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1 Evolutionary conservation in HIV enzymes and its effect on
correlations between sites

Figure 1: Degree of conservation in HIV enzymes. Distribution of the average number of mutations
per site from the reference HIV-1 subtype B consensus sequence (Hamming distances) is compared between
HIV protease (PR), reverse transcriptase (RT), and integrase (IN) proteins. Protease sequences have much
more average variation per site compared to RT and IN, and is the least conserved amongst the Pol enzymes
of HIV, followed by RT, and then IN, which has similar degree of conservation comparable to structural
proteins like p24 capsid (CA).
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(A) Site entropy in protease. (B) Distribution of site entropies at resistance-
associated and non-associated sites.

(C) Higher order marginals for selected resistance-
associated sites.

(D) Higher order marginals for selected non-
associated sites.

Figure 2: Lack of variability at residue positions can affect the observed correlations. (A) shows
the site entropies (

∑
α−PαlogPα, where the sum runs over the residues at that position) at drug-resistance

associated sites in green and non-drug-resistance associated sites in orange. In the reduced alphabet of 4
as used here, there are 4 possible amino acid characters in each position. Sites of primary mutations are
indicated with a black “triangle” symbol. Site entropy is a measure for the variability at a site. (B) shows the
distribution of site entropies for drug-resistance associated positions in green, non-drug-resistance associated
positions in orange, and the overlap between them in brown. There is higher variability, i.e higher site entropy
at positions associated with drug resistance. Both resistance-associated and non-associated sites are then
selected for further analysis such that they have similar distribution of site entropies as indicated in black.
(Again a reduced alphabet of 4 was used here, giving 4 possible amino-acid characters at each site in the
protein. ) (C) Spearman ρ2 between the Potts (blue) or independent (gray) model predictions and dataset
marginals for subsequences of length upto 10 comprised of selected inhibitor-associated positions with similar
distributions in site entropies as non associated positions shown in (B). (D) Same as (C) but for subsequences
comprised of selected positions not associated with resistance. While lack of variability at sites can play a
role in obscuring the effect of correlations, the role of correlations is still stronger for inhibitor-associated sites
than can accounted for by site entropies alone, and is possibly due to the functional interactions connecting
them.
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Figure 3: Replicative capacity measurements from [1] compared to selection coefficients from [2] for mutations
in HIV-1 Protease.

2 Comparison with experimental measures of fitness

Figure 3 compares two very similar experimental measures of fitness: replicative capacity measurements
from [1] with selection coefficients from [2] for mutations in HIV-1 Protease. The correlation between the
two is low. Interestingly, the Potts model predictions agree well with one of the datasets and not the other.

Figure 4 illustrates the correspondence between the likelihoods of point mutations in HIV protease (PR)
as predicted by the Potts model and three different but related experimental measures of fitness: relative
infectivity measured by single-cycle specific infectivity (SpIn) assays with the amount of viruses for infection
normalized by measuring p24 mass (ELISA) from [3] in (A), replication capacity values of viruses with single
mutations associated with protease inhibitor resistance from [3] in (B), replication capacity measurements
from [1] in (C), and selection coefficients from [2] in (D). There is high, statistically significant correlation
between Potts model predictions of likelihoods and experimental fitness measurements in (A, B, and D).
[4] also report a Pearson’s correlation coefficient, |R| ≈ 0.85 between changes in melting temperature (Tm)
of mutant proteases relative to a reference sequence and Potts ∆Es. However, there is low correspondence
between the high-throughput replicative capacity index in [1] and predicted likelihoods of single mutations in
protease in Figure 4C, which illustrates the fact that the same experimental measurement depending on con-
text, type of experiment, experimental conditions, etc. can have varying degrees of correlation with predicted
“likelihoods” of mutant sequences. The model predictions can also be contaminated if the measurements are
for mutations rarely observed in large MSAs of natural sequences.

Figure 8 illustrates an interpretation that the Potts model predicted ∆Es are representative of a collec-
tive of different features in the fitness landscape, such as viral replicative capacities, or protein structural
stabilities (and folding energies), which may be orthogonal, and thus, may not correlate well with each other.
Potts model predicted ∆Es correlate well with both replicative capacities of protease mutants, as well as
with changes in their folding energies predicted by FoldX. Replicative capacities however do not correlate
as well with FoldX predicted changes in folding energies. Using an adaptive cluster expansion algorithm to
infer the Potts model parameters, [6] also report a statistically significant correlation between replicative
capacities and Potts model predicted ∆Es for second-generation drug-associated mutations in HIV PR.

3



(A) Relative infectivity measured using single cycle
SpIn assays [3] vs Potts model predicted likelihoods

(B) Replication capacity measurements from [3] vs
Potts model predicted likelihoods

(C) Replication capacity measurements from [1] vs
Potts model predicted likelihoods

(D) Selection coefficients from [2] vs Potts model pre-
dicted likelihoods

Figure 4: Same sequence covariation model, different experimental measurements. Figure shows
the correlation between the likelihoods of point mutations in the Protease enzyme of HIV-1 as predicted
by the same sequence covariation (Potts) model and four different but related experimental measures of
fitness: (A) relative infectivity measured using single cycle specific infectivity (SpIn) assays [3] , (B), viral
replication capacity measurements from [3], and (C) replication capacity measurements from [1], and selection
coefficients from [2] in (D). (A) Changes in relative infectivity measured by single-cycle SpIn assay, in which
the amount of viruses used for infection was normalized by measuring p24 mass (ELISA) from [3] compared
to Potts ∆Es. Spearman ρ = 0.41 (Pearson R = 0.38). (B) Replication capacity values of viruses with
single mutations associated with protease inhibitor resistance from [3] compared to Potts ∆Es. Spearman
ρ = 0.68 (Pearson R = 0.71). (C) Replication capacity measurements obtained by high density mutagenesis
experiments combined with next-generation sequencing in [1] compared to Potts ∆Es. Spearman |ρ| = 0.1
(Pearson |R| = 0.24). (D) Selection coefficients from [2] compared to Potts ∆Es. Spearman ρ = 0.53
(Pearson R = 0.50). [4] report a Pearson’s correlation coefficient, |R| ≈ 0.85 between changes in melting
temperature (Tm) of mutant HIV proteases relative to a reference sequence and Potts ∆Es.
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(A) Replicative fitness from [5] vs Potts model pre-
dicted likelihoods in p24 capsid.

(B) Replicative capacity measurements from [5] vs
independent model predicted likelihoods in p24 cap-
sid.

Figure 5: Experimental measurements of replicative capacity vs model predicted likelihoods of
mutations in HIV capsid protein. Figure shows the correlation between the likelihoods of point muta-
tions in p24 capsid as predicted by the Potts and independent models compared to experimental measures
of replicative fitness (RCmut/RCNL43) from [5], with a Spearman rank-order correlation coefficient of 0.85
and 0.79, respectively.

Figure 6: (A) Accuracy of point-mutation effect predictions and “double mutant cycle” predictions of epistasis
for HIV-1 capsid, as a function of the MSA depth from which the Potts model was inferred. This is measured
by the Pearson correlation in mutation effect predictions ∆E for all possible mutations and ∆∆E for all
possible double mutants to a set of sequences generated from the reference model.
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(A) (B)

Figure 7: (A) Simulation of the expected correlation of the Potts model prediction to experimental values
for ∆E and ∆∆E in HIV-1 protease as a function of simulated experimental noise η, showing that the the
correlation for ∆∆E drops much more quickly. The dotted section of the curves show where the p-value for
the ∆∆E correlation is > 0.05, or insignificant, showing that noise can make it impossible to verify ∆∆E
values even when ∆E values are well predicted. For a correlation of ρ ≈ 0.6 for ∆E values between model
and experiment (as seen in main text Figure 4 for protease), the expected correlation in ∆∆E values is
≈ 0.2 and is not statistically significant. (B) Comparison of double mutant cycle predictions between Potts
model and experimental measurements of relative replicative fitness from [6] for HIV-1 PR. The much smaller
dynamic range makes the measurements/predictions more susceptible to noise, making accurate numerical
predictions difficult. We do not see statistically significant numerical correlation between experimental and
Potts ∆∆E predictions.

(A) (B) (C)

Figure 8: Potts model captures different features of the fitness landscape. Figure shows that the
Potts model predicted ∆Es can capture different features of the fitness landscape that may be orthogonal,
and may not correlate well with each other. (A) Relative fitness (replicative capacity) measurements obtained
from deep mutational scanning of HIV-1 variants [6] involving combinations of (upto 8) mutations in protease
associated with resistance to (particularly second-generation) inhibitors in clinic, are compared to changes in
Potts statistical energies, ∆Es with a Spearman rank-order correlation, ρ ≈ 0.4 (p� 0.001). The observed
correlation between model and experiment is lower than seen in the main text as the experimental dataset
contains combinations of mutations not observed in patients, which are highly deleterious (particularly for
higher order mutants) and may suffer from higher experimental errors [6]. Excluding higher-order mutants
and very deleterious genotypes was also seen to improve the correlation between the Potts model predictions
and experimental fitness measurements in [6] (B) FoldX predicted changes in folding energies, ∆∆Gs (PDB:
3S85) of the mutations also correlate well with Potts predicted changes in statistical energies, ∆Es for the
same (Spearman ρ ≈ −0.7). (C) Experimental relative fitness measurements however, do not correlate as
well with FoldX predicted changes in folding energies due to the mutations (ρ = −0.24).
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3 Evidence of epistasis from hamming distance distributions

In this section, we look at the evidence of epistasis that can be obtained from the distinction in the hamming
distance (number of mutations) distributions of the Potts and independent models compared to the distri-
bution in the multiple sequence alignment of protein sequences (dataset MSA) obtained from the Stanford
HIV drug resistance database, using total variation distance (TVD) as a measure of the distance between
distributions. Samples (of the same size as the dataset MSA) are obtained by sampling from the Potts and
independent models, as well as the dataset MSA itself, giving the “target” distribution. Hamming distances
are calculated with respect to the HIV-1 subtype B wild-type consensus sequence. The total variation dis-
tances of the hamming distance (inclusive of all positions) distributions are calculated with respect to the
dataset MSA, and the process is repeated to obtain the distribution of total variation distances (Figure 9).
The Potts model predicted hamming distance distributions are very close to the “target” distribution. The
biggest difference between the Potts and independent models is seen for drug-experienced protease in Figure
9B. However, in most of the literature, drug-naive HIV sequences are used, where the distinction between
Potts and independent models is not clear (Figure 9A). For integrase, which is a much more conserved
protein than protease, the models are indistinguishable even for drug-experienced sequences (Figure 9C).
Overall, the evidence of epistasis that can be obtained from hamming distance distributions is not strong
and less sensitive than can be obtained from higher-order mutational statistics.

(A) (B) (C)

Figure 9: Distribution of the total variation distances of hamming distance distributions. Figure
shows the distribution of the total variation distances in the Hamming distances (from the HIV-1 subtype
B consensus sequence considering all positions in the protein) of the Potts model (blue), independent model
(orange) and target (black) distributions, of which the latter is obtained by repeated sampling from the
dataset MSA. The total variation distance of each distribution is calculated with respect to the dataset MSA
and shown for (A) drug-experienced protease, (B) drug-naive protease, and (C) drug-experienced integrase.
The biggest distinction between the Potts and independent models is seen for drug-experienced protease.
However, in most of the literature, drug-naive HIV sequences are used, where the distinction between Potts
and independent models is not clear. For integrase, which is a much more conserved protein than protease, the
models are almost indistinguishable even for drug-experienced sequences. Overall, the evidence of epistasis
that can be obtained from hamming distance distributions is not strong and less sensitive than that obtained
from higher-order mutational statistics.
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