SUPPLEMENTAL MATERIAL

Comparative Analysis of *Plasmodium falciparum* Genotyping via SNP Detection, Microsatellite Profiling, and Whole-Genome Sequencing

Mariko Kanai, Tomas Yeo, Victor Asua, Philip J. Rosenthal, David A. Fidock, and Sachel Mok

Table of Contents

FIG S1. Sensitivity test of parasite culture PCR genotyping, in five drug resistance-conferring genes tested in nine mixtures containing different ratios of NF54 and Cam3.II blood stage cultures.

FIG S2. Validation of fragment analysis (FA)- and whole-genome sequencing (WGS)-based microsatellite (MS) genotyping for 12 strains.

FIG S3. Sensitivity test of gel electrophoresis- versus fragment analysis (FA)-based microsatellite (MS) genotyping for four markers using 11 mixtures with different ratios of HB3:Dd2 genomic DNA.

FIG S4. Whole-genome sequencing (WGS)-based microsatellite (MS) genotyping of 15 laboratory strains and sequencing metrics.

TABLE S1. PCR primers and reaction conditions for SNP genotyping by parasite culture PCR and Sanger sequencing.

TABLE S2. PCR primers and reaction conditions for gel electrophoresis and fragment analysisbased microsatellite (MS) genotyping.

TABLE S3. Sanger sequencing results of PCR using simulated fresh whole blood, frozen whole blood, and dried blood spot (DBS) gDNA.

TABLE S4. Single-nucleotide polymorphisms and microsatellite sizes of dried blood spots of Ugandan parasite samples and controls.

TABLE S5. KEL1/PLA1/PfPailin (KeIPP) co-lineage status assayed in ten *P. falciparum* strains.

SUPPLEMENTAL METHODS

Parasite culture PCR protocol for SNP genotyping.

Gel electrophoresis- and fragment analysis-based protocol for microsatellite genotyping.

Plasmepsin 2 (pm2) copy number quantification by multiplexed TaqMan qPCR protocol.

SUPPLEMENTAL REFERENCES

FIG S1 Sensitivity test of parasite RBC culture PCR genotyping, in five drug resistance-conferring genes tested in nine mixtures containing different ratios of NF54 and Cam3.II blood stage cultures. Electropherograms showing the genotypes assessed for these mixtures in three independent occasions.

FIG S2 Validation of fragment analysis (FA)- and whole-genome sequencing (WGS)-based microsatellite (MS) genotyping for 12 strains. (A) FA- versus WGS-derived MS size for each strain at the five selected markers relative to 3D7 (see Table 2). (B) Scatterplots showing high correlation (R² values) between FA- and WGS-derived MS sizes.

Figure S3

FIG S3 Sensitivity test of gel electrophoresis- versus fragment analysis (FA)-based microsatellite (MS) genotyping for these four markers using 11 mixtures with different ratios of HB3:Dd2 genomic DNA. (A) Gel electrophoresis images of PCR products corresponding to HB3 or Dd2 MS sizes in each mixture. (B) Bar charts represent the average proportion of HB3 or Dd2 fragment sizes in each mixture determined from FA in two independent experiments. Error bars represent SEM values.

Figure S4

5×

10×

30×

96.7%

95.8%

79.9%

99.9%

99.8%

92.5%

96.1%

95.1%

85.3%

93.3%

91.4%

78.6%

95.2%

93.5%

82.4%

94.9%

92.6%

72.2%

FIG S4 Whole-genome sequencing (WGS)-based microsatellite (MS) genotyping of 15 laboratory strains and sequencing metrics. Heatmaps are shown for two MS markers, (A) TA127 and (B) C13M87, indicating the % of reads harboring an insertion (blue) or deletion (red) sequence for each strain relative to 3D7. The MS sequence for 3D7 (pink) and the position at which the insertion or deletion occurred within the MS fragment window are shown. (C) WGS metrics for the *P. falciparum* strains analyzed in this study.

97.3%

96.3%

89.3%

94.6%

92.4%

65.6%

92.7%

59.4%

55.2%

95.0%

71.2%

54.3%

92.6%

56.6%

55.3%

90.6%

48.8%

56.5%

94.1%

86.5%

56.2%

94.2%

85.0%

56.3%

94.3%

88.6%

56.3%

94 0%

83.6%

56.3%

TABLE S1 PCR primers and reaction conditions for SNP genotypin	ng by parasite culture PCR and Sanger sequencing
--	--

Drug Resistance.	Drug Resistance-			Sanger Sequencir	a Primer	Forward Pri	mor	Roverse Pri	r PCR		35 cycles ^b						
Associated	Exon	Associa	ited Change		ig Frimer		IIICI		inei	Product	Denat	Denaturation		Annealing		Extension	
Geneª		Amino Acid	Nucleotide	Sequence (5'→3')	Lab Primer ID	Sequence (5'→3')	Lab Primer ID	Sequence (5'→3')	Lab Primer ID	Size (kb)	Temp (℃)	Time (min)	Temp (℃)	Time (min)	Temp (°C)	Time (min)	
dihydrofolate reductase (<i>dhfr</i>)	1	N51I C59R S108N/T I164L	aAt/aTt Tgt/Cgt aGc/aAc/aCc Ata/Tta	ACAAGTCTGCGAC GTTTTCGATATTTAT G	p7818	ACAAGTCTGCGA CGTTTTCGATATT TATG	p7818	AGTATATACATCG CTAACAGA	p7819	0.64	95	0:30	52	1:00	62	1:00	
dihydropteroate	2	S436A/F/C A437G	TCt/Gct/tTt/tGt gCt/gGt	ATGCTTAAATGATAT GATACCCG	p7924	ATGCTTAAATGAT	p7924	CATGTAATTCATC	p7872	0.97	95	0:30	52	1:00	62	1:00	
synthase (dhps)		K540E/N A581G A613S/T	AaA/Gaa/aaT gCg/gGg Gcc/Tcc/Acc	CATGTAATTCATCT GAAACATCC	p7872	AIGAIACCCG											
		N86Y	Aat/Tat	TTATTTGATTTTGTG TTGAAAGATGG	p792	TTATTTGATTTTG		TTTGGTAATGTTTC									
		Y184F G293D	tAt/tTt qGt/qAt	CATAAACATACTAA	p7920	G	p792	TCCATCATCA	p286	1.14	95	0:30	54	0:30	62	2:30	
multidrug	1	N86Y	Aat/Tat		•	TGTATGTGCTGTA		CTCTTCTATAATG									
1 (<i>pfmdr1</i>)		Y184F	tAt/tTt	ATCAGGA	p7820 ^c	TTATCAGGA	p7820	GACATGGTA	p7821	0.60	95	0:30	52	0:40	62	1:00	
		S1034C N1042D	Agt/Tgt Aat/Gat	TCATTTCATAATGCT CTTTCTGG	p7923	TCATTTCATAATG	-7000	GCAGCAAACTTAC	-7000	4.40	05	0.20	50	1.00	60	1.00	
		D1246Y	Gat/Tat	GCAGCAAACTTACT AACACG	p7823	CTCTTTCTGG	p7925	TAACACG	p7023	1.13	95	0.30	52	1.00	02	1.00	
	2	C72S M74I N75E K76T T93S H97L/Y	Tgt/Agt atG/atT AaT/GaA aAa/aCa Aca/Tca CAc/cTc/Tac	CCCTTGTCGACCTT AACAGATGGCTC	p3519	ATGAAATTCGCA AGTAAAAAAAAATA ATCAAAAAAAATTC AAGC	p7011	CCAATCATTTGTT CTTCAATTAAGTA TTCCTATTAATATG T	p8402	0.86	95	0:30	52	0:30	62	1:00	
	3	F145I	Ttc/Atc	GAACGACACCGAA GCTTTA	p7947												
	4	l218F	Att/Ttt	ATTTACTCCTTTTTA	p7868	ATTTACTCCTTTT	p7868		p7869	0.35	95	0.30	48	0.30	62	0:30	
chloroquine resistance	•	A220S	Gcc/Tcc	GATATCACTTA	p1000	TAGATATCACTTA	p1000	G	p1000			0.00	10	0.00	02	0.00	
transporter (pfcrt)	6	Q271E	Caa/Gaa	TGGTATCC	p3805	TATGGTATCC	p3805	TGCGAAGAATAAACA	p3806	0.25	95	0:30	50	0:30	62	0:45	
	9	N326S/D	AAc/aGc/Gac	CCCATATTTATTTC CTCTTGTATG	p7719												
		M343L	Atg/Ttg	ATTCTTAGGCTAAG AATTTAAAG	p7989			TTATAGAACCAAA									
	10	G350R G353V I356T/L	Igt/Cgt gGt/gTt ATa/aCa/Tta	ATGTAACCATATAA TTTTTC	p7956	TGACGGAGC	p7950	TAGGTAGCC	p7949	0.87	95	0:30	55	0:30	62	0:45	
	11	R371I	aGa/aTa	AAATGTTTATGATG GTACAACG	p7979												
kelch-13 (<i>k1</i> 3)	1	R539T C580Y	aGa/aCa tGt/tAt	CGGAGTGACCAAAT CTGGGA	p6175	GGGAATCTGGTG GTAACAGC	p6176	CGGAGTGACCAA ATCTGGGA	p6175	2.10	95	0:30	58	0:30	62	1:45	

^aGene IDs are *dhfr* (PF3D7_0417200), *dhps* (PF3D7_0810800), *pfmdr1* (PF3D7_0523000), *pfcrt* (PF3D7_0709000), and *k13* (PF3D7_1343700).

^bFor all PCR reactions, the initial denaturation step is 95°C for 3 min, and final extension is at 62°C for 3 min for all conditions.

^cp7820 and p7821 work better than p792 and p286 for sequencing *pfmdr1* in clinical isolates and whole blood.

TADLE 32	ronp	niners ar		Jila loi gel e	For	ward Prin	ner	Reverse Prin	ner			30 съ	cles ^c				
MS	0.	Location	Distinct from	Multiplex	Unlabeled Pri	mer	5' Modification	Unlabeled Pri	mer	Dena	turatio	Anne	aling	Exte	nsion	MS Repeat Sequence (5'→3'; 2D7: Veriable Degine Bolded)	Description of MS Marker
Marker	Chr.	(Kb)	3D7	Group ^b	Sequence (5' 3')	Lab	Lab Primer	Sequence (5' 3')	Lab	Temp	Time	Temp	Time	Temp	Time	- 3D7; Variable Region Bolded)	Location
C2M18 ^a	2	206	GB4, F32, U659, U815, 7G8, FCB, Cam3.II, RF7, HB3, Dd2	A	CAAGTCGGTTGT	Primer	p7734 (6-FAM)	TGTCGATTGGAT	Primer	(°C) 98	(min) 0:20	(℃) 54	(min) 0:15	(°C) 65	(min) 0:15	CAAGTCGGTTGTATGATAT $(AT)_{21}A$ AAAT $(ATA)_{2}CAAGTC (AT)_{3}A (AT)$ $_{4}A (AT)_{4} (TATA)_{2}TTATACAT (TA)_{5}$ T $(TA)_{3}TTTATATTCAAACATTATCCA$ ATCGACA	3'UTR of PF3D7_0204700 (hexose transporter)
C3M67	3	804	GB4, U815, 7G8, FCB, Cam3.II, RF12, RF7, HB3, Dd2		GTGTACCTCAAA TTATTACC	p7200	p7800 (6-FAM)	TTTGAAATGTTTA TGGGAAC	p7201	98	0:20	54	0:15	65	0:15	GTGTACCTCAAATTATTACC AATAC (TA) 3TTACTATG(TA) 20TGTAATAT AG(TT) 19TAAAGTTCCCATAAACAT TTCAAA	3' UTR of PF3D7_0319200 (ccr4-4)
C4M30 ^a	4	1082	GB4, F32, U659, U815, 7G8, FCB, Cam3.II, RF7, HB3, Dd2	В	ATTGATGCTTTG TCTAATTAG	p7202	p7735 (6-FAM)	ATGACAAAACAT GGTATGTA	p7203	98	0:20	50	0:15	65	0:15	ATTGATGCTTTGTCTAATTAG AGTAT ATG (AT) 8 (AAA) 4AT (AA) 3TA (AA AT) 2 (AA) 3T (AA) 4T (AA) 3T (AA) 3 TAAA (AT) 23T (TTT) 2 (TA) 3TTCAT A TACATACCATGTTTTGTCAT	3' UTR of PF3D7_0424000 (<i>Plasmodium</i> exported protein, unknown function) and 3'UTR of PF3D7_0424100 (reticulocyte binding homologue 5)
TAA81 / TA81	5	1214	GB4, F32, U659, U815, 7G8, FCB, Cam3.II, RF12, RF7, HB3, Dd2		TTTCACACAACA CAGGATT	p7208	p7801 (6-FAM)	TGGACAAATGGG AAAGGATA	p7209	98	0:20	57	0:15	65	0:15	TTTCACACAACACAGGATT ATTACCA TCACCATTAATGTTATCATTCCTTG(TAT) ₃₀ GTTTGATTTGGTT(ATC) ₂ T TTATCCTTTCCCATTTGTCCA	Exon 1 of PF3D7_0529800 (conserved <i>Plasmodium</i> protein, unknown function)
TA1	6	900	GB4, F32, U659, U815, 7G8, FCB, Cam3.II, RF12, RF7, HB3, Dd2		TTTTATCTTCATC CCCAC	p7210	p7802 (6-FAM)	CCGTCATAAGTG CAGAGC	p7211	98	0:20	54	0:15	65	0:15	TTTTATCTTCATCCCCACA (AAT) ₂ (ATTATT) ₇ ATT (ATC) ₄ (ATTATT) ₃ A (TCA) ₄ TTA (TT) ₄ (ATT) ₂ A (TCA) ₂ TTA (TT) ₄ (ATT) ₃ TTCGTTTATA TGCTCTGCACTTATGACGG	Exon of PF3D7_0622100 (conserved <i>Plasmodium</i> protein, unknown function)
TA127 ^a	8	1160	RF12, RF7, Dd2	В	GCTTTATAAAAA TAACACACC	p7222	p7739 (6-FAM); p7792 (VIC)	TAAAAAACACTC AGTTTGAG	p7223	98	0:20	50	0:15	65	0:15	$\label{eq:GCTTTATAAAAAATAACACACC(TA) 4 \\ \textbf{A}(\textbf{AT})_{14} \textbf{TATATACATTTCTATCTTT} \\ \textbf{A}(\textbf{TTCT})_2 \textbf{TTTTA}(\textbf{TT})_6 \textbf{AT} \textbf{CTCAAA} \\ \textbf{CTGAGTGTTTTTTA}$	3'UTR of PF3D7_0826700 (receptor for activated C kinase)
BM5 ^a	8	1224	GB4, F32, U659, U815, 7G8, FCB, Cam3.II, RF12, RF7, Dd2	A	GAAAGTAGATTG TAGTATTTA	p7220	p7738 (6-FAM); p7791 (NED)	TACACATGAATG ATTTAATCA	p7221	98	0:20	50	0:15	65	0:15	GAAAGTAGATTGTAGTATTTAA (TT) 3TATTA (AT) 3GGATC (TAT) 2TTTA TTCAC (AT) 17GTG (TA) 4TTTTA (T T) 3CCTTT TGATTAAATCATTCATGT GTA	Exon-3'UTR of PF3D7_0828400 (mitochondrial inner membrane protein)
C13M87 ^a	13	1912	GB4, U659, U815, FCB, Cam3.II, RF12, RF7, HB3, Dd2	В	GATGAGAGAAG GTTAAAATA	p7236	p7740 (6-FAM); p7793 (NED)	CTTCAACACATC TATGGATA	p7237	98	0:20	50	0:15	65	0:15	GATGACAGAAGGTTAAAAT (ATA)2 (AATA)7 (TATATA)8T (TATG)2TGT GC (AT)3TTATCCATAGATGTGTTGA AG	Exon5-Intron5-Exon6 of PF3D7_1347800 (leucine-rich repeat protein)

- 1. otallita (MC)

^aIndicate the 5 MS markers selected for genotyping laboratory strains.

^bFor the multiplex groups, VIC or NED primers were used for TA127, BM5, and C13M87.

^cFor all PCR reactions, the initial denaturation step is 95°C for 3 min, followed by the 30 cycles as indicated. These cycles are followed by a 65°C final extension step for 3 min. FAM, fluorescein amidite.

^dMS repeat motifs were identified using the BioPHP Microsatellite Repeats Finder (1) with the following settings: length of repeated sequence = 2-6bp, min. # of repeats = 2, min. length of tandem repeat = 5, allowed % of mismatches = 0.

				dh	fr ^{a,b}		dhps		mdr1		•		pfcrt		k13				
pool		Parasitemia	N51I	C59R	S108N	I164L	S436A	A437G	K540E	A581G	N86Y	Y184F	C72S	M74I	N75E	K76T	H97Y	R539T	C580Y
h b		2.00%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
es	NE54	0.40%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd	nd	nd	nd	\checkmark	\checkmark
l fr	111 34	0.08%	nd	nd	nd	nd	\checkmark	\checkmark	\checkmark	\checkmark	nd	\checkmark	nd	nd	nd	nd	nd	\checkmark	\checkmark
tec		0.02%	nd	nd	nd	nd	nd	nd	\checkmark	nd									
ula		2.00%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
<u>i</u>	Cam3.II	0.40%	nd	nd	nd	nd	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
S	Cullion	0.08%	nd	nd	nd	nd	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd	nd	nd	nd	\checkmark	\checkmark
		0.02%	nd	nd	nd	nd	\checkmark	<u>√</u>	\checkmark	\checkmark	\checkmark	\checkmark	nd						
-				dl	hfr			dh	ps		m	dr1			pfcrt			k'	13
looc		Parasitemia	N51I	C59R	S108N	I164L	S436A	A437G	K540E	A581G	N86Y	Y184F	C72S	M74I	N75E	K76T	H97Y	R539T	C580Y
d n		2.00%	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ze		0.40%	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd	nd	nd	nd	\checkmark	\checkmark
fro	NF34	0.08%	nd	nd	nd	nd	nd	nd	\checkmark	\checkmark	\checkmark	\checkmark	nd						
ed		0.02%	nd	nd	nd	nd	nd	nd	nd	nd	\checkmark	\checkmark	nd						
llat		2.00%	\checkmark	<	\checkmark	\checkmark	\checkmark	<	\checkmark										
nu	Cam3 II	0.40%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd	nd	nd	nd	\checkmark	\checkmark
Si	Callio.ii	0.08%	nd	nd	nd	nd	nd	nd	\checkmark	\checkmark	\checkmark	\checkmark	nd						
		0.02%	nd	nd	nd	nd	nd	nd	nd	nd	\checkmark	\checkmark	nd	nd	nd	nd	nd	\checkmark	✓
				dl	hfr			dh	ps		m	dr1			pfcrt			k	13
NA		Parasitemia	N51I	C59R	S108N	I164L	S436A	A437G	K540E	A581G	N86Y	Y184F	C72S	M74I	N75E	K76T	H97Y	R539T	C580Y
gĽ		2.00%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd
BS		0.40%	\checkmark	\checkmark	\checkmark	\checkmark	 Image: A second s	\checkmark											
	NF34	0.08%	\checkmark	\checkmark	\checkmark	\checkmark	 Image: A second s	\checkmark											
teo		0.02%	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	\checkmark	nd	nd	nd	\checkmark	\checkmark	\checkmark
ula		2.00%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd
ы Ш	Cam3 II	0.40%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	\checkmark
S	Callis.II	0.08%	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	nd	\checkmark
		0.02%	\checkmark	\checkmark	\checkmark	\checkmark	nd	nd	nd	nd	\checkmark	nd	\checkmark						

TABLE S3 Sanger sequencing results of PCR using simulated fresh whole blood, frozen whole blood, and dried blood spot (DBS) gDNA

 a^{\prime} = expected allele detected; nd = allele not detected.

^bGene IDs are *dhfr* (PF3D7_0417200), *dhps* (PF3D7_0810800), *pfmdr1* (PF3D7_0523000), *pfcrt* (PF3D7_0709000), and *k13* (PF3D7_1343700).

TABLE S4 Single-nucleotide polymorphisms and mi	crosatellite sizes of dried blood spots of U	gandan parasite samples and controls
---	--	--------------------------------------

	Drug Resistance-Associated Gene and Change in Amino Acid ^{a,b}																	
		6	dhfr				dhps			ma	lr1 °			pfcrt			k	13
Samples ^d	N51I	C59R	S108N	I164L	I431V	S436A	A437G	K540E	A581G	N86Y	Y184F	C72S	M74I	N75E	K76T	H97Y	R539T	C580Y
NF54	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
TO-04-01	MUT	MUT	MUT	WT	nd	nd	nd	MUT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
TO-04-03	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
TO-04-04	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT
TO-04-05	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MIX	WT	WT	WT	WT	WT	WT	WT
TO-04-06	MUT	MUT	MUT	MIX	WT	WT	WT	MUT	nd	nd	nd	WT	WT	WT	WT	WT	WT	WT
TO-04-07	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT
TO-04-08	MUT	MIX	MUT	WT	WT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
TO-04-09	MUT	MUT	MUT	WT	WT	WT	WT	MUT	nd	nd	WT	WT	WT	WT	WT	WT	WT	WT
TO-04-11	MUT	MIX	MUT	WT	WT	WT	WT	MUT	nd	nd	nd	WT	WT	WT	WT	WT	WT	WT
TO-04-17	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MIX	WT	WT	WT	WT	WT	WT	WT
TO-04-19	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
TO-04-20	MUT	MIX	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT
TO-04-21	MUT	WT	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT
TO-04-22	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	MUT	MUT	MUT	WT	WT	WT
TO-04-23	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT
TO-04-24	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT
U659	MUT	MUT	MUT	WT	WT	WT	WT	MUT	WT	WT	MUT	WT	MUT	MUT	MUT	WT	WT	WT

	Microsatellite Sizes Relative to NF54 (bp)														
		BM5		C	13M87			C2M18	3		C4M30)		TA127	,
Samulaa ^d	Major	% of	Minor	Major	% of	Minor	Major	% of	Minor	Major	% of	Minor	Major	% of	Minor
Samples	Peak	Major	Peaks	Peak	Major	Peaks	Peak	Major	Peaks	Peak	Major	Peaks	Peak	Major	Peaks
Absolute Size of NF54	143			141			159			187			125		
TO-04-01	+27	62%	+3, -14	-28	100%		-17	100%		-24	100%		+4	100%	
TO-04-03	-6	100%		-24	100%		-24	100%		-28	100%		nd		
TO-04-04	+7	71%	-18	nd			-22	100%		-26	100%		+4	100%	
TO-04-05	+13	72%	-12	nd			-13	100%		-28	100%		-6	100%	
TO-04-06	nd			-22	100%		nd	100%		-28	100%		nd		
TO-04-07	-4	100%		-24	100%		nd	100%		-28	100%		nd		
TO-04-08	+5	100%		-5	100%		-19	100%		-28	100%		0	100%	
TO-04-09	-4	100%		nd			nd	100%		-28	100%		nd		
TO-04-11	nd			nd			-20	100%		-28	100%		nd		
TO-04-17	+17	67%	-8	-22	100%		-22	100%		+12	71%	-28	0	100%	
TO-04-19	-2	57%	-8	-26	100%		-24	100%		-28	100%		0	100%	
TO-04-20	+15	74%	-10	-15	72%	-2	-28	100%		-28	100%		0	100%	
TO-04-21	+15	77%	-10	-15	100%		-24	100%		-26	100%		0	100%	
TO-04-22	-16	100%		-17	100%		-22	100%		-17	100%		-4	100%	
TO-04-23	+9	58%	-16	-10	100%		-10	86%	-1	-28	100%		nd		
TO-04-24	+19	62%	-4	-26	100%		-24	100%		-11	100%		+4	100%	
U659	-14	100%		-22	100%		-17	100%		-14	100%		+2	100%	

^aGene IDs are *dhfr* (PF3D7_0417200), *dhps* (PF3D7_0810800), *pfmdr1* (PF3D7_0523000), *pfcrt* (PF3D7_0709000), and *k13* (PF3D7_1343700). ^bWT = wild-type; MUT = mutant; MIX = both wild-type and mutant peaks detected; ND = not detected.

^cPCR primers p7820 and p7821, and sequencing primer p7820 worked better for detecting *pfmdr1* alleles than p792 and p286 in DBS samples.

^dNF54 and U659 samples used gDNA purified from cultures. All other samples were gDNA extracted from dried blood spots collected from 16 Ugandan patients harboring symptomatic *P. falciparum* infections.

TABLE S5 KEL1/PLA1/PfPailin (KeIPP) co-lineage status assayed in ten P. falciparum strains

Parasito Namo	Brovidor	Origin	Voar	K12a	(13 ^a PfCRT ^{a,b} <i>k13</i> -flanking Microsat					ellite Size Relative to 3D7				
Falaste Name	FIOVILLEI	Origin	Tear	KI3	PICKI -	-50kb	-31.9kb	-6.36kb	-0.15kb	+8.6kb	+31.5kb	2 ^ª Copy No.		
NF54/3D7		Africa	1979	WT	WT	0	0	0	0	0	0	1		
U659	P. Rosenthal	Uganda	2007	WT	GB4	-9	-4	-6	-18	14	3	1		
S170 Clone 1H1	L. Musset	French Guiana	2018	WT	7G8+C350R	-4	-2	-3	-30	-14	-3	≥2 (PLA1)		
Dd2	T. Wellems	Cambodia	1980	WT	Dd2	-6	-6	0	-30	4	-3	1		
Cam2 (IPC 3445)	D. Ménard	Pailin, W. Cambodia	2010	C580Y (KEL1) Dd2	-6	-6	0	-30	12	-3	1		
PH0482-C Clone E11	R. Fairhurst	Pursat, W. Cambodia	2010	C580Y (KEL1) Dd2	-6	-6	0	-30	16	-3	1		
PH0212-C Clone C11	R. Fairhurst	Pursat, W. Cambodia	2010	C580Y (KEL1) Dd2	-6	-6	0	-30	16	-3	1		
KH001-061	S. Volkman	Pursat, W. Cambodia	2011	C580Y (KEL1) Dd2	-6	-6	0	-30	17	-3	1		
RF7 (PH1008-C) ^c	R. Fairhurst	Pursat, W. Cambodia	2012	C580Y (KEL1)Dd2+M343L	-6	-6	0	-30	16	-3	≥2 (PLA1)		
Cam3.II (RF967 / PH0306-C)	R. Fairhurst	Pursat, W. Cambodia	2010	R539T (KEL3) Dd2	-6	-6	0	-30	-10	6	1		

^aGene IDs are *k*13 (PF3D7_1343700), *pfcrt* (PF3D7_0709000), and *plasmepsin* 2 (PF3D7_1408000).

^bThe *pfcrt* haplotype for Dd2: M74I N75E K76T A220S Q271E N326S I356T R371I; GB4: M74I N75E K76T A220S Q271E R371I; 7G8: C72S K76T A220S N326D I356L. ^cRF7 is the only KEL1/PLA1/PfPailin haplotype identified herein.

SUPPLEMENTAL METHODS

Parasite culture PCR protocol for SNP genotyping

Required reagents:

- ddH₂O
- Bioline 2× MyTaq Blood-PCR Mix (Cat. No. BIO-25054)
- Forward, Reverse, and Sequencing Primers (diluted to 5 μM)
- $3 \mu L$ of $\geq 1\%$ parasitemia *P. falciparum*-infected packed RBCs (pRBCs)
- PCR tubes
- PCR thermal cycler
- Centrifuge
- PCR purification kit
- Sanger sequencer and sequence analyzer software

Method:

1. Prepare the PCR reaction master mix as follows, referencing the primer combination listed in **Table S1**:

Reagent	Per Reaction (µL)
ddH ₂ O	15
2× MyTaq Blood-PCR Mix	20
Fwd Primer (5 µM each)	1
Rev Primer (5 µM each)	1

- a. Add 37 μ L of the reaction master mix to a reaction tube.
- b. Add 3 µL of *P. falciparum*-infected pRBCs and mix with a pipette.
- c. Briefly centrifuge reaction mixture for 2-3 seconds.
- 2. Run the PCR reaction according to the conditions outlined in Table S1.
- 3. Spin the PCR reaction for 1 min at 8000g.
- 4. Making sure to avoid the blood pellet, transfer 30 μ L of the supernatant to a new PCR tube.

(Can pause here and leave samples in a 4°C fridge overnight).

- 5. Run 7 µL of the supernatant on a 0.8% gel for 40 min at 120V.
- 6. PCR-purify 20 μL of the supernatant and send the PCR product for Sanger sequencing with the appropriate sequencing primer.
- 7. Identify the amino acid codon at the desired position using a sequence analyzer software.

Gel electrophoresis- and fragment analysis-based protocol for microsatellite genotyping

Required reagents:

- Roche KAPA HiFi HotStart Ready Mix (2×) (Cat. No. KK2601)
- ddH₂O
- Forward, Reverse, and Sequencing Primers (diluted to 10 μM)
 - *For PCR reactions for fragment analysis, the Fwd or Rev primer must be fluorescently labeled.
- PCR tubes or 96-well plate
- PCR thermal cycler
- Centrifuge
- Gel electrophoresis:
 - o Agarose
 - TBE Buffer
 - o Invitrogen[™] Ultra Low Range Ladder (Cat. No. 10597012) (includes 6× TrackIt Cyan/Yellow Loading Buffer)
 - Electrophoresis tank and power supply
 - o Gel imager
- Fragment analysis:
 - Applied Biosystems[™] ExoSAP-IT[™] Express PCR Product Cleanup Reagent (Cat. No. 75001.1.ML)
 - DNA sizing software (e.g. Thermo Fisher Scientific Peak Scanner)
- Reference parasite strains (e.g. 3D7, genetic cross parents) with known marker sizes should be included as internal controls on the gel and in each fragment analysis run, respectively.

Method:

1. Prepare the PCR reaction master mix as follows, referencing the primer combination listed in **Table S2**:

Reagent	Per Reaction (µL)
ddH ₂ O	3.6
KAPA HiFi HotStart Ready Mix (2×)	7.5
Fwd Primer (10µM)	0.45
Rev Primer (10µM)	0.45

- a. Add 12 μL of the master mix to a PCR tube or well.
- b. Add 3 μ L of gDNA template (4 ng/ μ L).
- c. Seal the tube or plate, and mix by vortexing for 2-3 seconds.
- d. Briefly spin reaction mixture by centrifugation for 2-3 sec (tube) or 1000rpm x 1 min (plate).
- 2. Run PCR according to the conditions outlined in Table S2.

(Can pause after PCR and store samples at -20°C).

Gel Electrophoresis:

- 3. Run 5 μL of PCR product on a 2% agarose gel at 100V for 1.5-2 h, ensuring that all strains for each marker fit into a single comb within one gel.
- 4. Run 6 μ L of the 1× Ultra Low Range Ladder on both ends of the gel for band size identification.
- 5. Visualize the PCR products with a gel imager.
- 6. Identify the microsatellite size for each strain using the reference strain as a comparator.
 - a. Note: if more than one band is observed for the sample, this may indicate a polyclonal sample.

Fragment Analysis (FA):

1. If multiplexing, mix PCR products according to the following ratios:

Marker	Group for	Label	Mixing Ratio
	Multiplexing		Post-PCR
C2M18	٨	6-FAM (Blue)	2
BM5	A	NED/ATTO550 (Yellow)	1
C4M30		6-FAM (Blue)	1
TA127	В	VIC/ATTO532 (Green)	1
C13M87		NED/ATTO550 (Yellow)	1

- Clean up PCR product by adding 2 µL of ExoSAP-IT[™] Express PCR Product Cleanup Reagent to 5 µL of PCR product in a new tube or well.
- 3. Vortex for 2-3 seconds to ensure mixing.
- 4. Spin down for 2-3 sec (tube) or 1000 rpm \times 1 min (plate).
- 5. Incubate at 37°C for 4 min and 80°C for 1 min to inactivate the enzyme in a thermocycler.
- 6. Dilute sample $10 \times$ by adding 2 µL of cleaned-up product with 18 µL of ddH₂0.
- 7. Send 20 µL of reaction for FA using the Liz500 ladder.
- 8. Analyze microsatellite size using a DNA sizing software.
 - a. Restrict sizes to 100-300 bp, peak threshold to 500 for desired color (e.g. blue for FAM) and 50 for others not in use (e.g. red).
 - b. Export data as an Excel file, and sort by sample name (and color if multiplexing), and then by peak area.
 - c. The size of the peak with the largest area indicates the dominant MS size.
 - d. Obtain absolute and relative MS sizes (compared to reference strain such as NF54).
 - e. Note: If analyzing genetic cross progeny, use the MS sizes in the parental samples as a reference for the progeny. The MS sizes in the progeny should match the MS size in either parent.
 - f. If detecting potential contamination by another strain
 - i. If (minor peak area / (major + minor peak area) *100% > 10%) at the same marker for the same sample, flag as a mixture. However, if <10% mix seen in multiple markers for a sample, repeat PCR+FA to verify clonal purity.

Plasmepsin 2 (pm2) copy number quantification by multiplexed TaqMan qPCR protocol

Required reagents:

- NanoDrop or Qubit
- Ice
- ddH₂O
- Bio-Rad SsoAdvanced Universal Probes Supermix (2×) (Cat. No. 1725282)
- Dual-Labeled TaqMan Probes (DLPs; diluted to 10 μM)
 - *pm2*: 5'-6-FAM-CAACATTTGATGGTATCCTTGGTTTAGGATGGA-MGB-Eclipse-3'
 - ο *β-tubulin*: 5'-HEX-TAGCACATGCCGTTAAATATCTTCCATGTCT-BHQ1-3'
- Primers (diluted to 10 µM)
 - o pm2 Fwd: GGATTĆGAACCAACTTATACTGC
 - o *pm2* Rev: AATTGGATCTACTGAACCTATTGATAA
 - o β-tubulin Fwd: TGATGTGCGCAAGTGATCC
 - ο *β-tubulin* Rev: TCCTTTGTGGACATTCTTCCTC
- Gene fragment standards of *pm2*: *β-tubulin* mixed at 1:1, 2:1, 3:1, 4:1, and 5:1 molar ratios as described in (2).
- Applied Biosystems MicroAmp EnduraPlate Optical 96-well Fast Clear Reaction Plate with Barcode (Cat. No. 4483485)
- Applied Biosystems Optical Adhesive Covers (Cat. No. 4360954)
- Centrifuge
- Real-Time PCR System

Method:

- 1. Use a NanoDrop or Qubit to quantify template DNA on the same day as the qPCR run, and adjust to 4 ng/ μ L if necessary.
- 2. Thaw Sso $2 \times$ mix, probes, primers, and standards on ice and protected from light for 20 minutes.
- 3. Prepare the PCR reaction master mix as follows:

Reagent	Volume (µL) per reaction	Final Concentration
ddH ₂ O	5.02	
Sso mix (2×)	10	1×
<i>pm2</i> Fwd+Rev Primer Mix (10µM each)	0.66	0.33 µM
pm2 TaqMan probe	0.33	0.16 µM
<i>β-tubulin</i> Fwd+Rev Primer Mix (10μM each)	0.66	0.33 µM
<i>β-tubulin</i> TaqMan probe	0.33	0.16 µM

- a. Get a clear qPCR plate and label sections according to each sample.
- b. Add 17 μ L of the reaction master mix to each tube or well.
- c. Add 3 μ L of template DNA (4 ng/ μ L) or ddH₂O (no template control, NTC) in triplicate for each sample and mix well by pipetting.
- d. Include as a *pm2* copy 1 control: 3D7 or NF54
- e. Include as pm2 copy 1-5 controls: gene fragment standards of pm2: β -tubulin mixed at 1:1, 2:1, 3:1, 4:1, and 5:1 molar ratios.

- 4. Seal the plate using a plate seal applicator.
- 5. Spin down for 1000rpm \times 1 min.
- 6. Run the qPCR program in a Real-Time PCR system as follows:

Cycles	Step	Temperature	Duration
1	Denaturation	95°C	3 min
40	Denaturation	95°C	20 s
	Annealing,		
	Extension,	58°C	40 s
	Detection		

7. Quantify copy number by using the standard curve method for relative quantification: $(1.8293)^{\Delta Ct_{(pfpm2)}}$

	()		
$(1.8531)^{\Delta Ct_{(pf\beta-tubulin)}}$	l)		

 $\Delta Ct(pm2) = avg. Ct(pm2 in 3D7 reference) - avg. Ct(pm2 in sample)$

 $\Delta Ct(\beta - tubulin) = avg.Ct(\beta - tubulin in 3D7 reference) - avg.Ct(\beta - tubulin in sample)$

a. 1.8293 and 1.8531 are the primer efficiencies for *pm2* and β -tubulin, respectively. Primer efficiencies were determined using qPCR analysis of serially-diluted gDNA as detailed in (3).

SUPPLEMENTAL REFERENCES

- 1. Bikandi J. 2006. BioPHP Microsatellite Repeats Finder (version 2). http://insilico.ehu.es/mini_tools/microsatellites/. Retrieved 12 April 2021. {Code and/or software.}
- Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, Chy S, Kim S, Ke S, Kloeung N, Eam R, Khean C, Ken M, Loch K, Bouillon A, Domergue A, Ma L, Bouchier C, Leang R, Huy R, Nuel G, Barale JC, Legrand E, Ringwald P, Fidock DA, Mercereau-Puijalon O, Ariey F, Menard D. 2017. A surrogate marker of piperaquine-resistant *Plasmodium falciparum* malaria: a phenotype-genotype association study. Lancet Infect Dis 17:174-183.
- 3. Ross LS, Dhingra SK, Mok S, Yeo T, Wicht KJ, Kumpornsin K, Takala-Harrison S, Witkowski B, Fairhurst RM, Ariey F, Menard D, Fidock DA. 2018. Emerging Southeast Asian PfCRT mutations confer *Plasmodium falciparum* resistance to the first-line antimalarial piperaquine. Nat Commun 9:3314.