Putrescine and its metabolic precursor arginine promote biofilm and c-di-GMP synthesis in

Pseudomonas aeruginosa

Zhexian Liu, Sarzana S. Hossain, Zayda Morales Moreira, and Cara H. Haney

Supplemental Figures and Tables

Figure S1. Mutants in predicted polyamine catabolism and biosynthesis genes have reduced levels of putrescine and spermidine. *P. aeruginosa* PAO1 $\Delta spuC$ (putrescine catabolism), $\Delta speD$ (spermidine biosynthesis), and $\Delta speAC$ (putrescine biosynthesis) mutants were grown in M63 media without exogenous arginine or putrescine. Targeted metabolomics was used to quantify putrescine or spermidine levels. All 3 mutants had significant reductions in both spermidine and putrescine compared to wildtype cells. Mean +/- sd is shown; letters indicate genotypes with significantly different levels of polyamines by ANOVA and Tukey's HSD.

Figure S2. L-arginine robustly promotes biofilm formation independent of SpeA and SpeC. A) PAO1 or the *speAC* mutant were treated with 20 mM L-arginine or 20 mM of KCl as a control for the chloride ions in L-arginine HCl salt. * indicates p < 0.0001 by student's t-test. Error bars represent standard deviation. Data points show all technical replicates from 3 biological replicates. B) Wild-type *P. aeruginosa* PAO1 and $\Delta speA$, $\Delta speC$, and $\Delta speAC$ mutants were treated with 2.5 mM L-arginine hydrochloride. At this concentration, L-arginine does not induce biofilm formation in any of the genetic backgrounds, including the L-arginine-accumulating $\Delta speA$ and $\Delta speAC$ strains. Error bars represent standard deviation. Data points show all technical replicates from 4 biological replicates.

Figure S3. Addition of exogenous L-arginine leads to a slight increase in bacterial density in wild-type but not in the $\triangle eps::FRT$ strain. A-B) Growth curves of *P. aeruginosa* PAO1 WT and $\triangle eps::FRT$ strain in M63 supplemented with 20 mM L-arginine HCl, 20 mM KCl, or equal volume H₂O (error bands represent 95% confidence intervals, n \ge 17 from 3 biological replicates). C) L-arginine HCl supplementation does not affect the maximum growth rate of either wild-type or the $\triangle eps::FRT$ strain. D) While the L-arginine HCl supplementation increases the maximum of OD₆₀₀ at 8 hr (D), this increase is dependent on exopolysaccharide biosynthesis (*p<0.05 by student's t-test, n \ge 17 from 3 biological replicates). E) The addition of L-arginine HCl or KCl does not significantly alter the maximum growth rate of either the WT or $\triangle eps::FRT$ strain (p=0.2477 by one-way ANOVA, n \ge 17 from 3 biological replicates).

Table S1 Primers used in this study

Names	Restriction sites	Sequences $(5' \rightarrow 3')$
speA-UpF	HindIII	TTTAAAAGCTTCGCCTGTCGGCGACG
speA-UpRc		GCTAGCCAGGCGCGGTGATCTC
speA-DnF		GCGCCTGGCTAGCCCGTCG
speA-DnRc	XbaI	CAATTTCTAGAGGCCCTGGTGGCGTTC
speC-UpF	HindIII	TTTAAAAGCTTCGCCCAGGTGACCCAG
speC-UpRc		CGACTGCGGGTTGGGACTCCCAATG
speC-DnF		CAACCCGCAGTCGCCTCTGCTAC
speC-DnRc	Xba I	CAATTTCTAGAACGGGTTGTAGGCAATTTCCC
speD-UpF	Xba I	CTTAATCTAGAGCCCAAGGTGTTCACGAAG
speD-UpRc		CGTGTGCGACGTGGGGGAACTCTC
speD-DnF		TTCCCCACGTCGCACACGAGGAAG
speD-DnRc	Hind III	TTAAAAGCTTAGGCGCTGTACCAGGGC
speE-UpF	Hind III	CTTAAAAGCTTGGCGGCCACCAGC
speE-UpRc		GGTGAAGCGGGGCCGGGATCTCCC
speE-DnF		GATCCCGGCCCCGCTTCACCAAGAAG
speE-DnRc	Xba I	CTTAATCTAGATCGCGATGCCGTCG
spuC-UpF	Xba I	CTTAATCTAGAAGTGCTGCCGCTGTTC
spuC-UpRc		CTCAGGGACGTCACACCTCTTCTATTCAAG
spuC-DnF		GGTGTGACGTCCCTGAGCGGACTTTTG
spuC-DnRc	Hind III	CTTAAAAGCTTGTAGCCGATGCCGATGG
spuD-UpF	Hind III	CTTAAAAGCTTCCTGGAGAACATCCGCATC
spuD-UpRc		TCGCGGAGCGGGGTAGCTCC
spuD-DnF		ACCCCGCTCCGCGAGGAGCC
spuD-DnRc	Xba I	CAATTTCTAGATCTTCTTCTCCGCCTGCAC
GFPmut3-F		ATGTCTAAAGGTGAAGAATTATTC
GFPmut3-Rc		TTATTTGTACAATTCATCCATACC