 0.324	upper 0.927 0.688 0.338 0.080 0.013 upper 0.902 0.604	54* surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007
CAG years 5 10 15 20 25 CAG years 5 10 15	51 * surv 0.906 0.652 0.292 0.054 0.006 57 * surv 0.853 0.500 0.136	lower 0.878 0.593 0.225 0.028 0.002 lower 0.799 0.395 0.070	upper 0.935 0.716 0.378 0.103 0.021 upper 0.910 0.632 0.266	52 * surv 0.899 0.629 0.263 0.042 0.004 58 * surv 0.841 0.471 0.115	lower 0.868 0.563 0.194 0.019 0.001 lower 0.782 0.360 0.053	upper 0.931 0.702 0.358 0.091 0.017 upper 0.906 0.618 0.249	53* Surv 0.891 0.605 0.235 0.032 0.002 59* Surv 0.829 0.443 0.096	lower 0.856 0.531 0.164 0.013 0.000 lower 0.763 0.324 0.039	upper 0.927 0.688 0.338 0.080 0.013 upper 0.902 0.604 0.234	54* surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51 * surv 0.906 0.652 0.292 0.054 0.006 57 * surv 0.853 0.500 0.136 0.009	lower 0.878 0.593 0.225 0.028 0.002 lower 0.799 0.395 0.070 0.002	upper 0.935 0.716 0.378 0.103 0.021 upper 0.910 0.632 0.266 0.046	52* surv 0.899 0.629 0.263 0.042 0.004 58* surv 0.841 0.471 0.115 0.006	lower 0.868 0.563 0.194 0.019 0.001 lower 0.782 0.360 0.053 0.001	upper 0.931 0.702 0.358 0.091 0.017 upper 0.906 0.618 0.249 0.040	53* Surv 0.891 0.605 0.235 0.032 0.002 59* Surv 0.829 0.443 0.096 0.004	lower 0.856 0.531 0.164 0.013 0.000 lower 0.763 0.324 0.039 0.000	upper 0.927 0.688 0.338 0.080 0.013 upper 0.902 0.604 0.234 0.034	54* surv 0.882 0.580 0.209 0.024 0.001	upper 0.843 0.498 0.136 0.008 0.000	upper 0.923 0.674 0.319 0.070 0.011	55 * surv 0.873 0.554 0.183 0.018 0.001	upper 0.830 0.465 0.111 0.005 0.000	upper 0.919 0.660 0.301 0.061 0.009	56 * surv 0.863 0.527 0.159 0.013 0.000	upper 0.815 0.430 0.089 0.003 0.000	upper 0.915 0.646 0.283 0.053 0.007

Supplemental Table 10. Survival curve estimates by CAG length for men with HD onset at age 55

CAG	39			40			41			42			43			44		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.954	0.940	0.968	0.950	0.936	0.965	0.946	0.931	0.962	0.942	0.926	0.958	0.937	0.920	0.955	0.932	0.913	0.951
10	0.814	0.782	0.848	0.801	0.769	0.834	0.786	0.753	0.819	0.770	0.737	0.805	0.753	0.719	0.789	0.736	0.700	0.774
15	0.554	0.501	0.613	0.528	0.476	0.584	0.500	0.451	0.555	0.472	0.424	0.526	0.443	0.395	0.497	0.414	0.365	0.469
20	0.246	0.195	0.311	0.219	0.172	0.278	0.193	0.150	0.246	0.168	0.129	0.218	0.144	0.109	0.192	0.123	0.090	0.168
25	0.086	0.056	0.134	0.070	0.045	0.111	0.056	0.035	0.091	0.044	0.026	0.074	0.034	0.019	0.060	0.026	0.014	0.048
CAG	45			46 *			47*			48 *			4 9*			50 [*]		
years	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper	surv	lower	upper
5	0.927	0.906	0.947	0.921	0.899	0.943	0.914	0.890	0.939	0.907	0.881	0.935	0.900	0.871	0.930	0.892	0.860	0.926
10	0.717	0.678	0.758	0.697	0.655	0.743	0.677	0.630	0.727	0.655	0.603	0.711	0.632	0.574	0.696	0.608	0.544	0.680
15	0.384	0.334	0.443	0.355	0.302	0.417	0.325	0.269	0.393	0.296	0.237	0.370	0.267	0.206	0.347	0.239	0.176	0.326
20	0.103	0.072	0.147	0.085	0.056	0.129	0.069	0.043	0.112	0.055	0.031	0.097	0.043	0.022	0.084	0.033	0.015	0.073
25	0.019	0.009	0.038	0.014	0.006	0.031	0.009	0.004	0.024	0.006	0.002	0.019	0.004	0.001	0.015	0.003	0.001	0.012
CAG	51 [*]			52 [*]			53 [*]			54*			55 [*]			56 *		
CAG years	51 * surv	lower	upper	52 * surv	lower	upper	53 * surv	lower	upper	54 * surv	upper	upper	55 * surv	upper	upper	56 * surv	upper	upper
CAG years 5	51 * surv 0.884	lower 0.848	upper 0.921	52* surv 0.875	lower 0.835	upper 0.916	53 * surv 0.865	lower 0.820	upper 0.912	54 * surv 0.854	upper 0.805	upper 0.907	55* surv 0.843	upper 0.788	upper 0.902	56 * surv 0.831	upper 0.770	upper 0.897
CAG years 5 10	51* surv 0.884 0.583	lower 0.848 0.512	upper 0.921 0.665	52 * surv 0.875 0.558	lower 0.835 0.479	upper 0.916 0.649	53 * surv 0.865 0.531	lower 0.820 0.445	upper 0.912 0.633	54 * surv 0.854 0.504	upper 0.805 0.411	upper 0.907 0.618	55* surv 0.843 0.476	upper 0.788 0.375	upper 0.902 0.602	56 * surv 0.831 0.447	upper 0.770 0.340	upper 0.897 0.587
CAG years 5 10 15	51 * surv 0.884 0.583 0.212	lower 0.848 0.512 0.148	upper 0.921 0.665 0.305	52 * surv 0.875 0.558 0.187	lower 0.835 0.479 0.122	upper 0.916 0.649 0.285	53 * surv 0.865 0.531 0.162	lower 0.820 0.445 0.099	upper 0.912 0.633 0.266	54 * surv 0.854 0.504 0.139	upper 0.805 0.411 0.078	upper 0.907 0.618 0.248	55 * surv 0.843 0.476 0.118	upper 0.788 0.375 0.060	upper 0.902 0.602 0.231	56 * surv 0.831 0.447 0.099	upper 0.770 0.340 0.045	upper 0.897 0.587 0.215
CAG years 5 10 15 20	51 * surv 0.884 0.583 0.212 0.025	lower 0.848 0.512 0.148 0.010	upper 0.921 0.665 0.305 0.063	52 * surv 0.875 0.558 0.187 0.018	lower 0.835 0.479 0.122 0.006	upper 0.916 0.649 0.285 0.054	53 * surv 0.865 0.531 0.162 0.013	lower 0.820 0.445 0.099 0.004	upper 0.912 0.633 0.266 0.046	54 * surv 0.854 0.504 0.139 0.009	upper 0.805 0.411 0.078 0.002	upper 0.907 0.618 0.248 0.039	55 * surv 0.843 0.476 0.118 0.006	upper 0.788 0.375 0.060 0.001	upper 0.902 0.602 0.231 0.033	56 * surv 0.831 0.447 0.099 0.004	upper 0.770 0.340 0.045 0.001	upper 0.897 0.587 0.215 0.028
CAG years 5 10 15 20 25	51 * surv 0.884 0.583 0.212 0.025 0.002	lower 0.848 0.512 0.148 0.010 0.000	upper 0.921 0.665 0.305 0.063 0.009	52 * surv 0.875 0.558 0.187 0.018 0.001	lower 0.835 0.479 0.122 0.006 0.000	upper 0.916 0.649 0.285 0.054 0.007	53 * surv 0.865 0.531 0.162 0.013 0.001	lower 0.820 0.445 0.099 0.004 0.000	upper 0.912 0.633 0.266 0.046 0.005	54 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002
CAG years 5 10 15 20 25 CAG	51 * surv 0.884 0.583 0.212 0.025 0.002 57 *	lower 0.848 0.512 0.148 0.010 0.000	upper 0.921 0.665 0.305 0.063 0.009	52 * surv 0.875 0.558 0.187 0.018 0.001 58 *	lower 0.835 0.479 0.122 0.006 0.000	upper 0.916 0.649 0.285 0.054 0.007	53 * surv 0.865 0.531 0.162 0.013 0.001 59 *	lower 0.820 0.445 0.099 0.004 0.000	upper 0.912 0.633 0.266 0.046 0.005	54 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002
CAG years 5 10 15 20 25 CAG years	51 * surv 0.884 0.583 0.212 0.025 0.002 57 * surv	lower 0.848 0.512 0.148 0.010 0.000 lower	upper 0.921 0.665 0.305 0.063 0.009 upper	52 * surv 0.875 0.558 0.187 0.018 0.001 58 * surv	lower 0.835 0.479 0.122 0.006 0.000 lower	upper 0.916 0.649 0.285 0.054 0.007 upper	53 * surv 0.865 0.531 0.162 0.013 0.001 59 * surv	lower 0.820 0.445 0.099 0.004 0.000 lower	upper 0.912 0.633 0.266 0.046 0.005 upper	54 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002
CAG years 5 10 15 20 25 CAG years 5	51 * surv 0.884 0.583 0.212 0.025 0.002 57 * surv 0.853	lower 0.848 0.512 0.148 0.010 0.000 lower 0.799	upper 0.921 0.665 0.305 0.063 0.009 upper 0.910	52 * surv 0.875 0.558 0.187 0.018 0.001 58 * surv 0.841	lower 0.835 0.479 0.122 0.006 0.000 lower 0.782	upper 0.916 0.649 0.285 0.054 0.007 upper 0.906	53 * surv 0.865 0.531 0.162 0.013 0.001 59 * surv 0.829	lower 0.820 0.445 0.099 0.004 0.000 lower 0.763	upper 0.912 0.633 0.266 0.046 0.005 upper 0.882	54 * surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002
CAG years 5 10 15 20 25 CAG years 5 10	51 * surv 0.884 0.583 0.212 0.025 0.002 57 * surv 0.853 0.500	lower 0.848 0.512 0.148 0.010 0.000 lower 0.799 0.395	upper 0.921 0.665 0.305 0.063 0.009 upper 0.910 0.632	52 * surv 0.875 0.558 0.187 0.018 0.001 58 * surv 0.841 0.471	lower 0.835 0.479 0.122 0.006 0.000 lower 0.782 0.360	upper 0.916 0.649 0.285 0.054 0.007 upper 0.906 0.618	53 * surv 0.865 0.531 0.162 0.013 0.001 59 * surv 0.829 0.443	lower 0.820 0.445 0.099 0.004 0.000 lower 0.763 0.324	upper 0.912 0.633 0.266 0.046 0.005 upper 0.882 0.541	54* surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002
CAG years 5 10 15 20 25 CAG years 5 10 15	51 * surv 0.884 0.583 0.212 0.025 0.002 57 * surv 0.853 0.500 0.136	lower 0.848 0.512 0.148 0.010 0.000 lower 0.799 0.395 0.070	upper 0.921 0.665 0.305 0.063 0.009 upper 0.910 0.632 0.266	52* surv 0.875 0.558 0.187 0.018 0.001 58* surv 0.841 0.471 0.115	lower 0.835 0.479 0.122 0.006 0.000 lower 0.782 0.360 0.053	upper 0.916 0.649 0.285 0.054 0.007 upper 0.906 0.618 0.249	53* surv 0.865 0.531 0.162 0.013 0.001 59* surv 0.829 0.443 0.096	lower 0.820 0.445 0.099 0.004 0.000 lower 0.763 0.324 0.039	upper 0.912 0.633 0.266 0.046 0.005 upper 0.882 0.541 0.171	54* surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002
CAG years 5 10 15 20 25 CAG years 5 10 15 20	51* surv 0.884 0.583 0.212 0.025 0.002 57* surv 0.853 0.500 0.136 0.009	lower 0.848 0.512 0.148 0.010 0.000 lower 0.799 0.395 0.070 0.002	upper 0.921 0.665 0.305 0.063 0.009 upper 0.910 0.632 0.266 0.046	52* surv 0.875 0.558 0.187 0.018 0.001 58* surv 0.841 0.471 0.115 0.006	lower 0.835 0.479 0.122 0.006 0.000 lower 0.782 0.360 0.053 0.001	upper 0.916 0.649 0.285 0.054 0.007 upper 0.906 0.618 0.249 0.040	53* Surv 0.865 0.531 0.162 0.013 0.001 59* Surv 0.829 0.443 0.096 0.004	lower 0.820 0.445 0.099 0.004 0.000 lower 0.763 0.324 0.039 0.000	upper 0.912 0.633 0.266 0.046 0.005 upper 0.882 0.541 0.171 0.017	54* surv 0.854 0.504 0.139 0.009 0.000	upper 0.805 0.411 0.078 0.002 0.000	upper 0.907 0.618 0.248 0.039 0.004	55 * surv 0.843 0.476 0.118 0.006 0.000	upper 0.788 0.375 0.060 0.001 0.000	upper 0.902 0.602 0.231 0.033 0.003	56 * surv 0.831 0.447 0.099 0.004 0.000	upper 0.770 0.340 0.045 0.001 0.000	upper 0.897 0.587 0.215 0.028 0.002

Variable	log HR	S.E.	z	p val	HR	95%	6 CI
CAG (per repeat)	0.1227	0.0134	9.157	5.34E-20	1.131	1.101	1.161
Age of HD Onset	0.0704	0.0124	5.677	1.37E-08	1.073	1.047	1.099
Age of HD Onset'	-0.1191	0.0265	-4.494	6.99E-06	0.888	0.843	0.935
Age of HD Onset''	0.5751	0.1113	5.167	2.38E-07	1.777	1.429	2.211
Men vs Women	2.2965	0.5782	3.972	7.13E-05	9.939	3.200	30.868
CAG by (M vs W)	-0.0422	0.0127	-3.323	8.91E-04	0.959	0.935	0.983

Supplemental Table 11. Final Model in main paper

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset.

Supplemental Table 12. Model with 105 questionable cases of HD onset removed

Variable	log HR	S.E.	z	p val	HR	95%	6 CI
CAG (per repeat)	0.124	0.0134	9.254	<0.0001	1.132	1.103	1.162
Age of HD Onset	0.0712	0.0122	5.836	<0.0001	1.074	1.048	1.100
Age of HD Onset'	-0.1276	0.0278	-4.590	<0.0001	0.880	0.834	0.929
Age of HD Onset''	0.5777	0.1107	5.219	<0.0001	1.782	1.434	2.214
Men vs Women	2.2935	0.5775	3.971	<0.0001	9.910	3.195	30.733
CAG by (M vs W)	-0.0421	0.0127	-3.315	0.0009	0.959	0.935	0.983

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset.

Variable	log HR	S.E.	Z	p val	HR	95%	6 CI
CAG (per repeat)	0 1292	0 0218	5 927	<0.0001	1 1 3 8	1 090	1 188
	0.1252	0.0210	5.527	0.0001	1.100	1.050	1.100
Age of HD Onset	0.0648	0.0109	5.945	<0.0001	1.067	1.044	1.090
Ago of UD Opcot'	0 1011	0.0457	2 212	0 0269	0.004	0.926	0 0 0 0
Age of HD Onset	-0.1011	0.0457	-2.212	0.0208	0.904	0.820	0.989
Age of HD Onset''	0.395	0.1695	2.330	0.0198	1.484	1.065	2.069
Men vs Women	2.1869	0.9854	2.219	0.0268	8.908	1.291	61.448
CAG by (M vs W)	-0.0391	0.0218	-1.794	0.0733	0.962	0.921	1.004

Supplemental Table 13, Model with data restricted to CAG lengths 41 through 56

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset.

Variable	log HR	S.E.	z	p val	HR	95%	6 CI
CAG (per repeat)	0.1272	0.0142	8.958	<0.0001	1.136	1.104	1.168
Age of HD Onset	0.0764	0.0135	5.659	<0.0001	1.079	1.051	1.108
Age of HD Onset'	-0.1261	0.0288	-4.378	<0.0001	0.882	0.833	0.933
Age of HD Onset''	0.5912	0.1205	4.906	<0.0001	1.806	1.426	2.287
Men vs Women	2.3517	0.6148	3.825	1.00E-04	10.503	3.148	35.045
CAG by (M vs W)	-0.0426	0.0135	-3.156	1.60E-03	0.958	0.933	0.984
CAG short allele (per repeat)	0.0091	0.0104	0.875	3.78E-01	1.009	0.989	1.030

Supplemental Table 14. Model controlling for (non-significant) effect of CAG length on the short allele

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset' are the nonlinear restricted cubic spline coefficients for age of HD onset.

Variable	log HR	S.E.	Z	p val	HR	95%	6 CI
CAG (per repeat)	0.1078	0.0137	7.869	<0.0001	1.114	1.084	1.144
Age of HD Onset	0.0639	0.0124	5.153	<0.0001	1.066	1.040	1.092
Age of HD Onset'	-0.0954	0.0263	-3.627	0.0003	0.909	0.863	0.957
Age of HD Onset''	0.4791	0.1114	4.301	<0.0001	1.615	1.298	2.009
Men vs Women	1.9171	0.5836	3.285	0.001	6.801	2.167	21.347
CAG-by-(M vs W)	-0.0348	0.0129	-2.698	0.0068	0.966	0.942	0.991
R3 vs R2 data source	-0.9545	0.2566	-3.720	0.0002	0.385	0.233	0.637
Onset Age * (R3 vs R2)	-0.0041	0.0054	-0.759	0.4496	0.996	0.985	1.007

Supplemental Table 15. Model controlling for data subset within Registry HD

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset" are the nonlinear restricted cubic spline coefficients for age of HD onset. The exploratory variable of interest is the interaction between Onset Age and R3 vs R2 because the concern is that different methods for recording age of onset were used in these two subsets of registry-HD. In an additional model (not shown in a table) we tested the possible significance of an interaction of data source and all three onset age spline terms used to define the nonlinear details of the effect of onset age on survival. This interaction was not significant (Chi-Square = 1.31, 3df, p = .726.)

Supplemental Table 16. Model with Rater Estimate of Onset Age Used Throughout (Rather than Rater Age for Subset R2 and Motor Onset Age For R3)

Variable	log HR	S.E.	z	p val	HR	95%	6 CI
CAG (per repeat)	0.0948	0.0143	6.629	<0.0001	1.099	1.069	1.131
Age of HD Onset	0.0478	0.013	3.677	0.0002	1.049	1.023	1.076
Age of HD Onset'	-0.0978	0.0293	-3.338	0.0009	0.907	0.856	0.960
Age of HD Onset''	0.4401	0.1075	4.094	<0.0001	1.553	1.258	1.917
Men vs Women	2.2104	0.6101	3.623	0.0003	9.119	2.758	30.148
CAG-by-(M vs W)	-0.0405	0.0134	-3.022	0.0026	0.960	0.935	0.986

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Because the data were less complete, use of rater onset age rather than motor onset age reduced the sample to 804 deaths out of 7904 observations rather than 826 deaths in 8422 observations.

The two onset ages were are highly correlated. For the 6582 participants from R3 for whom both rater and motor ages were recorded, the Pearson correlation between the two was 0 .949 and the standard deviation of the age differences was 3.976 years. The mean motor onset age was 1.17 years older that the rater-reported onset. The correlation between R2 rater onset and R3 motor onset ages was 0 .962 among 807 overlapping participants with ages recorded in both data subsets. The standard deviation of the difference was 3.302 years.

Variable	log HR	S.E.	Z	p val	HR	95%	6 CI
CAG (per repeat)	0.1247	0.0129	9.667	<0.0001	1.133	1.105	1.162
Age of HD Onset	0.0702	0.0071	9.887	<0.0001	1.073	1.058	1.088
Age of HD Onset'	-0.1169	0.0211	-5.540	<0.0001	0.890	0.854	0.927
Age of HD Onset''	0.5636	0.0952	5.920	<0.0001	1.757	1.458	2.117
Men vs Women	2.3912	0.4178	5.723	<0.0001	10.927	4.818	24.780
CAG by (M vs W)	-0.0441	0.0088	-5.011	<0.0001	0.957	0.940	0.974

Supplemental Table 17 Model with cluster effect for country in which data was collected

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset.

Variable	log HR	S.E.	Z	p val	HR	95%	6 CI
CAG (per repeat)	0.1247	0.0109	11.440	<0.0001	1.133	1.109	1.157
Age of HD Onset	0.0702	0.0112	6.268	<0.0001	1.073	1.049	1.097
Age of HD Onset'	-0.1168	0.0285	-4.098	<0.0001	0.890	0.841	0.941
Age of HD Onset''	0.5634	0.1292	4.361	<0.0001	1.757	1.364	2.263
Men vs Women	2.3905	0.4638	5.154	<0.0001	10.919	4.400	27.099
CAG by (M vs W)	-0.0441	0.0098	-4.500	<0.0001	0.957	0.939	0.975

Supplemental Table 18. Model with cluster effect for site at which data was collected

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset, restricted cubic spline knots were placed at 23.05, 40.00, 50.00 and 65.00 years of age. Age of HD Onset' and Age of HD Onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset.

Supplemental Table 19. Consistency of the effect of the estimated effect of CAG-length on Survival, Regardless of Model Adjustments.

Table	Model	Variable	log HR	S.E.	z	p val	HR	9	5% CI
2	Final Model	CAG							
		(per repeat)	0.1227	0.0134	9.157	<0.0001	1.131	1.101	1.161
3	105 questionable cases	CAG							
	removed	(per repeat	0.1240	0.0134	9.254	<0.0001	1.132	1.103	1.162
4	CAG restricted to 41 to	CAG							
	56 range	(per repeat	0.1292	0.0218	5.927	<0.0001	1.138	1.090	1.188
5	Adjust for short allele	CAG							
	CAG length	(per repeat	0.1272	0.0142	8.958	<0.0001	1.136	1.104	1.168
6	Adjust for Registry-HD	CAG							
	data subset	(per repeat	0.1078	0.0137	7.869	<0.0001	1.114	1.084	1.144
7	Rater's onset age used	CAG							
	in both data subsets	(per repeat	0.0948	0.0143	6.629	<0.0001	1.099	1.069	1.131
8	Adjust significance for	CAG							
	clustering within	(per repeat							
	countries		0.1247	0.0129	9.667	<0.0001	1.133	1.105	1.162
9	Adjust significance for	CAG							
	clustering by study site	(per repeat	0.1247	0.0109	11.44	<0.0001	1.133	1.109	1.157

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women.

Supplemental Table 20. Consistency of the Interaction Effect of CAG Length and Sex on Survival, Regardless of Model Adjustments

Table	Model	Variable	log HR	S.E.	Z	p val	HR	9	5% CI
2	Final Model	CAG by							
		(M vs W)	-0.0422	0.0127	-3.323	0.000891	0.959	0.935	0.983
3	105 questionable cases	CAG by							
	removed	(M vs W)	-0.0421	0.0127	-3.315	0.0009	0.959	0.935	0.983
4	CAG restricted to 41 to	CAG by							
	56 range	(M vs W)	-0.0391	0.0218	-1.794	0.0733	0.962	0.921	1.004
5	Adjust for short allele	CAG by							
	CAG length	(M vs W)	-0.0426	0.0135	-3.156	0.0016	0.958	0.933	0.984
6	Adjust for Registry-HD	CAG by							
	data subset	(M vs W)	-0.0348	0.0129	-2.698	0.0068	0.966	0.942	0.991
7	Rater's onset age used	CAG by							
	in both data subsets	(M vs W)	-0.0405	0.0134	-3.022	0.0026	0.96	0.935	0.986
8	Adjust significance for								
	clustering within	CAG by							
	countries	(M vs W)	-0.0441	0.0088	-5.011	<0.0001	0.957	0.940	0.974
9	Adjust significance for	CAG by							
	clustering by study site	(M vs W)	-0.0441	0.0098	-4.5	<0.0001	0.957	0.939	0.975

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women.

Methods for simulating the effects of imprecise age of onset upon survival from onset.

The age of "onset" of Huntington's disease, is vaguely defined. In many HD studies, including the R3 portion of Registry, estimates of onset age from more than one source are recorded. An implicit assumption in current and may other HD analyses is that this age of onset corresponds to a critical change in biological disease state that occurs at a more precise age. (Although progressive changes in many biological measures of HD are documented, the measures corresponding to this hypothetical biological state change have not been identified.)

Such measurement error effects are especially relevant to the current analysis because they represent more than a loss of precision in a predictor variable. There is a perfect negative correlation between error in the age of onset and error in the length of survival after onset, which is the outcome measure of interest. In the context of Cox proportional hazard modelling, this greatly complicates any attempt to assess measurement error impact by incorporating it into the underlying mathematical equations. We have thus turned to a simulation study to gain insight.

If we assume that the assumption of an underlying critical biological change is correct, then we can assess the effects of errors in the reported ages of onset relative to the age at which the biological change occurs. We do this by assuming that the ages of onset in our data are indeed the correct underlying ages. We then add random error to these ages repeatedly and record the consequent change in analysis results.

We estimate the standard deviation of reported age around true age using the differences between the variables "age of motor onset" and "rater estimate of onset age" within the R3 portion of the Registry data (Supplemental figure 2). Although the correlation between the two ages is 0.949, the standard deviation of the age differences is 3.98 years. If measurement error in the two reported ages were statistically independent and thus uncorrelated, then the standard deviation of reported ages around the true age would be would be 3.98/square-root(2) = 2.81 years. We used this as the standard deviation of normally distributed, measurement errors in the current simulation. We repeated the simulation 1000 times.

The simulation provides estimates of expected bias in the original log hazard ratio and statistical significance estimates. The ratio of the mean simulation parameters to those obtained from the original data is an estimate of the analogous ratio between the parameters from original data and the hypothetical underlying true onset ages. The adjusted parameter estimates are obtained by dividing the original log hazard and z values by these ratios. Results are summarized in supplemental table 20. In model 1, before including age of onset in the model, the estimated strength and significance of the main effect of CAG-Length increases slightly. Adding age-of-onset as a predictor (model 2), the simulation suggests that the effects of both CAG repeat length and age-of-onset as survival predictors are slight overestimates. However, the adjusted log hazard ratio CAG estimate (0.076 per CAG repeat) retains overwhelming statistical significance ($p = 6.27 * 10^{-17}$). The same is true for the CAG estimate in model 3, where the influence of age of onset is modelled as a nonlinear spline and an interaction between CAG length and sex is also fit.

Figure S2. Correlation between motor onset age and rater's estimate of onset age within the R3 Registry HD data.

Reported age of omtor onset

Model 1	Estimates			Simulation		Adjusted		
				Ratios		Estimates	1	
Variable	log HR	z	p val	log HR	Z	log HR	Z	p val
CAG (per repeat)	0.022	3.195	1.40E-03	0.932	0.934	0.024	3.417	6.34E-04
Men vs Women	0.359	5.066	4.07E-07	0.998	0.996	0.359	5.090	3.58E-07
Model 2								
Variable	log HR	z	p val	log HR	Z	log HR	Z	p val
CAG (per repeat)	0.083	9.604	7.69E-22	1.099	1.148	0.076	8.363	6.27E-17
Men vs Women	0.369	5.201	1.98E-07	0.991	0.989	0.372	5.256	1.47E-07
Age of HD Onset	0.036	8.980	2.71E-19	1.168	1.205	0.031	7.455	8.99E-14
Model 3								
Variable	log HR	z	p val	log HR	Z	log HR	Z	p val
CAG (per repeat)	0.123	9.157	5.34E-20	1.069	1.136	0.115	8.043	8.88E-16
Age of HD Onset	0.070	5.677	1.37E-08	1.080	1.116	0.065	5.088	3.61E-07
Age of HD Onset'	-0.119	-4.494	6.99E-06	1.016	0.981	-0.117	-4.585	4.53E-06
Age of HD	0.575	5.167	2.38E-07	0.934	0.959	0.616	5.389	7.07E-08
Onset''								
Men vs Women	2.297	3.972	7.13E-05	0.983	1.026	2.335	3.869	1.09E-04
CAG by (M vs W)	-0.042	-3.323	8.91E-04	0.984	1.025	-0.043	-3.240	1.19E-03

Supplemental Table 21. Comparison of measurement error simulation estimates to original model estimates.

Simulation ratios are the mean parameters over 1000 simulations divided by the parameter estimate obtained from the original data.

Abbreviations: HR = hazard ratio, S.E = standard error, CI = confidence interval, p val = p value, M = men, W = women. In p values, XE-Y indicates X times 10 to the -Y power (scientific notation). For age of HD onset in Model 3, restricted cubic spline knots were placed at the quantiles (.05, .35, .65, .95) of age of onset. In the original data these quantiles correspond to 23.05, 40.00, 50.00 and 65.00 years of age. These values varied among the simulations, due to adding random noise to the ages of onset. Age of HD Onset' and Age of HD Onset'' are the nonlinear restricted cubic spline coefficients for age of HD onset.

The Registry investigators of the European Huntington's Disease Network

Registry Steering committee: G. Bernhard Landwehrmeyer (PI), Anne-Catherine Bachoud-Lévi, Anna-Rita Bentivoglio, Ida Biunno, Raphael M. Bonelli, Juliana Bronzova, Jean-Marc Burgunder, Stephen B. Dunnett, Joaquim J. Ferreira, Jan Frich, Joe Giuliano, Olivia J. Handley, Arvid Heiberg, Sergey Illarioshkin, Torsten Illmann, Jiri Klempir, Jamie Levey, Tim McLean, Jørgen E. Nielsen, Susana Pro Koivisto, Markku Päivärinta, Sven Pålhagen, Oliver Quarrell, Maria Ramos-Arroyo, Raymund A.C. Roos, Carsten Saft, Ana Rojo Sebastián, Sarah J. Tabrizi, Wim Vandenberghe, Christine Verellen-Dumoulin, Tereza Uhrova, Jan Wahlström+, Jacek Zaremba Language coordinators: Verena Baake (formerly Rödig), Katrin Barth, Monica Bascuñana Garde, Kristina Becanovic, Tomáš Bernard, Sabrina Betz, Reineke Bos, Adrien Come, Leonor Correia Guedes, Jenny Callaghan, Selene Capodarca, Sébastien Charpentier, Wildson Vieira da Silva, Martina Di Renzo, Daniel Ecker, Ana Maria Finisterra,, Ruth Fullam, Camille Genoves, Mette Gilling, Olivia J Handley, Andrea Horta, Carina Hvalstedt, Christine Held, Hasina Hussain, Kerstin Koppers, Claudia Lamanna, Matilde Laurà, Asunción Martínez Descals, Saul Martinez-Horta, Tiago Mestre, Sara Minster, Daniela Monza, Kristina Münkel, Lisanne Mütze, Martin Oehmen, Helene Padieu, Laurent Paterski, Nadia Peppa, Susana Pro Koivisto, Beate Rindal, Dawn Rogers, Niini Røren (formerly Heinonen), Ana Salgueiro, Pavla Šašinková, Yury Seliverstov, Catherine Taylor, Erika Timewell, Jenny Townhill, Patricia Trigo Cubillo, Marleen R van Walsem, Marie-Noelle Witjes-Ané, Grzegorz Witkowski, Abigail Wright, Elizaveta Yudina, Daniel Zielonka, Eugeniusz Zielonka, Paola Zinzi Legacy database team: Daisy De Abreu, Gunter Antoneag, Katrin Barth, Sabrina Betz, Jean-Marc Burgunder, Christine Capper-Loup, Luís Garcez Ferreira, Nilza Gonçalves, Torsten Illmann, Raquel Lobo, Jürgen Nagler-Ihlein, Eileen Neacy, Ana Teresa Santos, Jan Tuschhoff, Jennifer Ware AUSTRIA Graz (Medizinische Universitäts Graz, Psychiatrie): Raphael M. Bonelli, Karen Hecht, Brigitte Herranhof, Anna Holl (formerly Hödl), Hans-Peter Kapfhammer, Michael Koppitz, Sabine Lilek, Markus Magnet, Nicole Müller, Daniela Otti, Annamaria Painold, Karin Reisinger, Monika Scheibl, Helmut Schöggl, Jasmin Ullah Innsbruck (Universitätsklinik Innsbruck, Neurologie): Eva-Maria Braunwarth, Florian Brugger, Lisa Buratti, Eva-Maria Hametner, Caroline Hepperger, Christiane Holas, Anna Hotter, Anna Hussl, Barbara Larcher, Philipp Mahlknecht, Christoph Müller, Bernadette Pinter, Werner Poewe, Eva-Magdalena Reiter, Klaus Seppi, Fabienne Sprenger, Gregor Wenning Salzburg (Christian-Doppler-Klinik Salzburg, Universitätsklinikum der PMU, Universitätsklinik für Neurologie): Raphael M. Bonelli, Gunther Ladurner, Stefan Lilek, Daniela Sinadinosa, Wolfgang Staffen, Anna Maria Walleczek Vienna-UNI: Christoph Linder, Walter Pirker BELGIUM Bierbeek: Dirk Liessens, Godelinde Calmeyn, Nele Somers, Isabelle Delvaux, Andrea Boogaerts Bruxelles (Vrije Universiteit Brussel): Anja Flamez, Sylvie de Raedt REGISTRY contributors 2014-2017 Page 2 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Bruxelles (Erasmes) : Nick Alaerts, Hichem Slama, Frédéric Supiot Bruxelles (St-Luc) : Eric Constant, Anne-Françoise Gillardin, Marie-Claude Léonard, Christine Verellen-Dumoulin, Françoise van de Wyngaerde Charleroi (Institut de Pathologie et de Génétique (IPG)): Michel Dupuis, Cécile Minet, Pascale Ribaï, Dominique Van Paemel, Christine Verellen-Dumoulin Leuven (Universitair Ziekenhuis Gasthuisberg): Andrea Boogaerts, Wim Vandenberghe, Dimphna van Reijen, Petra Weckx CZECH REPUBLIC Olomouc (Neurologická klinika, Fakultní nemocnice Olomouc): Michaela Kaiserova, Zuzana Šenkárová Prague (Extrapyramidové centrum, Neurologická klinika, 1. LF UK a VFN): Ondřej Bezdíček, Jiří Klempíř, Olga Klempířová, Veronika Majerová-Ibarburu, Tomáš Nikolai, Jan Roth,

Irena Stárková DENMARK Aarhus (Aarhus University Hospital): Louise Hasselstrøm Madsen, Anette Torvin Møller Copenhagen University Hospital (Rigshospitalet, Memory clinic): Lena Hjermind, Oda Jacobsen, Ida Unmack Larsen, Suzanne Lindquist, Jørgen Nielsen, Lisbeth Regeur, Peter Roos, Jette Stockholm, Christina Vangsted-Hansen, Tua Vinther-Jensen Odense (Odense University Hospital): Annette Lolk, Marianne Lundsgaard, Lene Wermuth FINLAND Aland: Christian Andersson, Clara Nyberg, Jimmy Sundblom Helsinki - Vaestoliitto (Department of Medical Genetics): Maarit Peippo, Marjatta Sipponen Kuopio: Anu Bruun, Paivi Hartikainen, Seija Mäkipää, Mari Ollokainen Oulu (Dep. of Neurology): Jaana Åman, Mikko Kärppä Oulu (Dep. of Medical Genetics): Jaakko Ignatius, Outi Jääskeläinen, Outi Kajula, Jukka Moilanen, Aki Mustonen Tampere (Terveystalo Healthcare Service Centre): Maire Santala Turku-Suvituuli (Rehabilitation Centre Suvituuli): Pia Eklund, Heli Hiivola, Hannele Hyppönen, Kirsti Martikainen, Marjut Ojala, Sirkku Tähkäpää, Katri Tuuha FRANCE Angers (Centre de référence des maladies neurogénétique- CHU d'Angers): Philippe Allain, Dominique Bonneau, Marie Bost, Bénédicte Gohier, Marie-Anne Guérid, Audrey Olivier, Julie Prouzet, Adriana Prundean, Clarisse Scherer-Gagou, Christophe Verny Bordeaux (Hôpital Pellegrin): Blandine Babiloni, Déborah Bled, Sabrina Debruxelles, Charlotte Duché, Sonia Fraisse, Cyril Goizet, Laetitia Jameau, Danielle Lafoucrière, Umberto Spampinato REGISTRY contributors 2014-2017 Page 3 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Clermont-Ferrand (Hôpital Gabriel Montpied): Julien Couttier, Bérengère Debilly, Christine Delaigue, Philippe Derost, Franck Durif, Véronique Germain, Perrine Legendre, Sylvie Loiseau, Ana Marques, Miguel Ulla, Tiphaine Vidal Creteil (Hôpital Henri Mondor): Anne-Catherine Bachoud-Lévi, Farideh Badei, MarieFrançoise Boissé, Lotfi Boudali, Laurent Cleret de Langavant, Laurie Lemoine, Graca Morgado, Katia Youssov Lille-Amiens: Lille (CHRU Roger Salengro): Agnès Annic, Recka Barthélémy, Christelle De Bruycker, Maryline Cabaret, Anne-Sophie Carette, Nicolas Carrière, Eric Decorte, Luc Defebvre, Marie Delliaux, Arnaud Delval, Alizé Depelchin, Alain Destee, Nelly Dewulf-Pasz, Thibaut Dondaine, Florence Dugauquier, Kathy Dujardin, Lucie Hopes, Pierre Krystkowiak, MarieHélène Lemaire, Sylvie Manouvrier, Eugénie Mutez, Mireille Peter, Lucie Plomhause, Bernard Sablonnière, Clémence Simonin, Céline Tard, Stéphanie Thibault-Tanchou, Isabelle Vuillaume Amiens (CHU Sud): Marcellin Bellonet, Stéphanie Blin, Simone Chen, Pierre Krystkowiak, Kamel Masmoudi, Gilles Morin, Martine Roussel, Mélissa Tir, Béatrice Schüler, Sandrine Wannepain, Yassine Zouitina Marseille (Hôpital La Timone): Jean-Philippe Azulay, Marie Delfini, Alexandre Eusebio, Frédérique Fluchere, Aicha Guenam, Laura Mundler, Karine Nguyen Paris (Hôpital de la Pitié Salpêtrière): Sandra Benaich, Alexis Brice, Sarah Boster, Perrine Charles, Alexandra Durr, Claire Ewenczyk, Hélène Francisque, Céline Jauffret, Damian Justo, Abdulrahman Kassar, Stephan Klebe, Fabien Lesne, Paolo Milani, Marie-Lorraine Monin, Tiffany Monnier, Emmanuel Roze, Alina Tataru, Maya Tchikviladzé Rouen (Hôpital Charles Nicolle): Sandrine Bioux, Evangeline Bliaux, Carole Girard, Lucie Guyant-Maréchal, Didier Hanneguin, Véronique Hannier, Séverine Jourdain, David Maltête, Dorothée Pouliquen Strasbourg (Hôpital Civil): Mathieu Anheim, Nadia Barun, Ouhaid Lagha-Boukbiza, Nadine Longato, Christophe Marcel, Clélie Phillipps, Gabrielle Rudolf, Gisèle Steinmetz, Christine Tranchant, Caroline Wagner, Marie-Agathe Zimmermann Toulouse (Hôpital Purpan): Leily Blondeau, Fabienne Calvas, Samia Cheriet, Helène Delabaere, Jean-François Demonet, Laurent Marquine, Jérémie Pariente, Michèle Pierre, Elsa Pomies, Sandrine Rolland, Corinne Souyris GERMANY Aachen (Universitätsklinikum Aachen, Neurologische Klinik): Christoph Michael Kosinski, Eva Milkereit, Daniela Probst, Kathrin Reetz, Christian Sass, Johannes Schiefer, Christiane Schlangen, Cornelius J. Werner Berlin (Universitätsmedizin

Berlin, Klinik und Poliklinik für Neurologie): Markus Beuth, Harald Gelderblom, Josef Priller, Harald Prüß, Eike Spruth, Silvia Thiel Bochum (Huntington-Zentrum (NRW) Bochum im St. Josef-Hospital): Jürgen Andrich, Gisa Ellrichmann, Lennard Herrmann, Rainer Hoffmann, Barbara Kaminski, Peter Kraus, Carsten Saft, Christiane Stamm Bremen: Christos Ganos, Lars Stubbe, Vera Tadic, Jennifer Tübing Dinslaken (Reha Zentrum in Dinslaken im Gesundheitszentrums Lang): Herwig Lange Dresden (Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie): Cecile Bosredon, Ulrike Hunger, Matthias REGISTRY contributors 2014-2017 Page 4 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.eurohd.net Löhle, Antonia Maass, Christiana Ossig, Simone Schmidt, Alexander Storch, Annett Wolz, Martin Wolz Erlangen (Universitätsklinikum Erlangen, Molekulare Neurologie und Klinik für Neurologie): Zacharias Kohl, Christina Kozay, Jasmin Ullah, Jürgen Winkler Freiburg (Universitätsklinik Freiburg, Neurologie): Ulrike Bergmann, Regina Böringer, Philipp Capetian, Gerit Kammel, Johann Lambeck, Miriam Mächtel, Simone Meier, Michel Rijntjes, Birgit Zucker Hamburg (Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie): Kai Boelmans, Christos Ganos, Ines Goerendt, Walburgis Heinicke, Ute Hidding, Jan Lewerenz, Alexander Münchau, Michael Orth, Jenny Schmalfeld, Lars Stubbe, Simone Zittel Hannover (Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover): Gabriele Diercks, Dirk Dressler, Flverly Francis, Sabine GaydeStephan, Heike Gorzolla, Bianca Kramer, Rebecca Minschke, Christoph Schrader, Pawel Tacik Itzehoe (Schwerpunktpraxis Huntington, Neurologie und Psychiatrie): Michael Ribbat+ Marburg KPP (Klinik für Psychiatrie und Psychotherapie Marburg-Süd): Bernhard Longinus Marburg UNI (Universitätsklinik Marburg, Sprechstunde für choreatiforme Bewegungsstörungen): Carsten Möller, Katrin Bürk München (Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München): Antje Lüsebrink, Mark Mühlau, Alexander Peinemann, Michael Städtler, Adolf Weindl, Juliane Winkelmann, Cornelia Ziegler Münster (Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie): Natalie Bechtel, Heike Beckmann, Stefan Bohlen, Nicole Göpfert, Eva Hölzner, Herwig Lange, Ralf Reilmann, Stefanie Rohm, Silke Rumpf, Christian Sass, Sigrun Schepers, Nathalia Weber Taufkirchen (Isar-Amper-Klinikum - Klinik Taufkirchen (Vils)): Michael Bachmeier, Matthias Dose, Nina Hofstetter, Ralf Marquard, Alzbeta Mühlbäck Ulm (Universitätsklinikum Ulm, Neurologie): Katrin Barth, Andrea Buck, Julia Connemann, Daniel Ecker, Carolin Geitner, Christine Held, Andrea Kesse, Bernhard Landwehrmeyer, Franziska Lezius, Jan Lewerenz, Solveig Nepper, Anke Niess, Michael Orth, Ariane Schneider, Daniela Schwenk, Sigurd Süssmuth, Sonja Trautmann, Melanie Vogel, Patrick Weydt Würzburg (Universitätsklinikum Würzburg, Neurologie): Stephan Klebe, Thomas Musacchio, Christine Leypold, Kerstin Nöth ITALY Bari (Neurophysiopathology of Pain Unit, Basic Medical, Neuroscience and Sensory System Department, University of Bari): Claudia Cormio, Olimpia Difruscolo, Giovanni Franco, Angela Nuzzi, Vittorio Sciruicchio, Claudia Serpino, Marina de Tommaso Bologna (DIBINEM - Alma Mater Studiorum - Università di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna): Giovanna Calandra-Buonaura, Sabina Capellari, Pietro Cortelli, Roberto Gallassi, Roberto Poda, Cesa Scaglione Brescia (Division of Biology and Genetics, Department of Molecular and Translational Medicine & Division of Neurology, Department of Clinical and Experimental Sciences, REGISTRY contributors 2014-2017 Page 5 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net University of Brescia): Chiara Agosti, Sergio Barlati, Silvia Compostella, Eleonora Marchina, Alessando Padovani Cagliari (Movement Disorders Center,

Department of Neurology, Institute of Neurology, University of Cagliari): Michela Figorilli, Francesco Marrosu, Antonella Muroni, Valeria Piras, Melisa Vacca Florence (Department of NEUROFARBA, University of Florence & Careggi University Hospital, IRCSS " Don Gnocchi "): Elisabetta Bertini, Caterina Bartoli, Fernanda Fortunato, Elena Ghelli, Andrea Ginestroni, Claudia Mechi, Marco Paganini, Silvia Piacentini, Silvia Pradella, Anna Maria Romoli, Sandro Sorbi Genoa (Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova): Giovanni Abbruzzese, Monica Bandettini di Poggio, Giovanna Ferrandes, Paola Mandich, Roberta Marchese, Emilio Di Maria, Tiziano Tamburini Milan (SODS Genetica delle Malattie Neurodegenerative e Metaboliche & U.O. Neurologia, Fondazione IRCCS Istituto Neurologico Carlo Besta): Alberto Albanese, Simona Castagliuolo, Anna Castaldo, Stefano Di Donato, Daniela Di Bella, Cinzia Gellera, Silvia Genitrini, Caterina Mariotti, Daniela Monza, Lorenzo Nanetti, Marta Panzeri, Dominga Paridi, Paola Soliveri, Francesca Spagnolo, Franco Taroni, Chiara Tomasello Naples (Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University of Naples): Giuseppe De Michele, Luigi Di Maio, Carlo Rinaldi, Marco Massarelli, Silvio Peluso, Alessandro Roca, Cinzia Valeria Russo, Elena Salvatore, Pierpaolo Sorrentino, Tecla Tucci Pozzilli (IS) (IRCCS Neuromed): Milena Cannella, Valentina Codella, Francesca De Gregorio, Annunziata De Nicola, Francesca Elifani, Chiara Esposito, Tiziana Martino, Irene Mazzante, Martina Petrollini, Maria Simonelli, Maurizio Vezza IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo: Ferdinando Squitieri Rome (LIRH Foundation): Barbara D'Alessio, Francesca Lovo Rome (Department of Neurology, Università Cattolica del Sacro Cuore; Institute of Translational Pharmacology & Institute of Cognitive Sciences and Technologies, National Research Council of Italy): Anna Rita Bentivoglio, Francesco Bove, Claudio Catalli, Raffaella Di Giacopo, Alfonso Fasano, Marina Frontali, Arianna Guidubaldi, Tamara Ialongo, Gioia Jacopini, Giovanna Loria, Anna Modoni, Martina Petracca, Carla Piano, Piccininni Chiara, Davide Quaranta, Silvia Romano, Francesco Soleti, Marcella Solito, Maria Spadaro, Flavia Torlizzi, Paola Zinzi Rome (Azienda Ospedaliera Sant'Andrea; Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome; Institute of Translational Pharmacology & Institute of Cognitive Sciences and Technologies, National Research Council of Italy): Giulia Coarelli, Michela Ferraldeschi, Marina Frontali, Gioia Jacopini, Giovanni Ristori, Silvia Romano, Paola Zinzi NETHERLANDS Enschede (Medisch Spectrum Twente): Monique S.E. van Hout, Jeroen P.P. van Vugt, A. Marit de Weert, Marloes Verhoeven Groningen (Polikliniek Neurologie): Meike Dekker, Jesper Klooster, Nico Leenders, Joost van Oostrom, Berry Kremer REGISTRY contributors 2014-2017 Page 6 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Leiden (Leiden University Medical Centre (LUMC)): Verena Baake, Simon J. A. van den Bogaard, Reineke Bos, Eve M. Dumas, Ellen P. 't Hart, Marye Hogenboom, Milou Jacobs, Caroline Jurgens, Anne Kampstra, Raymund A.C. Roos, Anne Schoonderbeek, Marie-Noëlle Witjes-Ané Maastricht: Annelien Duits, Mayke Oosterloo, Mirella Waber Nijmegen (Universitair Medisch Centrum St. Radboud, Neurology): Berry Kremer, Carla Verstappen NORWAY Bergen (Haukeland University Hospital, Dept of Medical Genetics and Olaviken Psychiatric Hospital): Ellen Økland Blinkenberg. (NKS Olaviken's HD clinic): Erik Hauge, Hilde Tyvoll Oslo University Hospital (Dept. of Medical Genetics, Dept. of Neurology, Dept.of Neurorehabilitation): Olaf Aaserud, Nils Olaf Aanonsen, Kathrine Bjørgo, Nancy Borgerød, Elisabeth Dramstad, Madeleine Fannemel, Jan C. Frich, Per F. Gørvell, Kathrine Haggag, Cecilie Haggag Johannessen, Arvid Heiberg, Lars Retterstøl, Oddveig Røsby, Jutta Rummel, Alma Sikiric, Bodil

Stokke, Marleen van Walsem, Ragnhild Wehus Trondheim (St. Olavs Hospital): Vibeke Arntsen, Inga Bjørnevoll, Sigrid Botne Sando, Marte Gjøl Haug, Hanna Haugan Størseth, Rune Østern, Julie Paulsen POLAND Gdansk (St. Adalbert Hospital, Gdansk, Medical University of Gdansk, Neurological and Psychiatric Nursing Dpt.): Artur Dziadkiewicz, Agnieszka Konkel, Ewa Narożańska, Malgorzata Nowak, Piotr Robowski, Emilia Sitek, Jaroslaw Slawek, Witold Soltan, Michal Szinwelski Katowice (Medical University of Silesia, Katowice): Michał Arkuszewski, Magdalena Błaszczyk, Magdalena Boczarska-Jedynak, Ewelina Ciach-Wysocka, Agnieszka Gorzkowska, Barbara Jasińska-Myga, Aleksandra Kaczmarczyk, Gabriela Kłodowska – Duda, Grzegorz Opala, Monika Rudzińska, Daniel Stompel Krakow (Krakowska Akademia Neurologii): Krzysztof Banaszkiewicz, Dorota Boćwińska, Kamila Bojakowska-Jaremek, Małgorzata Dec, Natalia Grabska, Malgorzata Krawczyk, Ewelina Kubowicz, Michalina Malec-Litwinowicz, Monika Rudzińska, Agata Stenwak, Andrzej Szczudlik, Elżbieta Szczygieł, Magdalena Wójcik, Anna Wasielewska Poznan (Poznan University of Medical Sciences, Poland): Jacek Anioła Anna Bryl, Anna Ciesielska, Aneta Klimberg, Jerzy Marcinkowski, Husam Samara, Justyna Sempołowicz, Bartłomiej Wiśniewski, Daniel Zielonka Warsaw-MU (Medical University of Warsaw, Neurology): Anna Gogol (formerly Kalbarczyk), Piotr Janik, Zygmunt Jamrozik, Anna Kaminska, Hubert Kwiecinski+ Warsaw-IPiN (Institute of Psychiatry and Neurology Dep. of Genetics, First Dep. of Neurology): Jakub Antczak, Katarzyna Jachinska, Wioletta Krysa, Maryla Rakowicz, Rafal Rola, Danuta Ryglewicz, Halina Sienkiewicz-Jarosz, Iwona Stępniak, Anna Sułek, Grzegorz Witkowski, Jacek Zaremba, Elzbieta Zdzienicka, Karolina Ziora-Jakutowicz PORTUGAL Coimbra – (Hospital Universitário de Coimbra): Cristina Januário, Filipa Júlio REGISTRY contributors 2014-2017 Page 7 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Lisbon-Central (Hospital dos Capuchos, Centro Hositalar Lisboa Central): Manuel Almeida, Ana Calado, Margarida Dias, Joana Morgado, Cristina Semedo Lisbon-HSM (Hospital de Santa Maria, Clinical Pharmacology Unit, Instituto de Medicina Molecular): Leonor Correia Guedes, Miguel Coelho, Joaquim J Ferreira, Andreia Magalhães, Tiago Mestre, Tiago Mendes, Dulce Neutel, Filipe Rodrigues, Anabela Valadas Lisbon-HFF (Hospital Fernando da Fonseca): Cristina Costa, Helena Cardoso, Tiago Mendes, Mariana Santos Porto-HGSA (Hospital Santo António- Centro Hospitalar do Porto): Gonçalo Cação, Sara Cavaco, Joana Damásio, Joana Fernandes, Alexandra Gonçalves, Rui Loureiro, Inês Moreira, Marina Magalhães, Paula Salgado Porto- HSJ (Hospital de São João): Carlos Andrade, Andreia Costa, Carolina Garrett, Miguel Gago, Joana Guimarães, João Massano, Joana Meireles, Ana Monteiro RUSSIAN FEDERATION Kazan: Diana Khasanova, Zuleykha Zalyalova Moscow – (Research Center of Neurology): Sergey Illarioshkin, Sergey Klyushnikov, Olga Sidorova, Oleg Smirnov, Elizaveta Yudina, Yury Seliverstov Nizhny Novgorod – (Nizhny Novgorod Medical Academy, Neurology Department): Victoria Antonova, Svetlana Kopishinskaya, Maria Korotysh Ufa – (Bashkir State Medical University, Department of Neurology, Neurosurgery, and Medical Genetics): Rim Magzhanov, Elena Saifullina Voronezh: Sergey Kurbatov SPAIN Alicante-Alcoy (Hospital Virgen de los Lirios): Pilar Solis Badajoz (Hospital Infanta Cristina): Carmen Durán Herrera, Patrocinio Garcia Moreno Barcelona-Bellvitge (Hospital Universitari de Bellvitge): Jordi Bas, Núria Busquets, Matilde Calopa, Serge Jaumà Classen, Nadia Rodríguez Dedichá Barcelona- Clínic i Provincial (Hospital Clínic i Provincial): María Teresa Buongiorno, Andrés de la Cerda Santa María, Esteban Muñoz, Pilar Santacruz Barcelona-Hospital Mútua de Terrassa: Miquel Aguilar Barbera, Ana Rojo Sebastián, Sonia Arribas Pardo, Dolors Badenes Guia, Noemi Calzado, Laura Casas Hernanz, Juan Pablo Tartari Díaz-Zorita, Judit López Catena, Pilar Quiléz Ferrer, Gemma Tome Carruesco Barcelona-Merced (Hospital Mare de Deu de La Merced):

Misericordia Floriach Robert, Cèlia Mareca Viladrich, Elvira Roca, Jesús Miguel Ruiz Idiago, Antonio Villa Riballo Barcelona-Santa Cruz y San Pablo (Hospital de la Santa Creu i Sant Pau): Antonia Campolongo, Ramon Fernandez de Bobadilla, Andrea Horta, Jaime Kulisevsky Bojarsky, Saul Martinez-Horta, Javier Pagonabarraga, Jesus Perez Perez, Roser Ribosa, Carolina Villa Bilbao (Hospital de Cruces): Maria Angeles Acera Gil, Koldo Berganzo Corrales, Juan Carlos Gomez Esteban, Amaia González, Beatriz Tijero Merino Burgos (Servicio de Neurología Hospital General Yagüe): Esther Cubo, Cecilia Gil Polo, Natividad Mariscal, Jesús Sánchez REGISTRY contributors 2014-2017 Page 8 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Canarias (Hospital Insular de Gran Canaria): Sandra Gutierrez Romero, José Matías Arbelo, Rocío Malo de Molina, Idaira Martín, Juan Manuel Periañez, Beatriz Udaeta Fuenlabrada (Hospital Universitario): Fernando Alonso-Frech, María del Valle Loarte Granada (Hospital Universitario San Cecilio, Neurología): Francisco Barrero, Blas Morales Madrid-BTCIEN (Fundación CIEN): Belén Frades, Marina Ávila Villanueva, Maria Ascension Zea Sevilla Madrid-Clínico (Hospital Clínico Universitario San Carlos): María del Mar Fenollar, Rocío García-Ramos García, Clara Villanueva Madrid RYC (Hospital Ramón y Cajal, Neurología): Mónica Bascuñana, Marta Fatás Ventura, Juan García Caldentey, Guillermo García Ribas, Justo García de Yébenes, José Luis López–Sendón Moreno, Verónica Mañanes Barral, Patricia Trigo Cubillo Madrid FJD (Madrid-Fundación Jiménez Díaz): Cici Feliz, Pedro José García Ruíz, Ana García, Juan García Caldentey, Rosa Guerrero López, Antonio Herranz Bárcenas, Asunción Martínez-Descals, Angel Martínez Pueyo, Veronica Puertas Martin, Noelia Rodríguez Martínez, Teresa Montojo, María José Sainz Artiga, Vicenta Sánchez Murcia (Hospital Universitario Virgen de la Arrixaca): María Dolores Alarcón, Carmen Antúnez Almagro, Esther Diéguez, Lorenza Fortuna, Agustina Legaz, Salvadora Manzanares, Juan Marín Muñoz, María Martirio Anteguera Torres, Fuensanta Noguera Perea, Laura Vivancos Oviedo (Hospital Central de Asturias): Sonia González, Luis Menéndez Guisasola, Marta Para Prieto, René Ribacoba, Carlos Salvador, Pablo Sánchez Lozano Palma de Mallorca (Hospital Universitario Son Espases): Juan García Caldentey, Inés Legarda Ramirez, Dolors Moragues Benito, Penelope Navas Arques, Monica Rodriguez Lopera, Barbara Vives Pastor Pamplona (Complejo Hospitalario de Navarra): Itziar Gaston, Fermin Garcia-Amigot, Maria Dolores Martinez-Jaurrieta, Maria Antonia Ramos-Arroyo Sevilla (Hospital Universitario Virgen del Rocío): Astrid Adarmes, Maravilla BernalEscudero, Fátima Carrillo, Silvia Jesús, Pablo Mir, Laura Vargas-González Sevilla (Hospital Virgen Macarena): Fátima Damas Hermoso, José Manuel García Moreno, Javier Abril Jaramillo, Carolina Mendez Lucena, Eva María Pacheco Cortegana, José Chacón Peña, Luis Redondo, Violeta Sánchez Sánchez Sevilla (Residencia Santa Ana): Cristina Melgar Fernandez, María Dolores Romero Lemos, Maite Paredes Mata, Rocío Villagrán Casado Valencia (Hospital la Fe): Maria Bosca, Juan Andres Burguera, Francisco Castera Brugada, Jose Maria Millán Salvador, Carmen Peiró Vilaplana, Pilar Solís, Begoña Jeweinat Figuerola, Paloma Millan Palanca Zaragoza (Hospital Clínico): Elena Bellosta Diago, Javier López del Val, Laura Martinez Martinez, Elena López SWEDEN Göteborg (Sahlgrenska University Hospital): Jan Wahlström+, Ulrika Høsterey-Ugander, Gunnel Fredlund, Radu Constantinescu, Kajsa Lewin, Liselotte Neleborn-Lingefjärd, Maria Berglund, Peter Berglund, Petra Linnsand REGISTRY contributors 2014-2017 Page 9 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Lund (Dept Neurology, Skånes Universityhospital): Åsa Petersén, Jan Reimer, Håkan Widner Stockholm-Ersta: Mouna Esmaeilzadeh, Joakim Tedroff, Elisabeth Winnberg Stockholm Karolinska University Hospital: Stanislav Benaminov, Elisabeth Björnsson, Daniel Merrick, Martin Paucar, Sven Pålhagen, Per

Svenningsson, Tina Wallden Umeå (Umeå University Hospital): Måns Berglund, Ghada Loutfi, Carina Olofsson, EvaLena Stattin, Laila Westman, Birgitta Wikström Uppsala University Hospital: Camilla Ekwall, Marie-Lousie Göller, Anders Johansson, Valter Niemelä, Dag Nyholm, Jimmy Sundblom, Leif Wiklund SWITZERLAND Bern: Jean-Marc Burgunder, Jessica Koehli, Yanik Stebler (Swiss HD Zentrum), Alain Kaelin, Irene Romero, Michael Schüpbach, Sabine Weber Zaugg (Zentrum für Bewegungsstörungen, Neurologische Klinik und Poliklinik, Universität Bern) Lausanne: Federica Esposito, Jean-Marc Good, Karin Paus, Francois Vingerhoets, Christian Wider+ Zürich (University Hospital and University of Zurich): Hans H. Jung, Jens A. Petersen, Maria Ligon-Auer, Violeta Mihaylova U.K. Aberdeen (NHS Grampian Clinical Genetics Centre & University of Aberdeen): Lorna Downie, Roisin Jack, Kirsty Matheson, Zosia Miedzybrodzka, Daniela Rae, Sheila A Simpson, Fiona Summers, Alexandra Ure, Vivien Vaughan Barnstaple: Timothy Harrower, Nathan Vernon Birmingham (The Barberry Centre, Dept of Psychiatry): Shahbana Akhtar, Jenny Crooks, Adrienne Curtis, Jenny de Souza (Keylock), John Piedad, Hugh Rickards, Jan Wright Blanford Forum: Diane Haig-Brown, Janet Craven, Andrew Pallett, Steve Simpson, Rebecca Weekes Bristol (North Bristol NHs Trust, Southmead hospital): Elizabeth Coulthard, Louise Gethin, Beverley Hayward, Kasia Sieradzan, Abigail Wright Cambridge (Cambridge Centre for Brain Repair, Forvie Site): Roger A. Barker, Deidre O'Keefe, Anna Gerrtiz (nee Di Pietro), Kate Fisher, Anna Goodman, Susan Hill, Sarah Mason, Rachel Swain, Natalie Valle Guzman Cardiff (Schools of Medicine and Biosciences, Cardiff University): Jonathan Bisson, Monica Busse, Cynthia Butcher, Rebecca Cousins, Jenny Callaghan, Stephen Dunnett, Catherine Clenaghan, Ruth Fullam, Sarah Hunt, Lesley Jones, Una Jones, Hanan Khalil, Sara Minster, Michael Owen, Kathleen Price, Jenny Townhill, Anne Rosser Dundee (Scottish Huntington's Association, Ninewells Hospital): David Goudie, Lindsay Buchanan, Paula McFadyen, Alison Tonner, Anne-Marie Taylor Edinburgh (SE Scotland Genetic Service, Western General Hospital): Maureen Edwards, Carrie Ho (Scottish Huntington's Association), Marie McGill, Mary Porteous, Pauline Pearson REGISTRY contributors 2014-2017 Page 10 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Exeter (Department of Neurology Royal Devon and Exeter Foundation Trust Hospital): Timothy Harrower, Sarah Irvine Fife (Scottish Huntington's Association Whyteman's Brae Hospital): Peter Brockie, Jillian Foster, Nicola Johns, Sue McKenzie, Jean Rothery, Gareth Thomas, Shona Yates Forth Valley (Neurology Department, Forth Valley Royal Hospital): Christian Neumann, Kirsten Patterson, David Thomson Glasgow (Glasgow HD Management Clinic, Southern General Hospital): Catherine Deith, Jane Ireland, Stuart Ritchie Gloucester (Department of Neurology Gloucestershire Royal Hospital): Pauline Brown, Liz Burrows, Amy Fletcher, Alison Harding, Kaye Harrison, Fiona Laver, Mark Silva, Aileen Thomson Hull (Castle Hill Hospital): Carol Chu, Carole Evans, Deena Gallentree, Stephanie Hamer, Alison Kraus, Ivana Markova, Ashok Raman, Liz Rowett Launceston (Millaton Court): Alyson Andrew, Julie Frost, Rupert Noad Leeds (Chapel Allerton Hospital, Department of Clinical Genetics): Jeremy Cosgrove, Deena Gallantree, Stephanie Hamer, Emma Hobson, Stuart Jamieson, Alison Kraus, Mandy Longthorpe, Ivana Markova, Hannah Musgrave, Caroline Peacy, Ashok Raman, Liz Rowett, Jean Toscano, Sue Wild, Pam Yardumian Leicester (Leicestershire Partnership Trust, Mill Lodge): Carole Clayton, Heather Dipple, Dawn Freire-Patino, Caroline Hallam, Julia Middleton Liverpool (Walton Centre for Neurology and Neurosurgery): Sundus Alusi, Rhys Davies, Kevin Foy, Emily Gerrans, Louise Pate London (St. Georges-Hospital): Uruj Anjum, Jan Coebergh, Charlotte Eddy, Nayana Lahiri, Meriel McEntagart, Michael Patton, Maria Peterson, Sarah Rose London (Guy's Hospital): Thomasin Andrews, Andrew Dougherty, Charlotte Golding, Fred Kavalier, Hana Laing,

Alison Lashwood, Dene Robertson, Deborah Ruddy, Alastair Santhouse, Anna Whaite London (The National Hospital for Neurology and Neurosurgery): Thomasin Andrews, Stefanie Gosling (nee Brown), Stefania Bruno, Elvina Chu, Karen Doherty, Charlotte Golding, Salman Haider, Davina Hensman, Nayana Lahiri, Monica Lewis, Marianne Novak, Aakta Patel, Nicola Robertson, Elisabeth Rosser, Sarah Tabrizi, Rachel Taylor, Thomas Warner, Edward Wild London (Royal Hospital for Neuro-disability): Oda Ackermann, Sophie Duport, Adrienne Scott, Nicholas Stoy, Jenny Vaughn Manchester (Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust): Natalie Arran, Judith Bek, Jenny Callaghan, David Craufurd, Ruth Fullam, Marianne Hare, Liz Howard, Susan Huson, Liz Johnson, Mary Jones, Ashok Krishnamoorthy, Helen Murphy, Emma Oughton, Lucy Partington-Jones, Dawn Rogers, Andrea Sollom, Julie Snowden, Cheryl Stopford, Jennifer Thompson, Iris Trender-Gerhard, Nichola Verstraelen (formerly Ritchie), Leann Westmoreland Newcastle-upon-Tyne (Centre for Life, Institute of Medical Genetics): Ginette Cass, Lynn Davidson, Jill Davison, Neil Fullerton, Katrina Holmes, Suresh Komati, Sharon McDonnell, Zeid Mohammed, Karen Morgan, Lois Savage, Baldev Singh, Josh Wood Northampton (St Andrew's Healthcare): Elvina Chu, Caroline Knight, Mari O'Neill, Debasish Das Purkayastha REGISTRY contributors 2014-2017 Page 11 of 11 Oberer Eselsberg 45/1 · 89081 Ulm · Germany Phone +49 (0)731 500-63101 · Fax +49 (0)731 500-63082 · www.euro-hd.net Oxford (Oxford University Hospitals NHS Trust, Dept. of Neurosciences, University of Oxford): Andrea H Nemeth, Gill Siuda, Ruth Valentine, Kathryn Dixon, Richard Armstrong Plymouth (Plymouth Huntington Disease Service, Mount Gould Hospital): David Harrison, Max Hughes, Sandra Large, John O Donovan, Amy Palmer, Andrew Parkinson, Beverley Soltysiak, Leanne Timings, Josh Williams Poole (Brain Injury Service, Poole Hospital): John Burn, Rebecca Weekes, Janet Craven, Wendy Bailey, Caroline Coleman, Diane Haig-Brown, Steve Simpson Preston (Neurology Department, Preston Royal Hospital): Marianne Hare, Tahir Majeed, Nicola Verstraelen (Ritchie) Reading (Royal Berkshire Hospital): Richard Armstrong, Kathryn Dixon, Wendy Barrett, Aileen Ho Sheffield (The Royal Hallamshire Hospital– Sheffield Children's Hospital): Oliver Bandmann, Alyson Bradbury, Helen Fairtlough, Kay Fillingham, Isabella Foustanos, Paul Gill, Mbombe Kazoka, Kirsty O'Donovan, Louise Nevitt, Nadia Peppa, Oliver Quarrell, Cat Taylor, Katherine Tidswell Southampton (Southampton General Hospital): Christopher Kipps, Lesley MacKinnon, Veena Agarwal, Elaine Hayward, Kerry Gunner, Kayla Harris, Mary Anderson, Melanie Heywood, Liane Keys, Sarah Smalley Stoke on Trent (Bucknall Hospital): George El-Nimr, Allison Duffell, Sue Wood, Karen Kennedy (nee Smith) Swindon (Victoria Centre, Great Western Hospital): Lesley Gowers, Kingsley Powell, Pamela Bethwaite, Rachel Edwards, Kathleen Fuller, Michelle Phillips EHDN's associate site in Singapore: National Neuroscience Institute Singapore: Louis Tan, Jean-Marc Burgunder, Puay Ngoh Lau, Emmanuel Pica