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S1 Structured Correlation Detection Algorithms and Auxiliary

Figures

S1.1 Structured Correlation Detection Algorithms

In this section, we present two algorithms of structured correlation detection.

S1.2 Auxiliary Figures

In this section, we show some auxiliary figures.
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Algorithm S1 Structured Correlation Detection by T ∗

Require: Dual-channel Image {(Xi, Yi)}i∈I and significance level α.
Ensure: Decision on if colocalization happens.
T ∗ = 0
for R ∈ R do

Calculate TR := 1
log log(n/A)

[
maxR∈R:|R|=A LR − 2 log (n/A)

]
.

if TR > T ∗ then
T ∗ = TR.

end if
end for
return If T ∗ > qα, return “yes”, else, return “no”.

Algorithm S2 Fast Structured Correlation Detection by T̃ ∗

Require: Dual-channel Image {(Xi, Yi)}i∈I and significance level α.
Ensure: Decision on if colocalization happens.
T̃ ∗ = 0
for k = 1 to blog2 nc+ 1 do
if k > k∗ then
R′ = Rk.

else
R′ = R̃k.

end if
for R ∈ R′ do

Calculate TR := 1
log log(n/A)

[
maxR∈R:|R|=A LR − 2 log (n/A)

]
.

if TR > T̃ ∗ then
T̃ ∗ = TR.

end if
end for

end for
return If T̃ ∗ > q̃α, return “yes”, else, return “no”.

S2 Proofs of Main Results

In this section, we present the proofs to our main results, namely Theorems 1, 2 and 3.

Proofs of Propositions 1 and 2, as well as a number of auxiliary results, will be given

in next section. To distinguish from the constants appeared in the previous sections, we

shall use the capital letter C to denote a generic positive constant that may take different

values at each appearance.
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(a) Gaussian Distribution with A=50 (b) Poisson Distribution with A=50

(c) Gaussian Distribution with A=10 (d) Poisson Distribution with A=10

Figure S1: Simulated Distribution of maxR∈R(A) LR

Proof of Theorem 1. We first prove the upper bound (2.7) under conditions (2.4) and

(2.6). To this end, we shall establish a stronger result that there exists a constant C > 0

such that for any 0 < t < (log n)3.

P
{

max
R∈R(A)

LR > 2 log n+ C(log log n+ t)

}
≤ exp(−t). (S2.1)

It is clear that (2.7) follows immediately from (S2.1).

We now proceed to prove (S2.1). We shall consider the cases where A ≤ (log n)5 and

A ≥ (log n)5 separately. First consider the situation when A ≤ (log n)5. By Lemma 6,
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there exists a constant C > 0 such that for any fixed R ∈ R(A)

P {LR > x} ≤ C exp(−x/2).

Applying union bound yields

P
{

max
R∈R(A)

LR > x

}
≤ C|R(A)| exp(−x/2)

≤ c1CnA
c2 exp(−x/2)

≤ c1Cn(log n)5c2 exp(−x/2),

where the second inequality follows from (2.4). Equation (S2.1) then follows by taking

x = 2 log(c1C) + 2 log n+ 10c2 log log n+ 2t.

The treatment for A ≥ (log n)5 is more involved and we apply a chaining argument.

Let Rapp(A, e−s) be an e−s covering set of R(A) so that

|Rapp(A, e−s)| = N(A, e−s).

For any segment R ∈ R(A), denote by

πs(R) = argmin
R′∈Rapp(A,e−s)

d(R,R′).

Of course, the minimizer on the right hand side may not be uniquely defined, in which

case, we take πs(R) to be an arbitrarily chosen minimizer.
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Write

LR =
s∗−1∑
s=s∗

(
Lπs+1(R) − Lπs(R)

)
+ (LR − Lπs∗ (R)) + Lπs∗ (R),

where s∗ > s∗ ≥ log log(n/A) are to be specified later. It is clear that

max
R∈R(A)

LR ≤
s∗−1∑
s=s∗

max
R∈R(A)

∣∣Lπs+1(R) − Lπs(R)

∣∣+ max
R∈R(A)

∣∣LR − Lπs∗ (R)

∣∣+ max
R∈R(A)

|Lπs∗ (R)|.

(S2.2)

We now bound the three terms on the right hand side of (S2.2) separately.

By definition,

d(R, πs(R)) ≤ e−s, and d(R, πs+1(R)) ≤ e−(s+1).

Hence there exists a constant C > 0 such that

|πs(R) ∩ πs+1(R)| ≥ (1− Ce−s)|R|, and d(πs(R), πs+1(R)) ≤ Ce−s.

Now by Lemma 7, for any fixed R ∈ R(A),

|Lπs(R) − Lπs+1(R)| ≤ C
(
e−s/2x+ |R|−1/2x3/2

)
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with probability at least 1− Ce−x. An application of the union bound yields

P
{

max
R∈R(A)

∣∣Lπs+1(R) − Lπs(R)

∣∣ > C
(
e−s/2x+

√
2A−1/2x3/2

)}
≤ CN(A, e−s)N(A, e−(s+1))e−x

≤ C[N(A, e−(s+1))]2e−x

≤ c24C
(n
A

)2 (
log

n

A

)2c5
e2c6(s+1)e−x,

where the last inequality follows from (2.6). In particular, taking

x = t+ 2 log s+ log(c24C) + 2 log(n/A) + 2c5 log log(n/A) + 2c6(s+ 1)

yields, with probability at least 1− s−2e−t,

max
R∈R(A)

∣∣Lπs+1(R) − Lπs(R)

∣∣ ≤ C
(
(s+ t+ log(n/A))e−s/2 + A−1/2(s+ t+ log(n/A))3/2

)
.

Here we used the fact that s ≥ s∗ ≥ log log(n/A). Now applying the union bound over

all s∗ ≤ s < s∗, we get, with probability at least 1− s−1∗ e−t ≥ 1− e−t,

s∗−1∑
s=s∗

max
R∈R(A)

∣∣Lπs+1(R) − Lπs(R)

∣∣ ≤ C

s∗−1∑
s=s∗

(
(s+ t+ log(n/A))e−s/2 + A−1/2(s+ t+ log(n/A))3/2

)
≤ C

(
s∗e
−s∗/2 + A−1/2(s∗)5/2

)
+C

(
e−s∗/2(t+ log(n/A)) + A−1/2s∗(t+ log(n/A))3/2

)
.

To bound the second term on the right hand side of (S2.2), we again apply Lemma
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7. For any fixed R ∈ R(A), we get

P
{∣∣LR − Lπs∗ (R)

∣∣ ≥ C
(
e−s

∗/2x+
√

2A−1/2x3/2
)}
≤ Ce−x.

Another application of the union bound yields,

max
R∈R(A)

∣∣LR − Lπs∗ (R)

∣∣ ≤ C
(
e−s

∗/2 log |R(A)|+ A−1/2(log |R(A)|)3/2 + e−s
∗/2t+ A−1/2t3/2

)
≤ c2C

(
e−s

∗/2 log n+ A−1/2(log n)3/2 + e−s
∗/2t+ A−1/2t3/2

)
,

with probability at least 1− Ce−t, where we used (2.4) in the last inequality.

Finally, for the third term on the right hand side of (S2.2), we have

P
{

max
R∈Rapp(A,e−s∗ )

|LR| ≥ x

}
≤ CN(A, e−s∗)e−x/2 ≤ c4C

(n
A

)(
log

n

A

)c5
ec6s∗e−x/2.

Taking

x = 2 log(c4C) + 2 log
n

A
+ c5 log log

n

A
+ 2c6s∗ + t

yields, with probability at least 1− Ce−t,

max
R∈Rapp(A,e−s∗ )

|LR| ≤ 2 log(c4C) + 2 log
n

A
+ c5 log log

n

A
+ 2c6s∗ + t.



Wang et al.

In summary, we get, with probability at least 1− Ce−t,

max
R∈R(A)

LR ≤ C

(
s∗e
−s∗/2 + A−1/2(s∗)5/2 + e−s∗/2t+ A−1/2s∗t3/2 + e−s

∗/2 log n

+A−1/2(log n)3/2 + e−s
∗/2t+ A−1/2t3/2 + e−s∗/2 log

n

A
+ A−1/2s∗(log(n/A))3/2

)
+2 log(c4C) + 2 log

n

A
+ c5 log log

n

A
+ 2c6s∗ + t.

Recall that A ≥ (log n)5. If we take s∗ = 2 log n and s∗ = 2 log log(n/A), then for any

t ≤ (log n)3, we can deduce from the above inequality that

max
R∈R(A)

LR ≤ 2 log
n

A
+ C

(
log log

n

A
+ t
)
, (S2.3)

which implies (S2.1).

We now prove (2.8) if in addition, (2.5) holds. In the light of (2.6), we can find a

subset R̃(A) of R(A) such that for any R1, R2 ∈ R̃(A), R1 ∩R2 = ∅ and

|R̃(A)| ≥ c3
n

A
.

Obviously,

max
R∈R(A)

LR ≥ max
R∈R̃(A)

LR.
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If A ≤ (log n)5, then

P
{

max
R∈R̃(A)

LR ≤ x

}
=

∏
R∈R̃(A)

P{LR ≤ x}

≤
∏

R∈R̃(A)

(
1− C|R|−1/2e−x/2

)
≤

[
1− CA−1/2e−x/2

]c3n/A
≤

[
1− C(log n)−5/2e−x/2

]c3n/A
,

where the first inequality follows from the lower bound given by Lemma 6. It can then

be derived that

max
R∈R̃(A)

LR ≥ 2 log n+Op(log log n). (S2.4)

Together with (2.7), (S2.4) implies the desired claim when A ≤ (log n)5.

Next we consider the case when A ≥ (log n)5. We proceed in a similar fashion as

before but rely on the following tail bound of LR: if A ≥ 24, then there exists a constant

C > 0 such that for any R ∈ R(A) and 0 < x <
√
A,

P{LR ≥ x} ≤ Cx−1/2 exp(−x/2). (S2.5)

If (S2.5) holds, then

P
{

max
R∈R̃(A)

LR ≤ x

}
≥
(
1− Cx−1/2e−x/2

)c3n/A
,
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which yields

max
R∈R(A)

LR ≥ max
R∈R̃(A)

LR ≥ 2 log(n/A) +Op(log log(n/A)).

Together with (2.7), this concludes the proof.

It now remains to prove (S2.5). Write

TR = (|R| − 2)r2R.

Note that log(1 + x) > x− x2/2 for any x > 0. We get

LR ≥ (|R| − 2) log(1 + r2R) ≥ T 2
R −

T 4
R

2(|R| − 2)
≥ T 2

R −
T 4
R

A− 4
,

for any A ≥ 5, where in the last inequality we used the fact that |R| > A/2 for any

R ∈ R(A). This can be further lower bounded by T 2
R − 3T 4

R/A for any A ≥ 6. Thus, for

any 0 < x < A/24,

P{LR ≥ x} ≥ P
{
T 2
R −

3T 4
R

A
≥ x

}
≥ P

{
T 2
R −

3T 4
R

A
∈ [x, 2x)

}
≥ P

{
T 2
R ∈ [x+ 12x2/A, 2x+ 3x2/A)

}
≥ P

{
TR ∈ [

√
x+ 12x2/A,

√
2x+ 3x2/A)

}
.
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Because TR ∼ t|R|−2, we have

P
{
TR ∈ [

√
x+ 12x2/A,

√
2x+ 3x2/A)

}
≥ C

∫ √2x+3x2/A

√
x+12x2/A

(
1 +

u2

|R| − 2

)− |R|−1
2

du

≥ C

∫ √2x+3x2/A

√
x+12x2/A

exp

[
−|R| − 1

2
log

(
1 +

u2

|R| − 2

)]
du

≥ C

∫ √2x+3x2/A

√
x+12x2/A

exp

(
− |R| − 1

2(|R| − 2)
u2
)
du,

for some constant C > 0, where in the last inequality we used the fact that log(1+x) ≤ x

for all x ≥ 0. Thus,

P
{
TR ∈ [

√
x+ 12x2/A,

√
2x+ 3x2/A)

}
≥ C(2x+ 3x2/A)−1/2

∫ √2x+3x2/A

√
x+12x2/A

u exp

(
− |R| − 1

2(|R| − 2)
u2
)
du

= C(2x+ 3x2/A)−1/2(1− (|R| − 1)−1)

[
exp

(
− |R| − 1

2(|R| − 2)
(x+ 12x2/A)

)
− exp

(
− |R| − 1

2(|R| − 2)
(2x+ 3x2/A)

)]
.
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Recall that 0 < x < A/24. We get

P
{
TR ∈ [

√
x+ 12x2/A,

√
2x+ 3x2/A)

}
≥ Cx−1/2 exp

(
− |R| − 1

2(|R| − 2)
(x+ 12x2/A)

)
≥ Cx−1/2 exp

(
− A− 1

2(A− 2)
(x+ 12x2/A)

)
≥ Cx−1/2 exp(−x/2),

where in the last inequality, we used the fact that x ≤
√
A. The proof is then completed.

Proof of Theorem 2 (Consistency of T ∗). We first show that the claim is true for T ∗. To

this end, we begin by arguing that qα = O(1), and then show that under H1, T
∗ → ∞.

Note that

T ∗ = max
R∈R

{
1

log log(n/|R|)

[
LR − 2 log

(
n

|R|

)]}
= max

1≤k≤logn
max

R∈R(e−k+1n)

{
1

log log(n/|R|)

[
LR − 2 log

(
n

|R|

)]}
.

As shown in the proof of Theorem 1, there exists a constant C > 0 such that for any

0 < t < (log n)3,

P
{

max
R∈R(e−k+1n)

LR ≥ 2k + C (log k + t)

}
≤ exp(−t).
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Taking t = x+ log(2k2) yields

P
{

max
R∈R(e−k+1n)

{
1

log log(n/|R|)

[
LR − 2 log

(
n

|R|

)]}
≥ C(x+ 1)

}
≤ 1

2k2
exp(−x).

Applying union bound over all k, we get

P {T ∗ ≥ C(x+ 1)} ≤
∑

1≤k≤logn

1

2k2
exp(−x) ≤ exp(−x),

which implies that qα ≤ C(1− log(1− α)).

It now suffices to show that if (4.9) holds for some R ∈ R, then T ∗ → ∞. To this

end, note that

T ∗ ≥ 1

log log(n/|R|)

[
LR − 2 log

(
n

|R|

)]
.

We treat the case |R| ≥ log n and |R| ≤ log n separately.

Consider first the situation when |R| ≤ log n. By Lemma 3,

(
1− r2R
1− ρ2

)∑
i∈R

(Yi − ȲR)2 ∼ χ2
|R|−2.

Applying the χ2 tail bounds of Laurent and Massart (2000), we get, with probability at

least 1− 2e−x,

(
1− r2R
1− ρ2

)∑
i∈R

(Yi − ȲR)2 ≤ (|R| − 2) + 2
√
x(|R| − 2) + 2x
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and ∑
i∈R

(Yi − ȲR)2 ≥ (|R| − 1)− 2
√
x(|R| − 1).

Under this event,

1− r2R
1− ρ2

≤
(|R| − 2) + 2

√
x(|R| − 2) + 2x

(|R| − 1)− 2
√
x(|R| − 1)

.

Assuming that x = o(|R|), this can be further simplified as

1− r2R
1− ρ2

≤ 1 + o

(√
x

|R|

)
.

If in addition, x→∞, then

−(|R| − 2) log (1− r2R) ≥ −|R| log (1− ρ2) + o
(√

x|R|
)

≥ 2 log(n/|R|) + δn log(n/|R|) + o
(√

x|R|
)
,

which diverges with n because

δn log(n/|R|)�
√

log(n/|R|)� |R| �
√
x|R|.

Since

δn log(n/|R|)�
√

log(n/|R|)� log log(n/|R|),

this immediately suggests that

T ∗ ≥ 1

log log(n/|R|)

[
LR − 2 log

(
n

|R|

)]
→p ∞.
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Next consider the case when |R| ≥ log n. Assume without loss of generality that

ρ > 0. The treatment for ρ < 0 is identical. Following an argument similar to that for

Lemma 4, we get

∑
i∈R

(Xi − X̄R)2,
∑
i∈R

(Yi − ȲR)2 ≤ (|R| − 1) + 2
√
x(|R| − 1) + 2x

and ∑
i∈R

(Xi − X̄R)(Yi − ȲR) ≥ (|R| − 1)ρ− 2
√
x(|R| − 1)− 2x.

with probability at least 1 − 6e−x. Denote this event by E(x). We shall now proceed

under E(x) with an appropriately chosen x→∞.

rR ≥
ρ− 2

√
x/(|R| − 1)− 2[x/(|R| − 1)]

1 + 2
√
x/(|R| − 1) + 2[x/(|R| − 1)]

. (S2.6)

It is not hard to see that under the condition (4.9), |R|ρ2 → ∞. Assuming that x → ∞

such that x = o(|R|ρ2), we get

rR ≥ ρ+ o

(√
x

|R|

)

Then,

LR ≥ −(|R| − 2) log

[
1−

(
ρ+ o

(√
x

|R|

))2
]

(S2.7)

Recall that

−|R| log(1− ρ2) ≥ (2 + δn) log

(
n

|R|

)
.
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Denote by ρ∗ > 0 the solution to

−|R| log(1− y2) = (2 + δn) log

(
n

|R|

)
.

It is clear that ρ ≥ ρ∗. Together with the fact that the right hand side of (S2.7) is an

increasing function of ρ, we get

LR ≥ −(|R| − 2) log

[
1−

(
ρ∗ + o

(√
x

|R|

))2
]

= −(|R| − 2) log(1− ρ2∗) + o(
√
x|R|ρ∗)

= (2 + δn) log

(
n

|R|

)
+ o(

√
x|R|ρ2∗).

Note that

|R|ρ2∗ ≤ 2|R| log(1 + ρ2∗) ≤ −2|R| log(1− ρ2∗) = 2(2 + δn) log

(
n

|R|

)
.

It is not hard to see that

δ2n
2 + δn

log

(
n

|R|

)
→∞

if (4.9) holds. Assuming that

x = o

(
δ2n

2 + δn
log

(
n

|R|

))
,

we get

T ∗ ≥ (log log(n/|R|))−1(LR − 2 log(n/|R|))→∞.
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This concludes the proof of consistency of T ∗ under (4.9).

Proof of Theorem 2 (Consistency of T̃ ∗). We now consider the computationally efficient

test based on T̃ ∗ is also consistent. As before, we begin by arguing that q̃α = O(1), and

then show that under H1, T̃
∗ →∞. To show that q̃α = O(1), it suffices to note that

T ∗ = max
R∈R

{
(log log(n/|R|))−1 (LR − 2 log(n/|R|))

}
≥ max

R∈∪kR̃k

{
(log log(n/|R|))−1 (LR − 2 log(n/|R|))

}
= T̃ ∗.

Therefore, q̃α ≤ qα = O(1) following the argument before.

Next we show that under the alternative hypothesis where Xi and Yi are correlated

on a set R ∈ Rk for some k, T̃ ∗ →∞. By definition, there exists a R̃ ∈ R̃k such that

d(R, R̃) ≤ 1

4k2
. (S2.8)

Observe that

T̃ ∗ ≥ T̃ ∗k ≥ (log log(n/|R̃|))−1
(
LR̃ − 2 log(n/|R̃|)

)
.

It now suffices to show that the rightmost hand side is unbounded with probability ap-

proaching to 1 when k ≤ k∗. To this end, we first consider the case when R̃ ⊆ R.

Note that if R̃ ⊆ R, then (1.2) holds for any i ∈ R̃. Following an identical argument
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for consistency of T ∗, it suffices to show that there exists a δ̃n > 0 such that

δ̃n

√
log(n/|R̃|)→∞ (S2.9)

and

−|R̃| log(1− ρ2) ≥ (2 + δ̃n) log

(
n

|R̃|

)
. (S2.10)

Observe that (S2.8) implies that

|R̃| ≥
(

1− 1

4k2

)
|R|.

Thus

|R̃| log
1

1− ρ2
≥

(
1− 1

4k2

)
|R| log

1

1− ρ2

≥
(

1− 1

4k2

)
(2 + δn) log

(
n

|R|

)
.

Because

log

(
n

|R|

)
= log

(
n

|R̃|

)
+ log

(
|R̃|
|R|

)
≥ log

(
n

|R̃|

)
+ log

(
1− 1

4k2

)
≥ log

(
n

|R̃|

)
− 1

4k2
,
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we get

|R̃| log
1

1− ρ2
≥

(
1− 1

4k2

)
(2 + δn)

[
log

(
n

|R̃|

)
− 1

4k2

]
≥

(
1− 1

4k2

)2

(2 + δn) log

(
n

|R̃|

)
≥

(
1− 1

2k2

)
(2 + δn) log

(
n

|R̃|

)
.

Let

δ̃n =

(
1− 1

2k2

)
δn −

1

k2
.

Then (S2.10) holds. We now verify (S2.9). Recall that

δ2n(k − 1) log 2 ≤ δ2n log

(
n

|R|

)
→∞,

we get, for sufficiently large n,

δ̃n ≥
1

4
δn.

This implies that

δ̃2n log

(
n

|R̃|

)
≥ δ̃2n log

(
n

|R|

)
≥ 1

16
δ2n log

(
n

|R|

)
→∞,

which completes the proof for the case R̃ ⊆ R.

Now consider the case when R̃ 6⊆ R. By definition,

|R̃ ∩R|√
|R||R̃|

≥ 1− 1

4k2
.



Wang et al.

Because R̃ ∩R ⊆ R̃, we get

|R̃|
|R|
≥
(

1− 1

4k2

)2

. (S2.11)

Thus,

|R̃ ∩R| ≥
(

1− 1

4k2

)3/2

|R| ≥
(

1− 1

3k2

)
|R|.

Similarly, we can derive that

|R̃ ∩R| ≥
(

1− 1

3k2

)
|R̃|. (S2.12)

Following the same treatment as for the previous case, we can derive that

1

log log(n/|R̃ ∩R|)

[
LR̃∩R − 2 log

(
n

|R̃ ∩R|

)]
→p ∞.

Since |R̃ ∩R| ≤ |R̃|,

1

log log n
|R̃|

[
LR̃∩R − 2 log

(
n

|R̃|

)]
≥ 1

log log n
|R̃∩R|

[
LR̃∩R − 2 log

(
n

|R̃ ∩R|

)]
→∞.

It now suffices to show that

|LR̃∩R − LR̃| = Op

(
log log

(
n

|R̃|

))
(S2.13)
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In the light of (S2.11),

log log

(
n

|R̃|

)
≥ log

[
log

(
n

|R|

)
+ 2 log

(
1− 1

4k2

)]
≥ log

[
(k − 1) log 2− 1

2k2

]
= O(log k).

On the other hand, by Lemma 8,

|LR̃∩R − LR̃| ≤ C

[
1

3k2
x+ |R̃|−1/2x3/2

]
,

with probability at least 1− e−x. Observe that

|R̃| ≥
(

1− 1

4k2

)2

|R| ≥
(

1− 1

2k2

)
|R| ≥ n2−(k+1).

Equation (S2.13) then follows by taking

x = min
{
k2 log k, 2−k/3n1/3(log k)2/3

}
.

The proof is now completed.

Proof of Theorem 3. Our argument is similar to those used earlier by Lepski and Tsy-

bakov (2000) and Walther (2010). We shall outline only the main steps for brevity. Note

first that a lower bound for a special case necessarily yields a lower bound for the general

case. Thus it suffices to consider the case when µ1 = µ2 = 0 and σ1 = σ2 = 1. In the

light of (2.5), for any A, we can find R̃(A) ⊂ R(A) such that |R̃(A)| = c3(n/A), and for
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any R1, R2 ∈ R̃(A), R1 ∩ R2 = ∅. For brevity, we shall assume that c3 = 1 and for any

R ∈ R̃(A), |R| = A. More general case can be treated in the same fashion albeit the

argument becomes considerably more cumbersome.

Denote by P0 the joint distribution of {(Xi, Yi) : i ∈ I} under null hypothesis, and by

PR the joint distribution under alternative hypothesis where Xi and Yi are correlated on

R ∈ R̃(A) so that (1.2) holds for i ∈ R and (1.1) holds for i /∈ R. The likelihood ratio

between P0 and PR can be computed:

WR =
dPR
dP0

=
1

(1− ρ2)A/2
exp

{
−
∑

i∈R (ρ2X2
i − 2ρXiYi + ρ2Y 2

i )

2(1− ρ2)

}

To prove the first statement, we first show

E0(W
1+δn/4
R )/(η|R̃(A)|)δn/4 → 0 for any 0 < η < 1,

where E0 stands for expectation taken with respect to P0.

It can be computed that

E0(W
1+δn/4
R ) =

1

(1− ρ2δ2n/16)A/2(1− ρ2)Aδn/8
.

Recall that

A log
1

1− ρ2
≤ (2− δn) log

n

A
.
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We get

− log
[
E0(W

1+δn/4
R )/(η|R̃(A)|)δn/4

]
≥Aδn

8
log(1− ρ2) +

A

2
log(1− ρ2δ2n/16) +

δn
4

log
n

A
+
δn
4

log η

≥δ
2
n

8
log

n

A
− (1− δn/2)

(
log

n

A

) log(1− ρ2δ2n/16)

log(1− ρ2)
+
δn
4

log η

≥δ
2
n

8
log

n

A
− δ2n

16
(1− δn/2)

(
log

n

A

)
+
δn
4

log η

=
δ2n
16

(1 + δn/2) log
n

A
+
δn
4

log η

≥ δ
2
n

16
log

n

A
→∞.

Thus,

E0(W
1+δn/4
R )/(η|R̃(A)|)δn/4 → 0.

Next, we argue that

E0

∣∣∣∣∣∣|R̃(A)|−1
∑

R∈R̃(A)

WR − 1

∣∣∣∣∣∣→ 0.

To this end, write

W̄ = |R̃(A)|−1
∑

R∈R̃(A)

(WR − 1),

W̄1 = |R̃(A)|−1
∑

R∈R̃(A)

(WR − 1)1(|WR−1|>η|R̃(A)|),

and

W̄2 = |R̃(A)|−1
∑

R∈R̃(A)

(WR − 1)1|WR−1|≤η|R̃(A)|.
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Observe that

E0

∣∣W̄ ∣∣ ≤ E0

∣∣W̄1

∣∣+ E0

∣∣W̄2

∣∣ ≤ E0

∣∣W̄1

∣∣+ η.

On the other hand,

E0

∣∣W̄1

∣∣ ≤ E0(WR1(WR>η|R̃(A)|)) ≤ E0(W
1+δn/4
R )/(η|R̃(A)|)δn/4 → 0.

We can take η ↓ 0 to get

E0

∣∣∣∣∣∣|R̃(A)|−1
∑

R∈R̃(A)

WR − 1

∣∣∣∣∣∣→ 0.

Finally, let P1 be the uniform mixture of PR for R ∈ R̃(A), that is,

P1 = |R̃(A)|−1
∑

R∈R̃(A)

PR.

Then for any test ∆,

P0(∆ = 1) + P1(∆ = 0) =E0(∆) + 1− min
R∈R̃(A)

ER(∆)

≥E0(∆) + 1− |R̃(A)|
∑

R∈R̃(A)

ER(∆)

≥1− E0(∆(1− |R̃(A)|−1
∑

R∈R̃(A)

WR))

≥1− E0

∣∣∣∣∣∣1− |R̃(A)|−1
∑

R∈R̃(A)

WR

∣∣∣∣∣∣→ 1,
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which completes the proof of the first statement.

To show the second statement, we assume the contrary that cn is bounded from above.

Then {cn} must have a convergent subsequence. Without loss of generality, assume cn

itself converges to some b ∈ [0,∞). Then

logWR →d N

(
− b

2
, b

)
,

which implies that

lim supPR(∆ = 1) < 1.

This contradicts with the fact that that the type II error of ∆ goes to 0 as n→∞. The

second statement is therefore proven.

S3 Auxiliary Results and Proofs

We first state tail bounds for t and F distributions necessary for our derivations.

Lemma 1. Let X be a random variable following a t distribution with degree of freedom

n > 1. There exists a numerical constant 0 < c1 < c2 such that

c1n
−1/2

(
1 +

x2

n

)−n
2

≤ P(|X| > x) ≤ c2

(
1 +

x2

n

)−n
2

(S3.14)

for any x ≥ 1. In particular,

c1n
−1/2e−u/2 ≤ P

{
n log

(
1 +

X2

n

)
≥ u

}
≤ c2e

−u/2, (S3.15)



Wang et al.

for any u ≥ 1.

Proof of Lemma 1. Recall that the density of a t distribution with degree of freedom n is

f(x) =
Γ(n+1

2
)

√
nπΓ(n

2
)

(
1 +

x2

n

)−n+1
2

≤ C

(
1 +

x2

n

)−n+1
2

,

for an absolute constant C > 0. Then, for any u > 0,

P(X > u) ≤ C

∫ ∞
u

(
1 +

x2

n

)−n+1
2

dx

≤ C

∫ ∞
u

x

u

(
1 +

x2

n

)−n+1
2

dx

=
nC

2u

∫ ∞
u

(
1 +

x2

n

)−n+1
2

d

(
1 +

x2

n

)
=

nC

(n− 1)u

(
1 +

x2

n

)−n−1
2
∣∣∣∣∞
u

≤ 2C
1

u

(
1 +

u2

n

)−n−1
2

.

The upper bound in (S3.14) follows immediately by taking c = 4
√

2C, by symmetry of t

distribution. On the other hand, observe that

f(x) ≥ C

(
1 +

x2

n

)−n+1
2

,
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for some constant C > 0. Thus,

P(X > u) ≥ C

∫ ∞
u

(
1 +

x2

n

)−n+1
2

dx

≥ C

∫ ∞
u

x√
n

(
1 +

x2

n

)−n
2
−1

dx

=

√
nC

2

∫ ∞
u

(
1 +

x2

n

)−n
2
−1

d

(
1 +

x2

n

)
=

√
nC

(n− 1)

(
1 +

x2

n

)−n
2
∣∣∣∣∞
u

≥
√
nC

(n− 1)

(
1 +

u2

n

)−n
2

.

The lower bound in (S3.14) then follows immediately.

Now, taking

x =
√
n(eu/n − 1)

in (S3.14) yields (S3.15).

Lemma 2. Let U1 ∼ χ2
n1

and U2 ∼ χ2
n2

be two independent random variables. Then for

any −1 < x < 1,

P
{∣∣∣∣n1 + n2

n1

U1

U1 + U2

− 1

∣∣∣∣ ≥ x

}
≤ 2 exp

(
−n1x

2

12

)
.

Proof of Lemma 2. As shown by Dasgupta and Gupta (2003), for any x > 0,

P
{
n1 + n2

n1

U1

U1 + U2

≤ 1− x
}
≤ exp

(n1

2
(x+ log(1− x))

)
,



Wang et al.

and

P
{
n1 + n2

n1

U1

U1 + U2

≥ 1 + x

}
≤ exp

(n1

2
(−x+ log(1 + x))

)
.

The claim then follows from the fact that

log(1 + x) ≤ x− x2

6

for all x such that |x| < 1.

The following observation on the sample correlation coefficient is useful:

Lemma 3. Assume that {(Xi, Yi) : i ∈ R} are iid copies of (X, Y ) ∼ N((µ1, µ2)
>,Σ)

where

Σ =

1 ρ

ρ 1

 .
Then ∑

i∈R

(Yi − ȲR)2(1− r2R) ∼ (1− ρ2)χ2
|R|−2.

Proof of Lemma 3. Consider a linear regression of Y over X:

Y = β0 + βX + ε.

Recall that

β̂ =

∑
i∈R(Xi − X̄R)(Yi − ȲR)∑

i∈R(Xi − X̄R)2
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and β̂0 = ȲR − β̂X̄R are the least squares estimate of of Y over X where

X̄R =
1

|R|
∑
i∈R

Xi and ȲR =
1

|R|
∑
i∈R

Yi.

The residual sum of squares of the regression can then be written as

∑
i∈R

(Yi − β̂0 − β̂Xi)
2 =

∑
i∈R

(Yi − ȲR)2(1− r2R)

Conditioned on Xi, the residual sum of squares will follow (1−ρ2)χ2
|R|−2. Thus the margin

distribution of the residual sum of squares is also (1− ρ2)χ2
|R|−2.

Next we derive a tail bound for the sample correlation coefficient. For brevity, we

work with the case when (X, Y ) are known to be centered so that

rR =

∑
i∈RXiYi√∑

i∈RX
2
i

√∑
i∈R Y

2
i

(S3.16)

where (Xi, Yi)s are independent copies of (X, Y ). Treatment for the more general case is

completely analogous, yet this simplification allows us to avoid lengthy discussions about

the smaller order effects due to centering by sample means, and repeatedly switching

between |R| − 1 or |R| − 2 as the appropriate degrees of freedom.

Lemma 4. Assume that {(Xi, Yi) : i ∈ R} are iid copies of (X, Y ) ∼ N(0, I2). Then for

any x > 0,

P

{∣∣∣∣∣∑
i∈R

XiYi

∣∣∣∣∣ ≥ 2
√
x|R|+ 2x

}
≤ 4e−x.
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If in addition, 0 < x < |R|/16, then

P{|rR| ≥ x} ≤ 6 exp(−|R|x2/64).

Proof of Lemma 4. Write

∑
i∈R

XiYi =
1

2

∑
i∈R

(
1√
2

(Xi + Yi)

)2

− 1

2

∑
i∈R

(
1√
2

(Xi − Yi)
)2

.

Then

P

{∣∣∣∣∣∑
i∈R

XiYi

∣∣∣∣∣ ≥ 2
√
u|R|+ 2u

}
≤ P

{∣∣∣∣∣∑
i∈R

(
1√
2

(Xi + Yi)

)2

− |R|

∣∣∣∣∣ ≥ 2
√
u|R|+ 2u

}

+P

{∣∣∣∣∣∑
i∈R

(
1√
2

(Xi − Yi)
)2

− |R|

∣∣∣∣∣ ≥ 2
√
u|R|+ 2u

}
≤ 4e−u,

where the second inequality follows from the χ2 upper and lower tail bound of Laurent

and Massart (2000). Applying the χ2 lower tail bound from Laurent and Massart (2000),

we can also derive that

P

{∣∣∣∣∣∑
i∈R

X2
i

∣∣∣∣∣ ≤ |R| − 2
√
u|R|

}
≤ e−u (S3.17)

and

P

{∣∣∣∣∣∑
i∈R

Y 2
i

∣∣∣∣∣ ≤ |R| − 2
√
u|R|

}
≤ e−u (S3.18)
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Therefore, for any u < |R|/16,

|rR| ≤
2
√
u|R|+ 2u

|R| − 2
√
u|R|

≤ 2

|R|

(
2
√
u|R|+ 2u

)
≤ 8

√
u

|R|
.

with probability at least 1− 6e−u. The claim follows immediately.

We are also interested in the difference in correlation coefficients between two different

regions. The following lemma provides a useful probabilisitic tool for such purposes.

Lemma 5. Assume that {(Xi, Yi) : i ∈ R1 ∪R2} are iid copies of (X, Y ) ∼ N(0, I2), and

2|R1 ∩ R2| ≥ |R1 ∪ R2|. Then there exist numerical constants c0, c1, c2 > 0 such that for

any x < c0|R1|,

P(
∣∣|R1|r2R1

− |R2|r2R2

∣∣ ≥ x) ≤

c1 exp

(
−c2 min

{(
|R1 ∩R2|

|R1 ∪R2| − |R1 ∩R2|

)1/2

x, |R1 ∩R2|1/3x2/3
})

.

In particular, if

ζ :=
|R1 ∩R2|√
|R1||R2|

≥ 1

4
,

then there exists a numerical constant c3 > 0 such that for any x < c0|R1|,

P(
∣∣|R1|r2R1

− |R2|r2R2

∣∣ ≥ x) ≤ c1 exp
(
−c3 min

{
(1− ζ)−1/2x, |R1 ∩R2|1/3x2/3

})
.
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Proof of Lemma 5. We first consider the case when R2 ⊆ R1. Recall that

rR1 =

∑
i∈R1

XiYi√∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

, and rR2 =

∑
i∈R1

XiYi√∑
i∈R2

X2
i

∑
i∈R2

Y 2
i

.

Therefore,

|R2|r2R2
− |R1|r2R1

=

(
1√
|R2|

∑
i∈R2

XiYi

)2(
|R2|2∑

i∈R2
X2
i

∑
i∈R2

Y 2
i

− |R1|2∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

)

+
|R1|2∑

i∈R1
X2
i

∑
i∈R1

Y 2
i

 1

|R2|

(∑
i∈R2

XiYi

)2

− 1

|R1|

(∑
i∈R1

XiYi

)2


We now bound the terms on the right hand side separately.

Observe that∣∣∣∣∣∣
(

1√
|R2|

∑
i∈R2

XiYi

)2(
|R1|2∑

i∈R1
X2
i

∑
i∈R1

Y 2
i

− |R2|2∑
i∈R2

X2
i

∑
i∈R2

Y 2
i

)∣∣∣∣∣∣
= |R2|r2R2

∣∣∣∣∣1−
(
|R1|
|R2|

∑
i∈R2

X2
i∑

i∈R1
X2
i

)−1( |R1|
|R2|

∑
i∈R2

Y 2
i∑

i∈R1
Y 2
i

)−1∣∣∣∣∣ .
By Lemma 2,

P
{∣∣∣∣ |R1|
|R2|

∑
i∈R2

X2
i∑

i∈R1
X2
i

− 1

∣∣∣∣ ≥ x

}
≤ 2 exp

(
−|R2|

12
x2
)
,

and

P
{∣∣∣∣ |R1|
|R2|

∑
i∈R2

Y 2
i∑

i∈R1
Y 2
i

− 1

∣∣∣∣ ≥ x

}
≤ 2 exp

(
−|R2|

12
x2
)
.
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We get, for any x < 1/2,

∣∣∣∣∣1−
(
|R1|
|R2|

∑
i∈R2

X2
i∑

i∈R1
X2
i

)−1( |R1|
|R2|

∑
i∈R2

Y 2
i∑

i∈R1
Y 2
i

)−1∣∣∣∣∣ ≤ 4x

with probability at least 1− 4 exp (−|R2|x2/12). On the other hand, by Lemma 4,

P{|rR2 | ≥ x} ≤ 6 exp(−|R2|x2/64).

Thus, by taking u = 4|R2|x3,

|R2|r2R2

∣∣∣∣∣1−
(
|R1|
|R2|

∑
i∈R2

X2
i∑

i∈R1
X2
i

)−1( |R1|
|R2|

∑
i∈R2

Y 2
i∑

i∈R1
Y 2
i

)−1∣∣∣∣∣ ≤ u

with probability at least

1− 10 exp

(
−|R2|1/3u2/3

64 · 42/3

)
.

Denote by E1(u) the event that the above inequality holds.

To bound the second term, first note that

1

|R2|

(∑
i∈R2

XiYi

)2

− 1

|R1|

(∑
i∈R1

XiYi

)2

=

(
1

|R2|
− 1

|R1|

)(∑
i∈R1

XiYi

)2

− 1

|R2|

 ∑
i∈R1\R2

XiYi

2

− 2

|R2|

(∑
i∈R2

XiYi

) ∑
i∈R1\R2

XiYi

 .
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By Lemma 4,

|R1|2∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

(
1

|R2|
− 1

|R1|

)(∑
i∈R1

XiYi

)2

=

(
|R1|
|R2|

− 1

)
|R1|r2R1

≤
(
|R1|
|R2|

− 1

)
|R1|x2,

with probability at least 1− 6 exp(−|R1|x2/64). On the other hand, again by Lemma 4,

P


∣∣∣∣∣∣
∑

i∈R1\R2

XiYi

∣∣∣∣∣∣ ≥ 2
√
x(|R1| − |R2|) + 2x

 ≤ 4e−x,

Recall that, by χ2 lower tail bounds from Laurent and Massart (2000), we get

P

{∑
i∈R1

X2
i ≤ |R1| − 2

√
x|R1|

}
≤ e−x,

and

P

{∑
i∈R1

Y 2
i ≤ |R1| − 2

√
x|R1|

}
≤ e−x.

Thus, for any x < |R1|/16,

|R1|2/|R2|∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

 ∑
i∈R1\R2

XiYi

2

≤ |R1|2/|R2|(
|R1| − 2

√
x|R1|

)2 (2
√
x(|R1| − |R2|) + 2x

)2
≤ 16

|R2|

(√
x(|R1| − |R2|) + x

)2
,
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with probability at least 1− 6e−x. In other words,

|R1|2/|R2|∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

 ∑
i∈R1\R2

XiYi

2

≤ 1

|R2|

(
1

2
x
√
|R1|(|R1| − |R2|) +

|R1|x2

16

)2

≤ 1

2

(
|R1|
|R2|

− 1

)
|R1|x2 +

|R1|2x4

128|R2|
,

with probability at least 1− 6 exp(−|R1|x2/64) for any x < 2. Following a similar argu-

ment, we can also show that

2|R1|2/|R2|∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

(∑
i∈R2

XiYi

) ∑
i∈R1\R2

XiYi


≤ 1

|R2|

(
1

2
x
√
|R1||R2|+

|R1|x2

16

)(
1

2
x
√
|R1|(|R1| − |R2|) +

|R1|x2

16

)
,

with probability at least 1 − 10 exp(−|R1|x2/64) for any x < 2. Note 2|R2| ≥ |R1|. In

summary, we get

|R1|2∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

∣∣∣∣∣∣ 1

|R2|

(∑
i∈R2

XiYi

)2

− 1

|R1|

(∑
i∈R1

XiYi

)2
∣∣∣∣∣∣

≤ 2

(
|R1|
|R2|

− 1

)1/2

|R1|x2 +
|R1|x3

16

with probability at least 1 − 22 exp(−|R1|x2/64) for any x < 2. Hence, with probability

at least

1− 22 exp

(
− 1

256

(
|R1|
|R2|

− 1

)−1/2
u

)
− 22 exp

(
− 1

16
|R1|1/3u2/3

)
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we have

|R1|2∑
i∈R1

X2
i

∑
i∈R1

Y 2
i

∣∣∣∣∣∣ 1

|R2|

(∑
i∈R2

XiYi

)2

− 1

|R1|

(∑
i∈R1

XiYi

)2
∣∣∣∣∣∣ ≤ u.

Denote this event by E2(u).

In summary, for any u < |R1|/256,

||R1|r2R1
− |R2|r2R2

| ≤ 2u

with probability at least

P
{
E1(u)

⋂
E2(u)

}
≥ 1− 22 exp

(
− 1

256

(
|R1|
|R2|

− 1

)−1/2
u

)
− 22 exp

(
− 1

16
|R1|1/3u2/3

)
−10 exp

(
−|R2|1/3u2/3

64 · 42/3

)
≥ 1− 22 exp

(
− 1

256

(
|R1|
|R2|

− 1

)−1/2
u

)
− 32 exp

(
− 1

128
|R2|1/3u2/3

)
.

The statement, when R2 ⊆ R1, then follows.

Now consider the general case when R2 * R1. In this case,

||R1|r2R1
− |R2|r2R2

| ≤ ||R1|r2R1
− |R1 ∩R2|r2R1∩R2

|+ ||R2|r2R2
− |R1 ∩R2|r2R1∩R2

|.
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We can now appeal to the bounds we derived for nested sets before to get

P(||R1|r2R1
− |R1 ∩R2|r2R1∩R2

| ≥ x) ≤ 22 exp

(
− 1

256

(
|R1 ∩R2|

|R1| − |R1 ∩R2|

)1/2

u

)

+32 exp

(
− 1

128
|R1 ∩R2|1/3u2/3

)
,

and

P(||R2|r2R2
− |R1 ∩R2|r2R1∩R2

| ≥ x) ≤ 22 exp

(
− 1

256

(
|R1 ∩R2|

|R2| − |R1 ∩R2|

)1/2

u

)

+32 exp

(
− 1

128
|R1 ∩R2|1/3u2/3

)
.

The first claim then follows from an application of the union bound.

To show the second statement, assume that |R1| ≥ |R2| without loss of generality.

Observe that

ρ =
|R1 ∩R2|√
|R1||R2|

≤

√
|R2|
|R1|

,

which implies that |R2| ≥ ρ2|R1|. Therefore,

|R1 ∩R2| = ρ
√
|R1||R2| ≥ ρ2|R1|,

and

|R1 ∩R2| = ρ
√
|R1||R2| ≥ ρ|R2|.
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Thus,

|R1 ∩R2|
|R1 ∪R2| − |R1 ∩R2|

≥ 1

ρ−2 + ρ−1 − 2
=

1

1− ρ
ρ2

2ρ+ 1
≥ 1

48
(1− ρ)−1,

where the last inequality follows from the fact that 1/4 ≤ ρ ≤ 1.

We are now in position to derive bounds for the likelihood ratio statistic LR. Since

we work with centered random variables as stated earlier, it is natural to redefine LR as:

LR = −(|R| − 1) log(1− r2R).

where rR is given by (S3.16).

Lemma 6. Assume that {(Xi, Yi) : i ∈ R} are iid copies of (X, Y ) ∼ N(0, I2) for some

|R| > 1. Then there exists numerical constants 0 < c1 < c2 such that for any x > 1,

c1|R|−1/2e−x/2 ≤ P(LR > x) ≤ c2e
−x/2.

Proof of Lemma 6. Observe that

LR = (|R| − 1) log

(
1 +

T 2
R

|R| − 1

)

where

TR = rR

√
|R| − 1

1− r2R
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and

rR =

∑
i∈RXiYi√∑

i∈RX
2
i

∑
i∈R Y

2
i

It is well known that, under the null hypothesis,

TR ∼ t|R|−1.

See, e.g., Hotelling (1953). By Lemma 1,

c1|R|−1/2e−x/2 ≤ P(LR > x) ≤ c2e
−x/2,

for any x > 1.

The following lemma bounds the change in the likelihood ration statistic due to a

perturbation of the index set.

Lemma 7. Assume that {(Xi, Yi) : i ∈ R1 ∪R2} are iid copies of (X, Y ) ∼ N(0, I2), and

2|R1 ∩ R2| ≥ |R1 ∪ R2|. Then there exist numerical constants c0, c1, c2 > 0 such that for

any x < c0|R1|,

P(|LR1 − LR2| ≥ x) ≤ c1 exp

(
−c2 min

{(
|R1 ∩R2|

|R1 ∪R2| − |R1 ∩R2|

)1/2

x, |R1 ∩R2|1/3x2/3
})

.

In particular, if

ζ :=
|R1 ∩R2|√
|R1||R2|

≥ 1

4
,
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then there exists a numerical constant c3 > 0 such that for any x < c0|R1|,

P(|LR1 − LR2| ≥ x) ≤ c1 exp
(
−c3 min

{
(1− ζ)−1/2x, |R1 ∩R2|1/3x2/3

})
.

Proof of Lemma 7. Similar to Lemma 5, it suffices to prove the first statement when

R2 ⊆ R1. By the convexity of − log(1− x), we can ensure

LR1 = −|R1| log(1− r2R1
) ≥ −|R1| log(1− r2R2

) +
|R1|(r2R1

− r2R2
)

1− r2R2

and

LR2 = −|R2| log(1− r2R2
) ≥ −|R2| log(1− r2R1

) +
|R2|(r2R2

− r2R1
)

1− r2R1

Therefore,

|LR1 − LR2| ≤ (|R2| − |R1|) log(1−max{r2R1
, r2R2
}) +

|R2||r2R2
− r2R1

|
1−max{r2R1

, r2R2
}
. (S3.19)

We now bound the two terms on the right hand side separately.

Denote by E(α) the event that

max{r2R1
, r2R2
} < α.

By Lemma 4,

P{E(α)} ≥ 1− 12 exp(−|R2|α/64).
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Note that, for any 0 < x < α,

− log(1− x) ≤ x

1− α
.

We can upper bound the first term on the right hand side of (S3.19) by

1

1− α
(|R1| − |R2|) max{r2R1

, r2R2
}.

Therefore,

P{(|R2| − |R1|) log(1−max{r2R1
, r2R2
}) ≥ u} ≤ 12 exp

(
− 1

64
|R2|min

{
α,

(1− α)u

|R1| − |R2|

})
.

(S3.20)

The second term of (S3.19) can be upper bounded by

1

1− α
(
||R2|r2R2

− |R1|r2R1
|+ (|R1| − |R2|)r2R1

)
,

under the event E(α). By Lemma 5, we get

P{||R2|r2R2
− |R1|r2R1

| ≥ x} ≤ c1 exp

(
−c2 min

{(
|R2|

|R1| − |R2|

)1/2

x, |R2|1/3x2/3
})

.

And by Lemma 4,

P{(|R1| − |R2|)r2R1
≥ x} ≤ 6 exp

(
− |R1|x

64(|R1| − |R2|)

)
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Therefore,

P
{ |R2||r2R2

− r2R1
|

1−max{r2R1
, r2R2
}
≥ u

}
≤ 1− 12 exp(−|R2|α/64)− 6 exp

(
− (1− α)|R1|u

128(|R1| − |R2|)

)
−c1 exp

(
−1− α

2
c2 min

{(
|R2|

|R1| − |R2|

)1/2

u, |R2|1/3u2/3
})

.

Together with (S3.20), this implies the desired statement for R2 ⊆ R1.

A careful inspection of the derivation of Lemma 7 suggests that it can be extended

to a more general situation where X and Y are correlated for some indices.

Lemma 8. Let R1 ⊂ R2 be two index sets. Assume that {(Xi, Yi) : i ∈ R1} are indepen-

dent observations so that (Xi, Yi) ∼ N(0, I2) for i ∈ R1, and Xi, Yi are standard normal

random variables with correlation coefficient ρ for i /∈ R1. Then there exist numerical

constants c0, c1, c2 > 0 such that for any x < c0|R1|,

P(|LR1 − LR2| ≥ x) ≤ c1 exp
(
−c2 min

{
(1− ζ)−1/2x, |R1|1/3x2/3

})
.

provided that ζ := |R1|/|R2| ≥ 1/4.

Finally we derive a perturbation bounds for a polygon which is useful for our discussion

in Section 3.1.

Lemma 9. Let K1 and K2 be two polygons with vertices u1, u2, . . . , uk and v1, v2, . . . , vk
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respectively. Denote by ej the length of the edge between uj and u(jmodk)+1. Then

|K1 ∩Kc
2| ≤ r

k∑
j=1

(ej + 2r),

where r is maximum distance between uj and vj.

Proof. Denote by Qi the polygon whose first i vertices are the same with K2 and whose

remaining vertices are the same with K1. In particular, Q0 = K1 and Qk = K2. It is not

hard to see that the jth edge of Qi is no longer than ej + 2r. If we compare Q0 and Q1,

then only the first vertex might be different, as illustrated in Figure S2.

Figure S2: Effect of perturbation of vertices of a polygon.

Because Q0 and Q1 are different only in the first vertex, they can only be different in

the two edges linked with the first index. It can then be computed that

|Q0 ∩Qc
1| ≤

1

2
r(e1 + ek + 4r)
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Similarly,

|Qi ∩Qc
i+1| ≤

1

2
r(ei + ei+1 + 4r), i = 1, 2, . . . , k − 1,

It is clear that

K1 ∩Kc
2 = Q0 ∩Qc

k ⊂ ∪k−1i=0 (Qi ∩Qc
i+1)

Therefore,

|K1 ∩Kc
2| ≤ r

k∑
i=1

(ei + 2r),

which completes the proof.

Proof of Proposition 1. Write

Cp1,...,pk = {K({(ai, bi) : 1 ≤ i ≤ k}) : 2pi ≤ ri < 2pi+1, i = 1, . . . , k}.

It is clear that there exists a constant C > 0 such that

|Cp1,...,pk | ≤ Cn22(
∑k

i=1 pi).

Note that there are constants c1, c2 > 0 depending on k and M only such that

Rpolygon(A; k,M) ⊂
{
K ∈ Rpolygon(k,M) : c1A

1/2 ≤ ri ≤ c2A
1/2, i = 1, 2, . . . , k

}
.

Therefore,

Rpolygon(A; k,M) ≤ cnAk
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which completes the proof because A � r2i .

Proof of Proposition 2. Note that πs(K({(ai, bi) : 1 ≤ i ≤ k})) is also a polygon. For

brevity, we shall hereafter denote it by K({(ãi, b̃i) : 1 ≤ i ≤ k}). By Lemma 9, we get

|K({(ai, bi) : 1 ≤ i ≤ k}) \K({(ãi, b̃i) : 1 ≤ i ≤ k})| ≤ C2s
∑
i

ri ≤ Ck2sr1.

Hence

ρ
(
K({(ai, bi) : 1 ≤ i ≤ k}), K({(ãi, b̃i) : 1 ≤ i ≤ k})

)
≥ 1− Ck2sr1

πr21
≥ 1− C2s

r1
,

which completes the proof.
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