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Figures

S1.1 Structured Correlation Detection Algorithms

In this section, we present two algorithms of structured correlation detection.

S1.2 Auxiliary Figures

In this section, we show some auxiliary figures.
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Algorithm S1 Structured Correlation Detection by T

Require: Dual-channel Image {(X;,Y;)}icr and significance level a.
Ensure: Decision on if colocalization happens.
=0
for Re R do
Calculate Tk := m [maxper:|rj=a Lr — 2log (n/A)].
if T > T* then
T =Tg.
end if
end for
return If T* > q,, return “yes”, else, return “no”.

Algorithm S2 Fast Structured Correlation Detection by T™*

Require: Dual-channel Image {(X;,Y;)}icr and significance level a.
Ensure: Decision on if colocalization happens.
T* =0
for k=1 to [logyn| +1 do
if £ > k, then
R = Ryg.
else
R' = Ry.
end if
for Re R’ do
Calculate Tg := m [maxper:rj=a Lr — 2log (n/A)].
if T > T* then
T* = Th.
end if
end for
end for
return If T* > §,, return “yes”, else, return “no”.

S2 Proofs of Main Results

In this section, we present the proofs to our main results, namely Theorems [I} 2] and [3]

Proofs of Propositions [I] and [2| as well as a number of auxiliary results, will be given

in next section. To distinguish from the constants appeared in the previous sections, we

shall use the capital letter C' to denote a generic positive constant that may take different

values at each appearance.
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Figure S1: Simulated Distribution of maxgrer(4) Lr

Proof of Theorem[1 We first prove the upper bound (2.7) under conditions (2.4) and
(2.6)). To this end, we shall establish a stronger result that there exists a constant C' > 0

such that for any 0 < t < (logn)3.

IP’{ max Lg > 2logn + C(loglogn + t)} < exp(—t). (52.1)
RER(A)

It is clear that (2.7) follows immediately from (52.1).
We now proceed to prove (S2.1)). We shall consider the cases where A < (logn) and

A > (logn)® separately. First consider the situation when A < (logn)®>. By Lemma @
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there exists a constant C' > 0 such that for any fixed R € R(A)
P{Lg >z} < Cexp(—z/2).
Applying union bound yields

< _
IP’{RIE%L();)LR>:U} < C|R(A)|exp(—x/2)

< ¢ CnA®exp(—x/2)

IN

c10n(logn)®? exp(—x/2),

where the second inequality follows from (2.4). Equation (S2.1)) then follows by taking

x = 2log(c;C) + 2logn + 10c3 log logn + 2t.

The treatment for A > (logn)® is more involved and we apply a chaining argument.

Let Rapp(A,e™%) be an e™* covering set of R(A) so that
[Rapp(A; e7%)| = N(A, 7).
For any segment R € R(A), denote by
ms(R) = argmin d(R,R).
R/€Rapp(A,e=*)

Of course, the minimizer on the right hand side may not be uniquely defined, in which

case, we take 7,(R) to be an arbitrarily chosen minimizer.
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Write

s*—1

L= (Lryitm) = Lram) + (L = Lo o) + L. (),

S=Sx

where s* > s, > loglog(n/A) are to be specified later. It is clear that

Lr < L, — L, Lr— L. L .
s Lr< ) mae (e = Lo + g |Le = Lo + g 1. o)

(52.2)
We now bound the three terms on the right hand side of (S2.2)) separately.

By definition,
d(R,ms(R)) <e™®,  and  d(R,me1(R)) <e GV
Hence there exists a constant C' > 0 such that
mo(R) N1 (R)| > (1= Ce )[R, and  d(ms(R), ms1(R)) < Ce™.
Now by Lemma [7} for any fixed R € R(A),

| Lo(r) = Laey(m)] <€ (6_5/2$ + ’R|_1/2x3/2)
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with probability at least 1 — C'e™. An application of the union bound yields

P{ max }stH(R) — LNS(R)‘ > (C (e_S/Qx + \/iA_l/Qx3/2> }
RER(A)

CN(A, e *)N(A, e~ D)

IN

IN

C[N(A, 6—(S+1))]26—CIJ

< CZC <%>2 <log %)265 6266(8+1)6_I7

where the last inequality follows from ([2.6)). In particular, taking

x =t + 2log s+ log(c;C) + 2log(n/A) + 2¢s loglog(n/A) + 2¢¢(s + 1)

yields, with probability at least 1 — s~2e¢,

Rm%(:z) Lr \(r) — LWS(R)‘ <C ((s +t+ log(n/A))e_s/2 + A_1/2(s +t+ log(n/A))3/2) )
S

Here we used the fact that s > s, > loglog(n/A). Now applying the union bound over

all s, < s < s*, we get, with probability at least 1 — s le™® > 1 — e,

s*—1 s*—1
_ < —s/2 -1/2 3/2
SZ; Rrengé) |L7rs+1(R) Lns(R)‘ < Csz; ((s+t+log(n/A))e + A2 (st + log(n/A))*?)

< C(S*efs*/2+A71/2(8*>5/2)

+C (e7*2(t +log(n/A)) + A™V25" (t + log(n/A))*?).

To bound the second term on the right hand side of (52.2)), we again apply Lemma
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[l For any fixed R € R(A), we get
]P’{‘LR — Lﬂs*(R)‘ >C (6_8*/21' + \/5/1‘”%3/2)} < Ce™™.
Another application of the union bound yields,

s (L= Loo| < O (7 l0g[R(A)| + A7/ (log [R(A)|Y? 4 ¢ /24 4 A7247)

< C (6_8*/2 logn + A7V2(logn)?? 4+ e~ /%t + A_1/2t3/2) ,

with probability at least 1 — Ce™*, where we used (2.4]) in the last inequality.
Finally, for the third term on the right hand side of (S2.2), we have

P {ReRaI,E?IX(,e_S*) |Lr| > x} < ON(A,e™*)e % < ¢,C <%> <1Og %> ? oCosk —T/2

Taking

x = 2log(esC) + 2log% + ¢5log log% + 2cgs, + 1

yields, with probability at least 1 — Ce™?,

n n
Lpl <21 C)+2log — loglog — + 2¢gs, + t.
ReRaI:;?fX(,e*S*)l r| < 2log(c,C) + ogA+c5 og ogA—l— CeSy +
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In summary, we get, with probability at least 1 — Ce™?,

max LR S C<S*e—s*/2+A—1/2(8*)5/2+6—s*/2t+A—1/28*t3/2+e—s*/210gn
ReR(A)

+A_1/2(logn)3/2+e_5*/2t+A_1/2t3/2+6_5*/210g%+A_1/23*(10g(n/A))3/2)

+21log(csC) + 2log % + ¢5 log log% + 2¢68, + T

Recall that A > (logn)®. If we take s* = 2logn and s, = 2loglog(n/A), then for any

t < (logn)3, we can deduce from the above inequality that

n n
< — — .
Rrengé) Li < 2log 1 +C <10g10g I +t> : (S52.3)

which implies (S2.1)).
We now prove ([2.8)) if in addition, (2.5) holds. In the light of (2.6]), we can find a
subset R(A) of R(A) such that for any Ry, Ry € R(A), Ry N Ry = () and

Obviously,
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If A< (logn)®, then

IP{ max LRSx} = H P{Lgr < x}
RER(A) -
RER(A)
< H (1 _ C‘R|71/2efx/2)
RER(A)
< [1-CA e

< [1-C(log n)_5/26_””/2}c3n/A,
where the first inequality follows from the lower bound given by Lemma [} It can then

be derived that

max Lp > 2logn + O,(loglogn). (52.4)
RER(A)

Together with (2.7)), (S2.4) implies the desired claim when A < (logn)?.
Next we consider the case when A > (logn)®. We proceed in a similar fashion as
before but rely on the following tail bound of Lg: if A > 24, then there exists a constant

C > 0 such that for any R € R(A) and 0 < < VA,
P{Lp >z} < Cx Y% exp(—z/2). (52.5)
If (S2.5) holds, then

]P{ max Lp < ZB} > (1 _ Cx—l/Qe_gg/g)Cgm/A7
RER(A)
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which yields

max Lr > max Lp > 2log(n/A) + O,(loglog(n/A)).
RER(A)

RER(A)

Together with ([2.7)), this concludes the proof.

It now remains to prove (52.5). Write

Tr = (IR - 2)r%

Note that log(1+ x) > z — 2?/2 for any = > 0. We get

Lr > (|R| —2)log(1+41%) > T — 5

Ty o Tx
R >72_ "R
(R —2) = % A-4

for any A > 5, where in the last inequality we used the fact that |[R| > A/2 for any

R € R(A). This can be further lower bounded by T3 — 3T3/A for any A > 6. Thus, for

any 0 <z < A/24,

(AVARRN AV}

Y

T4
P{T}%—?)TRZJ:}

4
IP’{TI%— % € [m,2x)}

P{T} € [z + 122% /A, 2z + 32°/A) }

IP’{TR € [V + 1222 /A, /22 + SxQ/A)} :
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Because Tx ~ t|g—2, we have

IP’{TR € [z + 1222/A, \/2m+3m2/A)}
V22+32%/4 2\
/\/ax+12x2/A ( |R‘ - 2)
v/ 224322 /A |R| -1 u2
/ exp [— log <1 + —)} du
\/ z+1222 /A 2 |R| —2

/1/2x+312/AeX |R’—1 2 du
P Uaqr =" )"

v
Q

du

v
Q

C

v

x+123:2/A

for some constant C' > 0, where in the last inequality we used the fact that log(1+x) <z

for all z > 0. Thus,

i {TR e [V + 1222/4, /22 + 3:1;2/A)}

v/ 2z+3z2 /A —1
> C(2x+ 3952/A)1/2/ uexp ( || ] 2) d

1222 /A 2(|R| =2
= C(2z+32%/A)Y*(1 - (IR - 1Y) [exp (—%(z + 12x2/A)>

~exp < %(z@ + 31;2//1))}
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Recall that 0 <z < A/24. We get

P {TR € [V + 1222 /A, \/2z + 3x2/A)}

R| -1
> CrY%exp (—’— x4 1222 /A )
2(m - T
> CazV?exp —i(a: +122%/A)
- 2(A—2)
> Caz Y2exp(—2/2),

where in the last inequality, we used the fact that 2 < v/A. The proof is then completed.

]

Proof of Theorem |9 (Consistency of T*). We first show that the claim is true for 7*. To
this end, we begin by arguing that ¢, = O(1), and then show that under H;, 7% — co.

Note that

™ = e gy |22 (7))

1 Lp—2log [ =
—  max max —— —zlog | 0y :
1<k<logn ReR(e~k+1n) | log 10g(”/|R|) 5 g |R|

As shown in the proof of Theorem [I there exists a constant C' > 0 such that for any

0 <t < (logn)?,

P {ReRI(Iiai(Hn) Lr>2k+C(logk + t)} < exp(—t).
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Taking t = x + log(2k?) yields

1 n 1
_ _ > < — —).
P e, Ugiogty |2~ 2% (1) | | 2 06+ 0} < el

Applying union bound over all k, we get

PIT' >0+ 1)< Y oy ep(—) < oxp(-),

1<k<logn
which implies that ¢, < C(1 —log(1l — «)).
It now suffices to show that if (4.9) holds for some R € R, then T* — oco. To this

end, note that

™2 gy 2 ()

We treat the case |R| > logn and |R| < logn separately.

Consider first the situation when |R| < logn. By Lemma 3]

1—1r2 —
(1 - p]§> Z(Yi —Yr)" ~ Xfri-2:

1€ER

Applying the x? tail bounds of Laurent and Massart| (2000)), we get, with probability at

least 1 — 2e™7,

(1 - rR) > (Vi = Ya)? < (IR — 2) + 2y/2(|R] — 2) + 22

_ 2
1 P 1€ER
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and
> (Yi—Yr)’ > (IR - 1) — 2/x(|R] - 1).
iI€ER

Under this event,

1—r% < (|R] —2) +2y/z(|R| — 2) + 2z

L=p* = (IRl - 1) = 2y/a(IR] - 1)

Assuming that x = o(|R|), this can be further simplified as

1—r% x
<1 — | .
L—p* ~ +O(\/\R|>

If in addition, z — oo, then

~(|R| = 2)log(1-1%) = —|Rllog (1~ p*) + 0 (\/alR])
> 2log(n/|R]) + 0, log(n/|R)) +o (V/alR])

which diverges with n because

on log(n/[R]) > +/log(n/|R|) > |R[ > /x|R].

Since

o, log(n/|R|) > /log(n/|R|) > loglog(n/|R|),

this immediately suggests that

1 n
7> — | Lp—21 — .
= loglog(n/|R]) [ RTEE (|R >] I
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Next consider the case when |R| > logn. Assume without loss of generality that
p > 0. The treatment for p < 0 is identical. Following an argument similar to that for

Lemma [, we get

D (Xi— Xp)® ) (Yi—=Ye)* < (IRl = 1)+ 2y/z(|R[ — 1) + 2

1€ER 1ER

and

SO (X — X)(Yi — V) = (1R = 1)p— 2y/a([R] — 1) — 22

i€R
with probability at least 1 — 6e~*. Denote this event by £(x). We shall now proceed

under £(z) with an appropriately chosen z — cc.

. z/(IR] = 1) = 2[z/(|R] - 1)]
- L2y /(IR = 1) + 2[z/(|R] - 1)]

. (52.6)

It is not hard to see that under the condition (4.9)), |R|p?> — oo. Assuming that x — oo

such that x = o(|R|p?), we get

x
TRZP+0( m)

L > —(|R| - 2)log [1— (p+o( %‘))

—|R|log(1 — p?) > (2 +4,) log (%) .

Then,
(S2.7)

Recall that
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Denote by p, > 0 the solution to

IR log(1 — ) = (24 6,) log (|R|)

It is clear that p > p,.. Together with the fact that the right hand side of (S2.7)) is an

increasing function of p, we get

SN Ao

= —(|R| - 2)log(1 — p?) + o(v/z[R]|p.)

— (2 6 tog () + ol /AT,

Note that

IRI? < 2|R|log(1 + 72) < —2|R[log(1 — /) = 2(2 + 6, log (“’;l)

62 lo l — 00
244, °\IR

It is not hard to see that

if (4.9) holds. Assuming that
T =0 i 1 n
~%\2545, B R

T > (loglog(n/|R|)) ™ (Lr — 2log(n/|R])) = o0

we get



S2. PROOFS OF MAIN RESULTS

This concludes the proof of consistency of 7% under (4.9)). n

Proof of Theorem (Consistency of T* ). We now consider the computationally efficient
test based on T* is also consistent. As before, we begin by arguing that ¢, = O(1), and

then show that under Hy, T* — oo. To show that G, = O(1), it suffices to note that

T* = max {(loglog(n/|R|))~" (Lr — 2log(n/|R]))}
> nax {(loglog(n/|R|))~" (Lr — 2log(n/|R|))}

= T

Therefore, G, < g, = O(1) following the argument before.
Next we show that under the alternative hypothesis where X; and Y; are correlated

on a set R € Ry, for some k, T* — co. By definition, there exists a R € Ry such that

o
d(R.R) < 7. (S2.8)

Observe that
T = T} = (loglog(n/|RI)) " (Lg — 2log(n/|R))) .

It now suffices to show that the rightmost hand side is unbounded with probability ap-
proaching to 1 when k£ < k,. To this end, we first consider the case when R C R.

Note that if R C R, then |) holds for any i € R. Following an identical argument
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for consistency of T*, it suffices to show that there exists a 8, > 0 such that

5n\/10g(n/|ﬁ|) — 00

and

—|R|log(1 — p?) > (2 + d,) log (%) :

Observe that (S2.8)) implies that

~ 1
IR| > (1—@) IR|.

Thus

. 1 1 1
R|1 > (1-—— | |R|]
| |Og1_p2 = ( 4/62)‘ ’Ogl—pQ

(1 - 4%2) (24 6,)log (I%I) |

v

Because

n n R| n 1
log 7 = log 7 + log I > log & + log -1z > log

n

Bl

(52.9)

(S2.10)

L) -

1
4k2’
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we get
~ 1 1 n 1
> S — ) - =
|R|10g1_p2 > (1 4k2>(2+5n) [log(|R|) 41{;2}
> (1— ! )2(2+5)10g<n>
- 4k? ©UIR|
1 n
> [1— =) (2+,)log | —= |.
> (1= g5 ) o+ oo ()
Let

~ 1 1
Then ((S2.10]) holds. We now verify (S2.9)). Recall that

62(k —1)log2 < 62 log (%) — 00,

we get, for sufficiently large n,

30')2
(V]
e~ =

This implies that

- - 1 n
5210e [ ) > 5210e [ =) > — 62100 [ =
"°g<|R|)— "Og(|R| SR T

which completes the proof for the case R C R.
Now consider the case when R € R. By definition,

ROR| 1

S Ak
VIRIE]
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Because RN R C R, we get

e (1 _ 4_]{:2)2‘ (S2.11)

_ 1 3/2 1
ROR > (1 _ m) R > (1—@) Rl

Similarly, we can derive that

Thus,

. 1 -
IRNR| > (1— %> IR|. (52.12)

Following the same treatment as for the previous case, we can derive that

L = {LRHR—Qlog (L)} —p 00,
loglog(n/|RN RJ) |[RN R

Since |R N R| < |R)|,

1 n 1 n
1 |, _mog(Tﬂ Z—n[p _zlog( ~ )] S oo
loglog % [ ANk IR loglog =27 fnf RN ER|

It now suffices to show that

n
|LRHR - Lf%| = Op (10g10g (ﬁ)) (82.13>
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In the light of ((S2.11]),

1
log log (|%|> > log {log (%) + 2log (1 — m)]

1
> log {(/{ —1)log2 — Q_k:Q} = O(logk).

On the other hand, by Lemma [§]
1 H1—1/2,.3/2
|Ljgnr — Ll <C st |R|™ =
with probability at least 1 — e™®. Observe that

. 1 \? 1 B
1l = (1 - E) 7l = (1 - ﬁ) IR 2 n2=80,

Equation (S2.13)) then follows by taking
£ = min {k2 log k, 27%3n3(log k)2/3} :

The proof is now completed. O

Proof of Theorem[3 Our argument is similar to those used earlier by [Lepski and Tsy-
bakov| (2000) and Walther| (2010). We shall outline only the main steps for brevity. Note
first that a lower bound for a special case necessarily yields a lower bound for the general

case. Thus it suffices to consider the case when p; = pus = 0 and 07 = 09 = 1. In the

light of (2.5)), for any A, we can find R(A) C R(A) such that [R(A)| = cs(n/A), and for
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any Ry, R, € R(A), Ry N Ry = (. For brevity, we shall assume that ¢5 = 1 and for any
R € R(A), |R| = A. More general case can be treated in the same fashion albeit the
argument becomes considerably more cumbersome.

Denote by Py the joint distribution of {(Xj,Y;) : ¢ € I} under null hypothesis, and by
P the joint distribution under alternative hypothesis where X; and Y; are correlated on
R € R(A) so that holds for i € R and holds for i ¢ R. The likelihood ratio

between Py and P can be computed:

dPp 1 { Yoicr (P X7 —2pX3Yi + p?Y7?) }
exp —

V=, = T= " 20— /)

To prove the first statement, we first show
Eo(Wg™") /(I R(A))™* -0 forany 0 <n<1,
where [, stands for expectation taken with respect to IP.

It can be computed that

1

14+00/4y
) = T o

Recall that

1 n
< — —.
Alog T2 S (2 —9,)log 1

p2
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We get
~ log [Eo(W;; /) /(nR(A)| )]
g (1-p")+ glog(l — p*62/16) + 5—10gA 5—10g?7
z% log% —(1=6,/2) (1og %) 1og1(01g(—1 _2552/)16) + Z” logn
Z%ilog%—%( —0,/2) <1og%>—l—%logn
—%(1 +6,/2) log y —logn
Zﬁl og KRN
16 °A
Thus,

o (W) /(| R(A)])*/* — 0.

Next, we argue that

Eo |[R(A)™ Y Wr—1—0.
ReR(A)

To this end, write

W=RA)T D (We—1),
RER(A)

W= RA)T Y (Wr = DLrjsnmia):

RER(A)
and

Ws = [R(A)| Z Wr = D)1y 1j<nimiay)-
RER(A)
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Observe that

Eo ‘W| < Eg ’Wﬂ +Ey ‘W2| < Eg ’WI‘ +n.
On the other hand,

Eo |[Wi| < Eo(WrLay, o) < Bo(Wa ")/ (IR(A))*/* — 0.

We can take n | 0 to get

IE‘EO ‘R Z WR — 1| —0.
RER(A)

Finally, let P; be the uniform mixture of Py for R € R(A), that is,

P, = Z P.

RER(A)

Then for any test A,

RER(A)
>Eo(A) + 1= [R(4)] Y Er(d)
RER(A)
>1—Eo(A(L = [R(A)" Y Wa)
RER(A)
>1—Eo|l— [RA)[ Y Wi =1,

RER(A)
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which completes the proof of the first statement.
To show the second statement, we assume the contrary that ¢, is bounded from above.
Then {¢,} must have a convergent subsequence. Without loss of generality, assume c,

itself converges to some b € [0,00). Then

b
lOgWR —d N <—§,b) s

which implies that

limsupPr(A =1) < 1.

This contradicts with the fact that that the type II error of A goes to 0 as n — oco. The

second statement is therefore proven. O

S3 Auxiliary Results and Proofs

We first state tail bounds for ¢ and F' distributions necessary for our derivations.

Lemma 1. Let X be a random variable following a t distribution with degree of freedom

n > 1. There exists a numerical constant 0 < ¢; < ¢y such that
22\ 2 AN
cn”1? (1 + —) <P(X|>1x) <c (1 + —) (S3.14)
n n
for any x > 1. In particular,

X2
en e < P {nlog (1 + —> > u} < cpe 2, (S3.15)
n
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for any u > 1.

Proof of Lemma [l Recall that the density of a ¢ distribution with degree of freedom n is

2) x? S x? —t
e ) (4™ <cf1+Z
ang)( o) Cse(en)

for an absolute constant C' > 0. Then, for any u > 0,

n+1

00 2\ ~ 2
P(X>u)§0/ (1+%) dx
* 22\ F
C/ —(1+—> dz

w U n
o] 2 —nTH 2
_ne (1+x—) d(1+x—)
2u J, n n

1

_ e (T
(n—1u n

n

-1
1 2\ T2

<90= (1 ¥ u—) .
u n

The upper bound in (S3.14)) follows immediately by taking ¢ = 4v/2C, by symmetry of ¢

IN

u

distribution. On the other hand, observe that

n+1

f(x)20<1+%2)_2,
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for some constant C' > 0. Thus,

3

>

)

|

)—l
/\/—\

—_

_|_

SR,
\_/\_/ s |8

n—l

The lower bound in (S3.14)) then follows immediately.
Now, taking
x =/n(e®/r —1)

n (S3.14) yields (S3.15). O

Lemma 2. Let Uy ~ Xil and Uy ~ X%Q be two independent random variables. Then for

any =1 <z <1,

ni + neo U1 n1x2
—1| > <2 — .
s U1+U2 ‘ _33'} - eXP( 12 )

|

Proof of Lemma[3. As shown by [Dasgupta and Gupta (2003)), for any = > 0,

P{?’Ll—i‘ng U1

<l-zt< log(1 —
. U+ Us = x} exp (5 (o +log(1-2)))
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and

P{n1+n2 U1

n
>1 < (_— log(1 )
R o —|—x}_exp 2( x + log(1l + z))

The claim then follows from the fact that
2
log(l+x) <z — %

for all  such that |z| < 1. O

The following observation on the sample correlation coefficient is useful:

Lemma 3. Assume that {(X;,Y;) : i € R} are iid copies of (X,Y) ~ N((u1,p2)", %)

where

Then

S (V= Yr) (L —rh) ~ (1= p”)xir o

i€R

Proof of Lemma[3. Consider a linear regression of Y over X:
Y = 60 + BX + €.

Recall that
Y ier(Xi — Xg)(Y; — Yg)

6 N ZiER(Xi - XR)Q
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and B\g =Yg — BX r are the least squares estimate of of Y over X where

The residual sum of squares of the regression can then be written as
N (Vi fo— BXi)? = (Yi— YR)’(1 - 13)
i€R i€R

Conditioned on Xj, the residual sum of squares will follow (1—p?)x7_,. Thus the margin

distribution of the residual sum of squares is also (1 — p?) X|2R\72‘ ]

Next we derive a tail bound for the sample correlation coefficient. For brevity, we

work with the case when (X,Y’) are known to be centered so that

ZiER XiY;

- (83.16)

TR

where (Xj, Y;)s are independent copies of (X,Y’). Treatment for the more general case is
completely analogous, yet this simplification allows us to avoid lengthy discussions about
the smaller order effects due to centering by sample means, and repeatedly switching

between |R| — 1 or |R| — 2 as the appropriate degrees of freedom.

Lemma 4. Assume that {(X;,Y;) : i € R} are iid copies of (X,Y) ~ N(0,15). Then for

"

any x > 0,

> X,

i€ER

> 2+/x|R| + 295} <de ™.
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If in addition, 0 < x < |R|/16, then

P{|rg| > 2} < 6exp(—|R|z?/64).

Proof of Lemma[{]. Write

Y Xy = Z (7()(i+ifz-))2 — %Z (%(Xi—m))2.

i€R 2 R i€R
Then
| 2
]P’{ ZX,YZ- > 2v/ulR| + QU} < ]P’{ (—(XZ +Yz‘)) — |R|| > 2v/u|R| + QU}
i€R ien \V2
1 2
—HP’{ (—2( YZ)> — |R|| > 2y/ulR| + QU}
i€ER

where the second inequality follows from the x? upper and lower tail bound of Laurent

and Massart| (2000). Applying the x? lower tail bound from [Laurent and Massart| (2000)),

we can also derive that

IP’{ > X?| < |R|-2 u|R\} <e® (S3.17)

1€ER

and

]P{ > VP < |R|-2 u\R[} <e (S3.18)

i€ER
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Therefore, for any u < |R|/16,

2\/ulR| + 2u 2
IR |_| < F(Q\/MR +2u)<81/|R|

R| - 2./u|R

with probability at least 1 — 6e™". The claim follows immediately. O]

We are also interested in the difference in correlation coefficients between two different

regions. The following lemma provides a useful probabilisitic tool for such purposes.

Lemma 5. Assume that {(X;,Y;) :i € Ry U Ry} are iid copies of (X,Y) ~ N(0,I3), and
2|Ry N Ry| > |Ry U Ry|. Then there exist numerical constants ¢y, cy,co > 0 such that for

any x < co| Ry,

P(|[Rilr, — [Relr,| > o) <

i RiNR 1/2
C1 €Xp <—02 min { <|R1 U .|R2T — |}§1| N R2|> z,|RiN R2|1/3$2/3}> .

In particular, if

_RiNRy| 1

VIRi[Rs| — 4

then there exists a numerical constant c3 > 0 such that for any x < co| Ry,

IP’(‘|R1|7“%21 - |R2|r%2‘ >1z) < crexp (—03 min {(1 - C)_1/2x, |R1 N R2|1/3x2/3}) )
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Proof of Lemma[5. We first consider the case when Ry C R;. Recall that

ZlGRl X Y and Zz€R1 X Y
\/Zzelﬁ 2 Z’LERI \/ZzERz X2 ZZERQ Y

Therefore,

| R |y |?
|Ra|r, — |Ralry, = X,Y; < _
fia f V ’RQ ZEER; Z’LGRQ X2 ZiERQ Y;Q EZERl X2 ZiERl Y?
- Ufl " . Z X,Y; > X,
ZiERl Xl ZiER1 }/; i€ER, |R1 i€Ry

We now bound the terms on the right hand side separately.

Observe that

b Z X.Y: ( R _ | R | >
VIR i Dier Xi ier Yo Yiem Xi Dier, Y5

-1
|R2|7”§z 1 — (|R1|ZiER2 X?) <|R1|ZZ€R2 ) ‘
’ |R2| ZieRl X’L2 |R2| ZzeRl
By Lemma 2]
Ry| Yicr, X7 R
P [B] 2icr, —1|>xp <2exp —MmQ ,
[Ral > i m, X7 12
and

R V2 R
IP’{ %—%le}b v 1‘ > :1:} < 2exp <—Mx2) .
2 1€ERY Tt
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We get, for any < 1/2,

-1
< 4z

1 (!Rﬂ 2ich, Xf) (|Rl\ 2ier, Vi )
| Ra| > e, X7 [Ra| X ier, Vi

with probability at least 1 — 4 exp (—|Rg|z%/12). On the other hand, by Lemma

P{|rg,| >z} < 6 exp(—|Re|z?/64).

Thus, by taking u = 4| Ry|x?,

-1

|R2|’I"12% 1— (‘R1|zi€R2 XZQ) (‘Rl,ZzeRz )
2

‘R2| ZiERl Xlz |R2’ Z’LGRI

with probability at least
]R2|1/3u2/3
1—-10 exXp (—W .

Denote by & (u) the event that the above inequality holds.

To bound the second term, first note that

- (ZXY) .S (ZXY)

i€ER i€ER

= () ()~ (3, 21@”) =

i€ER i€R1\R2 i€Ro i€R1\R2
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By Lemma [4]

| B[ ( 1 ) <|R1| > 2 <|R1| ) 2
XY, — — 1] |Ry|ry, < Ry|z7,
Siem X2 ien, Y2 R |R] ZGXR: IRy| | B[, 7| | R

with probability at least 1 — 6 exp(—|R;|2?/64). On the other hand, again by Lemma ,

Pol > XY >2V/a(|Ri| - [Ro|) + 22 p < de™,

1€R1\R2

Recall that, by x? lower tail bounds from [Laurent and Massart| (2000, we get

IP’{Z X2 <|Ry| - 2\/@«131\} <e

i€Ry

and

IP’{Z Y2 <|Ry| - 2\/x|R1|} <e

i€ER

Thus, for any = < |R;|/16,

Ri1?/|R ’
| )1!2/| 2| — Z XY, < | Ry |?/| R (2 (|R:| — |Ra|) + 2:6)
ZlGRl ZiGRl i \4i€R\Ry <’R1‘ — 2y | Ry | )

16 2
< —
< oy (VeRT=TRD) +)
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with probability at least 1 — 6e~*. In other words,

2

|R1[?/| Ry 1 (1 |Ry|z2\?
XY, < — | zaV|Ri|(|R| — |Ra]) +
Zz‘eRl Xz‘QZz‘eRl Y;Q iegfzg |Rs| \ 2 16
(|1 2 |Ry|*2?
< (B4 )R
= 2<\R2| )| il T RR)

with probability at least 1 — 6 exp(—|R;|2%/64) for any z < 2. Following a similar argu-

ment, we can also show that

2| Ru[?/| Re| ( )
> XY, > XY
2 2 itq iYi
ZiERl Xi ZieRl Y; 1€ER, 1€R1\R2
= (5 Rula? (1 By o?
< 5 Zav/|R(RL = IR
= TRy (Qx | Ry || Ro| + 16 21:\/| 1(|R1| — |R2]) + o)

with probability at least 1 — 10 exp(—|R;|z?/64) for any < 2. Note 2|Ry| > |Ry|. In

summary, we get

2 2
|Baf” 1 ZX.Y b ZX.Y,
ZiERl Xf ZiERl YiZ |R2| o |R1| o

i€ R2 i€ERy
R N\, [Rile?
< 21— -1 R —_
= (|RQ| |Bafo” + —¢

with probability at least 1 — 22 exp(—|R|2?/64) for any = < 2. Hence, with probability

at least

L (1B 7 Lo
1—22 — (= -1 —22 —— | Ry Y303
exp( G <|R2| ) u exp 16’ 1 u
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we have

2 2
|2 f* 1 Z xv | - L Z XY | | <u
Yicr XY ier, Y || R:] o | Ry | S A

i€Ry “hi LuieRy T i€Ry i€Ry

Denote this event by & (u).

In summary, for any u < |Ry|/256,
|1 R1lrg, — [Ralri,| < 2u

with probability at least

]P’{Sl(u)mé’g(u)} > 1-—22exp L @—1 71/2u — 22exp —i|R1\1/3u2/3
= 256 \ | Ro 16

]R2|1/3u2/3
e (-1

1 (IR 1z 1
> 1—22exp (_% (% - ) u) — 32exp <—@|R2|1/3u2/3> :

The statement, when Ry C Ry, then follows.

Now consider the general case when Ry SZ Rq. In this case,

HRllr?ﬁ - |R2’r?%2| S HRl‘T?“?J - |R1 m R2’r§—flﬂR2| + HRQ‘T%EQ - |R1 m R2|r§—flﬂR2|‘
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We can now appeal to the bounds we derived for nested sets before to get

1 IRiNR| \?
P(||Ry|r%, — |R1 N Ra|r? > ) <22 —
(|| 1|TR1 | 1 2|TR1OR2| = QZ’) = exp ( 256 (|R1| — |R1 N R2| B

1
+32exp (—@|R1 N R2|1/3u2/3) ,

and

1 |R1N Ryl V2
P(||Re|rE, — |R1 N Ralr} > 1) <22 —50n
(H Q‘TRQ ’ 1 2’rR10R2| = x) — exp ( 256 (|R2| — ’Rl N R2’ B

1

+32 exp ( 128

|R1 N R2]1/3u2/3> .

The first claim then follows from an application of the union bound.
To show the second statement, assume that |R;| > |Rs| without loss of generality.

Observe that
B |Ry N Ryl < | Rs|

,0— — )
V||| Ry | B

which implies that |Ry| > p?|R;|. Therefore,

|R1 N Ro| = py/|Ra||Ra| > p?| Ry,

and

|R1 N Ry| = py/|Ri||Re| > p|Ra.
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Thus,
RiNR 1 1 2 1
|R1UR2|—|leR2| ,0_2+p_1—2 1—p2p+1 48
where the last inequality follows from the fact that 1/4 < p < 1. O

We are now in position to derive bounds for the likelihood ratio statistic Lg. Since

we work with centered random variables as stated earlier, it is natural to redefine Ly as:
Lr = —(|R| = 1)log(1 — r).

where rpg is given by (S3.16)).
Lemma 6. Assume that {(X;,Y;) : i € R} are iid copies of (X,Y) ~ N(0, 1) for some
|R| > 1. Then there exists numerical constants 0 < ¢; < co such that for any x > 1,

o|R|7V2e 2 < P(Lg > x) < cpe™ /2,

Proof of Lemmal[fl Observe that

2

T
Lr=(|R|—1)log (1 B
w= (]~ tog (14 )

where
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and
_ ZiGR XY
V2 ier X 2icr Yi

It is well known that, under the null hypothesis,

TR

Tg ~ t|r|-1-
See, e.g., Hotelling| (1953). By Lemma [1]
a|R|7YV2e 2 < P(Lg > x) < cee™/?,

for any x > 1. [

The following lemma bounds the change in the likelihood ration statistic due to a

perturbation of the index set.

Lemma 7. Assume that {(X;,Y;) :i € Ry U Ry} are iid copies of (X,Y) ~ N(0, 5), and
2|Ry N Ry| > |R1 U Ry|. Then there exist numerical constants cgy,c1,co > 0 such that for

any x < co| Ry,

P(|L Lg,| >x)<ce Co min 1 0 By 1/2:15 IRy N Ry|Y/32%/3
—_— X —_—
Ry Ry| Z T) = €1 €XP 2 IRiU Ry| — [Ry N Ry ) |41 2

N—

In particular, if

_ RN Ry

(= —=
VRl | Ra|

1
>_7
— 4
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then there ezists a numerical constant c3 > 0 such that for any x < co| Ry,
P(|Lg, — Lg,| > ) < crexp (—ezmin { (1 — ¢)7"%x, |Ry N Ry|*2%/3}) .

Proof of Lemma([7 Similar to Lemma [} it suffices to prove the first statement when
Ry C R;. By the convexity of —log(1 — x), we can ensure

| Ba| (P, — 7R,

Lp, = =|Rallog(1 = rf) > ~|Ru|log(1 = rf,) + —— "
Ry

and
|Ro|(r%, — %,)

2
1 —TRl

L, = —|Ro|log(1 —r%,) > —|Ry|log(1 — r%,) +
Therefore,

| Rol[r, — T, |

Li — Ly | < (1Ra] = [Ra]) log(1 — max{ry, , v, }) + (83.19)

1— max{r%,z1 , 7%2}

We now bound the two terms on the right hand side separately.

Denote by £(«) the event that
max{rf , 75 } < a.

By Lemma [4]
P{&(a)} > 1 — 12exp(—|Ry|a/64).
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Note that, for any 0 < z < «,

~log(1—7) < —

1—a’

We can upper bound the first term on the right hand side of (S3.19)) by

1
1o (R = [R]) max{rg, , 7, }-
Therefore,
P{(|Ro| — |Ri|) log(1 — max{r,,r%,}) > u} < 12exp —iIR | min { o (d—aju
c R TR p) 2 S T TR =Rl S )
(53.20)

The second term of (S3.19) can be upper bounded by

1
T—a (I[Ralrf, — [Ralrf, | + (|Ri| = |R2l)rR,)

under the event £(a). By Lemma [5, we get

. R 1/2
IP’{||RQ|T?%2 — |R1|r}2;¢1| >x} < cpexp (—02 min { (ﬁ) z, |R2|1/3:L’2/3}> )
1| — | R

And by Lemma

Ry|x
P{(|Ry| — |Ra|)r%, > 2} < 6ex (— By )
{([Ra] = [Re|)rg, 2 2} < p 64(|Ri| — |Ra))
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Therefore,

p { Lty 1)

>u}§1—12exp(—|R2|a/64)_6eXp( (1 —a)|Rifu )

1 —max{ry , 7%} ~ 128(|Ry| — |Ral)
Lo LT
_ -~ S ) B R, |1/3,2/3 '
clexp< 5 Clen{(|R1|_|R2|) u, |Re| " u
Together with (S3.20]), this implies the desired statement for Ry C R;. [

A careful inspection of the derivation of Lemma 7] suggests that it can be extended

to a more general situation where X and Y are correlated for some indices.

Lemma 8. Let Ry C Ry be two index sets. Assume that {(X;,Y;) : i € Ry} are indepen-
dent observations so that (X;,Y;) ~ N(0,1s) fori € Ry, and X;, Y; are standard normal
random variables with correlation coefficient p for i ¢ Ry. Then there exist numerical

constants ¢y, c1,co > 0 such that for any x < co| Ry,
P(|Lg, — Lg,| > x) < ciexp (—02 min {(1 — C)_I/Qx, |R1|1/3x2/3}) )
provided that ¢ := |Ry|/|R2| > 1/4.

Finally we derive a perturbation bounds for a polygon which is useful for our discussion

in Section 3.1.

Lemma 9. Let K and Ky be two polygons with vertices uy, us, ..., ur and vy, vy, ..., U
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respectively. Denote by e; the length of the edge between u; and w(jmoar)+1- Then

k
|K1NKS| < rZ(ej + 2r),

Jj=1

where 1 is mazimum distance between u; and v;.

Proof. Denote by @); the polygon whose first ¢ vertices are the same with K, and whose
remaining vertices are the same with K. In particular, Qg = K; and @y = Ks. It is not
hard to see that the jth edge of ); is no longer than e; + 2r. If we compare )y and @),

then only the first vertex might be different, as illustrated in Figure [S2

Figure S2: Effect of perturbation of vertices of a polygon.

Because )y and (), are different only in the first vertex, they can only be different in

the two edges linked with the first index. It can then be computed that

1
Qo N QS| < 5r(el + ey, + 4r)
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Similarly,

1 )
|QZ‘QQ§_‘_1|S§T(6i+6i+1—|—47’), 22172,...,]{7—1,

It is clear that

KiNK;=0QoNQ; C Uf:ol(Qi NQi)

Therefore,

k
|KiNKS| < TZ(Q’ + 2r),

i=1

which completes the proof.

Proof of Proposition [l Write
Coroope = I ({(as b)) 1 1 <0< k}) 027 <y <200 =1, k),

»»»»»

Cos

,,,,,

Note that there are constants ¢, co > 0 depending on k£ and M only such that
7?fpolygon(‘A; k? M) C {K € 7e’polyg0n<l{:7 M) : CIA1/2 S i S C2A1/27i = ]-7 2’ R k} .

Therefore,

R polygon (A k, M) < en AP
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which completes the proof because A =< r?2. O

Proof of Proposition [ Note that (K ({(a;,b;) : 1 < i < k})) is also a polygon. For

brevity, we shall hereafter denote it by K ({(a;,b;) : 1 <i < k}). By Lemma @, we get

(K ({(as,b) - 1< i <R \K({(@,b) : 1< i <k} <O2°) i < Ck2°ry,

Hence
~ k2° 28
p (K({(anb) 11 <0 <K E({(ab) 1< i< k) 21— T2l 5 O
i 1
which completes the proof. ]
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