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Supporting Information Text43

This appendix is split into four sections. In the first section, we describe our model and methodology for estimating its44

parameters. Papers we reference in this section are from the summer of 2020 since this is when we were estimating the45

parameters for the fall 2020 semester. The second section relates to calibration of our model in the retrospective study. The46

third section shows the sensitivity of our model to varying input parameters. The last section describes a Bayesian analysis for47

fall 2021 projections.48

Portions of this appendix have been previously released as part of the communication of our public health work (1–5).49

Code implementing the simulations described is available at https://github.com/peter-i-frazier/group-testing.50

1. Model51

Model Overview. We model the spread of COVID in the Cornell and surrounding greater Ithaca community using a multi-group52

stochastic compartmental simulation model. Each group is modelled using a discrete-time Markov chain (DTMC) with the53

state described below. All these DTMCs are linked together by the transmission process.54

• Number people in Susceptible55

• Number people in Exposed with x days remaining until they become Infectious (ID) for x in {0, 1, ..., 7}56

• Number people in Infectious with x days remaining until they become Symptomatic/Asymptomatic for x in {0, 1, ..., 8}57

• Number people in Symptomatic with x days remaining until they recover for x in {0, 1, ..., 20}58

• Number people in Asymptomatic with x days remaining until they recover for x in {0, 1, ..., 20}59

• Number people in Recovered60

• Number people in Quarantine61
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• Number people in Isolation62

• Number people who will be contact traced in future days (allows us to account for contact tracing delay)63

We only maintain counts of the aggregate number of people in each state, not the trajectories of each individual. We use64

the term ‘free individuals’ to refer to everyone not currently in Quarantine or Isolation. Similarly, we use ‘free and infectious’65

individuals to refer to all free individuals that are Infectious, Symptomatic, or Asymptomatic.66

Every day corresponds to 1 state transition of the DTMCs. The transition kernel reflects five key dynamics:67

1. Natural disease progression of infected individuals68

2. Surveillance testing69

3. Symptomatic self-reporting70

4. Contact tracing71

5. Transmission and new infections72

1. Natural Disease Progression. Figure S1 shows the compartments we use to model the progression of COVID. The probability73

that someone transitions from Infectious to Symptomatic depends on the age distribution of their group. Once someone has74

been infected, we assume that they cannot be re-infected.75

The Isolation compartment is for isolated individuals who are infected and the Quarantine compartment is for quarantined76

individuals who are not infected. Once an infected person has been identified and isolated, they cannot create any new infections77

and leave quarantine/isolation after they are no longer contagious. Every day, each person in Quarantine or Isolation has a78

constant probability of being released (to Susceptible and Recovered respectively).79

If a free individual is infected (Exposed, Infectious, Symptomatic or Asymptomatic) and not isolated, they transition80

from their current compartment with x days remaining to the same compartment with x − 1 days remaining. If there are81

no remaining days in their current compartment, they transition to the next compartment. At this time, the length of stay82

in their next compartment is realized and the state of the DTMC reflects this realization. Transitions from Susceptible to83

Exposed occur due to transmission events and at that time their length of stay in Exposed is realized.84

Susceptible Exposed Infectious

Asymptomatic

Symptomatic

Recovered

Quarantine
 Isolation

Inside + outside
transmissions

Fig. S1. Timeline of disease progression in an infected individual.

2. Surveillance testing. Every day a fraction of the group’s free population is independently randomly selected. This fraction85

selected for testing can vary by group but is constant over the horizon of the simulation. We assume that people in compartments86

Infectious, Symptomatic and Asymptomatic are detectable by testing. Each test has a constant independent probability of87

producing an incorrect result (false positive or negative). False positives move people from Susceptible to Quarantine while false88

negatives do not change the state of the individual. True positives move people from an infectious state (Exposed, Infectious,89

Symptomatic or Asymptomatic) to Isolation. Test results are assumed to be available the same day. Each positive case90

identified through surveillance testing produces a contact trace.91

3. Symptomatic self-reporting. Every day, each symptomatic individual has an independent, constant probability of self-reporting92

symptoms. Upon self-reporting, they are moved to Isolation and generate a contact trace. The probability of self-reporting93

every day is calibrated to data provided by the CDC.94
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4. Contact tracing. Each contact trace removes a random number of people from the free and infectious population and from the95

susceptible population. Symptomatic self-reports remove more susceptible and free and infectious people since these cases have96

likely been in the community longer than people identified via surveillance testing. We also assume a deterministic (1 day)97

delay between initiating a contact trace and isolating the contacts. The number of people and infectious cases removed is98

calibrated to Tompkins County contact-tracing data.99

We do not contact trace positive cases found via contact tracing. Contact tracing only removes individuals in the same100

group as the source.101

5. Transmission and new infections. We model two sources of new infections. The first is outside infections which refers to infections102

imported from interactions outside of Tompkins County. This is a daily rate per person estimated from travel-related Tompkins103

County cases.104

The second source of new infections is local transmission due to free and infectious individuals. The rate of local spread is105

governed by two parameters: the contact rates between groups and the probability of transmission during an interaction. The106

contact rates are estimated using pre-pandemic contact surveys and account for age-varying compliance with wearing a mask107

and social distancing. The probability of transmission is calibrated to match the R0 of the disease.108

Model Details. We first discuss the intra-group dynamics (disease progression, symptom severity, contact tracing, surveillance109

testing) followed by inter-group dynamics (transmission).110

Intra-group Dynamics.111

A. Individual Disease Progression. Our simulation assumes that the disease progresses through several stages in each infected112

individual, represented in Figure S1.113

Parameters for the length of time in each state are given in Table S1.114

Table S1. Parameters for disease progression in an individual.

Parameter description Nominal parameter value(s) Sources
Time from exposure to infectious Poisson(2) days (6); (7); (8); (9)

Time from infectious to symptom onset Poisson(3) days
Time in symptomatic state Poisson(12) days (10)

P(self-report each day | asymptomatic) 0 Conservative assumption
P(self-report each day | symptomatic) 0.22 CDC planning scenario (11)

To justify the choice of time in the Exposed and Infectious states: (6) does a pooled analysis and finds the median incubation115

period to be 5.1 days, with a confidence interval of 4.5 to 5.8 days. (9) and (7) find that transmissions can occur 2-3 days116

before symptom onset. Thus we set the time in the Infectious state to be Poisson(3), and subtract its mean (3 days) from the117

incubation period mean to get a mean of 2 days for the exposed state.118

In the simulation we model the time to self-report symptoms (for symptomatic patients) as being geometrically distributed119

with a single parameter that is the probability of self-reporting each day. This was chosen to match the average time from120

symptom onset to hospitalization for influenza-like illness (ILI) according to the CDC (11), which is based on (12). The latter121

paper reports that122

• 35% of symptomatic individuals seek care in ≤ 2 days,123

• 47% of symptomatic individuals seek care in 3− 7 days,124

• 18% of symptomatic individuals seek care in ≥ 8 days.125

We model this as a random number of days that is conditionally uniform(0,2) with probability 35%, conditionally uniform(3,7)126

with probability 47%, and conditionally uniform(8,12) with probability 18%. The resulting mean of this distribution is127

.35× 1 + .47× 5 + .18× 10 = 4.5 days. The daily probability of self-reporting for symptomatic individuals is then chosen to be128

1/4.5 ≈ 0.22 so that the mean time to self-report, 1/0.22 = 4.545, approximately matches this value.129

B. Severity of Symptoms. Our simulation model separates symptomatic from asymptomatic individuals. Over the course of130

the simulation, symptomatic individuals self-report each day with some probability, while asymptomatic individuals do not131

self-report. Symptomatic infections can be of different levels of severity, ranging from mild pneumonia symptoms to critical132

life-threatening conditions. Thus we divide the symptomatic individuals into three different severity levels. In total, we consider133

four different severity levels, defined as follows:134

• Severity level 1: patient is asymptomatic.135

• Severity level 2: patient shows mild symptoms, but does not require hospitalization.136

• Severity level 3: patient needs to be hospitalized, but does not require intensive care.137
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• Severity level 4: patient requires intensive care.138

At the end of each simulated period, we allocate the symptomatic individuals to severity levels 2-4 with certain proportions.139

These proportions are estimated from data as explained below. Once an individual is assigned to a severity level they remain140

there; further transitions between severity levels are not modeled.141

Let P (sev i) be the probability that, as a result of a single contact with an infected person, an individual becomes infected
and falls within severity level i. Thus the sum of these probabilities over i = 1, 2, 3, 4 is the probability of infection as a result of
a single contact. Then, the probabilities that as a result of a single contact an individual becomes infected and asymptomatic,
respectively infected and symptomatic, are

P (asymptomatic) = P (sev 1), and
P (symptomatic) = P (sev 2) + P (sev 3) + P (sev 4).

We want to find P (sev i) for the population while considering age-based factors. Specifically, we model how the severity of
the disease varies with age, and that older age groups are more likely to become infected after an interaction with an infectious
person. To that end,

P (sev i) =
∑
age

P (sev i|infected, age)P (infected|age)P (age), where

P (infected|age) = P (infected|contact, age)P (contact|age) ∝ P (infected|contact, age).

The proportionality in the second equation comes from the assumption of a homogeneous well-mixed population within each142

group. Therefore, the distribution of the age of contacts is the distribution of the age of the population in the group.143

Severity Calculation Part 1: Severity and Infection given Age We obtain values for the probability of infection as a function of age144

from (13), which reports the probability of infection through a close contact for different age groups among 4941 close contacts145

traced from early cases in Guangzhou, China. These estimates are given in the first row of Table S2.146

Later, we will estimate the age distribution (P (age)) for Cornell’s fall semester.147

Table S2. Parameters for age-stratified infection probability and severity level distribution. Sources: (13–17).

Age grp 1
(0-17)

Age grp 2
(18-44)

Age grp 3
(45-64)

Age grp 4
(65-74)

Age grp 5
(75+)

P(infection | age) 1.8% 2.2% 2.9% 4.2% 4.2%
P(sev 1 | infected,age) 17.0% 52.0% 31.0% 13.0% 13.0%
P(sev 2 | infected,age) 81.6% 47.2% 65.9% 80.6% 80.6%
P(sev 3 | infected,age) 1.1% 0.6% 2.2% 4.7% 4.7%
P(sev 4 | infected,age) 0.3% 0.2% 0.9% 1.7% 1.7%

The severity level distribution for each age stratum is estimated from a combination of data sources.148

149

We first estimate P (sev 1|infected, age), the asymptomatic rate for each age group, as follows.150

1. Fix the asymptomatic rate for the 75+ age group, P (sev 1|infected, age grp 5) to 13%. The 13% figure comes from (18),151

where a nursing home in Seattle had 3 asymptomatic cases out of 23 confirmed cases.152

2. To estimate the asymptomatic rate of the remaining four age groups, we attempt to match the following data points by153

minimizing the sum of squared errors, subject to the (assumed) constraint that the asymptomatic rates decrease over age154

groups 2 through 5.155

(a) The CDC estimated that the population asymptomatic rate in the USA was 35% (Source: (11)). Weighting our156

age-stratified asymptomatic rates by the age distribution for the US population we should obtain a value close to157

35%. (Sources for age demographics: (19) and (20).)158

(b) The Diamond Princess cruise ship had an estimated 17.9% asymptomatic rate (Source: (21)). Exactly as we did for159

the CDC US-population rate, we use age strata for the infected passengers on the Diamond Princess to attempt to160

match the 17.9% rate.161

(c) A study of 78 infected patients from Wuhan had the following age profile for the 33 asymptomatic patients: 25th
162

percentile: 26 yrs, 50th percentile: 37 yrs, 75th percentile: 45 yrs (Source: (22)). We attempted to match these163

percentiles. We use the age demographics of China for this purpose. (Source: (23).)164

To this point then, we have estimated the asymptomatic rate for each of the 5 age groups, P (sev 1|infected, age). We next165

divide the remaining probability within each age group into severity levels 2, 3 and 4 using CDC numbers for hospitalization166

rates and ICU rates in the nominal planning scenario (11). By our definition, hospitalization includes both severity levels 3 and167

4, and ICU corresponds to severity level 4. The three equations we need for the three unknowns (probability of each of severity168

levels 2, 3 and 4) are169
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1. P (symptomatic|infected,age) = P (sev 2, 3, 4|infected,age) = 1− P (sev 1|infected,age).170

2. Given that a patient is symptomatic, the probability they will be hospitalized is

P (sev 3, 4|infected,age)/P (symptomatic|infected,age).

3. Given that a patient is hospitalized, the probability that they will be admitted to the ICU is

P (sev 4|infected,age)/P (sev 3, 4|infected,age).

The CDC (11) estimates the symptomatic case hospitalization ratio to be 1.7% for age 0-49, 4.5% for age 50-64, and 7.5% for171

ages 65+. The percent admitted to ICU among those hospitalized is 21.9% for age 0-49, 29.2% for age 50-64, and 29.8% for172

ages 65+. We recognize that the age cutoffs are slightly different to ours. We match the CDC’s estimates for age 0-49 to our173

first two age groups, those for age 50-64 to our second age group, and those for 65+ to our fourth and fifth age groups. The174

probabilities of severity levels 2, 3, 4 are calculated accordingly to fit these estimates.175

Severity Calculation Part 2: Age Distribution To complete our severity calculation, we first identify different groups on Cornell’s176

campus and estimate their distribution over the five age groups. The parameter values are given in Table S3.177

Table S3. Information for different population groups on Cornell’s campus. The size of each group as well as the faculty age distribution are
provided by (24); the age distribution for academic professionals, staff, and students are assumed.

Group size
Age group 1

(0-17)
Age group 2

(18-44)
Age group 3

(45-64)
Age group 4

(65-74)
Age group 5

(75+)
Faculty 1684 0% 33.1% 46.1% 17.9% 2.9%

Academic
professionals

1114 0% 90% 10% 0% 0%

Staff 7485 0% 50% 50% 0% 0%
Students 24027 0% 100% 0% 0% 0%

For the Fall reopen, each of the 7 Cornell groups has an age distribution based on the table above. This age distribution178

dictates the severity distribution for each group. We assume that the remaining group (Greater Ithaca) has the same age179

distribution as the US population.180

C. Contact Tracing. In our model, each positive case identified through self-reporting and a fraction of cases identified through181

asymptomatic surveillance initiates a contact trace. Contact tracing is not recursive, in that we do not model contact tracing of182

cases identified in a contact trace. This is for simplicity, but also because the number of contacts of those identified in a contact183

trace are likely to have had fewer contacts than those identified by self reporting or asymptomatic surveillance, since their184

detection was not triggered by one of these two mechanisms. (Here we use the term “contact” in the sense of potentially leading185

to infection, rather than a more restrictive sense used by the Tompkins County Health Department (TCHD).) Our model of186

contact tracing is necessarily simplistic, since we do not model individuals and their contact networks in our compartmental187

simulation.188

Every positive case identified through self-reporting initiates a contact trace. Each contact trace results in some number of189

individuals isolated and quarantined. We take the number of isolations per contact trace to be a Poisson random variable190

and the number of quarantines per contact trace to be a constant. We assume that the contacts of each positive case do not191

overlap, so in generating the total number of individuals isolated or quarantined based on, e.g., n new positive cases identified192

through self-reporting, we can simply generate a single Poisson random variable with a mean that is n times that for a single193

case. It remains to specify the mean of the Poisson random variable for the number of isolations per initiated contact trace,194

and the constant number of quarantines per initiated contact trace. We assume that the positive case has had, on average, c195

contacts per day for t days, for a total of ct contacts. Contacts are infected independently of one another with probability p.196

Contacts, whether infected or not, are assumed to be remembered by the positive case with probability r. The value of p is197

estimated to be 1.8% in Section H below. The value of c is on the order of 12 or 13, depending on the group, as discussed in198

Section H below. Given that the positive case self-reported, they must be symptomatic, and so t is taken to be the sum of the199

means of the times in the Infectious and Symptomatic states. Under our nominal parameters, this gives t = 3 + 1/0.22 = 7.55200

days. The value of r is taken to be 0.5, in line with anecdotal evidence from the TCHD. Accordingly, the expected number of201

contact-traced infected contacts is ctpr = 0.85. It is reasonable to expect the expected number of contact-traced non-infected202

contacts to be ct(1− p)r = 46.3, but this number reflects a great deal of double counting of individuals. Anecdotal evidence203

from TCHD suggests that on the order of 7 individuals are identified through contact tracing on average, suggesting that the204

number of contact-traced non-infected contacts should be taken to be 7− ctpr = 6.15 under nominal parameters. We adopt205

this figure instead.206

Positive cases identified through asymptomatic surveillance are modeled in the same manner, except that cases identified in207

this manner would typically be identified earlier in the course of their disease, at which point they would have infected fewer208

people. We model this by only initiating contact traces for a fraction of the positive cases identified through asymptomatic209
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surveillance. We take the number of contact traces initiated on each day to be Poisson with mean N/2, where N is the number210

of surveillance positives from the relevant day.211

All infected cases identified through contact tracing are pulled from the Exposed, Infectious, Symptomatic and Asymptomatic212

states, in that order of precedence, and enter the Isolation state. All non-infected cases identified through contact tracing are213

pulled from the Susceptible state and enter Quarantine.214

Table S4. Parameters for contact tracing.

Parameter description Nominal parameter value(s) Sources
Fraction of contacts recalled, r 0.5

Contact tracing delay 1 day (25)
Contact traces initiated per screening positive 0.5
Contact traces initiated per self-report positive 1

(Implied) New isolations per initiated contact trace 0.85 Calculation in text
(Implied) New quarantines per initiated contact trace 6.15 (25)

D. Outside Infections. We estimate the probability of outside infection per person per day, which arises from infections imported215

from outside the modeled groups due predominantly to travel outside Tompkins County. TCHD data reports 13.2 travel-related216

COVID cases per month from March 2020 to July 2020. The asymptomatic rate at that time was estimated to be approximately217

50%, so the actual number of cases is estimated to be twice this number, or 26.4 cases per month. Assuming that during this218

period there were 75,000 people in Tompkins County, we arrive at a figure of 26.4/30/75, 000 = 1.2× 10−5 for the probability219

of outside infection per person per day.220

An additional source of outside infections comes from students returning at the start of the fall semester, which we model221

next.222

E. Students Returning and Initial Prevalence. In advance of the fall 2020 semester, New York state required all travellers from223

high-prevalence states to self-quarantine for two weeks upon arrival. The list of high-prevalence states changed throughout224

August 2020, in advance of the Fall Semester. Our analysis is based on New York State’s list of High Prevalence states225

on August 7, 2020. We model the return of students to campus in two phases: (1) a 14-day period when students from226

high-prevalence states arrive and self-quarantine, followed by (2) move-in weekend when other students arrive.227

The modeled student arrival process is summarized below.228

• Some students get tested remotely and are isolated if positive. Others come without being tested. Students coming from229

high-prevalence states are less likely to have test access at home.230

• Students traveling to campus risk additional infection after being tested at home prior to departure (if they are tested)231

and during travel.232

• Students are required to be tested upon arrival as a condition for enrollment. Students are strongly encouraged to use the233

first available testing date, though some will instead choose to be tested later. Positives are isolated, including some false234

positives. If a student comes from a high-prevalence state, then the student is required to self-quarantine for 14 days.235

• Some positive cases already exist on campus due to infections from the greater Ithaca area.236

• Some positive cases among incoming students are missed because of false negatives and because some students are early237

enough in their infection to not be PCR-detectable.238

• These two sources of cases (existing and new) combine to create an on-campus prevalence.239

• This on-campus prevalence creates additional cases on campus. Some additional cases are also created on campus due to240

outside infections from the greater Ithaca area.241

• During the two-week period before the move-in weekend, regular surveillance testing had not begun, but contact tracing242

was underway.243

E.1. 14-day self quarantine. Here we discuss the model for the arrival of students from high-prevalence states for which New York244

State requires a mandatory 14-day self-quarantine. The students among these that have access to housing in which they can245

self-quarantine are modeled as arriving in Ithaca two weeks before classes start. Other students in this group without such246

housing are modeled as either choosing to start classes virtually or, in a few cases, coming to Ithaca without complying with247

the required quarantine period in violation of state law.248

Incoming Student Population Sizes: Student data suggested that roughly 33% of the undergraduate students and 23% of the249

graduate / professional students have homes in states designated by New York State as “high prevalence” requiring mandatory250

quarantine.251

We assume that many such students with off-campus housing will spend the mandatory quarantine period in Ithaca in252

that housing. For students that originally planned to be in on-campus housing, we assume that the majority will not come to253
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Ithaca at the start of the semester but rather will begin the semester online; a small fraction will quarantine somewhere outside254

Ithaca and return during the move-in weekend; while another small fraction will fail to comply with the law, either using255

non-compliant quarantine in shared housing in Ithaca, or by arriving during move-in weekend without having quarantined.256

Assuming that 10% of continuing undergraduates and 75% of continuing graduate / professional students have stayed in Ithaca,257

the total number of students arriving 2 weeks in advance from high prevalence states is 3750, including 2500 undergraduate258

students and 1250 graduate / professional students.259

Compliance: Despite the mandatory self-quarantine order, we do not assume full compliance. We estimate the daily260

transmission rate to be reduced by 40% compared with the nominal setting. We do this to model several kinds of non-261

compliance with quarantine. First, some students required to quarantine may do so in non-compliant locations shared with262

others. Second, some students may break quarantine and have social interaction. Third, although students were asked to test263

on arrival (so that positives can be isolated and monitored, reducing the danger of transmission), testing was offered only three264

times a week so there may be a delay between arrival and the first available test date.265

Testing Before Departure: Cornell students were asked to test before departing to come to campus, but this was not266

mandated due to a lack of test access for some students. We assume that 1
3 of students from high-prevalence states were tested267

at home, and 2
3 from low-prevalence states, both using nasopharyngeal (NP) sampling with 90% sensitivity (26).268

Testing on Arrival: As discussed above, we assume that students are tested once on arrival. We assume NP sampling with269

100% compliance. Because the semester had not begun, and mandatory asymptomatic screening had not started, we assume270

that no other testing is done.271

Prevalence Estimation for High-Prevalence States: Prevalence at the origin of students from high-prevalence states is272

assumed to be 4%. This estimate was obtained by multiplying daily new positive cases, an underreporting factor (assumed to273

be 10, i.e. for each reported positive case there are 9 positive cases not reported), and the average number of days an infected274

individual is active (assumed to be 20).275

Population Already in Ithaca: The total number of students that either stay in Ithaca during the summer or come to Ithaca276

early from other “low prevalence” states is estimated to be 4090 (including 1130 undergraduate students, 2960 graduate /277

professional students). All 10280 employees are assumed to remain in Ithaca throughout the summer. The prevalence among278

the group of unquarantined students and the group of employees is assumed to be 0.1%, which is consistent with the estimated279

persistent prevalence level in the greater Ithaca area during summer 2020. (See below)280

Assuming 31 confirmed cases, which is what was observed over the first 21 days of July 2020, that cases last 20 days, and281

2x-4x underreporting in Tompkins County (less than elsewhere due to excellent testing access), gives 60 - 120 active cases, or282

0.075% - 0.15% prevalence.283

Interactions: During the two-week period before classes start, we assume no interaction between students and employees.284

We use a multi-group simulation consisting of four groups – self-quarantined students, unquarantined students, employees,285

and the greater Ithaca community – to model different behaviors (reflected by daily transmission rate) within and across the286

groups. As noted elsewhere, we assume 40% compliance with quarantine requirements amongst self-quarantining students. The287

transmission matrix for the self-quarantine period is summarized in Table S5.288

Table S5. Inter- and intra-group transmissions per day during the self-quarantine period, based on the multi-group simulation, which use
contacts from the literature, choose an infectivity calibrated to an estimate of R0, and then multiply to get transmission. Each entry gives the
expected number of transmissions per day from one infected member of the row group to each of the column groups.

Group (pop. size) Self-quarantined students Unquarantined students faculty / Staff greater Ithaca community
Self-quarantined students (3748) 0.031 0.010 0 0.018
Unquarantined students (4087) 0.0087 0.053 0 0.031

Faculty / staff (10283) 0 0 0.031 0.027
Greater Ithaca community (62000) 0.0011 0.0020 0.0044 0.060

Simulation results give us that the initial prevalence among Cornell students in Ithaca immediately prior to move-in weekend289

is 0.17% and 0.087% for faculty and staff.290

E.2. Move-in weekend and low-prevalence states. Prevalence Estimation for Low-Prevalence States: NY state designated a state291

as “high prevalence” if its daily reported number of new positive cases exceeded 10 per 100,000 population. Assuming an292

under-reporting factor of 10 and an average active period of 20 days, this daily new positive case threshold translates to a293

prevalence of 10 / 100,000 * 10 * 20 = 2%. Hence, the overall prevalence in student origins that are not designated as “high294

prevalence” is at most 2%. This prevalence is prior to any testing at the origin prior to departure for Cornell.295

Incoming Student Population Sizes: As discussed previously, in addition to students from low prevalence states we assume296

that a small fraction of the students (300) from high-prevalence states that plan to live on-campus will return during the297

move-in weekend. Although these students will have presumably self-quarantined for 14 days elsewhere, we pessimistically298

assume non-compliance and consider their prevalence upon entering Ithaca to be 4%. Given it is a small population compared299

to students from low-prevalence states (with prevalence < 2%), and the assumed under-reporting factor of 10 is large given the300

access to testing in low-prevalence states at the time, we assume that the overall prevalence among students returning during301

the move-in weekend is exactly 2%. We estimate the total number of students returning during the move-in weekend to be302

10770, including 8180 undergraduate students and 2590 graduate / professional students.303
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Prevalence of Returning Students: Students were asked to test before departure, but this was not mandated due to a lack of test304

access. We assume that 2
3 of the students from low-prevalence states were tested at home, using nasopharyngeal (NP) sampling305

(90% sensitivity). Hence, the fraction of returning students that are infectious is estimated to be 2% ∗ (1− 2
3 ∗ 90%) = 0.8%.306

In addition, we also assume a small per-day infection probability during travel. The travel duration and the likelihood that307

students use public transportation (with an associated elevated daily infection probability) depends on the geographic origin of308

students. Weighting these probabilities by geographic origin of students, we estimate that an additional 0.1% of the returning309

students are infected during travel to campus. Among them, 45% are estimated to be in the Infectious state upon arrival310

(which can be detected with probability 90%), and 55% are estimated to be in the Exposed state upon arrival (which cannot311

be detected by arrival testing). Assuming arrival testing with NP sampling and 100% compliance, the fraction of returning312

students that are infected and not identified by arrival testing is (0.8% + 45% ∗ 0.1%) ∗ 10% + 55% ∗ 0.1% = 0.14%.313

The initial prevalence estimates for the student groups combine the initial prevalence estimates from the 14-day simulation314

(local students and self-quarantine of high-prevalence states) and move-in weekend (low prevalence state students) to reflect315

the composition of each group. The initial prevalence of all the groups after arrival and immediately prior to the semester is316

summarized in Table S6.317

Table S6. Initial prevalence estimates for modelling of Cornell Fall semester.

UG high UG low GS research GS class FS student FS not student FS off Greater Ithaca
Initial prevalence 0.156% 0.161% 0.166% 0.1628% 0.087% 0.087% 0.087% 0.08%

F. Testing Details. For asymptomatic surveillance we assume a sensitivity of 60% for PCR testing from observed self-collected318

anterior nares (AN) sampling, using the same test sensitivity for both pooled and individual testing. This is based on preliminary319

results from a validation effort at Cornell in which paired AN and nasopharyngeal (NP) swabs were collected and tested from320

the same individuals. Testing of AN samples identified 75% of the positives found via NP. As before, we assume a sensitivity of321

90% for NP (26), that all of the positives missed by NP (10% of all positives) are also missed by AN (since these individuals322

would likely have low viral loads), and that an additional 25% of the 90% of the positives found by NP are missed by AN (or323

0.25× 0.90 = 22.5% of positives). This results in a sensitivity of 1− 0.1− 0.225 = 67.5%. Since AN samples are self-collected324

in surveillance testing, which is subject to the risk of improper sample collection, we adopt a pessimistic estimate of 0.6 for the325

sensitivity of surveillance tests using AN.326

This estimate may be somewhat pessimistic, since some studies suggest that NP’s sensitivity is higher than 90% (27), and327

some positives may be missed by NP sampling because of improper sampling technique (28).328

On the other hand, this calculation does not explicitly account for the loss in sensitivity due to pooling. Cornell uses pools329

of size 5 in surveillance testing and retests the original sample when a pool tests positive. Based on existing mathematical330

models for pooled testing, this procedure should diagnose the same set of positives as does unpooled surveillance, unless the331

sample has a Ct value within log2(5) = 2.3 cycles of the limit of detection. Because SARS-CoV-2 viral loads vary by several332

orders of magnitude (29), the fraction of samples with a viral load in this range is small.333

Inter-group Dynamics.334

G. Group Details. We model the spread of COVID by splitting the campus into 8 groups and considering the interactions335

between groups and among themselves. We also track infections and hospitalizations in each group. The abbreviation for each336

group is in brackets after its name.337

1. Undergraduates living in high-density housing (dorms, fraternity and sorority houses) [UG high]338

2. Undergraduates living in low-density housing [UG low]339

3. Graduate students primarily engaged in research [GS research]340

4. Graduate and professional students primarily engaged in classroom instruction [GS class]341

5. Faculty / staff working on campus who are student facing [FS student]342

6. Faculty / staff working on campus who are not student facing [FS not student]343

7. Faculty / staff working off campus [FS off]344

8. Greater Ithaca community [Greater Ithaca]345

Table S7. Group sizes for modelling of Cornell Fall semester.

Groups UG high UG low GS research GS class FS student FS not student FS off Greater Ithaca
Group size 8123 3645 4921 3598 3598 1907 4778 62000
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H. Transmission. Transmission within and between each group is governed by the “transmission rate matrix.” This is estimated346

first by estimating a rate of contacts within and between each group, and then calibrating the transmission probability per347

contact to a value of R0. There is a transmission rate matrix for summer of 2020 to model the pre-semester period and a348

transmission matrix for fall of 2020.349

The term “contact” is used consistently with the literature, where a contact is defined as a two-way conversation or a350

physical interaction (e.g., a kiss or handshake) (30). Thus, it includes those contacts that are more brief than the CDC’s351

definition of a close contact (6 feet or less and 15 minutes or more).352

We now describe our estimation methodology for both the summer 2020 and fall 2020 matrices in an algorithmic manner.353

1. Choose a nominal value of R0 in the general US population under normal circumstances. We used 2.5 as per CDC354

Planning Scenarios (11).355

2. Choose a number of contacts per day for each age group based on the literature. We use contacts per day from (30).356

3. Choose a transmission probability per contact that matches R0 to get transmissions/day as computed from (contacts /357

day) * (transmission / contact) for individuals, broken down by age. Based on the contact rate matrix from Step 2 and358

the age distribution within the US, the average number of contacts per day within the US population is 12.7. Given an359

R0 of 2.5 and the expected infectious period of the disease, the transmission probability is estimated to be 1.8%.360

4. For each of the groups UG student, Graduate/Professional student, staff/faculty, non-Cornell Tompkins County resident,361

use the age distribution to calculate transmissions / day for each group, under pre-social-distancing conditions. We will362

subsequently adjust for social distancing.363

Transmissions per day for each group under pre-social-distancing conditions, based on the age-stratified contact rates in364

(30)365

• Undergraduate Student: assuming age group 15-19 in (30)366

– 17.58 contacts / day * 1.8% infectivity rate = 0.32 transmissions per day367

• Graduate Students: age group 20-29 in (30)368

– 13.57 contacts / day * 1.8% infectivity rate = 0.24 transmissions per day369

• Faculty / Staff: using the age distributions from Table S3370

– 12.9 contacts * 1.8% infectivity rate = 0.23 transmissions per day371

• Non-Cornell Greater Ithaca residents: assuming the same age demographics as reported by US census (20)372

– 12.7 contacts * 1.8% infectivity rate = 0.23 transmissions per day373

5. Calculate the rate of transmission between groups using summer case count observations in Tompkins County as well as374

the pre-social-distancing contact rates assumed above.375

• Calibrate impact of social distancing among the Cornell summer-population (staff/faculty + summer-resident376

graduate/professional and UG students) and the Greater Ithaca population. Set R0 in this population to 0.75377

based on the Ithaca Summer 2020 R0 argument below. This means transmissions per day is reduced 70% from our378

pre-social-distancing calculation (which is calibrated to R0 = 2.5).379

• Literature also suggests that younger people are less likely to abide by social distancing regulations (31). Therefore380

we will assume that the impact (multiplier) of social distancing is 50% less effective for students during the summer.381

A 70% reduction for this group becomes a 70%/1.5 = 47% reduction.382

• Using this estimate and the following additional assumptions, we can create an estimate of the summer transmission383

matrix. Assumptions:384

– Undergraduates and course-based graduate students all leave Ithaca over the summer.385

– 75% of research-based graduate students remain in Ithaca.386

∗ Transmissions per day during summer: 0.24 (1 - 0.47) = 0.127387

– All faculty/staff remained in the Ithaca area during the summer and worked remotely.388

∗ Transmissions per day during summer: 0.23 (1 - 0.7) = 0.069389

– The non-Cornell Ithaca community observed 70% social distancing.390

∗ Transmissions per day during summer: 0.23 (1 - 0.7) = 0.069391

– Breakdown of contacts by group:392

∗ Percent of contacts with outside community. From Figure 2A in (30), about 60% of contacts are from393

home, work, school, or multiple. About 20% are leisure. We will assume that social distancing scaled down394

transmissions proportionately, and will model 60% of transmissions for faculty/staff as Cornell-related. For395

faculty/staff Cornell transmissions, the majority of the contacts are within their own group (student facing,396

not student facing, off campus).397
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∗ Graduate students will have 75% of contacts, and thus transmissions, be Cornell-related. About 25% of398

these Cornell contacts are with faculty/staff and all others are with grad students. The majority of the399

contact with faculty/staff is with people that will be on campus and student-facing in the fall.400

– Symmetry condition for daily transmissions: The expected daily transmissions between group 1 and group 2 is401

the expected daily transmissions between group 2 and group 1. Therefore, selecting the daily transmission rate402

per person in group 1 with group 2 determines the daily transmission rate of someone in group 2 with group 1.403

6. This results in the summer transmission rate matrix in Table S8. The overall average transmission rate per day (within404

the Cornell community) for summer is 0.0828.405

Table S8. Summer 2020 transmission rate matrix for Cornell.

Groups GS research FS student FS not student FS off Greater Ithaca Expected transmissions per day
GS research 0.072 0.021 0.0009 0.0036 0.0324 0.127
FS student 0.0169 0.018 0.0028 0.0054 0.029 0.071

FS not student 0.0013 0.0051 0.033 0.0036 0.029 0.071
FS off 0.0020 0.0041 0.0015 0.033 0.029 0.068

Greater Ithaca 0.0014 0.0016 0.00087 0.0021 0.064 0.069

7. To derive the transmission matrix for Fall 2020, we assume that the pairwise rates of interaction between grad students,406

faculty/staff and the Ithaca community remain the same as during the summer, but there will be an increase in overall407

transmission due to an influx of students arriving to campus.408

• Younger people are less likely to wear masks and socially distance (31). We assume that students (undergraduates,409

graduate students (course-based)) reduce their pre-social-distancing transmissions by 30%, about half as effective410

social distancing as in Ithaca during the summer. This is more pessimistic than our previous assumption regarding411

graduate research students who reduced their transmissions by 47%. We do not assume an increase in transmissions412

per day of graduate research students with faculty/staff or the Ithaca community.413

• Undergraduates (off campus): Edmunds 2006 (32) surveys undergraduate students and finds that 15.2% of their414

contacts are with people over the age of 30. This represents the percent of their contacts with faculty/staff and415

the Ithaca community. We reduce this number to 10% to reflect the reduced staff on campus. Almost all of these416

contacts are with student-facing staff and there is some contact with the Ithaca community.417

• Undergraduates (high-density housing) have more transmissions per day with other people in high-density housing,418

half the transmissions per day with the Ithaca community, and the same transmissions to faculty/staff and grad419

students as undergraduates (off campus).420

• Graduate students (course-based) have the same transmissions per day to graduate students (research), faculty/staff,421

and Ithaca as undergraduates (off campus). Inter-group transmissions are selected to approximate expected422

transmissions per day for the group.423

• Grad student (research): we assume 100% of graduate research students are in Ithaca in the fall semester, while this424

number is assumed to be 75% during the summer.425

• All rates between grad student (research), faculty/staff and Ithaca community remain the same as in the summer426

transition matrix.427

8. This leads to the Fall 2020 transmission rate matrix in Table S9. The average transmission rate per day within the428

Cornell community is 0.198.429

Table S9. Fall 2020 transmission rate matrix for Cornell.

Groups UG high UG low GS research GS class FS student FS not student FS off Greater Ithaca
UG high 0.22 0.072 0.0018 0.0018 0.018 0.0009 0.0009 0.0018
UG low 0.061 0.15 0.0018 0.0018 0.018 0.0009 0.0009 0.0036

GS research 0.0034 0.0039 0.072 0.0018 0.021 0.0009 0.0036 0.033
GS class 0.0025 0.0031 0.0013 0.16 0.018 0.0009 0.0009 0.0036

FS student 0.035 0.040 0.022 0.024 0.018 0.0028 0.0054 0.029
FS not student 0.0033 0.0038 0.0018 0.0023 0.0051 0.033 0.0036 0.029

FS off 0.0013 0.0016 0.0028 0.0009 0.0041 0.0015 0.033 0.029
Greater Ithaca 0.0002 0.00047 0.0019 0.00029 0.0016 0.00087 0.0021 0.064

Ithaca Summer 2020 R0 Case counts in Tompkins County in the summer of 2020 are consistent with R0 < 1 among the430

non-Cornell Tompkins County and summer-resident Cornell population. However, the R0 was large enough that importing431
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new cases created a not insubstantial number of additional cases. For the purposes of estimating the R0 of the non-Cornell432

community, we focus on July 2020 data.433

First, according to the Tompkins County Health Department (TCHD), the number of new cases per day rose at the beginning434

of July when prevalence nationwide rose, but gradually declined after. If R0 were bigger than 1 in Tompkins County, then we435

would expect that new cases would grow exponentially. The fact that this did not happen suggests that R0 < 1.436

Second, the TCHD reports that 16 out of 31 cases between July 1 and July 21 had relevant travel to a high-prevalence437

region. Let us make the following assumptions:438

• Assume reporting bias is the same for both individuals infected locally and infected due to travel.439

• Assume that all of these cases between July 1 and July 21 resulted from clusters initiated by external travel that happened440

in July, predominantly July 4, and not from clusters that were present in Tompkins County before July. This is based on441

the observation that prevalence in June in Tompkins County was very low. Also, if one assumes that some local July442

cases began due to pre-existing clusters then this will cause our R0 estimate to decrease further.443

• Let us momentarily assume that all clusters initiated by July travel concluded by July 21. This assumption is too444

optimistic, and will create an R0 estimate that is too low — we will adjust for this in a moment.445

In general, in a large fully susceptible population with R0 < 1, each new case creates a cluster that infects 1 +R0 + (R0)2 +446

(R0)3 + . . . = 1/(1−R0) individuals, including the original case. (This ignores the effect of immunity and is accurate for R0447

sufficiently below 1.)448

Then, under these assumptions, to find R0 in Tompkins County in July, we need to find a number such that 16/(1−R0) = 31.449

Solving for R0 we get R0 = 1− (16/31) = 0.48.450

Finally, our third assumption above was too optimistic. In fact, some clusters that started in July due to known travel likely451

still had not finished infecting new people. In light of this, we increase our estimate of R0 to 0.75.452

I. Virtual Instruction. This section looks at the scenario of virtual instruction, where research-based graduate students are on453

campus and subject to mandatory testing and asymptomatic screening and other students are asked not to return. In this454

scenario, some of these students choose to return to Ithaca despite this request. Cornell has reduced ability to enforce behavior455

changes and regular asymptomatic screening as compared with the residential instruction setting.456

This section describes the methodology for selecting parameters for this virtual instruction scenario. In addition to the457

change in undergraduate and class-focused graduate student test compliance, which reflects Cornell’s reduced ability to enforce458

behavior changes among the returning undergraduate population, two sets of additional parameters are changed relative to the459

Cornell re-open scenario: the group sizes (Table S7) and the transmission rate matrix (Table S9).460

1. Group Sizes461

Table S10 gives the population size for each group for virtual instruction. We assume that the last three columns —462

Faculty/Staff not student-facing, Faculty/Staff off-campus, and Greater Ithaca — are independent of the policy change463

since the people in those groups are very likely to obey the same routines regardless of the scenario.464

Table S10. Group sizes for virtual instruction scenario.

Groups UG high UG low GS research GS class FS student FS not student FS off Greater Ithaca
Group size 0 3468 1594 1434 3598 1907 4778 62000

To estimate the population sizes for the student groups, we used results from a survey sent out on May 29, 2020 to all465

students enrolled at the time, while attending to two concerns:466

(a) Not all of the students who received the survey responded.467

(b) The survey result does not include students who would enroll in the fall of 2020 for the first time, namely rising468

undergraduate freshmen and new graduate students.469

For the first concern, since 71% of the undergraduates and 48% of the graduates responded, we assume these percentages470

generalize to the whole population. For the second concern, we will explain group by group how we handle it.471

• Undergraduate students:472

– For the UG high-density housing (“UG high”) group: we set the group size to be 0, since on-campus dorms473

would be closed.474

– For the UG low-density housing (“UG low”) group: the number is calculated from 11186*0.31=3486 where475

11186 is the number of undergrads surveyed and 31% is the percentage who responded “very likely” to return476

for a virtual semester. The number of survey recipients, 11186, does not include any of the incoming first year477

students. Using this number, we are implicitly assuming that no freshman students come to Ithaca under a478

virtual instruction scenario, which is conservative in the sense that it under-estimates unsurveilled students in479

this scenario.480
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• Graduate students:481

– There are two graduate student groups, GS class and GS research. In the residential scenario, these groups482

have population sizes 4921 and 3645, respectively.483

– From the May 29 survey results, we estimate that 53% of the graduate student population would return under a484

virtual instruction scenario. We assume this percentage applies evenly across both class-based and research-based485

graduate students.486

– We assume that 25% of research graduate students are first years, and 50% of class-based graduate students are487

first years. We assume that non-first-year students in each group are subject to the 53% return percentage,488

from which we obtain 4921× 0.5× 0.53 = 1304, and 3645× 0.75× 0.53 = 1449, corresponding to the number of489

non-first-year students who return to Ithaca from each of the GS class and GS research groups.490

– For the first-year graduate students in each group, we assume that the 53% likely-to-return proportion is reduced491

by a further 90% in the case of class-based students, and 70% in the case of research-based grad students. This492

gives a total of 4921× 0.53× 0.5× 0.1 = 130 and 3645× 0.25× 0.53× 0.3 = 149 first year graduate students493

returning to Ithaca in each of the groups.494

– Combining the above, we get 1434 class-based graduate students and 1594 research-based graduate students.495

• Faculty and Staff496

As we stated above, we assume faculty and staff behaviors are somewhat independent of the scenarios. Thus, we497

keep the faculty populations the same as an in-person semester in each group.498

2. Transmission Rate Matrix499

The transmission rates for virtual instruction are based on the transmission rates for residential instruction with some500

adjustments. As a reminder, transmission rate = contacts / day * 1.8% infectivity rate, and we assume that the interaction501

between faculty/staff within themselves and with the Greater Ithaca community does not depend on scenarios. The502

main idea for estimating transmission rates for virtual instruction is that class-based students would interact less with503

faculty and staff, but more with the Greater Ithaca community. Student interactions among themselves depend on their504

compliance with the behavioral compact (e.g., mask-wearing and social distancing) and housing density in Collegetown.505

We explain each of the transmission rates we have re-calculated below.506

• UG high507

– Since we assume no one in “UG high” will return, there is no transmission from this group to others.508

• UG low / GS class within-group509

– The virtual scenario has two competing effects: reduced density of transmissions due to fewer people on campus,510

and potential increase in transmissions due to Cornell’s reduced ability to enforce mask wearing, social gathering511

restrictions, and abundant asymptomatic testing.512

– First, we discuss the effect of social gathering and mask wearing. In the residential instruction scenario,513

we assumed that Cornell’s ability to legally mandate mask wearing and social gathering restrictions with a514

behavioral compact resulted in a 30% reduction in transmission between pre-social-distancing periods and515

a residential fall semester. Under virtual instruction, since Cornell will not be able to enforce a behavioral516

compact, we assume that this reduction in transmission (between the summer and a virtual fall semester) will517

be less than between the summer and residential instruction. While one might imagine that there would be no518

reduction in transmission between the summer and a virtual instruction fall given Cornell’s reduced ability to519

enforce a behavioral compact, we optimistically assume a 15% reduction. This has the effect of increasing the520

within-group transmission rates of “UG low” and “GS class” by a factor of (1-15%)/(1-30%) from the residential521

setting.522

– Second, Section 3.1 and Figure 4 of (33) suggest that the mortality rate of infectious diseases rises with523

population density up until population density reaches 200 people per square mile and then levels off. Below,524

we estimate that virtual instruction reduces the population density to roughly 2000 / square mile from roughly525

6000 / square mile under residential instruction. Although the literature thus suggests that there will be no526

reduction in transmissions due to virtual instruction relative to residential instruction, we conservatively assume527

that virtual instruction will result in a reduction of transmissions by 20%.528

– Population-density calculation: For the people who live in Ithaca, according to the percentage in Section A5,529

roughly 30% of the juniors, seniors and class-based graduate students who live in Collegetown are returning530

this fall. Moreover, we estimate that roughly 20% of Collegetown residents are not undergraduates and not531

class-based graduate students. Thus, in total the density in Collegetown is around (0.8*0.3+0.2*0.5)=0.34 of532

Collegetown residents are returning. Since the City of Ithaca has a living density of 5893 people per square533

mile, Collegetown has 5893*0.34=2004 people per square mile for the virtual instruction scenario.534

– Combining the two effects described above, we multiply the residential within-group transmission rate for “UG535

low” and “GS class” by a factor of (1-15%)/(1-30%) * (1-20%) = 0.9712536
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• UG low / GS class with faculty, staff and graduate students:537

– “UG low” and “GS class” will have much less interaction with “FS student” and “FS not student” since they do538

not need to see any professors in person. Thus, we assume the transmissions from any “UG low” and “GS class”539

person to on-campus faculty will drop to minimal to be the same as transmissions to any off-campus faculty.540

• UG low / GS class with Greater Ithaca:541

– A virtual semester that shuts down the campus including the dining halls would increase undergraduate542

interaction with Greater Ithaca for reasons like groceries and other necessary activities. However, “UG low”543

and “GS class” are unlikely to leave the Collegetown area very frequently. Therefore, a number larger than the544

transmission rate for UG low / GS class with Greater Ithaca in the residential instruction scenario but less than545

that of GS research would be a reasonable estimate. Thus, we set the transmission rate for UG low / GS class546

with Greater Ithaca to be a little over half of that of GS research with Greater Ithaca, the figures of which do547

not change from scenario to scenario.548

In summary, Table S11 gives the virtual instruction transmission matrix.549

Table S11. Virtual instruction transmission rate matrix for Cornell.

Groups UG high UG low GS research GS class FS student FS not student FS off Greater Ithaca
UG high 0 0 0 0 0 0 0 0
UG low 0 0.20 0.0018 0.0018 0.0009 0.0009 0.0009 0.0018

GS research 0 0.0039 0.072 0.0018 0.021 0.0009 0.0036 0.033
GS class 0 0.0043 0.0020 0.16 0.0009 0.0009 0.0009 0.0018

FS student 0 0.00087 0.0095 0.00036 0.018 0.0028 0.0054 0.029
FS not student 0 0.0017 0.00075 0.00068 0.0051 0.033 0.0036 0.029

FS off 0 0.00066 0.0012 0.00028 0.0040 0.0015 0.033 0.029
Greater Ithaca 0 0.0001 0.0008 0.0004 0.0016 0.00087 0.0021 0.064

J. Matrix Input for Simulation. We have previously described how we estimated transmission matrices for the Fall semester550

(Tables S9 and S11). These matrices represent the average number of new infections per day in the column group from each551

free and infectious person in the row group. Unfortunately, our code is not structured to directly take the transmission matrix552

as an input.553

Instead, it takes the so-called “interaction matrix” as an input, where the mean number of new infections in group i from554

group j in a day is given by555

p ∗ free_susceptible[i] ∗ interactions[i, j] ∗ free_infectious[j]/free_total[j]. [1]556

Here, p is the probability of transmission per interaction, interactions[i, j] is the value of the matrix inputted to the simulation557

at row i and column j, free_susceptible[i] is the number of free and susceptible individuals in group i, free_infectious[j]558

is the number of free and infectious individuals in group j, free_total[j] is the total number of free individuals in group j.559

Note that interactions[i, j] was intended to represent the number of contacts within group j by a single person in group560

i on a single day and free_infectious[j]/free_total[j] is the fraction of the free population in j that is infectious. Thus,561

the expected number of contacts that a free susceptible person in group i would have with a free and infectious person in562

group j would be interactions[i, j] ∗ free_infectious[j]/free_total[j]. We then multiply by the number of free susceptible563

individuals in group i and the probability of transmission upon contact to get the total number of contacts with infectious564

people in group j by free and susceptible people in group i. This recovers Equation 1.565

To convert the transmissions matrix (Tables S9 and S11) to the interaction matrix used as an input to our simulation, we566

will count in two ways the number of interactions between infectious people in group j and susceptible people in group i, and567

set them equal to each other.568

First, consider the infectious people in group j and count their interactions with people in group i. There are a to-569

tal of free_infectious[j] · transmissions[j, i] transmissions from group j to group i. This implies free_infectious[j] ·570

transmissions[j, i]/p total interactions with susceptible people in group i.571

The second way to count the number of interactions is starting with the susceptible population in group i which has a total572

of free_susceptible[i] · interactions[i, j] contacts with members of group j. Of these contacts the following fraction are573

with infectious people in group j, free_infectious[j]/free_total[j]. Therefore, there are a total of free_susceptible[i] ·574

interactions[i, j] · free_infectious[j]/free_total[j] interactions between infectious members of group j and susceptible575

members of group i.576

Setting these two expressions equal to each other and cancelling free_infectious[j] gives us transmissions[j, i] =577

p · interactions[i, j] · free_susceptible[i]/free_total[j]. Given low prevalence, we then assume that the susceptible and578

total free populations of each group are approximately their respective population sizes. This yields transmissions[j, i] =579

p · interactions[i, j] · population[i]/population[j].580
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2. Model Calibration581

This section describes the retrospective parameter estimation and model calibration after for the fall 2020 and spring 2021582

semesters. Sections A and B describe model calibrations for students and employees in the fall 2020 semester, respectively.583

Sections C and D describe model calibrations for students and employees in the spring 2021 semester, respectively.584

Parameter estimation relies on data from the following sources:585

• Aggregated de-identified positive-case, testing, and contact-tracing data collected during the semester and stored along586

with student life, housing, and employee data in a HIPAA-compliant database. This data was collected by Cornell to meet587

an urgent public health need while fighting the pandemic. This data was then aggregated and shared by the institution588

with the authors for research purposes. A determination was made by Cornell’s Institutional Review Board (IRB) that589

the use of this previously collected aggregated data for research does not constitute human subjects research.590

• Data in a publicly available report pursuant to the urgent public health need presented by the pandemic (4).591

The data sources for all parameters are summarized in Table S12.592

Table S12. Data sources of parameter estimates/calibration for the fall 2020 and spring 2021 semesters. “V” indicates that the data is obtained
from the HIPAA-compliant database; “P” indicates that data is obtained from the publicly available report.

Parameter name
Source for the
fall 2020 calibration

Source for the
spring 2021 calibration

Student
calibration

Population size P V
Observed trajectories P V
Arrival schedule V not used
Testing frequency V V
Test compliance V V
Outside infection rate P V
Contact matrix P V
Contact tracing effectiveness parameters V, P V
Initial prevalence V V

Employee
calibration

Observed trajectory P V
Testing frequency V V
Outside infection rate V V
Contact tracing effectiveness parameters V V

A. Model Calibration for Students in the Fall 2020 semester. We use a multi-group dynamic population simulation model for593

the student population, which consists of three subgroups:594

• Group 1: undergraduates, with Greek-life or varsity athletics affiliation;595

• Group 2: undergraduates, with no Greek-life or varsity athletics affiliation;596

• Group 3: graduate or professional students.597

We employ this population breakdown because we observe substantial differences in infections and contacts for these598

specific subgroups. We set August 16, 2020 - November 24, 2020 to be the time period for our calibration, as the majority of599

undergraduates left the greater Ithaca area at the time of the Thanksgiving holiday. We divide the time horizon into two600

non-overlapping periods: the pre-semester period (8/16/2020 - 9/2/2020) and the in-semester period (9/3/2020 - 11/24/2020).601

Here we describe the parameters estimated directly from fall 2020 data.602

Population Size We use students’ degree program information, Greek-life affiliation and varsity athlete rosters, and daily603

check-in data to divide students residing in Ithaca into 3 subgroups, obtaining the population sizes given by Table S13.604

Table S13. Sizes of the three student groups used in fall 2020 student calibration and projection.

Group Population size
1 (UG with Greek-life or varsity athletics affiliation) 3533

2 (Other UG) 8434
3 (Graduate and professional students) 6202

Arrival Schedule Arriving schedules for groups 1, 2 and 3 are determined based on the arrival dates indicated by students in605

their Fall semester checklist, and the move-in schedule for students living on campus.606
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Testing Frequency The model does not track individuals and their test schedules. Rather, each member of a population is607

assumed to test on a given day with a given probability.608

• Pre-semester period:609

– Groups 1-2: We divide the total number of non-arrival tests performed (3255) during the period by the total number610

of person days during the pre-semester period (127466) to estimate the testing frequency for the undergraduate611

students in the pre-semester period, to get 0.0255 per day per person, i.e., each person has one test on average every612

39 days.613

– Group 3: 0.614

• In-semester period:615

– Groups 1 and 2: 2/7 per day, corresponding to being tested 2x / week.616

– Group 3: 1/7 per day, corresponding to being tested 1x / week.617

The testing frequency during the in-semester period is consistent with the testing frequency for students assumed in the618

main simulation model.619

Test Compliance We estimate student test compliance to be 97.4%. This value is calculated based on the fraction of scheduled620

student surveillance tests completed over the course of the fall semester (including both on-time tests and those tests that were621

delayed but completed).622

Outside Infection Rate We consider a positive student case to be an outside infection if they satisfied both of the following623

conditions:624

• they did not test positive in an adaptive test, nor were they in the contact trace of other positive cases;625

• they had recent travel history;626

• they are not classified as an “arrival positive” case.627

Table S14 summarizes the number of outside infections in each group during the semester and the corresponding outside628

infection rate, which is the number of outside infections divided by (population size of the group × time horizon in days).629

Table S14. The number of outside infections in each group during the fall 2020 semester and the corresponding outside infection rate.

Group Outside infection case count Outside infection rate (per person, per day)
1 5 1.42E-5
2 6 7.11E-6
3 4 6.45E-6

Note that the period considered does not include the post-Thanksgiving period. During the post-Thanksgiving period,630

graduate students tested positive at a higher rate due to travel.631

Contact Matrix We define the daily transmission matrix T such that the value T (i, j) gives, for each infectious non-isolated632

non-quarantined positive in group i, the expected number of additional positives created in group j on a given day. It is difficult633

to estimate the daily transmission matrix directly from data because we do not observe for how many days an individual634

was positive. Instead, we aim to estimate the contact matrix M . The value M(i, j) in the contact matrix is the expected635

number of positive cases that an infectious individual in group i creates in group j over the course of his or her infection. We636

then assume that the average length of time an infectious individual in a given group spends circulating (i.e., not isolated or637

quarantined) during the fall semester does not depend on their group. Under this assumption, M is proportional to T . Below,638

in our calibration to observed infection counts during the fall semester, we estimate the proportionality constant, α, and then639

T = αM .640

To estimate the contact matrix, we make the following additional assumptions:641

• Each case identified through adaptive testing was generated by a source case in the same group.642

• All positives in the student population created by an infectious student are identified as a close contact of that student643

(even if they were originally identified and tested because of surveillance testing, symptoms, or adaptive testing).644

We first classify the student positives in the in-person semester (184 cases between 8/16/2020 and 11/24/2020) into source645

cases and secondary cases. Here, “secondary cases” include those identified via contact tracing or adaptive testing. The646

remaining cases, identified through surveillance testing, symptomatic self-reporting, arrival testing, or testing positive after647

returning from travel, are classified as source cases.648

Based on these assumptions, we estimate the contact matrix using the following methodology:649
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• We begin by identifying all positive cases in each group i. Let this be N(i).650

• For each group j, we count the number of positives in group j that were identified as a close contact of a person in group651

i. Let this be L(i, j). A positive who is a close contact of people in multiple groups is counted proportionally to the652

groups of the people that identified them as contacts. For example, a positive person in group 2 who is identified as a653

close contact of one person in group 1 and two people in group 2 would contribute 1
3 to L(1, 2) and 2

3 to L(2, 2).654

• For each group j, we additionally count the number of positive people that were identified through adaptive testing but655

were not identified as a close contact. In an abuse of notation, let this be L(j).656

• The value of M(i, j) is then (L(i, j) + 1{j = i}L(j))/N(i).657

We use identified contacts in producing these estimates. When contacts are not identified, this could distort the estimates.658

Assuming that contact tracing is equally effective for all source groups and “destination” groups, thus resulting in a constant659

fraction of contacts missed, the fact that we only use the matrix up to a multiplicative proportionality constant should ensure660

that the resulting error is controlled. The resulting contact matrix M is shown in Table S15.661

Table S15. The contact matrix M for the fall 2020 semester. Cell M(i, j) is the average number of positive cases in group j that an infectious
individual in group i creates over the course of his or her own infection.

Source cases group (counts) Average # positive contacts in Group 1 Average # positive contacts in Group 2 Average # positive contacts in Group 3
Group 1 (125) (81 + 11)/125 = 0.736 3.5/125 = 0.028 0
Group 2 (44) 1/44 = 0.023 (4.5 + 2)/44 = 0.148 1/44 = 0.023
Group 3 (15) 0 0 1/15 = 0.067

Contact Tracing Effectiveness Parameters Our stochastic compartmental model does not track individuals. Instead, it tracks the662

number of individuals in a collection of different states. This makes it difficult to simulate contact tracing at an individual663

level. Instead, our model relies on the following two parameters:664

1. cases_isolated_per_cluster: The number of positive cases isolated for each contact trace (which models both contact665

tracing and adaptive testing) initiated by a self-reporting symptomatic individual or one identified through surveillance666

testing.667

2. cases_quarantined_per_cluster: The number of negative cases quarantined for each contact trace initiated by a668

self-reporting symptomatic individual or one identified through surveillance testing.669

In the simulation, all infected individuals are considered to be isolated, even if we would not have known in reality that the670

individual was positive and would have initially placed them into quarantine.671

cases_isolated_per_cluster corresponds to the average number of secondary cases identified through an initiated trace672

from a positive case in real life. This can be estimated from the ratio of the number of secondary cases (105) to the number of673

source cases (79), which gives 1.329. In comparison, the effective cases_isolated_per_cluster assumed in the projections for674

the fall is 0.85/2 = 0.43, which is approximately 1/3 of the calibrated value. This in part explains the conservative projections675

for the fall.676

cases_quarantine_per_cluster can be estimated from the ratio of the number of negative cases identified in contact tracing677

(378) to the number of sources cases (79), which gives 4.785. Individuals identified in adaptive testing are not quarantined.678

In summary, our estimated parameters are679

• cases_isolated_per_cluster: 1.329;680

• cases_quarantined_per_cluster: 4.785.681

Initial Prevalence The model relies on an initial prevalence of free and infectious cases. The calibrated values are682

• Group 1: 5.77 average initial cases;683

• Group 2: 3.37 average initial cases;684

• Group 3: 0.685

For groups 1 and 2, we consider the initial free and infectious cases at the beginning of the simulation to be the union of686

those imported positive cases missed by the arrival test, and those secondary cases infected by arrival positives due to the lag687

between arrival and taking arrival tests.688

We determine the arrival positives based on whether the positive students tested positive on their first test. This produces689

11 cases, out of which 5 cases are in group 1, and 6 are in group 2.690

Then, we estimate the number of imported positive cases missed by the arrival tests based on the number of arrival691

positives, the sensitivity of the arrival testing (assumed to be 90% for nasopharyngeal sampling PCR test) for individuals in the692

post-exposure pre-convalescence infectious period and the probability that an infected person is in the exposed state and thus693
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not identifiable by a PCR test (estimated to be 0.2 based on state occupancy times in our model). Hence, for any positive case694

arriving in Ithaca, the probability that it is not identified by the arrival test is P (exposed state) + P (not in exposed state) ·695

(1− sensitivity) = 0.2 + 0.8× 0.1 = 0.28. This implies that for every arrival positive case, there are 0.28/(1− 0.28) = 0.39 free696

and infected cases acting as the initial cases in the simulation. In more detail, (# observed cases) = (1 − 0.28) · (# cases),697

and (# free and infectious cases) = 0.28 · (# cases), so (# free and infectious cases) = 0.28 · (# observed cases)/(1− 0.28) =698

0.39(# observed cases).699

Thus, the number of free and infectious cases created immediately are:700

• Group 1: 0.39× 5 = 1.95;701

• Group 2: 0.39× 6 = 2.34.702

Third, we estimate the number of secondary cases resulting from the arrival positives, due to the fact that students did not703

take their arrival test right upon arrival and hence could infect other students during the testing delay. This is obtained based704

on the contact matrix M (as described above), assuming that each arrival positive in group j infects M(i, j) individuals in705

group i.706

We summarize the number of secondary cases in each group below:707

• Group 1: 5× 92/125 + 6× 1/44 = 3.82;708

• Group 2: 6× 6.5/44 + 5× 3.5/125 = 1.03.709

In summary, the average number of initial cases in groups 1 and 2 are given below:710

• Group 1: 1.95 + 3.82 = 5.77;711

• Group 2: 2.34 + 1.03 = 3.37.712

For group 3, since we did not observe its first positive case after 8/16/2020 until 9/12/2020, we set the initial prevalence to713

be zero.714

Calibration Results We calibrate our model’s projected infections to the actual trajectory within 3 subgroups from 8/16/2020 -715

11/24/2020, as shown below. The total number of positive cases observed within the time period is described below and the716

trajectories are described in Figure S2.717

• Group 1: 120, excluding 5 arrival positives excluded;718

• Group 2: 38, excluding 6 arrival positives excluded;719

• Group 3: 15.720
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Fig. S2. Observed infections (excluding arrival positives) among students during the fall 2020 semester, shown for each of the three student groups.

Here we tune the parameter α in the simulation, i.e., the proportionality constant described in the contact matrix section721

above. For each value of α, we compute the mean squared error of the simulated results described as follows:722

• Let sim(t, i, j) denote the number of infections on day t in replication i for group j according to the simulation.723

• Let actual(t, j) denote the number of infections observed on day t for group j.724
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• Then, the error score associated with α is given by

err(α) =
∑

j∈{1,2,3}

T∑
t=1

(
1
N

N∑
i=1

sim(t, i, j)− actual(t, j)

)2

/T,

where N is the number of simulation replications and T is the simulation horizon.725

Figure S3 shows the log root mean-squared error of our model predictions versus α. We see that when α = 0.525, the lowest726

error score is obtained.727
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Fig. S3. For fall 2020, the log of the root mean-squared error (RMSE) of projected student infections versus α, the proportionality constant that multiplies the contact matrix to
obtain the daily transmission rate.

Figure S4 shows the simulated trajectories (25 in each group) when α = 0.525, in comparison to the actual trajectories for728

students cases in different subgroups.729
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Fig. S4. Observed infection trajectories for each student group, over the course of the fall 2020 semester, plotted along with stochastic sample trajectories from the simulation
under the estimated parameters.

B. Model Calibration for Employees in the Fall 2020 semester. To calibrate our model for faculty and staff we use a single-group730

simulation model consisting of all faculty and staff with population size 10283, and include all infections that occurred between731

August 16, 2020 and January 10, 2021.732

We have access to less detailed data about employees compared with students. In particular, we do not have access to733

contact tracing data for the fall semester. Understanding the difficulties of estimating inter-group transmission rates given734

a lack of contact tracing data, we elect not to partition the employee group (partitions considered included those based on735

county of residence or job type).736

Observing rising infection counts among faculty and staff after Thanksgiving, we decide to include December and early737

January in the period of interest. We divide the time horizon into two non-overlapping periods: the pre-semester period738

(8/16/2020 - 9/2/2020) and the period after (9/3/2020 - 1/10/2021).739

In place of contact tracing data, we leverage “cluster_ids” that were generated from manual review of employee cases.740

An employee case is assigned a cluster_id if that case is believed to be linked to at least one other case at Cornell, with all741

linked cases being assigned the same cluster_id. The use of the term “cluster” is perhaps misleading, since even pairs of742

positive cases that are linked through off-campus contact (often, two employees living together) are given a cluster id. These743

cluster ids allow us to estimate outside infections and cases_isolated_per_cluster. In most cases, evidence suggests that744

those individuals without a cluster id were infected through non-Cornell interaction. This evidence, when it exists, consists745

of information obtained from contact tracing (e.g., that there is known close contact with a positive non-Cornell-affiliated746

individual) or the lack of other cases at Cornell at similar times in parts of the employee population that would interact with747

the positive individual on campus.748

Here we describe the parameters estimated directly from fall 2020 data in the model calibration for employee group.749
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Testing Frequency 0 during pre-semester period; 0.098 per day after. (The latter value is an average across those tested once750

per week and those tested once every two weeks.)751

Outside Infection Rate We classify a case as an “outside infection” if they did not contract the virus through interactions752

with other Cornell cases. (Transmission from one Cornell case to another is not considered an outside infection, even if the753

transmission occurred away from Cornell’s campus.) To estimate the outside infection rate for Cornell employees (faculty/staff),754

we assume that755

• Cases without cluster_ids are outside infections;756

• Exactly one case in each identified cluster is an outside infection, while the remaining cases in the cluster are not outside757

infections.758

Based on these two assumptions, we have a simple formula for calculating the number of outside infections: (# cases without759

a cluster_id) + (# clusters). Below we summarize the outside infection counts during the specified time period.760

• 246 employee cases in total in the date range 8/16/2020 - 1/10/2021; 159 without a cluster_id; 25 distinct clusters.761

• # outside infections = 159 + 25=184 (74.8%); # non-outside infections = 62 (25.2%).762

• Average Daily outside infection rate: 184 / (# faculty and staff × 148 days) = 1.21E-4, i.e., in a population of 10,000763

people, we should expect to see 1.2 infections per day due to travel and interaction with the outside community.764

To address the rising trend in the number of employee cases, in the simulation we used a time-varying outside infection765

rate (measured in infections per day), which is computed by weekly faculty/staff outside infections divided by (# faculty and766

staff × 7 days). We assume that the outside infection associated with each cluster_id occurred during the week of the first767

identified case associated with that cluster_id.768

Contact Tracing Effectiveness Parameters Recall that our simulation quantifies the effectiveness of contact tracing through a769

parameter, cases_isolated_per_cluster, which is the number of cases isolated for each cluster traced. Cluster traces are770

initiated by the discovery of a self-reporting symptomatic individual or by a case found via surveillance testing.771

The number of positive cases isolated per contact trace is lower bounded by 0 and upper bounded by the average number772

of secondary positive cases per cluster. This is because it is only those cases in a cluster that can be linked through contact773

tracing. Here, we think of solo cases without a cluster_id as clusters of size 1.774

To estimate this upper bound, we average (cluster size - 1) across all clusters. There are 25 identified clusters with size > 1,775

containing 87 cases in total. There are 159 cases without a cluster_id. Therefore, the average cluster size is (87 + 159) / (25776

+ 159) = 1.34, and avg (cluster size - 1) is 0.34.777

We choose to use 0.34× 0.75 = 0.255, assuming that 75% of the people found in clusters among Cornell employees were778

found via contact tracing or adaptive testing, with another 25% found via symptomatic self-reporting or surveillance testing.779

This is based, in part, on the observation that a large fraction of Cornell employee clusters are among family members and780

these would almost always be found via contact tracing. We assume that it is rare for positives in the Cornell community to be781

found via contact tracing of people who are not part of the Cornell community.782

Thus, in summary, cases_isolated_per_cluster = 0.255.783

Outcomes are insensitive to the parameter cases_quarantined_per_cluster, which determines the number of negative784

individuals quarantined, because its only effect on infections is to reduce the number of susceptible people that can be infected.785

Given that the fraction of the population quarantined is small, it has little effect on outcomes over several orders of magnitude.786

Because information about employee quarantines was unavailable, we set it to 2.5, a value close to half of the value observed787

for students, since employees were observed to have fewer contacts than students.788

Calibration Results We calibrate our model’s projected infections to the actual trajectory from 8/16/2020 - 1/10/2021, which789

is shown in Figure S5.790
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Fig. S5. Trajectory of employee infections from 8/16/2020 to 1/10/2021, the period used for fall 2020 calibration.
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We then plot the log root mean-squared error (RMSE) between the observed trajectory and the average output of the
simulation, versus the parameter we wish to calibrate, which is the daily transmission rate (# of other Cornell employees
infected per day by a positive Cornell employee). Here, analogous to the error function used in the calibration for the student
groups, the mean squared error is given by

err(α) =
T∑
t=1

(
1
N

N∑
i=1

sim(t, i)− actual(t)

)2

/T,

where sim(t, i) is the number of infections on day t in replication i according to the simulation, actual(t) is the number of791

infections observed on day t, N is the number of simulation replications, and T is the simulation horizon. Note that many of792

these infections occurred between family members who are both Cornell employees but infected each other at home.793

Figure S6 shows the log RMSE versus employee transmission rate. We see in this figure that when the daily transmission794

rate is 0.11, the lowest log error is obtained. Thus, according to our calibrated model, each infectious employee infects 0.11795

other employees on each day they are infectious.796
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Fig. S6. For fall 2020, the log of the root mean-squared error (RMSE) of projected employee infections versus employee transmission rate.

Figure S7 shows 25 simulated trajectories when the daily transmission rate is 0.11, in comparison to the actual trajectory for797

faculty and staff cases. We observe that the observed case counts are reasonably well-represented by the simulation. Growth798

in cases during the semester is driven by an increase in outside infection rate rather than transmission within the Cornell799

population.800
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Fig. S7. Projections from our model (blue lines) using the calibrated daily transmission rate for the fall 2020 semester, compared with the observed infection trajectory (red line).

C. Model Calibration for Students in the Spring 2021 semester. We use a multi-group simulation model for the student801

population, which consists of four subgroups:802

• Group 1: undergraduates, with Greek-life or varsity athletics affiliation;803

• Group 2: undergraduates, with no Greek-life or varsity athletics affiliation;804

• Group 3: students in the MBA program;805
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• Group 4: graduate or professional students, non MBA.806

We employ this population breakdown because we observe substantial differences in infections and contacts for these specific807

subgroups. In particular, the population breakdown is different from that we used in the fall 2020 semester because we observe808

higher transmission rate and lower test compliance rate in the MBA student group. We set January 21, 2021 - May 25, 2021 to809

be the time period for our calibration. We divide the time horizon into two non-overlapping periods: the pre-semester arrival810

period (1/21/2021 - 2/7/2021) and the in-semester period (2/8/2021 - 5/25/2021).811

Here we describe the parameters estimated directly from spring 2021 data. We estimate many of these parameters using the812

same methodology described in Section A above, for which we directly report the results.813

Population Size We use the same methodology as in the fall 2020 calibration to obtain the population sizes, given by Table S16.814

Table S16. Sizes of the three student groups used in the spring 2021 student calibration and projection.

Group Population size
1 (UG with Greek-life or varsity athletics affiliation) 3329

2 (Other UG) 9033
3 (MBA students) 534

4 (Graduate and Professional Students, non MBA) 5227

Testing Frequency As is in the fall 2020 calibration, the model does not track individuals and their test schedules. Rather,815

each member of a population is assumed to test on a given day with a given probability. Table S17 describes the actual and816

scheduled testing frequencies in each student group during the spring 2021 semester. In certain student groups we observe that817

the actual testing frequency is higher than the scheduled testing frequency because students may seek to get additional tests818

even when they were not required to do so.819

Table S17. The testing frequency in each group during the spring 2021 semester and the corresponding test compliance rate.

Group
Average actual testing frequency

(# tests per day)
Scheduled testing frequency

(# tests per day)
Ratio of actual testing frequency
to scheduled testing frequency

1 0.355 3/7 0.828
2 0.285 2/7 0.998

3, on or before 3/26/2021 0.152 1/7 1.064
3, on or before 3/26/2021 0.241 2/7 0.844

4 0.148 1/7 1.036

Outside Infection Rate We use the same methodology as in the fall 2020 calibration to obtain the outside infection rate, given820

by Table S18.821

Table S18. The number of outside infections in each group during the spring 2021 semester and the corresponding outside infection rate.

Group Outside infection case count Outside infection rate (per person, per day)
1 7 1.68E-5
2 3 2.66E-6
3 3 4.49E-5
4 1 1.53E-6

Contact Matrix Recall that the (i, j) entry of a contact matrix is the average number of positive cases in group j that an822

infectious individual in group i creates over the course of his/her infection. To compute the contact matrix for spring 2021, We823

use a methodology similar to that of the fall 2020 calibration but make one minor modification. In the fall 2020 calibration, we824

assumed that the average time an infectious individual in a given group spends circulating (i.e., not isolated or quarantined)825

does not depend on their group membership. For the spring 2021 semester, we instead assume that the time an infectious826

individual circulates for is inversely proportional to his/her test frequency. That is, the more frequently an individual is tested,827

the less time he/she has to generate secondary infections. This assumption is necessitated due to the heterogeneity in testing828

frequencies across different groups in spring, and the fact that unlike in fall 2020, a significant fraction of the cases occurred829

among the graduate and professional students (Group 3 and Group 4) in spring 2021.830

We outline the steps of adjusting for the different testing frequencies in different groups when computing the contact matrix831

for spring 2021 calibration. Such adjustment would have minimal effect on the fall 2020 contact matrix, because infections832

were concentrated in the undergraduate population (Group 1 and Group 2) who were tested 2x/week.833

• Under the assumption above, those tested 3x/week had 1/3 less circulation time on average than those tested 2x/week,834

while those tested 1x/week had twice circulation time on average as those tested 2x/week.835

• Using 2x/week testing as a baseline, we adjust the number of positive contacts of cases in groups tested 3x or 1x/week so836

that they reflect the number of positive contacts over the same circulation time as those tested 2x/week.837
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In particular, we multiply the number of positive contacts by 1.5 for source cases in Group 1 (tested 3x/week throughout838

the semester) and by 0.5 for source cases in Group 4 (tested 1x/week throughout the semester). Students in Group 3 were839

tested 1x/week on or before 3/26/2021 and 2x/week after 3/26/2021, so the number of their positive contacts is scaled by 0.5840

in the first period and unscaled in the second period. The resulting adjusted contact matrix M for the spring 2021 semester is841

shown in Table S19.842

Table S19. The (adjusted) contact matrix M for the spring 2021 semester. Cell M(i, j) is the average number of positive cases in group j that
an infectious individual in group i creates over the course of his or her own infection.

Source cases group (counts)
Average # positive
contacts in Group 1

Average # positive
contacts in Group 2

Average # positive
contacts in Group 3

Average # positive
contacts in Group 4

Group 1 (194) 0.695 0.197 0 0.023
Group 2 (244) 0.074 0.285 0 0.004
Group 3 (66) 0 0 0.394 0.023
Group 4 (56) 0 0.018 0 0.076

Contact Tracing Effectiveness Parameters We use the same methodology as in the fall 2020 calibration to estimate the contact843

tracing effectiveness parameters, given below:844

• cases_isolated_per_cluster: 0.854;845

• cases_quarantined_per_cluster: 3.083.846

Initial Prevalence We first summarize the estimated average number of initial cases in each student group:847

• Group 1: 12.9 average initial cases;848

• Group 2: 55.5 average initial cases;849

• Group 3: 2.3 average initial cases;850

• Group 4: 20.3 average initial cases.851

These initial cases are assumed to spread uniformly over the pre-semester arrival period in our simulation.852

Below we describe in detail how we derive the average number of initial cases in each group, with results summarized in853

Table S20. We use a slightly different methodology than that in the fall 2020 calibration because unlike fall 2020, arrival testing854

was carefully planned at the beginning of the spring 2021 semester as part of the arrival process. In addition, a significant855

fraction of the student population stayed in Ithaca during the winter break and took regular surveillance testing.856

To model different behavior among students in taking their arrival tests, we partition students in each group into two857

categories: (1) those arriving from outside Ithaca and getting tested promptly upon arrival; (2) those arriving from outside858

Ithaca but not getting tested promptly, or those staying in the Ithaca over the winter break, taking regular surveillance testing859

but exempt from arrival tests. (See Table S20, col.a and col.d for the sizes of each category in each student group.)860

We consider the initial free and infectious cases at the beginning of the simulation to be the union of861

• those imported positive cases that received their first test promptly upon arrival but were missed by the arrival test862

(these cases belong to the first category);863

• those cases imported to the Ithaca community but not tested promptly upon arrival, and those local infections during864

the arrival period of the simulation (these two kinds of cases belong to the second category).865

First, we estimate the number of initial cases (Table S20, col.c) that belong to the first category. We infer the number of866

cases promptly tested upon arrival but missed by arrival tests from the observed arrival positive cases (Table S20, col.b). We867

classify a positive student case as an arrival positive case if it satisfies all of the following criteria:868

• The student tested positive on their first test since 1/21/2021;869

• The first (positive) test occurred between 1/21/2021 and 2/7/2021;870

• The case was identified via contact tracing (including adaptive testing);871

• The student was not in Ithaca during the winter;872

• The student completed their first test within 3 days of their arrival date indicated in the spring 2021 semester checklist.873

Then, based on the same methodology as in the fall 2020 calibration but assuming instead that the sensitivity of the arrival874

testing is 60% for AN sampling, we estimate that for every arrival positive case, there are 1.08 free and infected cases acting as875

the initial cases in the simulation. We assume that the arrival positive cases do not result in any secondary cases because they876

completed their first test upon arrival promptly.877
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Second, we estimate the number of initial cases that fall into the second category (Table S20, col.f). To do that, we calculate878

the prevalence level (including positive cases that were captured OR missed by arrival testing) among students that belong879

to the first category in each student group (Table S20, col.e). Then, assuming no heterogeneity in prevalence across the two880

categories of students, we estimate the number of positive cases among students in the second category by taking the product881

of the same prevalence estimate and the number of students in the second category. All of these positive cases in the second882

category are assumed to be part of the initial cases in the simulation.883

The average number of initial cases in each student group (Table S20, col.g) is then the sum of estimated number of initial884

cases in the first and second categories, respectively.885

Table S20. Average number of initial cases in each group for the spring 2021 semester.

Group
a: # students

in the
first category

b: #
arrival

positives

c: estimated #
positive cases

in the first
category

d: # students
in the

second
category

e: estimated
prevalence

f: estimated #
initial positives
in the second

category

g: average total
number of

initial positive
cases

1 2707 10 10.8 622 0.342% 2.1 12.9
2 7355 43 46.4 1678 0.541% 9.1 55.5
3 231 1 1.1 303 0.401% 1.2 2.3
4 1236 5 5.4 3991 0.375% 14.9 20.3

Calibration Results We calibrate our model’s projected infections to the actual trajectory within 4 subgroups from 1/21/2021 -886

5/25/2021, as shown below. The total number of positive cases observed within the time period is described below and the887

trajectories are described in Figure S8.888

• Group 1: 184, excluding 10 arrival positives;889

• Group 2: 201, excluding 43 arrival positives;890

• Group 3: 65, excluding 1 arrival positive;891

• Group 4: 51, excluding 5 arrival positives.892
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Fig. S8. Observed infections (excluding arrival positives) among students during the spring 2021 semester, shown for each of the four student groups.

As in the fall 2020 calibration, we tune the proportionality constant α so that it minimizes the log root mean-squared error893

of our model predictions.894

Figure S9 shows the log root mean-squared error of our model predictions versus α. We see that when α = 0.8, the lowest895

score is obtained.896
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Fig. S9. For spring 2021, the log of the root mean-squared error (RMSE) of projected student infections versus α, the proportionality constant that multiplies the contact matrix
to obtain the daily transmission rate.

Figure S10 shows the simulated trajectories (25 in each group) when α = 0.8, in comparison to the actual trajectories for897

students cases in different subgroups. The actual trajectory appears quite high in these plots partly because we calibrate the898

actual trajectory to the mean simulated trajectory, so high simulated trajectories carry significant weight.899
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Fig. S10. Observed infection trajectories for each student group, over the course of the spring 2021 semester, plotted along with stochastic sample trajectories from the
simulation under the estimated parameters.

D. Model Calibration for Employees in the Spring 2021 semester. The spring 2021 calibration for employees largely resembles900

the fall 2020 calibration. We use the same single-group simulation model consisting of all faculty and staff with population size901

10283, and include all infections that occurred between January 21, 2021 and May 25, 2021.902

Here we describe the parameters estimated directly from spring 2021 data in the model calibration for employee group.903

Testing Frequency 0.146 per person per day. The same methodology as in the fall 2020 calibration is used.904

Outside Infection Rate We use the same methodology as in the fall 2020 calibration to estimate outside infection rate. We905

continue to use time-varying outside infection rate (measured in infections per day) to address the heterogeneity in the number906

of outside infections across different weeks. The average daily infection rate over the entire simulation period is 9.9E-5, i.e., in907

a population of 10,000 people, we should expect to see 0.99 infections per day due to travel and interaction with the outside908

community.909

Contact Tracing Effectiveness Parameters We use the same methodology as in the fall 2020 calibration and obtain the estimate910

of the contact tracing effectiveness parameter cases_isolated_per_cluster = 0.035.911

Initial Prevalence We use an initial prevalence of zero among employees at the beginning of the spring 2021 semester. Although912

this likely underestimates the actual initial prevalence, we argue that the actual prevalence is low because employees took913
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regular surveillance tests (on average, 1x/week) even during the winter break. In addition, our outside infection rate estimates914

help to capture the cases imported to the Cornell community.915

Calibration Results We calibrate our model’s projected infections to the actual trajectory from 1/21/2021 - 5/25/2021, which916

is shown in Figure S11.917

Feb-01
Feb-15

Mar-01
Mar-15

Apr-01
Apr-15

May-01
May-15

Date

0

20

40

60

80

100

120
Cu

m
ul

at
iv

e 
Ca

se
 C

ou
nt

Faculty and Staff Cases

Fig. S11. Trajectory of employee infections from 1/21/2021 to 5/25/2021, the period used for spring 2021 calibration.

As in the fall 2020 calibration, we tune the daily transmission rate so that it minimizes the log root mean-squared error of918

our model predictions.919

Figure S12 shows the log RMSE versus employee transmission rate. We see in this figure that when the daily transmission920

rate is zero, the lowest error is obtained. This is expected because most of the employee cases in the spring 2021 semester are921

considered outside infections, which are captured by the outside infection rate parameter. Hence, for the simulated trajectories922

to match the actual trajectory, we expect minimal transmission among employees on campus.923
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Fig. S12. For spring 2021, the log of the root mean-squared error (RMSE) of projected employee infections versus employee transmission rate.

Figure S13 shows 25 simulated trajectories when the daily transmission rate is zero, in comparison to the actual trajectory924

for faculty and staff cases. We observe that the observed case counts are reasonably well-represented by the simulation. The925

simulated trajectories fail to capture some of the cases occurring at the beginning of the spring 2021 semester but predict the926

cumulative case count well.927
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Fig. S13. Projections from our model (blue lines) using the calibrated daily transmission rate for the spring 2021 semester, compared with the observed infection trajectory (red
line).

3. Parameter Uncertainty928

This section presents our methodology for quantifying the effects of uncertainty in model parameters and additional results929

from applying this methodology not presented in the main paper.930

We are specifically interested in the effect of parameter uncertainty on two outcomes: the safety of a residential semester as931

measured by the number of cases; and the relative safety of a residential semester compared to a virtual one, as measured by932

the difference in infections between these two instruction modes (residential infections - virtual infections). For both outcomes,933

a larger value is worse.934

To quantify these effects, we perform the following steps:935

1. Identify a set of key parameters and their associated uncertainty to define a (joint) prior distribution. There are 12 key936

parameters that govern the number of residential infections and an additional 4 parameters that govern the number of937

virtual infections. These 16 parameters and their corresponding 95% credible intervals are summarized in Table S21.938

2. Construct linear approximations of functions relating the input parameters to 1) the median number of residential939

infections, and 2) the difference in the median number of infections between residential and virtual instruction.940

3. Using the geometry of the prior distribution and the linear approximations constructed in Step 2, identify a family of941

1-dimensional parameter configurations with varying levels of pessimism. For each level of pessimism q, and each of the942

two outcomes (residential infections, residential - virtual infections) identify a set of parameter configurations whose943

median outcome is equal to the q-quantile of this outcome under the prior, as predicted by the linear approximation.944

Then, for each q, select as representative the configuration in this set with the largest density under the prior.945

A. Parameter Scenarios. We adapt ideas from robust optimization (34) to address parameter uncertainty, with the goal of946

identifying and understanding the worst possible outcome over the parameter configurations.947

We begin by constructing an uncertainty set derived from reasonable ranges for each parameter (see the “lower bound” and948

“upper bound” columns in Table S21). These ranges induce a natural central point in the space of parameter configurations,949

where each parameter takes the value at the midpoint of its range. We place a joint multivariate normal prior with independent950

marginals on the parameters with mean at the central point. We assume the range for each parameter given in Table S21 is a951

symmetric 95% credible interval, i.e., the true parameter value lies in this interval with 95% probability.952

The multivariate normal prior is used primarily for simplicity. We require a unimodal distribution with elliptical contours,953

the latter property of which permits straightforward calculation of pessimistic scenarios below. One could use other distributions954

with such contours, e.g., a multivariate t distribution. We chose the normal for simplicity and because the “core” of the prior955

distribution where most of the probability is concentrated, drives much of the analysis, which we believe is well captured956

through the normal prior. With a multivariate t with similar mean and spread we believe the outcomes would not have been957

substantially different. With regard to the issue about parameters potentially falling outside of meaningful ranges, such as the958

issue of non-negativity, we use rejection sampling to ensure that all sampled parameters fall within their meaningful range.959

Hence, the actual prior is a truncated multivariate normal distribution. Still, the exact form of the prior is arguable. To be960

more precise in what follows, we define the following notation:961

• x ∈ Rn: vector of parameters; n = 12 for the residential case and n = 16 for the residential-virtual case.962

• LBi, UBi: lower and upper bound of parameter i, as specified in Table S21. By assumption, (LBi, UBi) is a symmetric963

95% credible interval for parameter i and parameters are mutually independent under the prior.964
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Table S21. Parameter ranges. The first twelve are for the residential investigation; the last four are additional parameters for the virtual case.
The last parameter, “virtual population size”, is standardized to [0,1] which linearly interpolates between the lower and upper bounds.

Parameter Meaning Lower bound (LB) Upper bound (UB) Justification for choice of range
Asymptomatic
probability multi-
plier

Multiplier applied to P (asymptomatic) for
each group, other severity levels scaled
accordingly

24/47 70/47 CDC planning scenarios range: (15%,
70%), we use upper bound from here and
our estimate of 47% for US population to
define range.

Initial prevalence
multiplier

Multiplier applied to initial prevalence 0.5 1.5 Base estimate uses 10x under-reporting
rate. Estimate at the time for most states
was 6-10x, with a max of 23x. Our
reasonable aggregate estimate is 5-20x
under-reporting.

R0 The baseline transmission rate of the dis-
ease is calibrated to an estimate of R0

1 4 CDC planning scenarios indicated the
best guess was 2.5 (center) and pes-
simistic estimate was 4 (upper bound).

Outside infection
multiplier

Multiplier applied to outside infection rate 0.5 1.5 Reasonable range representing our un-
certainty.

Daily self-report
probability

Daily probability that symptomatic person
will self-report

0.22 0.5 Lower bound estimate from CDC time for
seeking care for flu (12). This is likely
pessimistic due to public awareness. A
reasonable upper bound is people report-
ing symptoms within 2 days on average.

Contact tracing
multiplier

Multiplier on the effectiveness of contact
tracing

1 2 Base estimate is from contact tracing ef-
fectiveness in Ithaca in the summer 2020.
During the semester, we expect contact
tracing to be slightly more effective (e.g.
adaptive testing).

Contact tracing
testing ratio

Number of individuals identified per con-
tact trace from surveillance testing posi-
tive relative to a symptomatic self-report

0.5 1.5 Our baseline estimate is that contact trac-
ing should be as effective in both scenar-
ios. We construct a reasonable range
with center 1.

Test sensitivity Sensitivity of surveillance tests 0.4 0.8 Reasonable range based on our group
testing protocol.

Test non-
compliance

Probability a surveillance test will be
skipped

0.05 0.15 All students signed a behavioral compact,
giving the university the ability to enforce
compliance.

Exposed time
(days)

Expected time in Exposed state 1 3 Reasonable range based on disease pro-
gression.

Infectious time
(days)

Expected time in Infectious state 2 4 Reasonable range based on disease pro-
gression.

Symptomatic time
(days)

Expected time in Symptomatic / Asymp-
tomatic state

11 13 Reasonable range based on disease pro-
gression.

Persistent non-
compliance

Percent of students in a virtual scenario
who would not enroll in the surveillance
testing program

0.25 0.75 Since Cornell would have limited enforce-
ment options, many students may not
inform the university that they have re-
turned to Ithaca.

Intermittent non-
compliance

In a virtual scenario, percent of sched-
uled surveillance tests that will be
skipped

0.25 0.75 The percent of surveillance tests being
skipped will be higher than under the res-
idential scenario since the university has
limited enforcement.

Virtual transmis-
sions per Day

Ratio of the transmission rate of students
for the virtual scenario relative to the res-
idential scenario

0.97 1.5 Due to the university’s limited enforce-
ment of masking, social distancing and
testing, there will likely be an increase in
transmission among students. The lower
bound of 0.97 is explained in the virtual
instruction section.

Virtual population
size

The number of returning undergraduate
and class based graduate students

0 (4500 UGs,
4770 GS other)

1 (7950 UGs,
5850 GS other)

Based on survey results of students.
Lower bound is from proportions that
replied “very or somewhat likely to re-
turn”, upper bound students who an-
swered “it depends / undecided”.
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Fig. S14. Contours of the prior of the 12 parameters for the residential setting projected onto the space spanned by c (red arrow) and Σc (blue arrow). Without loss of
generality, we align the vertical axis with the direction of c. The green line represents the hyperplane A(y∗) = {x : c0 + cT x = y∗}, which is perpendicular to c. The red
dot represents x(y∗), the unique point in A(y∗) that lies on the line through µ in the direction Σc.

• Σ = [σij ]: the covariance matrix used in our multivariate normal prior. The components are specified by

σij =
{
σ2
i if i = j,

0 otherwise.

Each standard deviation σi is derived from the range (LBi, UBi) that we assume for parameter i. By virtue of assuming965

this range defines a 95% credible interval and assuming a normal prior, the range is related to the standard deviation by966

the equality 1
2 (UBi − LBi) = 1.96σi.967

• µ = [µi]: the mean of our multivariate normal prior, as well as the central point of our parameter ranges. µi = 1
2 (LBi+UBi)968

for i = 1, . . . , 12.969

Next we consider the development of the linear approximations. As described above, we are interested in two outcomes.970

The first outcome is the number of cases in a residential semester. The second outcome is the number of residential infections971

minus the number of virtual instructions. In both settings, the outcome is worse at larger values.972

To estimate the outcome over the parameter space, we sample 2000 parameter vectors using Latin hypercube sampling over973

the hypercube defined by all 16 ranges. For each parameter vector, we run 50 residential and virtual semester simulations and974

calculate the median value of the outcome of interest. We then construct a linear approximation, c0 + cTx, of the median,975

using linear regression on the corresponding 12 or 16 parameters of interest (x). The coefficients and standard error for each976

parameter in the linear regressions are presented in Tables S22 and S23.977

To summarize uncertainty, we develop a one-dimensional family of parameter configurations associated with increasingly978

pessimistic outcomes. For each y ∈ R, we consider the set A(y) of parameter configurations whose expected outcome under979

the fitted linear model is equal to y. By construction, such sets {A(y), y ∈ R} are hyperplanes normal to c and partition the980

parameter space into two half-spaces. We find y∗ such that the associated half-space, over which the expected outcome under981

the linear model is less than or equal to y∗, contains a prior probability mass of 0.99. We then determine the pessimistic982

configuration by selecting the representative point in A(y∗) with the highest prior density. Figure S14 provides a visualization983

of this setup that may prove helpful in interpreting the following more precise explanation of how we summarize uncertainty.984

For any y ∈ R, the set of parameter configurations with expected outcome equal to y under the linear model is the hyperplane

A(y) = {x : c0 + cTx = y}.

Consider the half-space defined by this hyperplane over which the expected outcome under the linear model is less than or equal
to y, {x : c0 + cTx ≤ y}. Let q(y) = P (c0 + cTX ≤ y) be the prior probability mass in this half space, where X ∼ N (µ,Σ).
Let y∗ be such that q(y∗) = 0.99, so that y∗ is such that the median outcome is less than y∗ with prior probability 0.99. To
find y∗, recall that X ∼ N (µ,Σ), so c0 + cTX ∼ N (c0 + cTµ, cTΣc), and then

P (c0 + cTX ≤ y∗) = 0.99

⇐⇒ P (c
TX − cTµ− c0√

cTΣc
≤ y∗ − cTµ− c0√

cTΣc
) = 0.99

⇐⇒ y∗ − cTµ− c0√
cTΣc

= Φ−1(0.99)

⇐⇒ y∗ = Φ−1(0.99)
√
cTΣc+ cTµ+ c0.
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Let x(y∗) be the point with the largest prior density in the hyperplane A(y∗). We claim that x(y∗) is the unique point985

in A(y∗) lying on the line through µ in the direction Σc, that is x(y∗) ∈ {µ+ λΣc : λ ∈ R}. Why? Maximizing the density986

over A(y∗) is equivalent to minimizing the quantity (x− µ)TΣ−1(x− µ) over all x ∈ A(y∗), i.e., over all points x satisfying987

c0 + cTx = y∗. To find the optimum, define the Lagrangian L(x; η) = (x− µ)TΣ−1(x− µ)− η(c0 + cTx− y∗); the optimum988

is characterized by the equation ∇xL(x; η) = 0, for some Lagrange multiplier η ∈ R. The gradient of the Lagrangian is989

∇xL(x; η) = 2Σ−1(x−µ)− ηc, so the optimal point is given by x(y∗) = µ+ η
2 Σc, which is on the line through µ in the direction990

Σc as originally claimed.991

We can thus find x(y∗) as the unique point in the intersection of the hyperplane A(y∗) and the ray {µ+ λΣc : λ ∈ R}. We992

find that λ = Φ−1(0.99)/
√
cTΣc, and so the pessimistic point is given by993

x(y∗) = µ+ Φ−1(0.99)√
cTΣc

Σc. [2]994

We follow this same approach to create a range of parameter scenarios with varying levels of pessimism q ∈ (0, 1), by
substituting q for 0.99 in the derivation above. We refer to the resulting parameter scenario as the q-quantile pessimistic point,
and (in an abuse of notation) denote it as x(q). The expression for this parameter scenario is obtained by substituting q for
0.99 in Equation 2:

x(q) = µ+ Φ−1(q)√
cTΣc

Σc.

This parameter scenario is such that the prior probability is q of seeing a parameter configuration with fewer infections than995

x(q), assuming that the simulator’s response is given by the fitted linear model.996

Figure S15 shows the level-0.99 pessimistic scenarios where the outcome is the number of infections in a residential semester997

(12 parameters) and the difference in the number of infections between a residential and virtual semester (16 parameters),998

respectively.999

B. Assessing Pessimism Level of Parameter Scenarios. We use the term “true pessimism level” of a scenario to refer to the1000

probability under the prior of drawing a parameter configuration whose infections are worse than this scenario. The q-pessimistic1001

scenarios described above were obtained assuming that the simulator response follows the fitted linear model, while in reality1002

the simulator’s response may be non-linear in the model parameters and parameters may interact in ways not captured by the1003

linear model. Thus, the true pessimism level of a q-pessimistic scenario might not be q.1004

In this section, we support the claim that the true pessimism level of a q-pessimistic scenario actually is typically close to q,1005

justifying their use.1006

We focus on the residential outcome, where there are 12 parameters. For each parameter configuration x(q) with q ranging1007

over q ∈ {0.01, 0.05, 0.1, · · · , 0.9, 0.95, 0.99}, we run 20 simulation replications and record the median number of infections in a1008

residential semester, which we denote as ŷ∗(q).1009

Then, to estimate true pessimism levels, we sample N = 1000 parameter configurations from the 12-dimensional multivariate1010

normal prior. For each sampled parameter configuration xi, we run 20 simulation replications and record the median number1011

of infections yi in a residential semester. We let Y = {yi}1000
i=1 denote the set of median simulation outcomes. Note that Y1012

does not depend on any modeling assumptions of the way simulation outcomes depend on parameter configurations such as1013

linearity.)1014

Next, for each q, we use Y to estimate the true pessimism level of x(q), denoted by r(q). This is the fraction of outcomes1015

(median infections) in Y that are smaller than the outcome at x(q). Mathematically, r(q) = |{yi ∈ Y : yi ≤ ŷ∗(q)}|/N , where1016

| · | denotes the cardinality of a set. If r(q) is close to q, then the pessimism level q claimed relying on the linear model is close1017

to the actual pessimism level r(q) of the resulting scenario.1018

Figure S16 shows the estimated values of r(q) vs. q. For all values of q evaluated, the deviation of r(q) from q is within a1019

small range. In particular, r(q) and q match each other well for q close to 1. This demonstrates that the true pessimism level1020

associated with the 99% pessimistic point x(y∗) is close to 99%.1021
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Fig. S15. Plot depicts the relative parameter values of both pessimistic scenarios.

C. Scenarios from June 2020 report. As noted in Sections 1B and 1E of the paper, the nominal scenario reported here differs1022

from the one reported in our June 2020 report (1). The 2020 nominal scenario was developed under time pressure and was1023

intended to play a central role in the thinking of decision makers. It was therefore chosen to be somewhat conservative (meaning1024

erring on the side of increased infections) with regard to a number of key parameters, especially contact-tracing parameters, as1025

opposed to the nominal scenario presented here that is instead meant to represent our best estimate of the parameter values.1026

Except for those key parameters, the 2020 nominal scenario resembles the nominal scenario reported here. The 2020 report1027

also defined optimistic and pessimistic scenarios that, likewise, do not coincide with scenarios presented here. Table S24 lists1028

the parameters for the scenarios explored in the 2020 report. See, also, Table S25.1029
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Fig. S16. For each pessimism level q, a model-free simulation-based estimate of the probability r(q) under the prior of having a parameter configuration whose median number
of infections is worse than the median number of infections under the pessimistic scenario x(q) with pessimism level q. The scenario x(q) assumes that the simulator’s
response is linear in the parameters and so r(q) may differ from q. The data pictured here suggests that r(q) is close to q despite non-linearities in the simulator’s response to
parameters. Estimates of r(q) were calculated at q = 0.01, 0.05, 0.1, · · · , 0.9, 0.95, 0.99.
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Table S22. Fitted linear coefficient and computed pessimistic value for the residential instruction scenario.

Parameter Linear coefficient Std. Err P > |t| Coef × range Pessimistic value
Regression const 1014.7 429.2 0.018
Asymptomatic prob multiplier 570.5 61.0 0.000 558.3 1.18
Initial prevalence multiplier 184.4 59.8 0.002 184.4 1.06
R0 409.1 19.9 0.000 1227.3 3.72
Outside infection multiplier 86.7 59.5 0.146 86.6 1.03
Daily self-report probability -623.0 213.0 0.003 -174.4 0.34
Contact tracing multiplier -659.7 59.6 0.000 -659.7 1.28
Contact tracing testing ratio -571.2 59.6 0.000 -571.2 0.81
Test sensitivity -1771.7 149.2 0.000 -708.7 0.51
Test non-compliance 1855.8 596.4 0.002 185.6 0.11
Exposed time (days) -19.7 29.8 0.510 -39.3 1.97
Infectious time (days) 89.9 29.8 0.003 179.8 3.12
Symptomatic time (days) -2.3 29.8 0.939 -4.6 12.0
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Table S23. Fitted linear coefficient and computed pessimistic value for residential - virtual infections.

Parameter Linear coefficient Std. Err P > |t| Coef × range Pessimistic value
Regression const 19870 827.5 0.000
Asymptomatic prob multiplier -4341.5 109.3 0.000 -4249.2 0.74
Initial prevalence multiplier -119.8 106.9 0.263 -119.8 0.99
R0 -2493.7 35.6 0.000 -7481.1 1.11
Outside infection multiplier 6.1 106.7 0.954 6.1 1.00
Daily self-report probability 2645.8 380.6 0.000 740.8 0.37
Contact Tracing multiplier 951.1 106.6 0.000 951.1 1.56
Contact Tracing testing ratio 92.4 106.8 0.387 92.4 1.00
Test sensitivity 184.9 267.0 0.489 74.0 0.60
Test non-compliance 2769.7 1066.2 0.009 277.0 0.10
Exposed time (days) -24.5 53.3 0.645 -49.1 1.99
Infectious time (days) -538.2 53.2 0.000 -1076.4 2.87
Symptomatic time (days) -261.6 53.3 0.000 -523.2 11.94
Persistent non-compliance -3474.3 213.4 0.000 -1737.1 0.45
Intermittent non-compliance -2218.5 213.0 0.000 -1109.2 0.47
Virtual transmissions per Day -5522.9 201.0 0.000 -2927.1 1.14
Virtual population size -1207.2 106.9 0.000 -1207.2 0.43
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Table S24. Parameter values for scenarios used in summer 2020 analysis. In this analysis the daily self-report probability should have been
0.22, but we used 0.18 due to a calculation error.

Parameter 2020 Optimistic 2020 Nominal 2020 Pessimistic
Asymptomatic prob multiplier 1 1 1
Initial prevalence multiplier 1 1 1
R0 1.75 2.5 3.25
Outside infection multiplier 1 1 1
Daily self-report probability 0.18 0.18 0.18
Contact tracing multiplier 1 1 1
Contact tracing testing ratio 0.5 0.5 0.5
Test sensitivity 0.7 0.6 0.5
Test non-compliance 0.1 0.1 0.1
Exposed time (days) 2 2 2
Infectious time (days) 3 3 3
Symptomatic time (days) 12 12 12
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D. Comparison of Prior to Calibrated Outcomes. Table S25 summarizes key parameter differences between fall 2020 nominal,1030

fall 2020 pessimistic, summer 2020 nominal and calibrated fall 2020 scenarios. The calibrated fall 2020 scenario includes1031

parameter values that were directly estimated according to data from Fall 2020 or calibrated based on both our simulation1032

model and data. Below we summarize how the 5 calibrated values compared to our prior range.1033

• Transmissions per day: The students with the highest transmission rate (those with Greek-life or varsity athletics1034

affiliation) were within our prior range for transmissions. However, we overestimated the transmission rate for the1035

remaining students.1036

• Cases found per contact trace: the effectiveness of contact tracing was very close to our nominal estimate.1037

• Initial prevalence: The students with the highest initial prevalence (those with Greek-life or varsity athletics affiliation)1038

were within our prior range for initial prevalence. However, we overestimated the initial prevalence for the remaining1039

groups.1040

• Outside infection rate: In the calibrated model, our definition for outside infection rate changed since we no longer1041

explicitly modeled an Ithaca sub-population. Therefore, in the calibrated model an outside infection corresponds to any1042

infection that originates outside the Cornell community. In all other scenarios, an outside infection refers to an infection1043

from outside the Cornell or Ithaca community. Therefore, our prior range does not map conveniently to the calibrated1044

definition.1045

• Test compliance for students: We underestimated the test compliance among students.1046

Since the groups changed between the uncertainty analysis and calibrated scenarios, some of the original 12 parameters in1047

the uncertainty analysis are not appropriate for describing the calibrated scenario. For example, we used an outside infection1048

multiplier to adjust all outside infection rates together in our uncertainty analysis. However, during our calibration, we arrived1049

at group-specific rates which could not be mapped back to a single multiplier value. Therefore, we have replaced some of the1050

12 uncertainty parameters with new parameters that describe the same quantity (typically in different units).1051

As articulated in the faculty and staff calibration section, we assume that test compliance among this group is 1. This1052

is because in the calibration for this group the testing frequency was directly estimated from data, which implies perfect1053

compliance in the calibration simulations. Lastly, we used 0.18 as the daily self-report probability in summer 2020 scenarios1054

because of a calibration error.1055

Table S26 summarizes the key calibrated parameters from the fall 2020 and spring 2021 semesters. The transmission rate1056

and initial prevalence are higher in the spring 2021 semester than in the fall 2020 semester due to the new virus variants,1057

COVID fatigue, increased social gatherings, etc.1058

36 of 51 P. I. Frazier, J. M. Cashore, N. Duan, S. G. Henderson, A. Janmohamed, B. Liu, D. B. Shmoys, J. Wan, and Y. Zhang



Table S25. Summary of key parameter differences between fall 2020 calibrated, fall 2020 nominal, fall 2020 pessimistic (residential), and
summer 2020 nominal scenarios. Blue indicates values calibrated directly to data and purple shows values calibrated via simulation. All
remaining values are determined by assumption.

Parameter Fall 2020 calibrated Prior range Fall 2020 nominal Fall 2020 pessimistic
(residential)

Summer 2020 nominal

Transmissions
per day

0.3742 (Greek + Athlete)
0.0867 (UG other)

0.0441 (GS)
0.11 (Faculty / Staff)

0.1217-0.4869 (UG Dorm)
0.0878-0.3512 (UG Off)
0.0528-0.2110 (GS re-
search)
0.0726-0.2906 (GS class)
0.0705-0.2819 (FS stu-
dent)
0.0328-0.1310 (FS not stu-
dent)
0.0297-0.1187 (FS off)

0.3043 (UG Dorm)
0.2195 (UG Off)

0.1319 (GS research)
0.1816 (GS class)

0.1762 (FS student)
0.0819 (FS not student)

0.0742 (FS off)

0.4291 (UG Dorm)
0.3095 (UG Off)

0.1860 (GS research)
0.2561 (GS class)

0.2622 (FS student)
0.1219 (FS not student)

0.1104 (FS off)

0.3043 (UG Dorm)
0.2195 (UG Off)

0.1319 (GS research)
0.1816 (GS class)

0.1762 (FS student)
0.0819 (FS not student)

0.0742 (FS off)

Cases found
per contact
trace

1.329 0.92 - 1.84 1.38 1.214 0.92

Contact trac-
ing testing ra-
tio

1 0.5-1.5 1 0.84 0.5

Initial preva-
lence

0.163% (Greek + Athlete)
0.040% (UG other)
0 (GS + Faculty / Staff)

0.095% - 0.285% (UG +
GS class)
0.0575% - 0.1725% (GS re-
search)
0.04% - 0.12% (Faculty /
Staff)

0.19% (UG + GS class)
0.115% (GS research)
0.08% (Faculty / Staff)

0.20% (UG + GS class)
0.121% (GS research)
0.084% (Faculty / Staff)

0.19% (UG + GS class)
0.115% (GS research)
0.08% (Faculty / Staff)

Asymptomatic
probability
multiplier

1 24/47-70/47 1 1.18 1

Outside infec-
tion rate

1.42× 10−5 (Greek + Ath-
lete)
7.11× 10−6 (UG other)
6.45× 10−6 (GS)
Weekly rate calibrated to
data (Faculty / Staff)

0.6× 10−5 − 1.8× 10−5 1.2× 10−5 1.27× 10−5 1.2× 10−5

Daily self-
report proba-
bility

0.36 0.22-0.5 0.36 0.34 0.18

Test sensitiv-
ity

0.6 0.4-0.8 0.6 0.51 0.6

Test compli-
ance

0.974 (Students)
1 (Faculty / Staff)

0.85-0.95 0.9 0.89 0.9

Exposed
time

2 1-3 2 1.97 2

Infectious
time

3 2-4 3 3.12 3

Symptomatic
time

12 11-13 12 12.0 12
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Table S26. Summary of key calibrated parameters from the fall 2020 and spring 2021 semesters. Transmission rate was calibrated via
simulation and all other parameters were calibrated directly from data.

Parameter Fall 2020 Spring 2021

Transmissions per day

0.37 (Greek + Athlete)
0.09 (UG other)

0.04 (GS)
0.11 (Faculty / Staff)

0.62 (Greek + Athlete)
0.40 (UG other)

0.32 (MBA)
0.10 (GS other)

0 (Faculty / Staff)
Cases found per contact trace 1.329 0.854

Initial prevalence
0.163% (Greek + Athlete)

0.040% (UG other)
0 (GS + Faculty / Staff)

0.388% (Greek + Athlete)
0.614% (UG other)

0.431% (MBA)
0.388% (GS other)
0 (Faculty / Staff)

Outside infection rate

1.42× 10−5 (Greek + Athlete)
7.11× 10−6 (UG other)

6.45× 10−6 (GS)
Weekly rate calibrated to data (Faculty / Staff)

1.68× 10−5 (Greek + Athlete)
2.66× 10−6 (UG other)

4.49× 10−5 (MBA)
1.53× 10−6 (GS other)

Weekly rate calibrated to data (Faculty / Staff)

E. Sensitivity Analysis for Individual Parameters. This section includes sensitivity analysis for model inputs. For the first 121059

parameters, we show the sensitivity of residential infections and for the final 4 we show the sensitivity for virtual infections.1060
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(f) Contact tracing effectiveness

Fig. S17. Each plot depicts the 50th percentile of infections, with a wider range corresponding to the 10-90th percentile range, as the stated parameter varies, for both the
nominal and pessimistic (residential) scenarios.
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(a) Contact tracing effectiveness for surveillance testing positives
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(c) Test non-compliance rate
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Fig. S18. Each plot depicts the 50th percentile of infections, with a wider range corresponding to the 10-90th percentile range, as the stated parameter varies, for both the
nominal and pessimistic (residential) scenarios.
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Fig. S19. Each plot depicts the 50th percentile of virtual instruction infections, with a wider range corresponding to the 10-90th percentile range, as the stated parameter varies
for the nominal scenario. Non-monotonicity is due to simulation error.

F. Correlation of Infection and Hospitalization metrics. In this section, we present graphs that demonstrate that the simulated1061

number of Cornell infections is positively correlated with the number of Ithaca infections and Cornell and Ithaca hospitalizations.1062

Due to this correlation, we use the number of Cornell infections as our primary metric.1063

In Figure S20, each point corresponds to a parameter vector sampled from the prior described earlier in this section.1064
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Fig. S20. Plot depicts the correlation of alternative metrics (Cornell hospitalizations, Ithaca hospitalizations, Ithaca infections) with the number of Cornell infections for parameter
vectors sampled from the prior distribution.
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4. Bayesian Analysis for Fall 2021 Projections1065

This section describes how we use our model to explore the interventions needed in the fall 2021 semester. We leverage1066

information gathered from fall 2020 to the present and adjust for changes such as the Delta variant and vaccination level.1067

Then, we perform a Bayesian analysis on the key uncertain parameters. To obtain the prior, we place ranges on each of these1068

parameters, which then induce a prior using the same methodology for modeling the fall 2020 semester. We then sample1069

parameters from the prior, run simulations at each parameter configuration, and approximate the posterior distribution using1070

a heuristic choice of likelihood function. Sampling parameters from the approximated posterior distribution and simulating1071

trajectories based on these sampled parameter configurations provides potential epidemic outcomes for the fall 2021 semester.1072

A. Parameter Adjustments. To model the spread of COVID-19 at Cornell in Fall 2021, we use the calibrated parameters from1073

Fall 2020 and make the following adjustments:1074

1. Delta adjustment: We increase the transmissibility of the virus by a factor of 2.5 because of the delta variant. This factor1075

is estimated based on the estimated R0 of 5-7 for the delta variant (35) and the estimated R0 of 2.5 for the original1076

strain (11). Taking the middle value of the R0 range for the delta variant and dividing it by the R0 for the original strain1077

gives 2.4. We use a slightly more pessimistic value of 2.5 as our estimate.1078

2. Initial Prevalence: we estimate a range for initial prevalence in each student group as described below.1079

3. We assume that 95% of students are vaccinated. This is lower than the student vaccination rate in steady state during1080

the bulk of the semester, once student vaccinations upon arrival are complete. Vaccination decreases the probability that1081

a person becomes infected when exposed and also decreases the rate at which they infect others when infected. The1082

precise effect of the vaccine is uncertain and is controlled through two parameters described below.1083

4. The outside infection rate and number of contacts per day are increased relative to fall 2020 because of a relaxation in1084

pandemic restrictions and changing attitudes to risk.1085

5. Contact tracing effectiveness (the number of positives isolated per contact trace) is altered because of a change to1086

quarantine and isolation protocols (asymptomatic vaccinated close contacts are not quarantined) and because of the1087

challenges presented to contact tracers by relaxation of social distancing and the increase in contacts it creates.1088

6. On August 29, 2021 the university changed policies and the simulation reflects these changes.1089

• Delay in processing tests was reduced from 2 days to 1 day.1090

• At the beginning of the semester, all vaccinated students were tested once a week and unvaccinated students were1091

tested twice a week. The testing policy was updated so that all greek-affiliated students and varsity athletes were1092

tested twice a week.1093

7. Add new parameters to reflect vaccination and the impact of relaxing social distancing. The parameters are detailed in1094

Table S27.1095

B. Parameter Range Justification. We identify the key parameters with uncertainty and place ranges on each of these parameters,1096

summarized in Table S27.1097

Vaccine Susceptibility Multiplier We collect estimates from the literature, including 42% (36), 79% (37), 88% (38), 40% (39) for1098

Pfizer and 76% (36), 66% (40) for Moderna. We aggregate these estimates using a mixture model, accounting for the number1099

of observations and uncertainty reported for each of them.1100

This estimate is optimistic in the sense that some of these results are measured shortly after vaccination, while (39) observed1101

that the protection provided by vaccination decays over time.1102

This estimate is conservative in that the studies above were performed on general populations. Cornell has a larger fraction1103

of young people, and vaccine efficacy was observed to be higher for younger people and lower for older (39). However, there is1104

not sufficient evidence in the literature to support further investigation of age-stratified vaccine efficacy.1105

Vaccine Transmission Multipliers The literature reports varying results, ranging from a 2.8-4.5 fold reduction in viral load (41),1106

40%-50% reduction of transmission risk (42) to no reduction in viral load (43) or peak viral load (39). Given the significant1107

uncertainty around this parameter, we use 0% reduction as a pessimistic estimate and 75% reduction as an optimistic estimate1108

(consistent with a 4 fold reduction in viral load).1109

Contact Multiplier We use the SafeGraph foot traffic data to estimate the mean close contact multiplier modeling the elevation1110

in contacts due to loosening social distancing interventions. We find that the foot traffic in Ithaca Collegetown in Fall 2019 is1111

80% higher than that in Fall 2020. Assuming that people’s physical contact in Fall 2021 returns to the same level seen in Fall1112

2019 and foot traffic is a reasonable proxy for physical contact, we estimate that the mean close contact multiplier is 1.8.1113

We estimate an upper bound for the close contact multiplier by comparing the transmission of COVID-19 in the US in fall1114

2020 to its basic reproduction number R0.1115
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Table S27. Parameter ranges for fall 2021 simulations.

Parameter Meaning Lower bound (LB) Upper bound (UB)
Vaccine Suscepti-
bility Multiplier

In an interaction with an infectious per-
son, if the exposed person is vaccinated,
what is the reduction in risk of becoming
infected?

9.8% 94%

Vaccine Transmis-
sion Multiplier

In an interaction with a susceptible per-
son, if the source is vaccinated and infec-
tious, what is the reduction in risk of their
becoming infected?

25% 100%

Contact Multiplier Relative to Fall 2020, how much more
physical contact are students having with
others? This is realized both through in-
teracting with more people and through
reduced masking (which exposes others
to more respiratory particles). 1x corre-
sponds to the same amount of transmis-
sion per day as Fall 2020. The effect of
the delta variant is modeled separately.

0.9× 2.7×

Outside Infection
Rate Multiplier

Relative to Fall 2020, how often do we
expect cases to be imported from the out-
side community (Ithaca and beyond)?

1× 5×

Contact Tracing
Effectiveness
Multiplier

Relative to Fall 2020, how many posi-
tive individuals are we finding and pre-
venting from infecting others per student
found via surveillance or symptomatic
self-reporting? This implicitly includes
the effect of both contact tracing and
adaptive testing.

0.5× 1.5×

Initial Prevalence What percentage of students are infected
upon arrival?

0.3% 0.54%
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The R0 for the original strain of COVID-19 is best estimated to be 2.5 (11). The effective reproduction number (Rt) in fall1116

2020 is lower bounded by 0.9 (44).1117

Assuming that reduction in transmission above results from social distancing interventions, we can estimate that loosening1118

social distancing interventions leads to an increase in contacts by a factor of 2.5 / 0.9 = 2.7. This estimate is considered to be1119

the upper bound for the close contact multiplier because it ignores the effects of other interventions such as contact tracing in1120

reducing transmission and therefore overestimates the elevation in contacts due to loosening social distancing interventions.1121

We then set the lower bound by assuming a symmetric credible interval centered at 1.8. This provides a lower bound of 1.8 -1122

(2.7-1.8) = 0.9. Thus we use (0.9, 2.7) as the (lower bound, upper bound) range for the close contact multiplier.1123

Outside Infection Rate Multiplier With the relaxation of social distancing guidelines and travel restrictions in Fall 2021, it was1124

possible there would be an increase in the rate of cases imported into the Cornell community. Optimistically, this rate would1125

be the same as a year prior, and pessimistically this rate would be 5 times higher. The value 5 is chosen somewhat arbitrarily1126

and as our posterior analysis shows, is a reasonable upper bound.1127

Contact Tracing Effectiveness Multiplier The “Contact Tracing Effectiveness Multiplier” determines the number of additional1128

positive individuals identified per contact trace relative to Fall of 2020. In constructing a prior on this parameter, there are two1129

countervailing effects:1130

• The amount of contact is larger, which leads to more close contacts.1131

• Health department policies on quarantine have changed and close contacts are not quarantined if they are vaccinated and1132

asymptomatic.1133

We set the range to (0.5 to 1.5), reflecting a prior belief that the number of positives contained per contact trace is within1134

the range of 50% to 150% of the fall 2020 number with 95% probability.1135

Initial Prevalence We calibrate the initial prevalence of our model to the number of observed positives detected by a student’s1136

first test of the semester. The upper bound counts all cases which tested positive on their first test. However, the data1137

illustrated that there were likely some clusters related to Greek letter organizations. The lower bound is derived by counting1138

only non-Greek letter organization positives.1139

C. Posterior Approximation and Projections. Here we describe a Bayesian analysis that leverages recently observed student1140

case counts in fall 2021 at Cornell to approximate the posterior distribution for the parameters. We first specify a prior1141

distribution based on the ranges described above. Then, sampling parameters from this prior and running simulations at each1142

parameter configuration provides, via a heuristic choice of likelihood function, the means to update the prior to a posterior1143

distribution. Equipped with an approximation of the posterior distribution, we use selected sets of parameters from the1144

posterior approximation and simulate potential trajectories based on those sets of parameters. These trajectories represent1145

possible infection trajectories over the fall 2021 semester.1146

Sampling from the Prior Let θ be a vector denoting a parameter configuration. We think of each uncertainty range in Section B1147

above as the 95% credible interval for a normal prior distribution on that parameter and then form a joint normal prior1148

over all parameters in which each parameter is independent, with one additional correction. We truncate the prior so that1149

each parameter takes values in the stated range, so the true prior is actually a truncated multivariate normal distribution,1150

denoted by π(θ). We then sample 3,171 parameter configurations from the truncated multivariate normal distribution. Let1151

S = {θ1, · · · , θ3171} denote the set of the sampled parameter configurations.1152

Simulation at Sampled Parameter Configurations To model the spread of COVID-19 among students at Cornell in the fall 20211153

semester, we use a multi-group simulation to model individuals that belong to different student groups or have different1154

vaccination status. The changes in testing processing delay and testing frequency of certain student groups as described at1155

the beginning of SI Section 4 are also reflected in the simulation model. At each sampled parameter configuration θi ∈ S, we1156

generate 50 simulation replications and compute the corresponding 50 trajectories, each of which describes the total number of1157

newly confirmed student cases across all student groups per day.1158

Calculating the Log-likelihood of the Observed Trajectory At the time of this analysis we had observed a 35-day trajectory that1159

describes the number of daily newly confirmed infections among Cornell students and employees between 8/23/2021 and1160

9/25/2021 (referred to as the “observed trajectory”). We aggregate both the observed trajectory and the sampled trajectories1161

to weekly level and estimate the log-likelihood of the observed trajectory under each parameter configuration, with details1162

described below.1163

Let y(t) be the total number of newly confirmed student cases across all student groups in week t. We assume that, for1164

any week t, y(t) follows a log-normal distribution and that the y(t)’s are conditionally independent across weeks given the1165

simulation parameters.1166

Let m(t, θ) and s(t, θ) be the sample mean and sample standard deviation of the log of the count of new infections in week1167

t across all 50 replications from the simulation under parameter configuration θ. We use these values as plug-in estimates for1168

the hyperparameters in the log-normal distributions described above.1169
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Then, we estimate the log-likelihood of the observed trajectory under parameter configuration θ using

`(θ) =
5∑
t=1

log (p(y(t);m(t, θ), s(t, θ))) ,

where p is the density of a log-normal random variable with the given parameters.1170

Approximating the Posterior The log posterior density of parameter configuration θ is given by1171

log(π(θ|y)) = `(θ) + log(π(θ))− log(Z), [3]1172

where y = {y(t)} is the full observed trajectory, π(θ) is the prior for θ and Z is the normalization constant for the posterior1173

distribution of θ. As discussed previously, we assume that the prior for the parameters is a truncated multivariate normal1174

distribution. We approximate it using a uniform prior across the 3171 parameter configurations sampled from the truncated1175

normal distribution. Under this approximated prior, the posterior for θ is also a discrete distribution over S. To calculate the1176

posterior probabilities, since the prior for θ is the same for all θi ∈ S, we simply compute the likelihoods exp(`(θi)) for all1177

θi ∈ S and normalize them to sum to one.1178

Based on the approximated posterior densities, we can further compute the marginal posterior distribution for individual1179

parameters and pairs of parameters. Contour plots of the joint posterior density over pairs of parameters are given in Figure S211180

(for these plots, we sample an additional 8,130 parameter configurations from the prior and use a total of 11,301 parameter1181

configurations).1182

Sampling from the Posterior Distribution Equipped with the approximated posterior distribution, we are able to project the1183

potential epidemic outcomes over the fall 2021 semester under a variety of conditions such as different testing regimes and1184

vaccination levels. These projected outcomes may provide value for other college campuses with different situations from1185

Cornell.1186

For each condition, we sample 100 parameter configurations from the posterior approximation and for each parameter1187

configuration we simulate a single potential trajectory based on those parameters. The collection of sample trajectories1188

represents the set of plausible outcomes over the fall 2021 semester.1189

We conduct two sets of simulations, one based on a set of general conditions, and one specifically targeted at Cornell:1190

• We consider a wide range of testing frequencies (from 0 tests per person per week to 3 tests per person per week) and1191

vaccination level (from 25% to 100%). This analysis accommodates different college campuses with various vaccination1192

levels and availability of testing resources.1193

• We specifically model the spread of COVID at Cornell using simulations that are the same as those performed on the1194

parameter configurations sampled from the prior (see paragraph “Simulation at sampled parameter configurations”) but1195

for the full fall 2021 semester.1196

A Confirmatory Approach: Approximating the Posterior Using Quadratic Regression Beyond the empirical approach described above,1197

we conduct a separate analysis to approximate the posterior distribution using a multivariate normal distribution. We use1198

11,301 parameter configurations sampled from the truncated multivariate normal prior in this analysis. Among the six model1199

parameters in Table S27, we aggregate the vaccine susceptibility multiplier, vaccine transmission multiplier, and contact1200

multiplier into one parameter called “combined spread multiplier”. This is reasonable as the three parameters affect the1201

simulation only through their product. The combined spread multiplier reflects the compound effect of vaccination and1202

relaxation of social distancing on transmission in fall 2021. Hereafter, we treat our parameter space as four-dimensional. Let1203

S ′ = {θ1, · · · , θ11301} denote the set of the four-dimensional sampled parameter configurations.1204

As before, we compute the log posterior density of a parameter configuration using Equation 3. We compute `(θi)+log(π(θi))1205

for all θi ∈ S ′ and ignore the constant term log(Z) as it does not have an impact on our estimation of the posterior. Here, the1206

combined spread multiplier is the product of three variables each with a truncated normal prior. As a result, its prior does not1207

have a closed-form expression. We compute this prior using Monte Carlo simulation. We sample 106 points from the prior of1208

the vaccine susceptibility multiplier, vaccine transmission multiplier, and contact multiplier respectively, and use the empirical1209

distribution of their product to approximate the prior distribution of the combined spread multiplier.1210

Let θ∗ denote the maximizer of the posterior density π(θ|y). A second-order Taylor approximation of the log-posterior1211

density around θ∗ (45) is given by1212

log π(θ|y) = log π(θ∗|y)− 1
2(θ − θ∗)TH∗(θ − θ∗), [4]1213

where H∗ is the negative Hessian of the log-posterior at θ∗. As a result, the posterior can be interpreted as a normal distribution1214

with mean θ∗ and covariance Σ∗ = (H∗)−1.1215

We do not, however, expect our simulated parameter configurations, which are randomly sampled from a four-dimensional1216

space, to contain θ∗ exactly. Instead, we can use the simulated parameter configuration with the largest log-posterior value to1217

guide the search for θ∗. Formally, let this point be denoted θ′∗ = arg maxθi∈S log π(θi|y). A second-order Taylor approximation1218

of the log posterior density around θ′∗ is given by1219

log π(θ|y) = log π(θ′∗|y) + gT (θ − θ′∗)−
1
2(θ − θ′∗)TH(θ − θ′∗), [5]1220
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where g is the gradient of the log posterior at θ′∗ (the gradient is nonzero because θ′∗ is not the true maximizer) and H is the1221

negative Hessian of the log posterior at θ′∗.1222

Given the large sample size, we assume θ′∗ is sufficiently close to θ∗ that θ∗ is the local optimum of the posterior closest to1223

θ′∗. Then, given g and H, we can estimate θ∗ by completing the square on the right hand side of Equation 5, so that it aligns1224

with the right hand side of Equation 4:1225

log π(θ|y) =
(

log π(θ′∗|y) + 1
2g

TH−1g
)
− 1

2
(
θ − (θ′∗ +H−1g)

)T
H
(
θ − (θ′∗ +H−1g)

)
. [6]1226

Matching Equation 6 and Equation 4, we obtain the following estimates:

θ̂∗ = θ′∗ +H−1g

log π̂(θ̂∗|y) = log π(θ′∗|y) + 1
2g

TH−1g

Σ̂∗ = H−1.

To find θ̂∗ and Σ̂∗, it suffices to find g and H. We perform a quadratic regression on the following model to estimate g and1227

H from simulation data:1228

log π(θ|y)− log π(θ′∗|y) ∼ gT (θ − θ′∗)−
1
2(θ − θ′∗)TH(θ − θ′∗). [7]1229

For the regression, we select a subset of the sampled configurations that are close to θ′∗, for which the second-order Taylor1230

approximation at θ′∗ (Equation 5) holds reasonably well. We outline the steps of performing the regression:1231

• For any sampled parameter configurations θi ∈ S ′, we compute its element-wise difference from θ′∗. Denote this difference1232

by di = θi − θ′∗.1233

• Next, we develop a distance metric to select points close to θ′∗. We notice that the components of di have vastly different1234

scales. As a result, the L2 norm ‖di‖2 is dominated by a few components, which may bias the selection. Thus, we1235

standardize each parameter component to a standard deviation of 1.1236

• Based on the norms of the standardized distance vectors {‖d̃i‖2}, we select a fraction q of S ′ that are closest to θ′∗ to be1237

included in the regression, denoted by J .1238

• Let K = {1, 2, 3, 4} denote the set of indices of individual parameter components. For each θ ∈ J , we construct its
features for the regression model in Equation 7, namely the linear and quadratic terms of individual parameters:

{{θ[k]}k∈K , {θ[k1] · θ[k2]}k1,k2∈K} ,

where θ[k] is the kth parameter component of θ. The response variable is given by log π(θ|y)− log π(θ′∗|y).1239

• Given regression results, the gradient ĝ directly corresponds to the coefficients on the linear terms {θ[k]}k∈K ; the Hessian1240

Ĥ can be computed from the coefficients on the quadratic terms {θ[k1] · θ[k2]}k1,k2∈K .1241

Given ĝ and Ĥ, the posterior distribution of the parameters is approximately multivariate normal with mean θ̂∗ = θ′∗ + (Ĥ)−1ĝ1242

and covariance Σ̂∗ = Ĥ−1.1243

Among the 11,301 sampled parameter configurations, we find θ′∗ and run the quadratic regression on q = 1% points with the1244

smallest standardized distance to θ′∗. Table S28 shows the estimated posterior mean θ̂∗ and marginal 95% credible intervals of1245

the four parameters.1246

Table S28. Mean values and lower and upper bounds of marginal 95% posterior credible intervals (CI).

Parameter Mean Lower bound Upper bound
Outside Infection Rate Multiplier 3.00 2.42 3.58
Contact Tracing Effectiveness Multiplier 1.13 0.96 1.30
Initial Prevalence 4.17E-3 3.86E-3 4.48E-3
Combined Spread Multiplier 0.45 0.35 0.55

The estimated posterior covariance matrix is given by

Σ̂∗ =

 8.83E-2 −1.21E-2 −3.11E-6 −6.77E-3
−1.21E-2 7.61E-3 3.00E-7 3.34E-3
−3.11E-6 3.00E-7 2.47E-8 2.44E-6
−6.77E-3 3.34E-3 2.44E-6 2.61E-3

 ,
where parameters are in the order of outside infection rate multiplier, contact tracing effectiveness multiplier, initial prevalence,1247

and combined spread multiplier.1248
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To understand the interaction between different parameter components, we compute the correlation matrix. Let diag(Σ̂∗)
denote the diagonal matrix with ith diagonal element equal to the (i, i) entry of Σ̂∗. The correlation matrix is given by

R =
(
diag(Σ̂∗)

)− 1
2 Σ̂∗

(
diag(Σ̂∗)

)− 1
2 =

 1 −0.47 −0.07 −0.45
−0.47 1 0.02 0.75
−0.07 0.02 1 0.30
−0.45 0.75 0.30 1

 .
We now compare the outcomes from the two approaches for approximating the posterior. We observe that the posterior1249

marginal distributions from the empirical approximation (as presented in the main text) are consistent with the credible1250

intervals from the regression-based analysis. The former observed at most weak correlation between the parameters (Fig S21),1251

apart from the negative correlation between the constituents of the combined spread multiplier as expected. However, the latter1252

estimated the correlations to be nontrivial between most pairs. We acknowledge an important limitation of the regression-based1253

analysis: the correlation estimates are sensitive to the statistical fit, yet our ability to precisely estimate the derivatives of the1254

log-likelihood is limited. It is plausible that the correlations between parameters are lower in reality.1255

D. Supplemental Results for Fall 2021 Projections. This section contains additional results for fall 2021 projections. Figure S22a1256

compares simulated trajectories with the actual trajectory of infections to date. The actual trajectory appears to be tracking1257

the lower part of the plot, but there is a high density of simulated trajectories around the actual trajectory. Figure S22b1258

provides predictions for infections under various testing policies as a function of vaccination level. Except at high vaccination1259

levels, the percentage of the population infected is large, even under vigorous testing.1260
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Fig. S21. Contour plots of the joint posterior density for all pairs of points for the Fall 2021 analysis.
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(a) (b)

Fig. S22. Fall 2021 modeling. (a) Fall 2021 simulated trajectories (blue) and actual trajectory (red). (b) The percentage of population infected versus vaccination rate for various
testing policies (lines provide the median; shading indicates the 10-90th percentile range across simulation replications).
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