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Supplementary Information Text 

Methods 

Discrimination Task 

This study was performed on two male monkeys, Macaca mulatta, 5–7 kg. The sensory 
discrimination task used here has been described previously (1, 2). The schematic 
representation of this task is depicted in Fig. 1A. The monkey sat on a primate chair with its 
head fixed. The right hand was restricted through a half-cast and kept in palm-up position. The 
left hand operated an immovable key (elbow at ~90°) and two push buttons in front of the 
animal, 25 cm away from the shoulder at eye level. The centers of the switches were located 7 
and 10.5 cm to the left of the midsagittal plane. In all trials, the monkey first placed the left 
hand on the key, and later projected to one of the two switches. Trials began when the 
mechanical stimulator is lowered, indenting the fingertip of one digit of the restrained hand 
(Probe Down, PD). The monkey places its free hand on an immovable key (Key Down, KD). 
The time lag between PD and KD constitutes the reaction time (RT, Fig. 1A). After the KD, a 
variable delay of 1.5-3s is presented to avoid anticipatory activity before the arrival of the 
stimulus, followed by the first stimulus (f1), lasting 0.5s. The second stimulus (f2) is presented 
after a 3s delay, also lasting 0.5s. The offset of f2 signals the monkey to release the key (Key 
Up, KU), and report its decision by pressing one of two push buttons (PB) with the left hand 
(lateral push button for f2>f1, medial push button for f2<f1). Immediately after the decision 
report, correct discriminations were rewarded with a few drops of liquid, while incorrect 
discriminations received a few seconds of delay before the beginning of the next trial. Stimuli 
were delivered to the skin of the distal segment of one digit of the restrained right hand, via a 
computer-controlled stimulator (BME Systems; 2 mm round tip). Initial probe indentation was 
500 μm. Vibrotactile stimuli were mechanical sinusoids pulses lasting 20ms each. Stimulation 
amplitudes were adjusted to produce equal subjective intensities (2). Performance was 
quantified through psychometric techniques (Fig. 1B, D). Animals were handled in accordance 
with standards of the National Institutes of Health and Society for Neuroscience. All protocols 
were approved by the Institutional Animal Care and Use Committee of the Instituto de 
Fisiología Celular (UNAM). 

Recordings 

Recordings were obtained with quartz-coated platinum-tungsten microelectrodes (2 to 3 MΩ; 
Thomas Recording) inserted through a recording chamber located over the central sulcus, 
parallel to the midline. Midbrain dopamine neurons were recorded in and around the substantia 
nigra, similar to other studies in monkeys (3, 4). DA neurons were identified on the basis of 
their characteristic regular and low tonic firing rates (1-10 spikes per second) and by their long 
extracellular spike potential (2.4ms ± 0.4 SD). We furthermore verified that the 22 cells used 
for the study did show a positive activation to reward delivery in correct (rewarded) trials and 
with a pause in error (unrewarded) trials. A similar criterion has been adopted in many 
electrophysiological studies of midbrain DA neurons (3). 

Analysis of behavioral data 

Animals performed the task for multiple sessions composed of about 120 trials. Behavioral 
data were obtained on average from 2226 trials per stimulus class (Fig. 1D). To classify trials 
according to the RT we defined short-RT trials as trials with RT below the median and long-
RT trials those with RT above the median (Fig. 1E-F). 
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Analysis of the firing rate activity 

The responses (z-scores) to f1 and f2 in Fig. 2A-B were standardized with respect to a temporal 
window preceding the onset of the base stimulus that lasted 500ms and was centered 1000ms 
after KD. To estimate the temporal profile of the z-score (Fig. 4, Fig. 5A-B left and center, Fig. 
5C, and Fig. 6A) we calculated the firing rate for each neuron in 250ms sliding windows shifted 
every 50ms and standardized it as in Fig. 2A-B. Finally, the responses (z-scores) during the 
delay period (Fig. 5A-B right) were measured during its entire duration (3s) and standardized 
as in Fig. 2A-B. 

Latency values 

The firing rate time-course of the responses to f2 depended on trial uncertainty and trial 
outcome (Fig. 4). To determine the time of divergence between the two time-courses, we 
applied a receiver operating characteristic (ROC) curve analysis in each sliding temporal 
window. This was done within the period lasting from 300ms before f2 onset to 200ms after its 
offset. For each neuron we obtained the normalized firing rate (z-score) in sliding windows of 
250ms shifted in 10ms steps. We used the z-scores of all neurons and trials to calculate the 
ROC curve at each time bin. The area under the ROC curve (AUROC) was used as the index 
indicating differential neuronal activity across different trial types. Values of the AUROC 
higher or lower than 0.5 indicated that, at the population level, one type of trial evoked a higher 
or lower DA response than the other. To determine the statistical significance of the computed 
AUROCs, we used a permutation test with 1000 resamples. Significance was determined with 
p<0.05 in 5 consecutive windows and the latency was defined as the first window that met this 
criterion. A similar analysis was used to determine significant differences in the temporal 
profile of the normalized activity for trials sorted according to the RT.  

Dependence of the DA activity on f1 and class number 

In order to search for f1-dependent activity we performed two different tests. We first used a 
linear and a sigmoidal regression analysis (Fig. 6E) to assess whether the activity was 
monotonic with respect to f1. Then, we used a one-way analysis of variance (ANOVA) test to 
identify any general, non-monotonic relationship between firing rate activity and f1. We 
focused both analyses on the f1-stimulation period and WM delay between f1 and f2. We 
calculated a mean time-dependent z-score (standardized as in Fig. 2A-B) using a sliding 
window of 250ms moving in steps of 10ms, from 0.5s before f1 onset up to 0.5s after f2 offset. 
Window times with a significant monotonic signal (slope different from zero, p<0.01, for either 
a linear or sigmoidal fit with Q>0.05) were marked as “significantly monotonic.” Window 
times where the ANOVA was significant (p<0.05) were marked as “significantly dependent” 
(1, 5). We then divided the 5s period (from 0.5s before f1 onset up to 0.5s after f2 offset) into 
10 non-overlapping intervals of 500ms and counted the number of windows that were 
significantly linear in each interval. For each interval, we said that the f1 dependence was 
significantly linear if more than the 40% of windows were significantly linear, and significantly 
dependent if more than 40% of windows gave a significant ANOVA p-value. Fig. S3A shows 
the temporal evolution of the p-value resulting from these multiple ANOVA tests. Fig. S3B 
shows the z-scores in windows in which the dependence was significant. A similar procedure 
based on the ANOVA test was employed to calculate how the responses depended on the class 
number. The temporal evolution of the p-value resulting from the ANOVA tests and the z-
scores in windows with significant dependence are shown in Fig. S3C-D, respectively.   
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Correlations between DA and RT 

To obtain the correlations between RTs and DA activity (z-scores) in Fig. 6B-C we employed 
data from all correct trials independently of the class presented. The z-scores were obtained as 
in Fig. 2A-B with specific temporal windows for each analyzed event. 250ms after cue 
presentation (PD), the z-score was obtained using a window of 300ms of width. Similarly, 
correlations at f1 presentation were computed using a window of 480ms of width centered at 
240ms after the onset of the stimulus. The z-score used to obtain the correlations during the 
delay period (Fig. 6C left) was in a window centered 2.5 seconds after the first stimulus offset 
and of 1 second width. The correlation coefficient between RT and DA was calculated using 
the MATLAB function “corrcoef”. To verify the significance of the correlations, we performed 
a permutation test (Fig. 6B-C left) using 10000 randomly shuffled samples. Corrcoef function 
also provides a p-value for the coefficient. This p-value coincided up to the second decimal 
point with the one obtained with the permutation test.  During the 3s delay period, the temporal 
evolution of correlations (Fig. 6C right) was studied by obtaining the z-score in 17 windows of 
width 300ms evenly spaced between 0.5 and 3 seconds after the offset of f1. Correlations, which 
became significant towards the end of the delay, were consistently negative regardless of the 
number of windows as well as the width of them. Significance was assessed using corrcoef 
function in MATLAB. 

Bayesian model for the discrimination task 

The discrimination task was modeled using a Bayesian framework. The prior probabilities of f1 and f2 
were taken to be uniform and denoted as P(f1

i) (i = 1, …, 6) and P(f2
j) (j = 1, …, 10), respectively. It 

was assumed that the animal knew the class structure used in the experiment (Fig. 1B-C), but it had 
access only to noisy representations (observations) of the two frequencies presented in the trial (denoted 
by f1,0 and f2,0). At the onset of the second stimulus, an observation o2 of the frequency f2,0 was obtained 
from a Gaussian distribution with mean f2,0 and standard deviation σ2. This noisy information was 
combined with knowledge of the prior distribution P(f2

j) to obtain the belief, or posterior distribution 
about the value of the second frequency, b2(f2

j) = P(f2
j|o2) α P(o2| f2

j) P(f2
j). The observation of the first 

frequency f1,0, made at the end of the delay period, had to be retrieved from working memory and was 
indicated by o1

*. This observation was also taken from a Gaussian distribution, but with mean f1,0 and 
standard deviation σ1. The belief about the value of the first frequency was denoted by b1(f1

i) = P(f1
i| 

o1
*). 

The belief state B(k | o1
*, o2) about the class ck = (f1

k
 , f2

k) (k=1, …, 12; class labels, Fig. 1C) 
was defined as the set of the posterior probabilities P(f1 = f1

k , f2 = f2
k | o1

*, o2) that the class ck 
had been presented in this trial, conditioned to the observations o2 and o1

*. It can be written as: 

𝐵ሺ𝑘|𝑜ଵ
∗, 𝑜ଶሻ ൌ ሺమሻ

ሺమ|భ∗ሻ

൫మୀమ
ೖหభୀభ

ೖ൯

൫మ
ೖ൯

𝑏൫𝑓ଵ
൯𝑏൫𝑓ଶ

൯                                    (1) 

The first factor in the above equation is a normalization factor. The second factor is a transition 
matrix relating the first and the second stimulation frequencies divided by the prior probability 
of the second stimulation frequency. Since we assumed that the animal had perfect knowledge 
of the class structure, the only non-zero matrix elements correspond to the 12 classes ck of the 
experiment. Furthermore, since f2 can only take two possible values for a given value of f1, all 
non-zero transition probabilities are 0.5. The last two factors then become the beliefs b1(f1

k) 
and b2(f2

k) about the first and second frequencies being those in class ck. 
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The sums of the B(k |o1
*,o2)’s over classes k for each choice, gives the two belief values (f1>f2 

or f1<f2). These two sums were denoted by b(H) (higher choice, f1>f2) and b(L) = 1 − b(H) 
(lower choice, f1<f2), and choices were made according to the larger of these two, denoted as 
bc. The performance can be measured by the fraction of trials of a given class in which the 
decision is correct. 

The two unknown model parameters, the standard deviations σ1 and σ2, were fitted by 
minimizing the mean squared error between the model performance and the animal’s 
performance. We found the optimal parameter values: σ1 =5.5Hz and σ2 =3.2Hz (see next 
section for more details about the model fitting procedure). 

The statistical uncertainty U of a given trial is U=1-max[b(H), b(L)]=1-bc, which is bounded 
between 0 and 0.5. The uncertainty of a given class was defined as the average of the value U 
across trials of each class. The uncertainty in hits (or errors) of a given class was defined as the 
average over the correct (or wrong) trials from each class. 

Bayesian model fitting procedure 

Parameter fitting in Fig. 3B and S2 were made using the Simulating Annealing solver in 
MATLAB. For each RT condition in Fig. S2, 200 fits were performed. The two fits that yielded 
the lowest error were used to model the monkey’s performance in Fig. 1. Given that 200 
adjustments were performed, a distribution for each of the two parameters was available. The 
mean value for σ1 obtained in the short-RT condition was found to be significantly lower than 
the noise parameter for the long-RT group (one-tailed two sample t-test; p<0.001). The same 
result was found for the noise parameter σ2 (one-tailed two sample t-test; p<0.001). 

Reinforcement Learning Model based on Belief States 

To test whether the phasic responses can be attributed to dopamine reward prediction errors 
(RPEs) we constructed a reinforcement learning model and checked if it was able to reproduce 
the observed responses. Given that in the task the relevant stimuli are only partially observable 
(the animal is not aware of the true value of f1 and f2) we used a belief-state temporal difference 
(TD) model (similar to that proposed by (6)) to compute reward expectations and simulate the 
RPEs signaling. This was first implemented in a Bayesian module that works similarly to the 
Bayesian model described above and uses the same fitted values of the two noise parameters, 
σ1 and σ2. This module yields the belief b1(f1

i) (i=1, …, 6) about the value of the first frequency, 
the belief state B(k | o1

*, o2) about the class ck = (f1
k

 , f2
k) (k=1, …, 12) at the time when the 

second frequency is presented and the belief bc = [b(H), 1-b(H)] about which of the two 
frequencies is higher. Then it transmits these inference results to a TD module that selects 
actions and generates reward prediction errors (RPEs).  

The RL model also uses a fully observable variable pm (push movement) that represents the 
movement towards one of the two buttons. This variable has two possible states: py (“push 
yes”) when the decision is f1>f2 and pn (“push no”) when the decision is f1<f2. Finally, the 
reward function, denoted by r, is a scalar function that takes two different values for correct 
and incorrect decisions (see Equation 8). 

At the beginning of each trial the TD module calculates the value of the first stimulus as: 

𝑉ଵሺ𝑏ଵሻ ൌ ∑ 𝑄ଵሺ𝑖ሻ ⋅ 𝑏ଵሺ𝑖ሻ
ୀଵ     (2) 
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where Q1(i) is a set of adaptable weights. The RPE at the first stimulus is 𝛿ሺ𝑓ଵሻ ൌ 𝑉ଵሺ𝑏ଵሻ. 

At the second stimulus the TD module computes the value of the class: 

𝑉ሺ𝐵ሻ ൌ ∑ 𝑄ሺ𝑘ሻ ⋅ 𝐵ሺ𝑘|𝑜ଵ
∗, 𝑜ଶሻ.ଵଶ

ୀଵ     (3) 

Here the QB(k) (k=1, …,12) are another set of adaptable weights. At the second stimulus the 
TD module also estimates the value resulting from the comparison of the two frequencies   

𝑉ሺ𝑏ሻ ൌ ∑ 𝑔ሺ𝑏ሻ ∗ 𝜈.ீ
     (4) 

where the 𝜈 are a set of adaptable weights. The gi (i=1, …, G) are convenient functions that 
account for the contribution of the belief 𝑏 to this value. The functions gi were taken as the 
following basis functions: 

 𝑔ሺ𝑏ሻ ൌ ቀଵ

ଶ
ቁ ሾ𝑐𝑜𝑠ሺa ሺ𝑏 െ cሻሻ  1ሿ,   (5) 

if  c െ 0.1 ൏ 𝑏 ൏ c  0.1 and 𝑔ሺ𝑏ሻ ൌ 0 otherwise. The ci’s are G=11 equally spaced 
centroids in [0,1] and a = π /0.1. 

Given the values 𝑉ሺ𝐵ሻ and 𝑉ሺ𝑏ሻ the RPE at the second stimulus is: 

𝛿ሺ𝑓ଶሻ ൌ 𝑉ሺ𝐵ሻ  𝑉ሺ𝑏ሻ െ 𝑉ଵሺ𝑏ଵሻ.    (6) 

As in the Bayesian model, we assumed that decisions were made according to the larger of the 
beliefs b(H) and b(L) about which of the two frequencies was the higher. The value of the 
response movement when action j is selected is indicated with Vrm(j) to highlight the 
correspondence between the action selected and the subsequent movement.  

The RPE at the response movement is: 

𝛿ሺ𝑟𝑚ሻ ൌ 𝑉ሺ𝑗ሻ െ 𝑉ሺ𝐵ሻ െ 𝑉ሺ𝑏ሻ    (7) 

and the RPE at the delivery of reward is: 

𝛿ሺ𝑟ሻ ൌ 𝑟 െ 𝑉ሺ𝑗ሻ,     (8) 

where r =1 for correct discrimination and r = -0.5 otherwise. 

The RPEs 𝛿ሺ𝑓ଶሻ, 𝛿ሺ𝑟𝑚ሻ and 𝛿ሺ𝑟ሻ are used to update the adaptable weights Q1(i), QB(k), 𝜈, the 
value of the movement Vrm(j).  

We assumed a discount factor 𝛾 ൌ 1 and used the TD(λ) algorithm to update the weights at the 
end of each trial. The updating rule is the following: 

𝑄ଵሺ𝑖ሻ ൌ 𝑄ଵሺ𝑖ሻ  𝛼 ⋅ ൫𝜆௱భమ ⋅ 𝛿ሺ𝑓ଶሻ  𝜆௱భೝ ⋅ 𝛿ሺ𝑟𝑚ሻ  𝜆௱భೝ ⋅ 𝛿ሺ𝑟ሻ൯ ⋅ 𝑏ଵሺ𝑖ሻ  (9) 

𝑄ሺ𝑘ሻ ൌ 𝑄ሺ𝑘ሻ  𝛼 ⋅ ൫𝜆௱మೝ ⋅ 𝛿ሺ𝑟𝑚ሻ  𝜆௱మೝ ⋅ 𝛿ሺ𝑟ሻ൯ ⋅ 𝐵ሺ𝑘ሻ            (10) 

𝑉ሺ𝑗ሻ ൌ 𝑉ሺ𝑗ሻ  𝛼 ⋅ ൫𝜆௱ೝೝ ⋅ 𝛿ሺ𝑟ሻ൯              (11) 
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In all the equations above 𝛼 represents the learning rate. The value of 𝛥 is the temporal interval 
between the relevant task events, i.e. the onset of f1, the onset of f2, the response movement 
and the reward. To mimic the task temporal structure we took 𝛥ଵଶ ൌ 30, 𝛥ଵ ൌ 40, 𝛥ଵ ൌ
45, 𝛥ଶ ൌ 10, 𝛥ଶ ൌ 15, 𝛥 ൌ 5 (The temporal intervals are expressed in units of the time 
step, 𝑑𝑡 ൌ 0.1 s). For the simulation, we use 𝜆 ൌ 0.95 and 𝛼 ൌ 0.05. 
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Figure S1. Reward prediction errors predicted by the reinforcement learning model are similar to 

DA phasic responses (related to Figures 2 and 4). (A) RPE as a function of class number in correct 

trials, taken at the onset of f . A Gaussian filter was applied to the model predictions. Noise parameters 2

σ =5.50 Hz for f  sampling and σ =3.2 Hz for f  sampling. (B) RPE signal calculated during 3 different 1 1 2 2

periods with emulated data: f  presentation, f  presentation, and reward delivery after Push Button (PB, 1 2

decision report). Dark blue curve represents the simulated low difficulty group. Light blue curve 

represents the simulated high difficulty group. Left: RPE after the onset of f  does not depend on the 1

difficulty level, observable in the overlap between both of our difficulty group curves. Center: RPE after 

the onset of f  depends on choice difficulty, favoring the low difficulty group. The high difficulty group (light 2

blue) reaches less than half the max value observed for the low difficulty group. Right: RPE after reward 

delivery peaks at a value independent of the difficulty level since the curves overlap perfectly. (C) RPE 

calculated during 3 different periods for simulated correct trials (blue curve) and simulated error trials (red 

curve). Left: RPE after the onset of f  is similar in correct and error trials, since the two curves overlap. 1

Center: RPE after f  onset shows activation in correct trials and a strong depression in error trials (red 2

curve). Right: RPE generated by the model after PB. Correct trials show an increase in RPE, while the 

error trials show a depression in RPE. The amount of change between error and correct trials is 

approximately equivalent.
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Figure S2. Percentage of correct responses as a function of class number obtained with the Bayesian 

model for short- and long-RT trials (light and dark blue circles and line, respectively; related to Fig. 1F, 

left). Model best-fit parameter values were σ =5.28 Hz and σ =3.01 Hz for the short-RT group, and 1 2

σ =5.385 Hz and σ =3.0 Hz for the long-RT group.1 2
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Figure S3. Analysis of the existence of general dependencies on f  and on class number during 1

the trial (related to Fig. 5E). (A) Temporal evolution of the logarithm of p-value (log(p)) resulting from 

multiple ANOVA tests performed to check the dependence of the z-score on the f  values.  We calculated 1

a mean time-dependent z-score (standardized as in Fig. 2A-B) using a sliding window of 250ms shifting 

in steps of 10ms and performed multiple ANOVA tests sorting the z-score according to the values of f . 1

Values below the red dotted lines are considered as significant (significance is assessed as p<0.05). The 

p-value intermittently crossed the significance threshold. However, it consistently remained significant 

only during the presentation of the first stimulus. (B) Average z-score for each f  stimulus (error bars for ±1 1

SEM) calculated in each of the 5 indicated regions from panel (A). First graphic for the basal period 

before f  onset, proceeding in increasing chronological order from left to right. Times in the top left corner 1

(pink) and p values (pink) are the results of the ANOVA tests and indicate dependencies on f  when below 1

threshold (red dotted line in panel A). (C) Similar to panel (A) but the p-value was obtained by sorting the 

z-score according to the class number and running multiple ANOVA tests. (D) Similar to panel (B) but 

averaging the z-score according to the class number.
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