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Editors’ comments to the author: 
 
Reviewer 1 strongly criticizes the way you present the model but gives you the benefit of the 
doubt about the correctness of your methodology. Reviewer 2 on the other hand finds your 
results to be inconclusive and therefore of limited biological significance. Based on these expert 
assessments we cannot accept your manuscript. 
 
We are disappointed with the editor's decision to not consider the manuscript for publication 
based on the two reviews. While reviewer 1 criticizes our presentation of the model, he 
comments on finding the results reported in our manuscript satisfying and of importance; and 
states that he “has no reason to doubt the authors used the model correctly, nor do I doubt their 
results.”  Reviewer 1 asks that we improve our presentation of the model and objects to us 
referring to the model as a “Potts model”. While we agree that the model presented in this 
manuscript and in the literature cited by the reviewer is not precisely the Potts model from 
statistical physics, it is a generalization of the same model and is often referred to simply as a 
“Potts model” in the biological physics literature when applied to protein sequence co-variation.   
We clarify the use of the name “Potts model” in the revised manuscript, and also address 
several additional points raised by reviewer 1 in our further response below.   
 
As to the comments from reviewer 2, we strongly disagree that the results are inconclusive and 
highlight below some of the new results presented in the manuscript that will be of importance to 
the understanding and detection of epistasis in viral systems more generally and for HIV in 
particular. 
 
Our work is motivated by recent publications [1] which show that when experimental probes of 
epistasis, primarily based on replicative capacity, are compared with global models of sequence 
co-variation for HIV proteins, the signatures of epistasis are weak for these viral proteins. As 
discussed in our manuscript and not well understood by the scientific community, HIV replicative 
capacity assays are explained surprisingly well using an independent model of sequence 
evolution.  Yet, the role played by epistasis in the evolution of viruses is correctly thought to be 
critical for their fitness.  So why is it difficult to see the signatures of epistasis in experimental 
studies of HIV fitness that are largely based on replicative capacity measurements?  Can we 
find new ways to reveal the importance of epistasis for viral evolution?  In our manuscript we 
answer these two questions; we make the following points:  
 
(i) the Potts global sequence covariation model captures a sensitive measure of epistasis:  the 
higher order marginals of the sequence distribution for drug-resistance-associated positions 
(DRAPS) in HIV proteins exhibit strong effects of epistasis.  Furthermore, as we have recently 
shown, the higher order marginals of evolutionary sequence distributions provide a new and 
sensitive measure of epistasis for viral proteins and Eukaryotic protein families (see [2]). 
 
(ii)  Replicative capacity experiments, in contrast, typically probe the effects of single point 
mutations in a specific sequence background (laboratory molecular clone) on viral fitness.  The 
epistatic signal from a single point mutation is weak because both the independent and Potts 
models are constrained to give the same univariate marginals, and because of sequence 
conservation.   
 
 
(iii) Double mutant cycle experiments are the classic way to probe epistasis, in principle they 
quantify the effects of correlation between mutations at two positions.   However, in this 
manuscript we carry out a statistical analysis to show that it is very difficult to quantify epistasis 
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for HIV proteins using double mutant cycle experiments, because of the small dynamic range of 
these experiments and consequently the very high precision required to detect epistasis.  
 
Below we address the reviewers' comments in more detail: 
 
Reviewer 1: 
 
In this contribution, the authors use molecular sequence data from four HIV-1 proteins that are 
important drug targets, to validate a model of the sequence data, and to show the importance of 
epistasis in predicting physical properties of mutated proteins.  
Given the importance of these targets in drug design, and our attempts to understand protein 
structure and function from sequence data, this is an important area to advance. While some of 
the findings (importance of epistatic interactions) have been demonstrated for other proteins 
before, applying this model to HIV sequence data is still necessary. The importance of epistatic 
effects in the function of the HIV-1 protease has previously been discussed in Gupta & Adami, 
PLoS Genetics 12(2016) e1005960. 
 
We thank the reviewer for the commentary.  We note that we did cite the 2016 Gupta & Adami 
PLoS Genetics paper in the current manuscript as well as in a previous related paper of ours 
[3].   In the manuscript under review we focus on the limits to detecting epistasis in viral systems 
like HIV through experimental measures of fitness and present an alternative approach based 
on the higher order marginals of the multiple sequence alignment (MSA) distribution, which 
provides much stronger evidence for epistasis in viruses, and is complementary to an approach 
based on pairwise mutual information presented in the work by Gupta & Adami.  We comment 
on this in the Conclusion on p. 10-11 of the revised manuscript.   
 
 
While I find many of the results satisfying, I am somewhat dismayed at the sloppy presentation 
of model and methods. First of all, the authors refer to the spin model as a Potts model, but it 
certainly is not that, because the Potts model has interactions only between nearest neighbors. 
It is also not a standard Ising model (this is what Bialek's group has been calling the model, also 
Ferguson et al.) but the Ising model is also nearest-neighbor. In the condensed matter literature, 
this model is the "infinite-range Ising model", because each "spin" can interact with any other 
spin.  
 
We are glad the reviewer found many of the results presented in our manuscript "satisfying". 
The reviewer is right that the models initially developed by Potts et al. in the condensed matter 
physics literature only included nearest neighbor interactions and spin state vectors distributed 
across a hypersphere [17,18].  In contrast, the “spin” models used in biological physics which 
correspond to global models of sequence-covariation,  are generalizations of the Potts model, 
for which each "spin" can assume any of 21 possible states (20 amino acid types plus a gap), 
and each spin can interact with every other spin ("infinite range").  Such spin-models have been 
well established in the maximum entropy protein sequence-covariation literature and are often 
referred to simply as the Potts or Ising (in case of just two spins or amino-acid residues, 
wildtype and mutant) model [3, 5-16]. In accordance with the literature, we refer to this model 
concisely as simply the Potts model.  However, to address the concern of the reviewer, we 
provide additional commentary about the name on p. 12 of the revised text.   
 
 We note that this manuscript does not present any new development of the model but 
utilizes the model to detect and understand the role of epistasis in shaping the fitness landscape 
of HIV proteins. The precise spin model and methodology used here is well described in great 
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detail in previous work from our group [5,15,16], and in the manuscript, we refer the readers to 
these papers for a more detailed description of the model. To make the manuscript self-
sufficient however, we present a brief description of the model and preprocessing steps in the 
Methods section. 
 
 
 
In Eq. (2), the sum does not go to L(L-1)/2, but rather to L. (There should be no uni-code 
U+2060 inline 398).The authors should make it clear that each site i gets its own alphabet, and 
what these residues are (at each site) should be listed in a table in the Supplementary. 
 
In Eq. (2), the sum does go to L(L-1)/2 and not L for the couplings, as all possible pairs of sites 
{i,j} has to be accounted for. Using a double sum (separately for i, and j) would have resulted in 
the summation going to L, but we had used a single sum to count all possible (LC2) pairs. In the 
revised manuscript, we use a double sum to make it clear. We thank the reviewer for pointing 
out the unicode display in line 398, which we have corrected in the revised version. We have 
also explicitly mentioned that each site i gets its own residue (alphabet), and have provided a 
link on p. 14 (https://github.com/ComputationalBiophysicsCollaborative/HIV_MSAs)  to the 
sequence MSAs used in this analysis, where the residues are at each site are clearly visible. 
 
 
On line 510 the authors introduce J^{ij} and h^i, but these are never defined. I imagine these are 
averages of the h^i(S_k) etc. 
 
We thank the reviewer or pointing this out. The J^{ij} and h^i referred here are actually the 
couplings, J^ij_SiSj, and fields, h^i_Si, respectively, and not their averages. We have made this 
clear in the revised text.   
 
 
On line 512 the authors discuss using a "field-less gauge" due to gauge invariance of the Potts 
Hamiltonian. That is just nonsense: clearly the authors are using fields h_i that are non-
vanishing, just like everybody else. 
 
While what the reviewer says is true for BvH theory (what we call the independent model, see 
next response), it is not true for the Potts models. For Potts models, there are a set of "gauge 
transformations" which give us the freedom to set the field values to zero, as long as we make a 
corresponding change to the pairwise coupling values of the model to compensate, specifically 
by hia -> 0, Jijab + hia -> Jijab for any choice of j for all b. Please see our presentation of the 
"fieldless gauge" in Haldane, Levy CPC 2020 [16]. 
 
These gauge transformations are very well known in the Potts model literature and have been 
discussed many times. See for instance, Morcos et al. PNAS 2011 [20] appendix, Ekeberg et al. 
PRE 2013 [21], Barton et al. Bioinformatics 2016 [8], and in more detail in Cocco et al. Rep. 
Prog. Phys 2018 [22], section 2.2.3. 
 
Because the "fieldless gauge" is a technical detail of our inference method not explained in full 
in the manuscript, we have removed it in the revised manuscript to avoid confusion and instead 
refer to the publication Haldane, Levy CPC 2020 [16] for the full description. The use of the 
fieldless gauge during inference does not change any of our results, since our results are 
gauge-invariant. 
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On line 521, the authors discuss the "univariate marginals h_i", which they don't define. They 
also very like do not mean h_i, but rather the marginal probabilities p_i from the MSA. 
 
We thank the reviewer for pointing out this typo. We have corrected this in the revised text. 
 
 
Once you do that, it should occur to you immediately that the mean per-site energy is in fact 
related to the mean per-site entropy and a term \sum_i \log p_0(i), where p_0(i) is the frequency 
of the consensus residue. This is the first-order contribution to the free energy. This all follows 
from Berg-von Hippel (BvH) theory. I realize this sounds cryptic, but I can't give a full elaboration 
here. It doesn’t mean that you don't have to fit all the parameters of the model, but there are 
additional constraints, which should make the inverse problem a lot easier. Note that in the BvH 
theory, there is a strong correlation between site energies and the binding affinity of the protein 
to the sequence. This is no accident. It is for the same reason that there is a correlation 
between Potts energy and RC of the virus. I'm just stunned that this doesn't appear to be 
something the literature is aware of.  
 
We thank the reviewer for bringing up these interesting theoretical issues. Although in this short 
format the reviewer didn't have room to elaborate in detail, we believe the Potts model is more 
well-developed than the reviewer suggests. 
 
The reviewer refers to Berg-von Hippel (BvH) theory for transcription factor (TF) binding sites, 
which we are familiar with, particularly with later progress by Michael Lassig and other 
collaborators. We believe that what the reviewer calls "Berg-von Hippel" theory is functionally 
identical to what in our manuscript we call the "independent model". For the independent model, 
there is a field term ("energy level" epsilon_lB in BvH) for each position for each residue, and 
the probability of a sequence is the exponential of the statistical energy E(S), which is a sum 
over field terms for that sequence. 
 
We emphasize that we focus instead on the Potts model, which is significantly more complex 
and powerful than the independent model as it includes pairwise interactions between residues 
which induce correlations to all orders, i.e. pairwise and higher order correlations. While the two 
models have many similarities, they also have major differences. For instance, while it is easy to 
infer the field parameters in BvH simply as the logarithm of the univariate residue frequencies, it 
well known historically (Cooper, 1990 [28]) that inference for the Potts model (aka inverse Ising 
inference, graphical models) is NP-hard and requires advanced computational methods. It 
seems unlikely the reviewer has found an easier exact solution for Potts inference. 
 
Critically, the Potts model allows one to distinguish "direct" from "indirect" epistatic covariation, 
unlike "mutual information" (MI) scores. The Potts model is best suited to predicting the effects 
of epistasis in specific backgrounds because it is a "global probability model". See Ref [23] for a 
discussion of these properties. To briefly summarize, through chains and networks of pairwise 
interactions the Potts model captures higher-order covariation (triplet, quadruplet, etc.), meaning 
covariation involving many sites is not simply explainable from the pairwise covariation 
statistics. Furthermore, we have recently shown that the Potts model can capture the higher 
order marginals of sequence distributions which provide a new and sensitive measure of 
epistasis in eukaryotic protein families (see [2]). From "Cluster Expansion" inference methods of 
obtaining the parameters of a pairwise interaction Potts model, which use the Fano entropy 
decompositions in Barton et al., 2016 [29], we know that 6th order and higher 
covariation/entropies are important for modelling protein datasets, and that these are captured 
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by the pairwise Potts model. The reviewer notes that the BvH sequence energies match 
binding-affinity well for TFs, but we have previously shown that the BvH/independent model is 
insufficient to model protein sequence free-energies in which tertiary structure (epistatic residue 
interaction) is critical, see [14]. 
 
Theoretically, the "spin-glass" mathematics of the Potts model are different from that of the BvH 
model. The reviewer discusses the connections between site-entropies and free-energy in BvH; 
we refer the reviewer to literature describing such issues for Potts models of proteins, see Refs 
[24,25]. For example, the coupling factor "lambda" in BvH (1986) [26] is called the "design 
temperature" in this literature. The Potts model requires a significantly different analysis, 
however. 
 
Finally, we want to express our appreciation that reviewer #1 had identified himself. We would 
be glad to continue our discussion with him about different approaches to include correlations in 
models of biological sequences, but we trust the reviewer understands that, that is not the focus 
of our manuscript.  
 
 
When showing site-entropy (as in Figs. S2A and B) it should be specified where this uses the 
reduced alphabet or not.  
 
A reduced alphabet is used to calculate the site-entropies in Figure S2A and B, which we have 
specified in the revised supplement. 
 
I have no reason to suspect that the authors used the model incorrectly, nor do I doubt their 
results. But the sloppiness in the model description needs to be fixed. 
 
We appreciate the confidence the reviewer has expressed that our use of the Potts model and 
the results we present are correct. We thank the reviewer for finding some typos, but we think 
the statement that there was "sloppiness in the model description" is unwarranted.  In the 
revised manuscript, we have included additional information about the origin of the name "Potts 
model" as it is used in biological physics and corrected the typos pointed out by the reviewer. 
 
 
Reviewer 2: 
 
In this highly technical work Levy and coworkers assess the role of "epistasis" in Potts model of 
clinically derived HIV sequences including drug resistant variants. They explore various 
measures from purely sequence-based such as distribution of hamming distances or 
frequencies of “sequence marginals" (i.e. NON-CONTIGUOUS sub sequences of various 
lengths) to various measures of experimentally determined fitness such as replicative capacity 
etc. 
 
The reviewer comments that our manuscript is "highly technical".  We have made revisions to 
the introduction and conclusion sections in the manuscript in an effort to make the story more 
accessible and to explain more clearly why the results and conclusions are important.  The 
primary thrust of the manuscript is to show that, because of sequence conservation, it is very 
difficult to detect epistasis in viruses like HIV using conventional experimental measures of 
fitness, particularly replicative capacities which typically involve only single point mutations on a 
specific molecular clone that is very close to the consensus sequence.  We also use a simple 
statistical model to demonstrate why it is difficult to detect epistasis in HIV using double mutant 
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cycles due to the small dynamic range of these experiments and consequently the high 
precision that is required to detect the effects of epistasis.  To emphasize this point, we have 
revised the title. We also present a metric based on higher order marginals of the MSA, which 
provides strong evidence for epistasis in HIV. For a more complete description of this new 
metric see McGee et al., 2020 [2]. 
 
 
For all these quantities the authors compare the performance of independent site model (where 
only “external fields" are included in the Potts Hamiltonian to full "epistatic" model where 
pairwise couplings are also included. It is important to note that pairwise coupling model 
includes much more sequence information than independent interaction model so that 
comparisons with sequences on which the model has been trained in the first place should 
include this factor. 
 
There appears to be some misunderstanding.  First, the independent model and the Potts 
pairwise interaction model, do not in general share the same field terms.  The independent 
model is parameterized to reproduce the univariate marginals of the MSA, while the Potts model 
is parameterized to reproduce the bivariate marginals, and therefore it also reproduces the 
univariate marginals.  If the coupling terms are removed from the pairwise Potts model, the 
remaining fields-only expression does not reproduce the univariate marginals, except in a 
special choice of gauge.  Indeed, the pairwise Potts model contains more parameters than the 
independent model.  However, the important new result reported in our manuscript is that the 
Potts pairwise model is able to predict the higher order marginals (beyond pairwise) of HIV 
protein sequence MSAs, up to the detection limit imposed by finite sampling.  The pairwise 
model is not parameterized to reproduce these higher marginals.  We find that the pairwise 
interaction Potts model is both necessary and sufficient to capture the higher order correlations 
inherent in the HIV sequence datasets that are the focus of this manuscript.  For an extensive 
discussion of this important result in a more general context, see Ref [14].  
 
They used Newton optimization to as developed in Ref 31 to determine parameters of the Potts 
Hamiltonian to find best fit between generated sequences and the data in terms of 1- and 2- site 
correlations. 
 
While our solution to the inverse inference problem is based on the methodology first described 
in Ref 31 (in the original manuscript), several changes and improvements have been made in 
order to implement the method on GPUs  as described in Ref [16] (Haldane et al., 2021).  Using 
GPUs to solve the inverse inference equations by Monte-Carlo methods which make fewer 
approximations, leads to solutions that are more accurate and robust.  
 
While the work involves considerable amount of calculations it is inconclusive and lacks 
message. Fig.3 shows that epistatic Potts predicts sequence marginals better than independent 
for some proteins but not the others. What is the meaning of this finding? Given that analysis 
includes non-contiguous marginals is it surprising that including more information from the data 
gives you better prediction of the data itself? Is this factor included in the statistical analysis? 
What does the ability to predict input data tell us generally about the capacity of the Potts model 
to predict important experimentally measurable quantities? 
 
We regret that we have apparently not presented our work and conclusions clearly enough and 
have revised the manuscript in an effort to improve the presentation.   The reviewer's comment 
touches on two issues.   The first concerns the ability of the pairwise Potts model to correctly 
predict "the input data itself", and the second concerns the ability of sequence-based models 
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like the Potts model to predict experimental quantities like replicative capacity.  The pairwise 
Potts model is parameterized to reproduce the bivariate marginals of the target protein MSA 
distribution.  The fact that it can reproduce high order marginals is certainly not guaranteed and 
is surprising to many people working in the field.  Furthermore, there is no evidence to suggest 
that a sequence co-variation model which includes triplet terms can reproduce sequence and 
sub-sequence probabilities any better than a pairwise interaction Potts model.  In other words, 
the pairwise Potts interaction model is both necessary and sufficient to reproduce sequence 
probabilities as well as can be determined in the presence of finite sampling limitations [2, 14].   
Concerning the second issue, the relationship between the Potts model and experimentally 
measurable quantities, it is a fundamental assumption that the prevalence of a sequence in the 
population is a measure of its fitness, and the claim is that the Potts model provides the best 
estimate of sequence prevalences currently available. Because of the vast size of sequence 
space it is not possible to directly "measure" the prevalence of most sequences, we use the 
ability of the Potts model to capture the prevalence of higher order marginals up to the finite 
sampling limit as a proxy for the prevalence of complete sequences.  We therefore expect the 
Potts model to be able to predict measurable quantities which track fitness.   We have explained 
why replicative capacity measurements based on single point mutations are not well suited to 
distinguish an epistatic model from an independent model. 
 
  
On that front subsequent analysis is even less conclusive. Clearly Potts Hamiltonian (epistatic 
and independent alike) does fairly poor job in predicting experimental measures of "fitness" as 
defined in various experimental approaches. Does it suggest that epistasis does not play a role 
in sculpting fitness landscape (unlikely) or that pairwise Potts with spin-like Hamiltonian is 
inadequate to predict experimentally fitness? Authors argument that MSA reflects on other 
measure of fitness than observed in lab experiments while potentially plausible does not 
generate specific insights as to how-to interpret Potts Hamiltonian results and/or predictions and 
what kind of experiments should be designed to support or falsify those. 
 
First, only the pairwise model is referred to as the Potts model in accordance with the current 
literature, and the model devoid of pairwise coupling terms is called the "independent" model. 
Secondly, we disagree with the reviewer's comment that the Potts Hamiltonian model does a 
fairly poor job in predicting experimental measures of fitness. Barring one particular 
experimental result where the experimental data appears to be problematic (as shown in the 
supplementary material that they do not correlate with other experimental results for the same 
mutations), the Potts model predicts experimental replicative capacities relatively well with an 
average correlation coefficient ~ 0.6 We have now removed the problematic experimental 
dataset [4] from our analysis to make the message clear, but we do retain the comment about 
this dataset in the supplementary material. It is also to be noted that our MCMC implementation 
of the Potts model on GPUs makes use of few analytical assumptions and predicts experimental 
data with a higher correlation coefficient than other (inferred using different methodologies) 
Potts models in the literature for the same dataset [27]. It is not that the Potts model is 
inadequate to predict experimental fitness as the reviewer suggests, but the fact that the 
independent model performs almost equally well in capturing experimental fitness measures for 
viral proteins, which has also been observed in the highly cited work by Riesselman et al. [1]. In 
contrast to many different kinds of fitness experiments performed on eukaryotic protein families, 
where the Potts model is superior to the independent model, our work shows that for viral 
proteins, replicative capacity measurements do not distinguish between correlated and 
independent fitness models because they primarily involve only single point mutations and 
because high evolutionary conservation within a single viral protein family (as compared with 
between eukaryotic protein families) masks the effects of epistasis.  
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My overall assessment that this work, while reporting some interesting and extensive 
calculations does not offer relevant biological insight. 
 
We think that the reviewer misunderstood major portions of the manuscript and have tried 
through revision to make our story and conclusions clearer.  
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