Supplementary material

Listeria monocytogenes requires the RsbX protein to prevent SigBactivation under non-stressed conditions.

Ana H. Oliveira^{1,2,3}, Teresa Tiensuu^{1,2,3}, Duarte N. Guerreiro⁴, Hasan Tükenmez^{1,2,3,5}, Charlotte Dessaux^{6,¤}, Francisco García-del Portillo⁶, Conor O'Byrne⁴ and Jörgen

Johansson^{1,2,3,*}.

¹Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden

²Department of Molecular Biology, Umeå University, Umeå, Sweden

³Umeå Centre of Microbial Research, Umeå University, Umeå, Sweden

⁴Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland

⁵Department of Chemistry, Umeå University, Sweden

⁶Laboratory of Intracellular Bacterial Pathogens, National Center of Biotechnology, (CNB)-CSIC, Spain

*To whom correspondence should be addressed: jorgen.johansson@umu.se

Supplementary figure legends

Figure S1. (A, B) Expression of SigB regulated genes in different genetic backgrounds. Northern blot analysis showing expression levels of positively (*lmo2230* and *lmo0596*) and negatively (*lmo1699*) SigB regulated genes. The strains (WT, $\Delta sigB$, $\Delta rsbX$ and $\Delta rsbX+rsbX$) were grown at 37°C (A) or 23°C (B), in BHI medium in light conditions, with constant agitation (180 r.p.m.). Samples were taken when cultures reached OD_{600} nm~0.8 when RNA was extracted. tmRNA was used as a loading control. n=3. (C, D) Western blot of determining levels of SigB. WT, $\Delta sigB$, $\Delta rsbX$ and $\Delta rsbX + rsbX$ strains were grown in BHI, at 37°C (C) or 23°C (D) in BHI medium in light conditions with constant agitation until OD_{600} nm~0,8 was reached. Samples were taken and protein extracted before Western blot analysis using anti-SigB antibodies. GroEL levels were used as a loading control. n=3.

Figure S2. Relative levels of SigB expression in different genetic backgrounds quantified from Figure 2C and D and Figure S1C and D. The amount of SigB was quantified and normalized to the expression of GroEL in indicated strains. Dunnett's multiple comparisons test was used for statistical analysis. * reflects a *p* value of < 0.05 and ** a *p* value of < 0.01. ns = non significant.

Figure S3. Acid survival assay. WT, $\Delta sigB$, $\Delta rsbX$, $\Delta rsbX + rsbX$ and $\Delta sigB$; $\Delta rsbX$ strains were grown overnight and resuspended in BHI of pH 2.5, and incubated at 23°C. Samples were taken at indicated time points, spread on agar-plates to determine survival rate (CFU/ml). The graphic shows the average values of 3 biological replicates. A 2-way ANOVA with Multiple comparisons was used for statistical analysis comparing all strains at the different time points with WT. * reflects a *p* value < 0.05.

Figure S4. (A) Biofilm production of WT, $\Delta sigB$, $\Delta rsbX$, $\Delta rsbX + rsbX$ and $\Delta sigB$; $\Delta rsbX$ strains. Bacteria were statically grown in a 96-well round-bottomed plate, for 24h, 48h and 72h, at 23°C in TSB medium. The graphics show the average values of 3 biological replicates. A 2-way ANOVA with Multiple comparisons was used for statistical analysis comparing all strains at the different time points with WT. * reflects a P value<0.05. (B) Motility assay. WT, $\Delta sigB$,

 $\Delta rsbX$ and $\Delta sigB$; $\Delta rsbX$ strains were spotted on a motility agar plate (BHI, 0,3% agar) and grown at bench conditions (~23°C) for 24 hours. n=3. (C) Levels of FlaA in different genetic backgrounds. WT, $\Delta sigB$, $\Delta rsbX$, $\Delta rsbX + rsbX$ and $\Delta sigB$; $\Delta rsbX$ strains were grown in BHI, at 23°C, with constant agitation (180 r.p.m.) until OD₆₀₀ nm~0.8 was reached. At this timepoint, protein was extracted and the levels of FlaA determined by western blot analysis, using anti-FlaA antibodies. A commassie-stained gel was used as a loading control (below). n=3.

Figure S5. *In vivo* RsbT crosslinking experiment. WT, $\Delta rsbX$ and RsbT_{N49A} (kinase mutant) mutant strains were grown in BHI, at 37°C, until OD₆₀₀ of 0.8 was reached. At this OD, half of the cultures were stressed by 0.5M of NaCl for 5 min. For samples being cross-linked, formaldehyde was added and incubated for 10 mins before protein extraction and western blot using an anti-RsbT antibody. A $\Delta rsbR1$ mutant strain (also devoid of RsbT expression) was used as a negative control. n=3.

Figure S6. *In vivo* RsbR1 cross-linking and cross-linking reversal. WT, $\Delta rsbX$ and RsbT_{N49A} strains were grown in BHI, at 37°C, until OD₆₀₀ nm of 0.8. For samples being cross-linked, formaldehyde was added and incubated for 10 minutes. For the reversal of the cross-linking, the same samples were incubated at 95°C, for either 15 minutes (crosslink 15 min) or 30 minutes (crosslink 30 min). At these time-points, protein was extracted and western blot performed using an anti-RsbR1 antibody. The monomeric form of RsbR1 (~30 kD) is indicated by * and the putative dimeric form of RsbR1 (~70kDa) is indicated by **. A $\Delta rsbR1$ mutant was used as a negative control.

 $\Delta sigB \quad \Delta rsbX \quad \Delta rsbX \quad \Delta sigB;$ + $rsbX \Delta rsbX$

Monomeric RsbT

