CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decoy and upregulating SMAD3

Lei Yang^{1,2#}, Yi Chen^{1,2#}, Ning Liu^{1,2}, Yanwen Lu^{1,2}, Zhenhao Yang³, Weidong Gan^{4*}, Dongmei Li^{1,2*}

 Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China

 Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China

 Department of Urology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China.

4. Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.

[#]These authors contributed equally to this work.

* Corresponding Author:

Dongmei Li, Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.

Email: <u>lidm@nju.edu.cn</u>

Weidong Gan, Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.

Email: gwd@nju.edu.cn

Figure S1. The RNA level of MET mRNA and circRNAs derived from MET gene in RCC and the structural features of circMET. (A) The RNA level of circRNAs derived from MET gene in nontumor tissues, ccRCC and NONO-TFE3 tRCC. (B) The RNA level of circMET in nontumor tissues, ccRCC and NONO-TFE3 tRCC. (C) A positive correlation between circMET and MET was observed in RCC tissues. (D) The correlation between circMET expression and the clinical stage were analyzed. (E) Scheme illustrating the production of circMET. The data are presented as the mean \pm SD, ****P*< 0.001

Figure S2. The RNA level of circMET and MET mRNA in UOK109 (A) and 786-O (B) after transfected with indicated lentivirus. The data are presented as the mean \pm SD, ****P*< 0.001

Figure S3. ChIP assay was performed after UOK109 cells transfected indicated lentivirus.

Figure S4. The transcription of MET gene is enhanced by NONO-TFE3. **(A)** The protein level of NONO-TFE3 and the circMET expression levels were detected after transfection with NONO-TFE3 plasmids for 48h. **(B)** The RNA level of circRNAs derived from MET gene was detected after transfected with sh-TFE3. The data are presented as the mean \pm SD, ****P*< 0.001

Figure S5. The m⁶A methylation is involved in the export of circMET from the nucleus. **(A)** The subcellular distribution of circMET was analyzed via real-time PCR

in UOK109 cells after transfected with indicated lentivirus. (B) The RNA level was detected via real-time PCR in UOK109 cells after transfected with indicated lentivirus. (C) Schematic diagram of the potential m⁶A methylation locus. (D) Abundance of MET fragment among RNA immunoprecipitated with antim⁶A antibody in UOK109 cells was measured by real-time PCR and normalized to IgG. (E)The total RNA isolated from UOK109 cells was treated with RNase R, and the MeRIP was performed. Abundance of circMET fragment among RNA immunoprecipitated with anti-m⁶A antibody was measured by real-time PCR and normalized to IgG. (F) The 786-O cells were transfected with circMET contained indicated mutation, and the abundance of circMET among RNA immunoprecipitated with anti-m⁶A antibody was measured by real-time PCR and normalized to IgG. (G-H) The UOK109 (G) and 786-O (H) cells were transfected with circMET contained indicated mutation, and the RIP assay was performed with YTHDC1 antibody. Abundance of circMET was measured by real-time PCR. (I) The UOK109 cells were transfected with MS2-GFP plasmid, circMET contained 6×MS2 stem loop and indicated mutation, and the MS2-RIP assay was performed with GFP antibody. Abundance of YTHDC1 was measured by western blot. (J-K) The subcellular distribution of circMET was analyzed via real-time PCR in UOK109 and 786-O cells after transfected with indicated lentivirus. U6 and 18s rRNA were used as nuclear and cytoplasmic markers, respectively. (L-M) The UOK109 (L) and 786-O (M) cells were transfected with indicated lentivirus, and the MeRIP assay was performed. Abundance of circMET was measured by real-time PCR. (N-O) The subcellular distribution of circMET was analyzed via real-time PCR in UOK109 and 786-O cells after transfected with indicated lentivirus. U6 and 18s rRNA were used as nuclear and cytoplasmic markers, respectively. The data are presented as the mean \pm SD, ***P< 0.001

Figure S6. The function of m⁶A modification on exon 2 of MET mRNA. (A-C) The UOK109 cells were transfected with indicated lentivirus, and the RNA level of MET mRNA was measured by real-time PCR. (D) The UOK109 cells were transfected with indicated lentivirus, and the protein level of MET was measured by western blot. (E-F) The UOK109 cells were transfected with indicated lentivirus, and the abundance of circMET among RNA immunoprecipitated with anti-m⁶A antibody was measured by real-time PCR and normalized to IgG. (H-I) The subcellular distribution of circMET was analyzed via real-time PCR in UOK109 cells after transfected with indicated lentivirus. U6 and 18s rRNA were used as nuclear and cytoplasmic markers, respectively. The data are presented as the mean \pm SD, ****P*< 0.001

Figure S7. The m⁶A modification on circMET promotes tumor proliferation. **(A)** Cell viability of UOK109 and 786-O cells was determined using CCK-8 assays after transfection for 48h. **(B-D)** A colony formation and tumor sphere formation assay were used to determine the colony and tumor sphere formation ability of UOK109 and 786-O cells co-transfected with indicated lentivirus. The data are presented as the mean \pm SD, ****P*< 0.001

Figure S8. The stability of GAPDH mRNA in cells transfected with indicated lentivirus after treatment with α -amanitin. The data are presented as the mean \pm SD

Figure S9. CircMET mediates *NONO-TFE3* tRCC proliferation through CDKN2A. (A) Cell viability of UOK109 and 786-O cells was determined using CCK-8 assays after transfection for 48h. (B-C) A colony formation and tumor sphere formation assay were used to determine the colony and tumor sphere formation ability of UOK109 and 786-O cells co-transfected with indicated lentivirus. (D) Cell cycle analysis was performed using flow cytometry in cells transfected with indicated lentivirus. The data are presented as the mean \pm SD, ***P*< 0.01, ****P*< 0.001

Figure S10. CircMET mediates the RNA level of CDKN2A through YTHDF2. (A) HEK293T cells were co-transfected with indicated mRNA 3'-UTR luciferase truncations and shRNAs, and the luciferase activity was determined using a dual luciferase reporter assay after 48h. (B) MS2-RIP assays were performed to confirm the association of indicated protein with circMET. (C-D) The UOK109 cells were transfected with MS2-GFP plasmid, CDKN2A contained $6 \times$ MS2 stem loop and indicated shRNAs, and the MS2-RIP assay was performed with GFP antibody. Abundance of YTHDF2 was measured by western blot. The data are presented as the mean \pm SD, **P*< 0.05

Figure S11. CircMET recruits YTHDF2 to CDKN2A mRNA via m⁶A methylation. (A) The UOK109 cells were transfected with indicated lentivirus, and the abundance of circMET among RNA immunoprecipitated with anti-m⁶A antibody was measured by real-time PCR and normalized to IgG. (**B-D**) The stability of GAPDH mRNA in cells transfected with indicated lentivirus after treatment with α -amanitin. (**E**) The UOK109 cells were transfected with indicated lentivirus, and the abundance of circMET among RNA immunoprecipitated with anti-m⁶A antibody was measured by real-time PCR and normalized to IgG. (**G**) The stability of GAPDH mRNA in cells transfected with indicated lentivirus after treatment. (**F**) The UOK109 cells were transfected to IgG. (**G**) The stability of GAPDH mRNA in cells transfected with indicated lentivirus after treatment with α -amanitin. (**F**) The UOK109 cells were transfected lentivirus after treatment with α -amanitin. (**F**) The UOK109 cells were transfected lentivirus after treatment with α -amanitin. (**F**) The UOK109 cells were transfected with indicated lentivirus, and the abundance of cells were transfected with indicated lentivirus, and the abundance of CDKN2A

among RNA immunoprecipitated with anti-m⁶A antibody was measured by real-time PCR and normalized to IgG. **(H)** The stability of GAPDH mRNA in cells transfected with indicated lentivirus after treatment with α -amanitin. **(I)** The UOK109 cells were transfected with indicated lentivirus, and the MS2-RIP assay and RNA pulldown were performed with GFP antibody or circMET probe. Abundance of YTHDF2 was measured by western blot. **(J-K)** The UOK109 cells were transfected with indicated lentivirus, and the RIP assay was performed with YTHDF2 antibody. Abundance of circMET or CDKN2A was measured by real-time PCR.The data are presented as the mean ± SD, ****P*< 0.001

Protein coding potentia	al .			786-0
	Parameter index			
IDEO Elemente	Position (start-and)	R Score	With Passaboknot (VIN)	Flag -
inces elements	735-824	1.522975	¥	
	852-939	1.509251	Y	ACTB
Open Reading Frame (ORF)	Start Position	End Position	Protein Length	~
	15	11+15	404 m	C 3 786-0
	Зик2- Канаральная страная и полнения и полнения и полнения и полнения и полнения икаческие сопоская, каксыма веринали исторова состания саминами собрание наявляется полнения и полнения и полнения и полнения и полнения полозати и полнения сопоская, каксыма веринали исторования и полнения и полозати и полнения сопоская, каксыма веринали исторования и полнения и полнения и полнения сопоская, каксыма веринали и полнения и полнения и полнения и полнения сопоская, каксыма и полнения и полнения и полнения и полнения сопоская, каксыма и полнения и и полнения и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и полнения и полнения и полнения и полнения и полнения и и полнения и полнения и и полнения и полнения и и п		E 2 G 1	
	Note: (1) nr represents n rounds(n<3); (2) * represents a stop codon.			
	The second line of one	entres a setular to parallele terror	West & so it has no series resulting frame."	

Figure S12. The function of potential peptide encoded by circMET. (A) The possibility of encoding protein of circMET was predicted. (B) The potential peptide encoded by circMET was overexpressed in 786-O cells. (C) Cell viability of UOK109 cells was determined using CCK-8 assay after transfection for 48h. The data are presented as the mean \pm SD

Figure S13. Relationship between circMET and CDKN2A and SMAD3 mRNA in

NONO-TFE3 tRCC (A) and ccRCC (B).

Figure S14. The function of m⁶A modification on exon 2 of MET mRNA. **(A)** The UOK109 cells were transfected with indicated lentivirus, and the abundance of primRNA of *MET* among RNA immunoprecipitated with anti-Flag antibody was measured by real-time PCR and normalized to IgG. **(B)** The UOK109 cells were transfected with indicated lentivirus, and the RNA level of circMET was measured by real-time PCR.

Figure S15. Relationship between circMET and AKT1, CCNB1 and CCND1 mRNA. (A) RNA pulldown assay was performed to confirm the association of AKT1, CCNB1 and CCND1 mRNA with circMET. (B) The RNA level of AKT1, CCNB1 and CCND1 mRNA in UOK109 cells after transfected with indicated lentivirus. The data are presented as the mean \pm SD, ****P*< 0.001

Target	Primer sequence (5'-3')		
gene	Forward	Reverse	(bp)
circMET	AGCACTGCTTTAATAGGATAAACC	TCGGACTTTGCTAGTGCCTC	123
CDKN2A	CTTCCTCGGGTGCCGATAC	ACCCCTTCATTGCTACTCGAT	153
SMAD3	GCGTGCGGCTCTACTACATC	GCACATTCGGGTCAACTGGTA	233
18s rRNA	CAGCCACCCGAGATTGAGCA	TAGTAGCGACGGGCGGTGTG	252
GAPDH	AACGGATTTGGTCGTATTGGG	CCTGGAAGATGGTGATGGGAT	211
AKT1	TCCTCCTCAAGAATGATGGCA	GTGCGTTCGATGACAGTGGT	181
CCNB1	AATAAGGCGAAGATCAACATGGC	TTTGTTACCAATGTCCCCAAGAG	111
CCND1	CAATGACCCCGCACGATTTC	CATGGAGGGCGGATTGGAA	146
circMET ▷⊲	GGTTCACTGCATATTCTCCCC	ACCATCTTTCGTTTCCTTTAGCC	205
circMET ⊲⊳	AGCACTGCTTTAATAGGATAAACC	TCGGACTTTGCTAGTGCCTC	123
GAPDH▷⊲	AACGGATTTGGTCGTATTGGG	CCTGGAAGATGGTGATGGGAT	211
GAPDH ⊲⊳	CCCAATACGACCAAATCCGTT	ATCCCATCACCATCTTCCAGG	NA
TFE3	TGCCTGTGTCAGGGAATCTG	CGACGCTCAATTAGGTTGTGAT	184

Table S1. Primers u	used for	real-time	PCR.
---------------------	----------	-----------	------

	5		
Target	Primer sequence (5'-3')		Size
promoter	Forward	Reverse	(bp)
MET site1	GCTGAGGCCTCTTGGTATGG	AGTGATTTCAGTCCTCAAAAGAGA	229
MET site2	AGAGGTAATCTCTTTTGAGGACTGA	CGTTCCGGCTCTCATACCAA	248
MET site3	AGTTTCACCTTGTCGTGGGC	CCAGGCGACCAGACTGAG	224
Target	Primer s	sequence (5'-3')	Size
RNA	Forward	Reverse	(bp)
MET primer 1	CAGAGGAGCAATGGGGAGTG	ATCTGGGTGTTCCAGCACAG	225
MET primer 2	CAGTCGGAGGTTCACTGCAT	AAAGGACTTTGGCTCCCAGG	94
MET primer 3	TGGGAGCCAAAGTCCTTTCA	TGCTTTCAAAGGCATGGACA	228
MET primer 4	TCCATGCCTTTGAAAGCAACA	ACAGAACCTGATTATTCTTGTGTGA	98
MET primer 5	TCACACAAGAATAATCAGGTTCTGT	CATCATTCAGGCTGGCTCCT	197
MET primer 6	AGGAGCCAGCCTGAATGATG	AGCAGTGCTCATGATTGGGT	194
CDKN2A Primer 1	CCAGGTCATGATGATGGGGCA	TGCAGCACCACCAGCG	147
CDKN2A Primer 2	ACACGCTGGTGGTGCTG	AATCGGGGATGTCTGAGGGA	195

Table S2. Primers used for ChIP assay and MeRIP.

Table S3. Probes used for RNA FISH.

_		
	Target transcript	Probe sequence (5'-3')
_	circMET probe1	TGAGAGGTTTATCCTATTAAAGCAG
	circMET probe2	GAGAGGTTTATCCTATTAAAGCAGTGCT
	U6 probe	TTTGCGTGTCATCTTCG
	18s rRNA probe	CTGCCTTCCTTGGATGTGGGTAGCCGTTTC

Target transcript		Sequence (5'-3')
circMET	GCTTTAATAGGATAAACCTCT	
YTHDF1	CCCTACCTGTCCAGCTATTAC	
YTHDF2	GATGGATTAAACGATGATGAT	
YTHDC1	TGCCTCCAGAGAACCTTATAA	
SMAD3	GAGCCTGGTCAAGAAACTCAA	
CDKN2A	AGTAACCATGCCCGCATAGAT	
TFE3	CAGCTCCGAATTCAGGAACTA	
ACIN1	AGCAAGATGAGCTGGATTATC	
ADAR	GCCCACTGTTATCTTCACTTT	
ALYREF	CGIGGAGACAGGIGGGAAACI	
AUH	GULLALIGITATUTUALITI	
BUCIP BUD12	GEETETEEAGGEETAGT	
CELE2	CGCAGAGTAACGTTGTTGTT	
CSTE2T		
DDX54	CCCGGTGTTCAAAGGCATCAT	
DGCR8	CCAATCAGAAGCTCATTACTT	
DHX9	GAAGGATTACTACTCAAGAAA	
DICER1	GCCCACTGTTATCTTCACTTT	
DKC1	CACTATACACCTCTTGCATGT	
EIF4A3	GCCCACTGTTATCTTCACTTT	
ELAVL1	GCAGCATTGGTGAAGTTGAAT	
ELAVL3	CCGTGATTTCACCACCAACAA	
EWSR1	TGCATTGACTACCAGATTTAT	
FAM120A	GCCTTGAATAATGACTCTAAA	
FBL	CCTTGAGCCATATGAAAGAGA	
FKBP4	GCATGGAGAAAGGAGAACATT	
FMR1	GCCCACTGTTATCTTCACTTT	
FTO	TCACCAAGGAGACTGCTATTT	
FUS	ATGAATGCAACCAGTGTAAGG	
FXR1	CGCCAGGTTCCATTAATGAA	
FXR2	GCGGAIGAIGAAGGGAGAIII	
	GLGLAAGAIGAICAALGALAA	
	GCGCTTGTCTAAGATCAAATT	
HNBNPD		
HNRNPK	TGATGTTTGATGACCGTCGCG	
HNRNPL	GCCGACAACCAAATATACATT	
HNRNPM	CTGTGCAAGCTATATCTATGT	
HNRNPU	CAGTGCTTCTTCCCTTACAAT	
HNRNPUL1	GCCCGCAAGAAACGCAACTAT	
IGF2BP1	GCAGTGGTGAATGTCACCTAT	
IGF2BP2	AGTGAAGCTGGAAGCGCATAT	
IGF2BP3	CGGTGAATGAACTTCAGAATT	
KHDRBS1	GTACCGGATATGATGGATGAT	
KHDRBS2	GCTCTCAGAAAGAGTACTGAT	
KHDRBS3	GCTGGGACAGAAAGTGTTAAT	
LARP4B	CAGGCTATCTAGCTTGATAAT	
LARP7	CIIGAGCIGIICIIGGGAGAI	
LIN28	IGCIACAACIGIGGAGGICIA	
LINZ8A	GLACLAGAGIAAGUIGLALAI	
MCI1		
NOP56	CCTGGCAAACAAATGCAGTAT	
NOP58	TTAGTTGGAGCACGGCTTATT	
NUMA1	CCTTGAAGAGAAGAACGAAAT	
PCBP2	CCTGGCTCAATATCTAATCAA	
PRPF8	CGCCTCATGAAACATGATGTT	
PTBP1	CTCAACGTCAAGTACAACAAT	
PLIM2		

 Table S4. ShRNA used for silencing target genes.

QKI	CTGATGCTGTGGGACCTATTG	
RANGAP1	CTGCCTTCCTAAAGGTGTCAT	
RBFOX2	CGGGTTCGTAACTTTCGAGAA	
RBM10	CTTCGCCTTCGTCGAGTTTAG	
RBM47	GATGAAGAAGCGCGAGGAAAT	
RBM5	CCCAGACCTAAGTTTGAAGAT	
RBM6	CAAATGTAGAGGAGCATTCTT	
RC3H1	CGTGTTGTAAACTCTCAGTAT	
RNF219	CCAGTTCTTGTCCAGTAACTA	
RTCB	AGAGGCTCCTGAGTCCTATAA	
SF3A3	CGAGACACTGAAAGGAACAAA	
SF3B4	CCCTGAGATTGATGAGAAGTT	
SLTM	CTAGATACAGATGCACGATTT	
SMNDC1	CTGGTAAAGTTGGAGTAGGAA	
SND1	GCCAAAGGAAACTTGCCTTAT	
SRSF1	GAAGCAGGTGATGTATGTTAT	
SRSF10	CGTGATGCTGAAGACGCTTTA	
SRSF3	TGGAACTGTCGAATGGTGAAA	
SRSF7	GAACTGTATGGATTGCGAGAA	
SRSF9	TGGAAGAAATGGTTATGATTA	
TAF15	GCTCGAAGGAATTCCTGCAAT	
TARDBP	GCTCTAATTCTGGTGCAGCAA	
TIA1	GCTCTAATTCTGCAACTCTTT	
TIAL1	CTTCAGTTGTTCAGTCAGATT	
TRA2A	CGTCGAGATTCTTACTATGAT	
U2AF1	GAAAGTGTTGTAGTTGATTGA	
U2AF2	CGACGAGGAGTATGAGGAGAT	
UPF1	GCCTACCAGTACCAGAACATA	
ZC3H7B	CGAGATCTGCTTTGACAGTAA	

Target promoter	gRNA sequence (5'-3')
MET ^{promoter} gRNA1	TGGCAGGGCAGCGCGCGTGT
MET ^{promoter} gRNA2	CCAGTGACTCAGCCGGGCAT
MET ^{promoter} gRNA3	GCCCGGCTGAGTCACTGGCA
Target transcript	gRNA sequence (5'-3')
circMET gRNA1	GCTTTAATAGGATAAACCTCTCA
circMET gRNA2	GCACTGCTTTAATAGGATAAACC
circMET gRNA3	CTGCTTTAATAGGATAAACCTCT
CDKN2A gRNA1	ATCTACGTTAAAAGGCAGGACAT
CDKN2A gRNA2	GACATCGCGATGGCCCAGCTCCT
CDKN2A gRNA3	ACATCGCGATGGCCCAGCTCCTC

 Table S5. Guide RNA used for dCas9-ChIP system and targeted RNA methylation system.

Source	Primary antibodies	Catalog no.	Working dilution
Sigma-Aldrich	Anti-TFE3 antibody produced in rabbit	HPA023881	ChIP: 5µg
ProteinTech	Anti-TFE3 antibody produced in rabbit	14480-1-AP	WB: 1:2000
ProteinTech	Anti-SMAD3 antibody produced in rabbit	25494-1-AP	WB: 1:1000
Abcam	Anti-CDKN2A antibody produced in mouse	ab109520	WB: 1:1000
ProteinTech	Anti-YTHDC1 antibody produced in rabbit	14392-1-AP	WB: 1:1000 RIP: 5µg
ProteinTech	Anti-YTHDF1 antibody produced in rabbit	17479-1-AP	WB: 1:1000
ProteinTech	Anti-YTHDF2 antibody produced in rabbit	24744-1-AP	WB: 1:2500 RIP: 5µg
ProteinTech	Anti-Flag antibody produced in rabbit	80010-1-RR	WB: 1:2500 ChIP: 5µg
ProteinTech	Anti-GFP antibody produced in rabbit	50430-2-AP	WB: 1:2500 RIP: 5µg
ABclonal	Anti-ACTB antibody produced in rabbit	AC026	WB: 1:15000
Abcam	Anti-m ⁶ A antibody produced in mouse	ab151230	RIP: 5µg
Cell Signaling Technology	Anti-AGO2 antibody produced in rabbit	2897	RIP: 5µg

Table S6. Primary antibodies used in this study.