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1 Note S1. On the differences with other NMF-based drug repositioning methods

Drug repositioning hypotheses can be formulated from different types of biological data, including chemical, molecular1,
cellular2 and clinical3.

In computational pharmacology, the drug repositioning problem is often framed in terms of a incomplete association matrix
Y of n×m, where the goal is to predict missing associations in Y . In our case, Y contains relationships between n drugs and m
viruses, where yi j = 1 if drug i is associated to virus j, or yi j = 0 otherwise.

Several computational methods have proposed new models based on Non-negative matrix factorisation (NMF)4, 5 for
distinct settings of the drug repositioning problem. Here we review some of these methods and highlight key differences with
our matrix decomposition model. We start with the standard or vanilla NMF of Lee and Seung4, 5.

Vanilla NMF There are two main differences between our model and the vanilla NMF model of Lee and Seung4: the cost
function and the learning algorithm. To explain these difference in more detail, let us denote a generic data matrix of n×m as
Y . The goal of NMF is to obtain a low-rank decomposition of Y by minimising the following cost function:

min
P,Q

J (P,Q) =
1
2
‖Y −PQ‖2

F =
1
2 ∑

i j
(Yi j− (PQ)i j)

2

subject to P,Q≥ 0
(1)

where P is a matrix of n× k and Q is a matrix of k×m, k is the rank of the approximation and ‖.‖ is the Frobenius norm of
a matrix.

Notice that Equation (1) is non-convex in P and Q. Lee and Seung4, 5 derived multiplicative learning rules that can find a
local minimum solution of Equation (1) under non-negative constraints. The multiplicative algorithm consist on iteratively
applying the following update rule assuming that P and Q are initialised from random values in t = 0, t ∈ {1,2, ...maxiter} (e.g.
uniform distribution in the range [0,1]):

P←− P
Y QT

PQQT

Q←− Q
PTY

PT PQ

(2)

The multiplicative learning rules in Equation (2) have the advantage that they do not require setting a learning rate or
applying projection functions to guarantee the non-negative constraints.

Notice that when minimising Equation (1), all the entries in Y are considered equally. This makes sense when entries in Y
have the same meaning or importance. For instance, if it contains pixels of images4. However, in our problem, the data matrix
Y contains drug-virus associations that are at different stages of drug development. Therefore, the strength of each known
drug-virus association in Y varies according to the evidence of efficacy. In our model, we account for the varying types of
evidence of efficacy of drug-virus associations by weighting them differently in our cost function. The weighting is simple:
groups of drug-virus associations are weighted according to their probability of success (motivated by the study of Dowden et
al.6). In this way, those groups in early stages of development have less importance than those in the later stages of development
during the learning. Furthermore, since our cost function is different from the vanilla NMF, our learning rule to minimise it is
also different. We showcase our learning algorithm in the Methods section of the main manuscript.

A recent paper by Sosnina et al. has shown that vanilla NMF5 provide a better performance at predicting missing interactions
than other algorithms used for predicting missing data in recommender systems. In their study, Sosnina et al.7 used a dataset
consisting of cell-assay derived small molecule- antiviral activity interactions.

NMF with L2 regularization Bakal et al.8 recently proposed the use of with L2 regularisation model to predict missing
drug-disease associations in the repoDB database9, which contains approved and failed drug-disease associations for distinct
categories of diseases (including genetic, neurologicals, syndromes, neoplastic, etc.). Following our previous notation, the cost
function of NMF with L2 regularization is as follows:

min
P,Q

J (P,Q) =
1
2
‖Y −PQ‖2

F +
β

2
(‖P‖+‖Q‖)

subject to P,Q≥ 0
(3)



That can be minimised with the following multiplicative learning rules:

P←− P
Y QT

PQQT +βP

Q←− Q
PTY

PT PQ+βQ

(4)

The main difference between vanilla NMF and NMF with L2 reg. is that an L2 norm is added to the loss function to
improve generalization and reduce model complexity.

TriFactor NMF Ceddia et al.10 recently proposed using non-negative matrix tri-factorization (TriFactor NMF) model for
predicting missing drug-target interactions, missing drug-therapeutic categories, and missing drug-disease associations using
diverse datasets. TriFactor NMF seeks to decompose the matrix Y as follows Y ' FSGT , by minimising the following loss
function:

min
F,S,G

L (F,S,G) =
1
2

∥∥Y −FSGT∥∥2
F

subject to F,S,G≥ 0
(5)

That can be minimised with the following multiplicative learning rules11, 12:
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IRNMF Tang et al.13 addresses the problem of predicting missing drug-virus associations with potential applications on drug
repositioning for COVID-19. The model they proposed is a variation of NMF called Indicator Regularised NMF (IRNMF).

IRNMF is different from our model in the type of information it uses: IRNMF integrates chemical similarities between drugs
and sequence similarities between viruses, while our model does not use this information; our model uses drug developmental
stages, which are not used in the IRNMF model.

Comparison with NMF and its variations Although the specific drug repositioning problems addressed by Sosnina et al.7,
Bakal et al.8 and Ceddia et al.10 are different from ours (as we are predicting drug-virus associations), we can still compare
their specific variant of NMF against our model on our drug-virus association data.

To this end, we implemented the NMF with L2 regularization and the triFactor NMF model. We then used our training and
validation sets to set the hyperparameters of each model: (i) For the NMF with L2 model, we found optimal performance in the
validation set with: number of latent factors = 5, and the L2 regularization penalty = 0.1; (ii) For the triFactor NMF, we found
optimal performance in the validation set with: number of factors = 15.

Using the Leave-One-Out Cross-Validation (LOOCV) procedure described in the paper, we assessed the performance of
each of these methods at retrieving missing phaseIV/approved drug-virus associations. The Figure 3 in the main manuscript
shows that our matrix decomposition model significantly outperforms the two variants of NMF. We also observed that NMF
with L2 regularization and triFactor NMF perform slightly better than vanilla NMF.

In order to run IRNMF on our dataset, we followed the procedure in Tang et al.13 to obtain chemical similarities for our set
of drugs and sequence similarities for our set of viruses.

To obtain chemical similarities between our set of 126 drugs, we mapped drug names to DrugBank 5.1 (https://go.
drugbank.com/) identifiers. 109 out of the 126 drugs could be mapped to DrugBank. We then obtained the chemical
SMILES representation for each drug from DrugBank. Finally, using the open source RDKit Chemoinformatics tool (https:
//www.rdkit.org/), we obtained the MACCS chemical fingerprint and computed the 2D Tanimoto chemical similarities.

To obtain virus similarities for our set of 80 viruses, we downloaded the most complete reference genomes of each virus
from NCBI (https://www.ncbi.nlm.nih.gov/genome/). Following Tang et al.13, we used the MAFFT algorithm



to get the distance matrices. This could only be applied to the viruses with a single DNA segment, which resulted in 64 out of
80 viruses in our dataset.

In this way, we obtained the three matrices required to run by IRNMF: a binary drug-virus matrix containing 654 associations
between 109 drugs and 64 viruses; a chemical similarity matrix of 109x109; a sequence similarity matrix of 64x64. In this
drug-virus matrix, 66 associations are in phases I, II or III of development, and 49 associations are in phase IV/approved stages.

Having created the datasets, we performed the evaluation of the two models. First, we used the 66 phase I-III associations to
set the model parameters both for our model and for IRNMF (optimal performance for IRNMF was obtained with: number latent
factors = 10; L2 regularization penalty = 0.1; side information regularization = 10). Then, we then repeated our leave-one-out
evaluation on the 49 associations that are in phase IV/approved stages: For each of these associations, we removed it from our
dataset; trained the model with the remaining data matrix; and then ranked drugs based on the predicted scores. To run IRNMF
in our dataset, we used the code provided by the authors in https://github.com/dukebai/IRNMF.

Figure S1 below shows that our matrix decomposition model significantly outperforms IRNMF at recovering missing phase
IV/approved drug-virus associations at different number of top predictions retrieved. We observed that our method performs
from 26.53% to 53% better than IRNMF at recovering phase IV/approved missing drug-virus associations.
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Figure S1. Performance comparison between IRNMF13 and our matrix decomposition model at predicting missing phase
IV/approved drug-virus associations in the Andersen et al.14 drug-virus dataset.

Comparison in the SARS-CoV-2 specific evaluation dataset . We also seek to compare the performance of the methods
on the specific evaluation datasets that we collected for SARS-CoV-2. In the evaluation that follows, we used the in vitro and
clinical trials datasets, but not the CMAP dataset, because only one drug with CMAP activity was found in the Andersen et
al.14 dataset. In the in vitro dataset, we found 10 BSA drugs with in vitro efficacy against SARS-CoV-2; 4 of which were
already in the Andersen et al.14 dataset. In the clinical trials dataset, we found 28 BSA drugs in clinical trials for COVID-19; 6
of which were already in the Andersen et al.14 dataset.

We performed a leave-one-out evaluation experiment in the in vitro dataset, where one of the ten drugs was left out and the
other nine were also used for training together with the ten associations from the Andersen et al.14 dataset. In our evaluations,
we only ranked drugs without known associations in training. Therefore, the final set of labels consisted on 10 positive labels
and 110 negative labels. In the clinical trials dataset, we could not repeat the leave-one-out evaluation experiment because
we do not know the specific phase of clinical trial. In this case, we simply run the methods using all the data available in the
Andersen et al.14 dataset combined with the in vitro evaluation dataset. The performance was also calculated only on drugs
without associations in training, i.e., 20 positive labels and 90 negative labels. Finally, all the methods were run using their
optimal hyperparameters.



Figure S2 below shows the recall and precision of the methods at different values of predictions retrieved. In the clinical
trials evaluation dataset, our matrix decomposition model greatly outperforms the competitors. It can recover 50% of BSA
drugs already in clinical trials for COVID-19 in the top-20 drugs retrieved. In the in vitro evaluation dataset, we noticed that
the best performing method changes in different tops. For instance, our matrix decomposition model performs on part of
vanilla NMF in the top-10. We notice here that our method was not tuned to fit in vitro data in the Andersen et al. dataset , but
rather phase IV/approved stages (i.e., clinical success of drugs). This might explain why our method performs much better
than other competitors on the clinical trials dataset but not so well on the in vitro data. In fact, predicted scores by our matrix
decomposition model on the in vitro developmental stages are very low (see Figure S4). Another explanation for the variation
of the performance of the methods in the in vitro data could be due to the fewer number of positive labels available.
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Figure S2. Precision and recall at different number of BSA drugs retrieved by different matrix factorization drug
repositioning methods in two evaluation datasets specific to SARS-CoV-2. clinical trials: 20 BSA undergoing clinical trials
for COVID-19 vs 90 remaining drugs. in vitro: 10 BSA with activity in vitro against SARS-CoV-2 vs 110 remaining drugs.



2 Note S2. On whether the use of developmental information can bias the predictions
One question that may arise when using our matrix decomposition model is whether the grouping by developmental stages
in our cost function introduces a bias in the predictions. In other words, whether our model is only predicting drugs that are
in the late stages of development, rather than the most effective ones. We will show that, in the intended use of our matrix
decomposition model, when predicting missing drug-virus associations, the bias of developmental information cannot affect the
predictions because developmental information is not available for them.

To understand how the grouping influences the predictions made by our matrix decomposition model, let us consider that
our model takes as input an incomplete sparse drug-virus matrix with only 8.43% non-zero entries, and outputs predicted
scores for all the entries in the matrix (see Figure S3 below). These predicted scores can be categorised into two classes:
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Figure S3. The predictions made by our matrix decomposition model can be categorised based on whether the predicted
scores are used to rank non-approved drug-virus associations available for training (type A, an example shown with an arrow in
yellow) or missing drug-virus associations, without any evidence of efficacy (type B, an example shown with an arrow in red).
Our model is intended for type B predictions.

• Type A predictions. These corresponds to entries yi j in the original matrix Y that are non-zero. Here we are predicting
whether drug i, which is already in some stage of development with respect to virus j, will eventually reach drug approval
for virus j.

• Type B predictions. These corresponds to entries yi j in the original matrix Y that contains zeros. Here we are predicting
whether drug i, which is not currently being developed for virus j, will reach drug approval for virus j.

In our manuscript, we focus on validating predictions of type B, because it corresponds to the interesting case where the
scores predicted by our model can be used to rank drug-virus associations that are not yet in drug development, and for which
novel drug repositioning hypotheses can be made. In the manuscript, we have showcased the utility of our approach in this
scenario by using a leave-one-out cross-validation (LOOCV) procedure. In this procedure, only one drug-virus association (in
phase IV or approved) was removed from the drug-virus matrix Y (by setting the corresponding entry to zero). We then trained
the model, and scores were predicted for all the drugs. We then ranked drugs that had no known association with that virus and
checked the percentage of cases in which the effective drug for the virus was found among the top-K predictions. Fig. 3 in the
main manuscript shows that our matrix decomposition model can predict 60% the correct drug among the top-10 predictions
retrieved.

Predictions of type A typically require a different setting where the goal is to predict clinical success of candidate compounds
in early stages of drug development given molecular, chemical, cellular and clinical features15. Therefore, using our model
for type A predictions is likely to generate predictions that are biased towards the known developmental stages. One way to
verify this is to look at the scores that we obtain for drug-virus associations for the 850 known drug-virus associations that
were used during training. These are shown in the Figure S4 below, which presents the scores grouped based on their known
developmental status. We can see that, on average, the higher the developmental stage, the higher the score output by our
model.
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Figure S4. Predicted scores by our matrix decomposition model for drug-virus associations used for training the model. 850
drug-virus associations were grouped based on their known developmental status.

We analysed the top-20 predictions obtained from our system, separating them into Type A and Type B predictions. The top
type B predictions, corresponding to predicted Broad-Spectrum Antiviral drugs not known to be under development against
SARS-CoV-2 according to the Andersen et al. dataset, are listed in Table S1.

Rank Predicted score Drug name (ID) Additional curated evidence for COVID-19
5 0.46 Tenofovir (DB14126) combinational therapy, currently on ClinicalTri-

als.gov (NCT04519125)
6 0.43 Lamivudine (DB00709) combinational therapy, case report in Brasil16

8 0.37 Zanamivir (DB00558) in silico molecular docking17

10 0.21 Azithromycin (DB00207) combinational therapy, clinical trials18, compas-
sionate use19

11 0.20 Amiodarone (DB01118) currently on ClinicalTrials.gov (NCT04351763)
12 0.19 Artesunate (DB09274) combinational therapy, in vitro20, currently under

WHO Solidarity PLUS clinical Trials
14 0.13 Thymalfasin (DB04900) currently on ClinicalTrials.gov (NCT04487444)
15 0.12 Brincidofovir (DB12151) NA
16 0.12 Rapamycin (DB00877) currently on ClinicalTrials.gov (NCT04461340),

geroprotective21

17 0.11 Nitazoxanide (DB00507) currently on ClinicalTrials.gov (NCT04463264)
18 0.10 Sunitinib (DB01268) AI-evidence22

19 0.08 Erlotinib (DB00530) AI-evidence22

20 0.07 Valacyclovir (DB00577) NA
21 0.07 Interleukin-7 (DB11997) clinicalTrials.gov (NCT04379076), compassionate

use23, 24

Table S1. Predictions of type B obtained with our matrix decomposition model:. Predictions of type B correspond to
predicted broad-spectrum antiviral drugs not known to be under development against SARS-CoV-2 according to the Andersen
et al. dataset. These predictions had a value of zero in the drug-virus matrix Y used for training. Only predicted drugs within
the top-20 predictions are shown.

Interestingly, this set of drugs includes drugs for which we could find in the literature some indication of efficacy, and



for several of them we found that they are already in clinical trials for COVID-19 (third column in Table S1). Note that our
12th top predicted drug is the anti-malarial drug Artesunate, which was selected for the currently ongoing WHO Solidary Plus
Clinical Trials25.

The top predictions of type A, corresponding to predicted Broad-Spectrum Antiviral drugs already known to be under
development, but not approved against SARS-CoV-2 according to the Andersen et al. dataset, are shown in Table S2. As
expected, for the six drugs known to be under development for SARS-CoV-2, predictions are biased towards drugs that are
in later stages of development. The drug with the highest predicted score was Favipiravir, already known to be in phase II
of clinical trials for COVID-19 according to the Andersen et al. dataset. Favipiravir is an RNA polymerase inhibitor that
was developed in Japan as an antiviral treatment for influenza. In October 2020, already 37 clinical trials were registered in
ClinicalTrials.org to assess its efficacy and safety for COVID-19 patients26.

Rank Predicted score Drug name (ID) Dev. Stage
available
for training

Additional curated evidence for
COVID-19

1 1.03 Favipiravir (DB12466) phase II in vitro27, several clinical trials28, 29,
compassionate use19

2 0.95 Arbidol (DB13609) phase IV in vitro30, under clinical trials31

3 0.58 Lopinavir (DB01601) phase IV combinational therapy, clinical trials
in severe COVID-1932, compassionate
use19, little or no clinical benefit33

4 0.58 Ritonavir (DB00503) phase III combinational therapy, clinical trials
in severe COVID-1932, compassionate
use19

7 0.42 Remdesivir (DB14761) phase III compassionate use34, clinical trials27

9 0.28 Hydroxychloroquine (DB01611) phase III compassionate use19, Emergency Use
Authorisation (EUA) by FDA35 (re-
voked on June, 2020), little or no clin-
ical benefit33.

13 0.17 Chloroquine (DB00608) cell
culture/co-
culture

Emergency Use Authorisation (EUA)
by FDA (revoked on June, 2020), little
or no clinical benefit33, 36.

Table S2. Predictions of type A obtained with our matrix decomposition model:. Predictions of type A correspond to
predicted Broad-Spectrum Antiviral drugs already known to be under development, but not approved, against SARS-CoV-2
infection. Only predicted drugs within the top-20 predictions are shown.

However, a systematic review of the randomised clinical trials suggest that Favipiravir has shown low efficacy for patients
with mild or moderate COVID-1926. In fact, other drugs including Remdesivir, Lopinavir and Hydroxychloroquine have shown
little to no clinical efficacy in COVID-19 patients according to the WHO Solidarity Trial, conducted in more than 11,000
patients across 405 hospitals in 30 countries33. Therefore, the lack of efficacy of BSA drugs that were under development at the
time of release of the Andersen et al. dataset suggests that it is important to consider predicted BSA drugs that were not yet
under development against SARS-CoV-2 (presented in Table S1).



3 Note S3. How much our model exploits developmental stages information?
An important question is how much of the performance of our model was due to the use of the developmental stages’ information
in our modelling. To understand this, we designed two different experiments:

• Randomisation of developmental stages. We randomised the developmental stages assigned to drug-virus associations
in the matrix used for training. This experiment is designed to inform us about whether there is relevant information in
the specific subsets of developmental stages used.

• Removing the information of the developmental stages from our model. To understand whether the prediction
performance of our model depends on assigning different probabilities of success to different groups of entries, we set all
the coefficients assigned to the different drug developmental stage groups to 1 (i.e. αB = αC = αD = αE = 1). Only the
αz coefficient of our original model is retained, thus effectively weighing down the information brought in by the zeros
(note that our model reduces to the model by Galeano et al.37). In this case, the information of the developmental stages is
removed altogether from the cost function as all the known drug-virus associations are considered equal during learning.

For both experiments, we followed the leave-one-out cross validation (LOOCV) that we described in the main manuscript.
For each of the 71 phase IV/approved associations, we removed it from the drug-virus matrix Y by setting its corresponding
entry to zero, and then trained the model with the remaining data. Then, we ranked the drugs with not known association in
training based on their predicted scores. The prediction performance was then measured on the ability of the method to predict
the correct association among the top-K predictions retrieved.
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Figure S5. Comparison of the performance of our matrix decomposition model at predicting approved/phase IV Broad
Spectrum Antivirals (BSA) for 28 viruses under two control procedures to illustrate the importance of the modelling of the
developmental stages. In the first experiment, we randomised the developmental stages of the drug-virus associations used for
training (brown bars). In the second experiment, we removed the modelling of the developmental stages from the cost function
(green bars).



Figure S5 shows a comparison of the prediction performance of the two competitors against our matrix decomposition
model. Our method outperforms significantly both competitors. It predicts 15-31% better than the competitor that randomises
the developmental stages (brown bars), and by 8.45-28% better than when the developmental stage information is removed from
the cost function (green bars). Our experiments suggest that the integration of the developmental stages in our cost function
leads to significant improvements in prediction performance.



4 Note S4. Evaluation datasets for the network medicine approach
Our network medicine approach was thoroughly evaluated and compared using three different PPI networks, as well as several
evaluation datasets. In this section, we provide details of all the datasets involved in each setting.

We consider 3 PPI networks, as described in Table S3. Ultimately, the set of drugs that we are able to place in the
interactome will vary with the set of proteins included in each interactome. Our main evaluation setting, and the one that
involves the largest set of approved drugs, is related to the interactome put together by Gysi et al.38. Once the interactome is set,
we retrieve all the FDA approved drugs from the DrugBank database39. Every approved drug with at least one protein target in
the interactome is suitable for our network medicine approach.

PPI number of proteins number of links

Cheng et al.40 15,646 218,092
HuRI41 16,091 353,435
Gysi et al.38 18,505 327,924

Table S3. Protein-Protein Interaction networks. Three PPI networks were used throughout this study to evaluate our
network medicine approach. Cheng et al.40 and HuRI41 were restricted to the reviewed entries in UniProtKB
(UniProtKB/Swiss-Prot)42. The interactome put together by Gysi et al.38 uses Entrez identifiers
[https://doi.org/10.1093/nar/gks1189].

To evaluate the results, we rely on three sources of evidence:

• in vitro experiments: The union of in vitro screenings from Riva et al.43 and Gysi et al.38. They total 99 drugs in
DrugBank that show effects against SARS-CoV-2 in the screenings. 81 such drugs are FDA approved.

• Clinical trials: Retrieved from ClinicalTrials.gov on December 1st, 2020. They total 244 drugs mapped to
DrugBank listed as an intervention on a clinical trial. 186 such drugs are FDA approved.

• CMAP: Obtained by querying CMAP44, 45 using differentially expressed genes on COVID-19 patients vs. a control
group46. They total 30 drugs with a significant τ score (< -90). 23 such drugs are FDA approved.

Dataset Evidence Type Number of Drugs Number of Positives Number of negatives

IV-2197 In Vitro Evidence (Riva et al.43

& Gysi et al.38)
2197 81 2116

CT-2197 Clinical Trials retrieved on De-
cember 1, 2020

2197 170 2027

CM-2197 CMap evidence 2197 23 2174
IV-1853 In Vitro Evidence (Riva et al.43

& Gysi et al.38)
1853 78 1775

CT-1853 Clinical Trials retrieved on De-
cember 1, 2020

1853 153 1700

CM-1853 CMap evidence 1853 21 1832
E918-IV In Vitro Evidence from Gysi et

al.38
918 77 841

E918-CT Clinical Trials retrieved on
April 15, 2020

918 37 881

E918-CM CMap evidence 918 19 899

Table S4. Datasets for the network medicine approach

The final step required to build an evaluation set is to assign labels to the drugs based on the available evidence. To do it, we
simply intersect the suitable drugs for a given interactome with the set of drugs from one of the groups described above. The
resulting evaluation settings are summarised in Table S4. The main evaluation settings are IV-2197, CT-2197, and CM-2197,
which go together with the Gysi et al.38 interactome. Settings IV-1853, CT-1853, and CM-1853 are the result of building the



set for the Cheng et al.40 and HuRI41 interactomes. the last 3 evaluation sets in the table (E918-IV, E918-CT, and E918-CM)
are slightly different, as they are used to compare our results to those of Gysi et al.38. Some of the 918 drugs included in these
settings were not approved by FDA, which frames a fundamentally different problem than the other evaluation sets. Details of
our comparison using E918-IV, E918-CT, and E918-CM are available in Note 8.



5 Note S5. Evaluation of the network medicine approach on Gysi et al PPI
We ran network medicine methods on the Gysi et al PPI, and compared the results on three different evaluation sets: IV-2197
(in vitro), CT-2197 (clinical trials), and CM-2197 (CMAP).

In Figure S6, we compare prediction scores between drugs with evidence for COVID-19 and the remaining drugs for
different types of evidence. We also show the corresponding One-Sided Wilcoxon-Mann-Whitney p-values. Results are shown
for our network medicine approach, and two network-based competitors: the DSD method47, and the Guney distance48. The
kernel-based methods and DSD47 have significant p-values in all scenarios, while the Guney distance48 has non-significant
p-value for CMAP. In every case, the kernel-based methods have the smaller p-values.

c

b

a

Figure S6. Prediction scores by the network medicine approach on the Gysi et al. PPI. We used boxplots to compare
prediction scores between drugs with and without evidence for COVID-19 on three different evaluation sets: in vitro evidence
(IV-2197), clinical trials evidence (CT-2197), and CMAP evidence (CM-2197). For each comparison, we computed the
One-Sided Wilcoxon-Mann-Whitney p-value (one tailed test). Non-significant p-values (below 0.05) are indicated with ‘ns‘.
Significant p-values are shwon in red. We show results obtained by our network medicine approach and competitors. Our
approach includes five different kernels on graphs (commute time, diffusion, inverse cosine, p-step kernel, and regularised
laplacian), and a combined ranking across the kernels (avgRank). The competitors include DSD47, and the Guney distance48.
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Figure S7. Classical machine learning metrics obtained by the network medicine approach on the Gysi et al. PPI. We
computed the area under the ROC curve (AUC-ROC), recall at top 150, precision at top 150, and mean average precision
(MAP) for three different evaluation sets. They correspond to in vitro evidence (IV-2197), clinical trials evidence (CT-2197),
and CMAP evidence (CM-2197). For each type of evidence, we show results obtained by our network medicine approach and
competitors. Our approach includes five different kernels on graphs (commute time, diffusion, inverse cosine, p-step kernel,
and regularised Laplacian), and a combined ranking across the kernels (avgRank). The competitors include DSD47, and the
Guney distance48.

Figure S7 shows traditional machine learning metrics for comparing the performance across different network medicine
methods. When evaluating on the in vitro dataset (IV-2197), we observe that the average ranking aggregation (avgRank) is
the best performing method in the recall and precision at top 150, and MAP metrics. The best performance in the AUC-ROC
metric is achieved by calculating the score using our network medicine approach with the p-Step kernel.

Evaluating on the clinical trial dataset (CT-2197), we observe that the best performer throughout the four evaluation metrics
is the average ranking (avgRank). In the recall and precision at top 150, it is matched only by using our network medicine



approach with the regularised Laplacian or inverse cosine kernels.
Finally, evaluating on CMAP data (CM-2197), we observe that the regularised Laplacian is the best performing method in

the recall and precision at top 150, and MAP metrics. The best performance in the AUC-ROC metric is achieved by the DSD
method47 with a very similar performance achieved by calculating the score using our network medicine approach with the
commute time kernel.

All in all, the main pattern we observe when comparing the performance using traditional machine learning metrics is that
our network medicine approach is very robust in comparison to the competitors. This especially true for the recall and precision
metrics which are, arguably, the most interesting metrics to observe when planning drug repurposing experiments.



6 Note S6. Comparison between our network medicine approach and methods by Gysi
et al

Gysi et al.38 tested 918 drugs in vitro against SARS-CoV-2. They proposed computational approaches to predict drugs with
efficacy against SARS-CoV-2. However, the problem from Gisy et al. is slightly different from ours. Out of the 918 experi-
mentally screened drugs, 833 were approved, with the remaining 85 drugs distributed between investigational, experimental,
nutraceutical, and withdrawn. Our problem, however, focuses on ranking approved drugs exclusively. Nevertheless, we thought
it was interesting to compare the performance of our network medicine approach with Gysi et al.’s AI based methods. We did
this by running our network medicine approach to rank the 918 drugs used in their evaluation. For a fair comparison, we used
the same dataset than Gysi et al.38, as described below.

• PPI with 18,505 proteins and 327,924 interactions.

• 24,648 associations between 6253 and 3910 targets used by Gysi et al.38. The dataset contains data from DrugBank
(https://go.drugbank.com/), and other additional 25 drugs with targets curated by the literature.

• 332 host proteins identified by Gordon et al.49.

• A set of 918 drugs (E918) that were tested in vitro against SARS-CoV-2 on Vero E6 cell lines38.

• Evaluation set of drugs with in vitro evidence, which contains 77 compounds with weak or strong evidence on the in
vitro experiment (we refer to this evaluation setting as E918-IV, see Table S4).

• Evaluation set of drugs with clinical trials evidence, which contains 37 drugs that are both in E918 set and clinical trials
of April 15th 2020 (we refer to this evaluation setting as E918-CT, see Table S4).

In addition, we used drugs predicted by Connectivity Map (CMAP)44, 45 as an additional source of evidence. For running
CMAP, we used the consensus dataset by Ghandikota et al.46 as the COVID-19 signature, with genes that are up- or down-
regulated in different in vitro and in vivo models of SARS-CoV-2 infections. Our query on CMAP resulted in 19 drugs with
significant CMAP τ score (< -90) that overlap with the list of 918 drugs tested in vitro (we refer to this evaluation setting as
E918-CM, see Table S4).

We evaluated the performance of our network medicine methods and competitors on different types of evidence for
COVID-19: E918-IV (in vitro evidence), E918-CT (clinical trials), and CMAP evidence (E918-CM). Our approach includes
five different kernels (commute time, diffusion, inverse cosine, p-Step with p = 2, and regularised Laplacian), and an aggregated
ranking (avgRank). As competitors. we considered methods used by Gysi et al.38, which includes AI-based methods (based on
Graph Neural Networks - GNN), diffusion-based methods (variations of DSD47), proximity-based methods (variations of the
Guney’s distance48), and cRank[REF] (a combination of all the rankings). We then computed the same evaluation metrics as
Gysi et al., that is, the AUC-ROC (area under the ROC curve), recall at top 100, and precision at top 100). These results are
shown in Figure S8.

We observed that for all evaluation datasets, our approach has an AUC-ROC higher than the diffusion-based methods, and
similar or higher than the proximity based methods. We also have a higher AUC-ROC than the AI based methods in all types of
evidence except for clinical trials (E918-CT). Our performance is always higher than a random classifier (AUC-ROC > 0.5).
In contrast, A4 (AI-based method), and the diffusion based methods (variations of DSD) have an AUC below 0.5 for CMAP
evidence, and D3 and D5 (variations of DSD) have an AUC-ROC below 0.5 for in vitro evidence.

We also observed that our matrix decomposition model predicts earlier drugs with in vitro or CMAP evidence. As shown in
Figure S8, we have the largest recall and precision at top 100 for these sets of drugs. The only scenario in which we do not have
the higher AUC-ROC nor the higher recall is for predicting drugs in clinical trials on April 15th 2020. In this case, the AI-based
methods (GNN) have the best performance. Nevertheless, in this scenario our approach has the highest recall and precision
compared to all proximity and diffusion based methods.

Finally, in Figures S9, S10, and S11, we compare prediction scores of drugs on each evaluation set (E918-IV, E918-CT, and
E918-CM) in terms of the Wilcoxon-Mann-Whitney p-values. In the work by Gysi et al.38 the pre-computed embeddings are
available only for the AI-based methods. For the other methods, only the rankings are available. Therefore, we computed the
raw scores of a proximity based method (the Guney distance48) and a diffusion based method (the DSD method47). We used
the original implementation of these two methods, and due to considerable computational costs, we used the Guney distance48

as the representative for all the Proximity based methods, and DSD47 as the representative for all the diffusion based methods.
We observed that our approach (based on kernels) and DSD are the only methods with significant p-values in all evaluation sets.
Notably, the AI based methods are only aligned with the clinical trial data, but not to the other two sources of evidence.
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Figure S8. Performance comparison of our methods to the methods used in Gysi et al.38. We observe that our network
medicine approach is competitive across all evidence types with the Proximity based methods (based on the Guney distance), as
well as the diffusion methods (based on the DSD method). In these cases, our network medicine approach is competitive in the
AUC-ROC metric, but stronger in the precision and recall metrics. When compared to the GNN based methods by Gysi et al. ,
we see that the AI based methods perform quite well on the clinical trial evidence, but an overall lower performance on other
types of evidence.
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Figure S9. Score comparison between our network medicine approach, and methods used in Gysi et al.38 on the E918-IV (in
vitro) evaluation set. Notably, none of the AI methods assign significantly different scores to drugs with in vitro effect vs. all
other drugs in this evaluation set. The Guney distance, the DSD method, the average ranking (avgRank), and all of our network
medicine approach methods do align to this type of evidence.
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Figure S10. Score comparison between our network medicine approach, and methods used in Gysi et al.38 on the E918-CT
(clinical trials) evaluation set. For this evaluation setting, with the exception of the Guney distance, every method assigns
significantly different scores to drugs in Clinical trials on April 15th, 2020.
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Figure S11. Score comparison between our network medicine approach, and methods used in Gysi et al.38 on the E918-CM
evaluation set. For this evaluation setting, the AI is also unable to assign significantly different scores to drugs with significant
CMAP scores. This is also the case for the Guney distance, and our network medicine score calculated on the Diffusion kernel.



7 Note S7. Evaluation of the network medicine approach on additional PPIs

We evaluated the network medicine approach on two additional interactomes: the Cheng et al.40 PPI, and the HuRI PPI41, as
described in Table S3. We considered 1853 FDA-approved drugs with targets in these interactomes. Out of the 1853 drugs, 78
have in vitro evidence (IV-1853 set), 153 have clinical trials evidence (CT-1853 set), and 21 have CMAp evidence. Details on
our evaluation dataset are described in Section 4.

In Figure S12, we compare prediction scores between drugs with evidence for COVID-19 and the remaining drugs, on the
different PPIs and types of evidence. We also show the corresponding Wilcoxon-Mann-Whitney p-values. Compared to the
competitors (DSD47, and the Guney distance48), our network medicine is the only one with predictions significantly aligned
with in vitro, and CMAP evidence in all PPIs.
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Figure S12. Evaluation of the network medicine approach on additional interactomes. We used boxplots to compare
prediction scores between drugs with and without evidence for COVID-19 on three different evaluation sets: in vitro evidence
(IV-1853), clinical trials evidence (CT-1853), and CMAP evidence (CM-1853). For each comparison, we computed the
Wilcoxon-Mann-Whitney p-value (one tailed test). Non-significant p-values (below 0.05) are indicated with ‘ns‘. Significant
p-values are shown in red. We show results obtained by our network medicine approach and competitors. Our approach
includes five different kernels on graphs (commute time, diffusion, inverse cosine, p-step kernel, and regularised Laplacian),
and a combined ranking across the kernels (avgRank). The competitors include DSD47, and the Guney distance48.

The only scenario in which our approach does not have a significant alignment is when we evaluate predictions for clinical
trials evidence on the Cheng et al. PPI. In this case, none of the competitors had significant p-values. Notice that, however, in
the HuRI PPI prediction scores are significantly different between drugs on clinical trials and the remaining drugs for both our
approach and DSD.

It is also interesting to see how our network medicine approach and the competitors perform with traditional machine
learning metrics. We show the area under the ROC curve (AUC-ROC), recall at top 150, precision at top 150, and MAP for
the Cheng et al., and HuRI PPIs in Figures S13, and S14 respectively. We noticed that in most scenarios the kernel-based



methods have the highest values of AUC-ROC, and MAP. However, even when the AUC-ROC, and MAP are not the highest,
our approach predicts earlier on the top 150. That is, in every case, our network medicine approach has the highest recall and
precision at the top 150.
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Figure S13. Classical machine learning metrics obtained by the network medicine approach on Cheng et al. PPI. We
computed the area under the ROC curve (AUC-ROC), recall at top 150, precision at top 150, and mean average precision
(MAP) for three different evaluation sets. They correspond to in vitro evidence (IV-1853), clinical trials evidence (CT-1853),
and CMAP evidence (CM-1853). For each type of evidence, we show results obtained by our network medicine approach and
competitors. Our approach includes five different kernels on graphs (commute time, diffusion, inverse cosine, p-step kernel,
and regularised Laplacian), and a combined ranking across the kernels (avgRank). The competitors include DSD47, and the
Guney distance48.
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Figure S14. Classical machine learning metrics obtained by the network medicine approach on HuRI et al PPI. We computed
the area under the ROC curve (AUC-ROC), recall at top 150, precision at top 150, and mean average precision (MAP) for three
different evaluation sets. They correspond to in vitro evidence (IV-1853), clinical trials evidence (CT-1853), and CMAP
evidence (CM-1853). For each type of evidence, we show results obtained by our network medicine approach and competitors.
Our approach includes five different kernels on graphs (commute time, diffusion, inverse cosine, p-step kernel, and regularised
Laplacian), and a combined ranking across the kernels (avgRank). The competitors include DSD47, and the Guney distance48.

Therefore, similarly to results with the Gysi PPI38 used throughout the manuscript, our predictions on additional PPIs are
the most consistently aligned with the three sources of evidence for COVID-19 (in vitro, clinical trials, and CMAP).



8 Note S8. Integration of gene expression for network medicine
We compared results obtained with the binary and weighted versions of the network medicine approach on our three evaluation
sets (in vitro, clinical trials, and CMAP).
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Figure S15. Comparison between binary and weighted kernel scores. We observe consistent improvement on the results of the weighted
version for in vitro (IV-2197) and clinical trial (CT-2197) evidence. For CMAP (CM-2197), the AUC-ROC, MAP, and p-value metrics are
comparable, while a notable improvement is observed in the recall and precision at top 150 metrics. Notice that we show the negative
logarithm of the p-values. Thus, the higher the value, the more significant the p-value is.



Figure S15, Figure S16 and Table S5 present, for each evaluation set, four different machine learning metrics for evaluating
the performance (AUC-ROC, recall@top 150, precision@top 150, MAP); as well as, and the Wilcoxon-Mann-Whitney p-value
obtained comparing prediction scores between set of drugs (as described in the paper).
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Figure S16. Distribution of five different performance metrics (y-axis) across the five kernels used by the network medicine
approach. Each point corresponds to an evaluation metric obtained by a kernel on a specific type of evidence (x-axis). The
horizontal lines correspond to the average values. When comparing the binary vs. weighted versions of the kernel methods, we
observe a consistent improvement in the weighted version for all performance measures on in vitro and Clinical Trials evidence.
For CMAP, the AUC-ROC, MAP, and p-value metrics are comparable, while a notable improvement is observed in the recall
and precision at top 150 metrics. Notice that we show the negative logarithm of the p-values. Thus the higher the value, the
more significant the p-value is.

Evidence Metric Mean Standard deviation
Binary Weighted Binary Weighted

recall @ 150 0.169 0.210 0.040 0.034
precision @ 150 0.091 0.113 0.021 0.018

In Vitro MAP 0.073 0.076 0.004 0.004
AUC 0.683 0.692 0.010 0.013

-log(p-value) 18.303 20.093 1.844 2.351

Clinical
Trials

recall @ 150 0.137 0.159 0.014 0.007
precision @ 150 0.156 0.180 0.016 0.008

MAP 0.133 0.136 0.005 0.006
AUC 0.627 0.633 0.005 0.002

-log(p-value) 17.912 19.318 1.240 0.535

recall @ 150 0.210 0.239 0.097 0.046
precision @ 150 0.032 0.037 0.015 0.007

CMAP MAP 0.069 0.068 0.004 0.005
AUC 0.682 0.665 0.021 0.029

-log(p-value) 6.667 5.835 1.181 1.469

Table S5. Average and standard deviation of evaluation metrics across the five different kernels (commute time, diffusion,
inverse cosine, p-step, and regularised Laplacian). The largest mean values are highlighted in bold. We compared results
between kernel-based methods with (weighted) and without (binary) weights on the host proteins. We observed a consistent
improvement in the weighted version for all performance measures on in vitro and Clinical Trials evidence. For CMAP, the
AUC, MAP, and p-value metrics do not show improvement, while a notable increase is observed in the recall and precision at
top 150 metrics. Notice that we show the negative logarithm of the p-values. Thus the higher the value, the more significant the
p-value is.

Our results show that the AUC-ROC and MAP increase, and p-values became more significant in the weighted version for



both in vitro and clinical trials evidence. Importantly, the gene expression data is helping in retrieving drugs with evidence
earlier in our ranking.

In fact, there is a consistent increase in the recall and precision for all types of evidence in the weighted version. On average,
the recall increased 31%, 16.9%, and 50% for in vitro, clinical trials and CMAp evidence, respectively. Similar improvements
can be seen for the precision. Notice that for the CMAP evaluation, recall and precision became higher even for kernels for
which the AUC-ROC, and MAP did not increase, as shown in Figure S15. The AUC-ROC increases on average 1.4% and 0.9%
on in vitro and clinical trials, respectively. Proportionally, MAP increases more by incorporating gene expression data into the
network medicine approach. It has an average increase of 4.1% for in vitro evidence, and 1,3% for clinical trials evidence.



9 Note S9. Overlap between our predictions and predictions by Gordon et al

Gordon et al. identified 69 compounds that target 66 out of the 332 host proteins used by SARS-CoV-2 infection and replication49.
A subset of these and 28 additional compounds were screened in viral assays49. Two sets of pharmacological agents displayed
antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors.

Altogether, the analyses by Gordon et al. resulted in four lists of candidate drugs against COVID-19, described below:

Set 1 (Chemoinformatics) 37 compounds identified by chemoinformatics searches.

Set 2 (Literature) 32 compounds identified by target- and pathway-specific literature search.

Set 3 (Multiple) 75 compounds tested for in vitro activity against SARS-CoV-2. It contains a subset of 47 compounds
identified by 1 and 2, plus 13 to expand testing of the sigma-1 and sigma-2 receptors and mRNA translation targets, and
15 additional molecules that had been prioritized by other methods.

Set 4 (In vitro) a subset of 3, consisting of 13 compounds with in vitro activity against COVID-19.

Some of our top predictions include compounds in these lists. In the top 20, our matrix decomposition approach predicts
Chloroquine (set 1), Azithromycin (set 3), Nitazoxanide (set 3), and Hydroxychloroquine (set 4); and our network medicine
approach predicts Progesterone (set 3).
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Figure S17. Area under the ROC curve for predicting drugs identified by Gordon et al.49, which are classified into four
different sets. The first set (Chemoinformatics) includes drugs identified by chemoinformatics search. The second set
(Literature) contains compounds found by target- and pathway-specific literature search. The third set has compounds
identified by multiple sources (Multiple), including chemoinformatics, literature, and other methods. Finally, the last set (in
vitro) includes a subset of the third set with in vitro activity in the assays by Gordon et al.49.

Another interesting question is how the entire set of drugs selected by Gordon et al. is ranked across our predictions. To
answer this question, we formulated an equivalent binary classification problem, so that we could use ROC curve analysis. For
each set of drugs, we labelled the compounds within the set as “positive”, and the remaining ranked drugs as “negative”. Thus,
for the matrix decomposition approach, our dataset with 126 drugs contains 5 compounds from set 1, 3 drugs from set 2, 10



drugs from set 3, and 1 drug from set 4 that we labelled as positive. For the network medicine approach, our dataset of 2197
approved drugs, contains 14 drugs from set 1, 7 from set 2, and 27 from set 3, and 3 drugs from set 4. Results are shown in
Figure S17, which presents the AUC ROC for our two approaches, separately on the 4 different sets of drugs.

Our matrix decomposition model has a better alignment with predictions by Gordon et al.49 for drugs with in vitro efficacy
in theirs assays (“in vitro” - set 4), compounds identified by target- and pathway-specific literature (“Literature” - set 2), and
multiple sources of evidence (“Multiple”, set 3). This is in accordance with the data used by this approach, which contains
associations between viruses and drugs based on the literature.

For the network medicine approach, we show the results obtained by the avgRank model, which has an AUC larger
than 0.5 for all sets identified by Gordon et al.49. Our network medicine approach is best at prioritizing drugs identified by
chemoinformatics search and a possible reason for this is that these drugs often target a host factor or its close by neighbours.



10 Note S10. CoREx Network Combination

We begin by using InterPro50 predictions R ∈ Rn×t for n proteins and t GO terms. We then build a network of functional
similarities T, defined as:

Ti j =
|Ni∩N j|
|Ni∪N j|

where Ni and N j are the sets of all GO terms above a threshold τ that are associated to proteins i and j respectively in R,
that is, Ni = {k|Rik > τ}, and N j = {k|R jk > τ}. Therefore, Ti j is the Jaccard similarity between sets of GO terms that are
assigned by InterPro to proteins i and j.

Given p networks W (r) with r ∈ (1 · · · p), we combine them into a single network W using a weighted linear combination.
The vector of weights ĉ ∈ Rp is learnt by minimising the square of the difference between T and the linear combination:

(
ĉ, b̂
)
= argmin

c,b
∑
i, j

(
b+

p

∑
r=1

crW
(r)
i j −Ti j

)2

and b̂ is used to remove the bias in T . This linear regression can be solved efficiently, and we can interpret each learnt coefficient
cr as representing how much each network r contributes to the combination.



11 Note S11. Analysis of the top predictions by the two approaches
11.1 Matrix decomposition approach
Tables S1 and S2 show the top predicted drugs using our matrix decomposition approach. Table S2 shows predictions of type A
— drugs under development, but not approved, for SARS-CoV-2 according to the Andersen et al.14 dataset (their developmental
stages were used for training).

We observed that these predicted BSA drugs are known to interfere with SARS-CoV-2 infection through different molecular
mechanisms. The nucleotide analogue inhibitors Remdesivir51 and Fapinavir52 inhibit the RNA-dependent RNA polymerase
(RdRp) of SARS-CoV-2. Lopinavir/ritonavir is a protease inhibitor, which may inhibit the 3Clike protease of SARS-CoV-2, and
Chloroquine/Hydroxychloroquine might interfere with the replication of SARS-CoV-2 by multiple mechanisms53. Arbidol has
been found effective against SARS-CoV-2 in vitro by inhibiting viral attachment and release of SARS-CoV-2 from intracellular
vesicles30.

The drug with the highest predicted score was Favipiravir, already known to be in phase II of clinical trials for COVID-19
according to the Andersen et al. dataset. Favipiravir is a RNA polymerase inhibitor that was developed in Japan as an antiviral
treatment for influenza. In October 2020, already 37 clinical trials were registered in ClinicalTrials.gov to assess its efficacy
and safety for COVID-19 patients26. A systematic review of the randomised clinical trials suggest that Favipiravir have shown
low efficacy for patients with mild or moderate COVID-1926. In fact, other drugs in Table 2, including Remdesivir, Lopinavir
and Hydroxychloroquine have shown little to no clinical efficacy in COVID-19 patients according to the WHO Solidarity Trial,
conducted in 405 hospitals in 30 countries33.

However, although several of these BSA drugs have been found effective in vitro or in vivo against SARS-CoV-2, many
of them have proven with little to no efficacy in clinical trials in COVID-19 patients. For instance, our drug with the highest
predicted score is Favipiravir, already known to be in phase II of clinical trials for COVID-19 according to the Andersen
et al.14 dataset. In October 2020, already 37 clinical trials were registered in ClinicalTrials.org to assess its efficacy and
safety for COVID-19 patients26. A systematic review of the randomised clinical trials suggests that Favipiravir has shown low
efficacy for patients with mild or moderate COVID-1926. In fact, other drugs in Table S2, including Remdesivir, Lopinavir and
Hydroxychloroquine have shown little to no clinical efficacy in COVID-19 patients according to the WHO Solidarity Trial, the
largest clinical trial conducted in more than 11,000 patients across 405 hospitals in 30 countries33.

The lack of efficacy of BSA drugs that were under development at the time of release of the Andersen et al. dataset14

suggests that it is important to consider predicted BSA drugs that were not yet under development against SARS-CoV-2 — i.e.,
our predictions of type B.

Our top predicted drugs of type B, not under development for SARS-CoV-2 according to the Andersen et al.14 dataset, are
shown in Table S1. Overall, we found that several of these drugs are already in clinical trials for COVID-19. We comment
more in detail on a few entries in the table.

Tenofovir, our top predicted drug, is a broad-spectrum antiviral drug active against HIV and hepatitis B, and it was found
to interfere with the SARS CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp), an enzyme indispensable
for SARS-CoV-2 replication, in experiments in vitro54, and in vivo55. In addition, a recent phase II clinical trials in two
hospitals in France show that Tenofovir, in combination with Emtricitabine, accelerated the natural clearance of nasopharyngeal
SARS-CoV-2 viral burden56.

Lamiduvine is the second predicted BSA drug in Table S1. The potential of repurposing Lamivudine for COVID-19 is
currently under investigation. There is evidence that indicates that Lamiduvine might work as an inhibitor of the SARS-CoV-2
RdRp RNA polymerase57. Yet, further experiments in vitro and in vivo are needed to confirm this hypothesis.

Interestingly, we also predicted the anti-malarial drug Artesunate, which has been found effective against SARS-CoV-2 in
several in vitro assays58. In fact, Artesunate is one of the three drugs that have been selected for the currently ongoing WHO
Solidary Plus Clinical Trials to assess its efficacy in COVID-19 patients25.



Rank Drug name (ID) Main ATC Category Additional curated evidence for COVID-19

1 Fostamatinib (DB12010) Blood and blood forming organs (B) several clinical trials (NCT04579393,
NCT04581954, NCT04629703), in silico
evidence59

2 NADH (DB00157) in Clinical trials (NCT04604704), in silico evi-
dence60–62

3 Copper (DB09130) Combinatorial therapy63, in silico evidence64

4 Cannabidiol (DB09061) Nervous System (N) In Clinical Trials (NCT04467918)
5 Glutathione (DB00143) Various (V) In Clinical Trials CTRI/2021/01/030793
6 Doxorubicin (DB00997) Antineoplastic and immunomodulat-

ing agents (L)
in silico evidence65

7 Flavin adenine dinu-
cleotide (DB03147)

in silico evidence64

8 Verapamil (DB00661) Cardiovascular System (C) multiple clinical trials (NCT04351763,
NCT04330300, NCT04467931)

9 Zinc (DB01593) Cardiovascular System (C) included in more than 60 clinical trials, in silico
evidence64

10 Zinc acetate (DB14487) Cardiovascular System (C), Alimen-
tary tract and metabolism (A)

included in more than 60 clinical trials, in silico
evidence64

11 Zinc chloride (DB14533) Blood and blood forming organs, Car-
diovascular System (B)

included in more than 60 clinical trials, in silico
evidence64

12 Moexipril (DB00691) Cardiovascular System (C) in clinical trials (NCT04467931)
13 Conjugated estrogens

(DB00286)
Genito-urinary system and sex hor-
mones (G)

NA

14 Clozapine (DB00363) Nervous System (N) NA
15 Rifampicin (DB01045) Antiinfectives for systemic use (J) in silico evidence66

16 Amitriptyline (DB00321) Nervous System (N) in vitro evidence38

17 Phenobarbital
(DB01174)

Nervous System (N) NA

18 Desipramine (DB01151) Nervous System (N) NA
19 Progesterone (DB00396) Genito-urinary system and sex hor-

mones (G)
in several clinical trials (NCT04365127,
NCT04539626, NCT04865029 - combinatorial
therapy)

20 Ethanol (DB00898) Dermatologicals (D), Various (V) in more than 100 clinical trials.

Table S6. Kernel-based top-20 predicted drugs. For each drug we show whether there is evidence from other in silico
approaches, in vitro experiments, or clinical trials.

11.2 Network medicine approach
To obtain the scores for the 2197 FDA-approved drugs, we used the average ranking (avgRank) across the five different graph
kernels. In our calculations, we used the interactome provided by Gysi et al.38, and the SARS-CoV-2 host-proteins were
weighted in our model using gene expression data from nasopharyngeal swabs67 (GEO:GSE152075).

We started by analysing whether there was a trend among the top predicted drugs. Figure S18 below shows the distribution
of main Anatomical, Therapeutic and Chemical (ATC) classification of the top-20 predicted drugs. We observed that half of the
predicted drugs belong to either Nervous System (N) or Cardiovascular System (C) drugs. In fact, we found an enrichment of
nervous system drugs (psychoanaleptics, N06) and cardiovascular system drugs (vasoprotectives, C05) amongst the top-100
predictions (p = 0.01 and p = 0.03, respectively, hypergeometric Test of Significance with FDR multiple testing correction).
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Figure S18. Distribution of main Anatomical, Therapeutic and Chemical (ATC) categories of the top-20 predicted drugs with
our network medicine approach

We further analysed each of these top-20 predicted drugs in more detail (see Table S6).
The top scoring drug is Fostamatinib, that was identified as a candidate for rapid repurposing for COVID-19 patients

through a high content screen for Mucin-1 (MUC1) reducing compounds68. Elevated levels of MUC1 predict the development
of Acute Lung Injury (ALI). By its MUC1 reducing effect, the potential of Fostamatinib to manage the acute respiratory distress
syndrome (ARDS), often fatal in COVID-19 patients is highglighted68. Furthermore, there is evidence that Fostamatinib
counteracts the antiinflammatory response caused by the anti-spike IgG, instrumental in the worsening of COVID-19 cases69.

Our top predictions also include drugs that interact with the SARS-CoV-2 host receptor protein, angiotensin-converting
enzyme 2 (ACE2) and/or the ACE2/TMPRSS2 pathway70, 71. For example, cannabidiol (top 4) has been shown to modulate
ACE2 expression in COVID-19 gateway tissues, providing scientific rationale for clinical trials72. Conjugated estrogens (top
13) are linked to the reduced effect of SARS-CoV-2 on females73, and there is promising evidence of using them as therapeutics
for COVID-19 patients through their interaction with the ACE2/TMPRSS2 pathway73, 74. Another drug used in hormone
therapy that is on our top predictions is Progesterone. It shows promising therapeutic characteristics to improve the immune
dysregulation that leads to the COVID-19 cytokine storm75.

Another interesting group of drugs in Table S6 is zinc, zinc acetate, and zinc chloride (top 9, 10, and 11 respectively).
Noticeably, most risk groups described for COVID-19 are associated with zinc deficiency76, and there is encouraging evidence
that zinc supplements are helpful to prevent pathogen entry76. Treatment with zinc acetate and zinc gluconate have also
accelerated the recovery of COVID-19 patients77, and they are linked to rapid resolution of COVID-19n shortness of breath78.

In the ranking, there are drugs that have been found useful in other applications for COVID-19. For instance, vitamin
supplements ingredients NADH (top 2), and Flavin adenine dinucleotide (top 7) have been identified as potential biomarkers
for fluorescence, label free detection of COVID-19 on early stages employing portable optical detection systems79. There is
evidence suggesting that copper (top 3) in nasal lavages might be both safe and could be used to reduce or even stop viral
transmission80.



It is important to note that our network medicine approach works by modelling the mechanistic effects on the interactome.
This means that a high score points to a high probability of molecular interplay between the drug and the COVID-19 disease
module. However, while our kernel methods, like most network approaches38, can quantify the perturbation on the interactome
but cannot predict in which way the host will ultimately be affected by such perturbations. Therefore, some drugs that interact
closely to the COVID-19 disease module, do not show therapeutic potential. Examples are Clozapine, that was linked to
increased risk of COVID-19 infection81, 82, and Rifampicin, with associated warnings against using it together with Ritonavir, as
well as caution when prescribing it in combination with Rifapentine for HIV/COVID-19 co-infection due to potential drug-drug
interactions83.



12 Note S12. Analysis of the overlap between both approaches
We analyzed the overlap between predictions by both approaches. Out of 126 drugs predicted by our matrix decomposition
model, 80 were also considered by the network medicine approach.

Adersen et al DrugBank

46
(2.1%)

2117
(94.4%)

80
(3.6%)

Figure S19. Venn diagram of drug sets used by the matrix decomposition and network medicine approaches. 80 were ranked
by both approaches. Our matrix decomposition model uses data by Andersen et al.14 (blue set on the left). Our network
medicine approach uses all FDA-approved drugs in DrugBank that have known targets in the interactome (red set on the right).

Figure S20 shows where the 80 drugs in the intersection were ranked by the network medicine approach. The drugs in the
overlap tend to be ranked in the top section of the ranking.

102

103

Network Medicine Approach

Figure S20. The 2197 drugs ranked by the network medicine approach, sorted by the output score of the method (higher to
lower). Orange bars correspond to BSAs that are also ranked by the matrix decomposition approach. We observe that the vast
majority of BSAs are ranked high by the network medicine approach. This suggests that BSAs are, perhaps unsurprisingly,
good repurposing candidates for a viral disease such as COVID-19.

Among the top predictions by the matrix decomposition model which are also ranked high by the network medicine
approach we find, for example, Ritonavir. It is the 4th best in the matrix decomposition model and is among the top 30
predictions by the network medicine approach. It acts not only as a HIV protease inhibitor, but also as a pharmacokinetic
enhancer of other protease inhibitors, mainly due to its potent inhibition of the cytochrome P450 3A4 isoenzyme84. Thus, it can
be considered both a direct acting antiviral drug, and a host targeted agent.

In addition, there are drugs predicted by both approaches that target only host factors. For example, Amiodarone (on the
top 20 by the matrix decomposition model) is on the top 100 predictions by the network medicine approach. It was originally
proposed as an antiarrhythmic, but also has proven efficacy against RNA viruses in vitro (including SARS-CoV-1)85, 86, and it
went into clinical trials Phase 3 for treating Ebola (NCT02307591). Its antiviral activities are probably related to its interference
with the endocytic pathway, and additional mechanisms85.

Another interesting example is Tamoxifen, which was ranked on the top 30 predictions by both approaches. It is a selective
estrogen receptor modulator used to treat or reduce the risk of breast cancer87. Later, Tamoxifen, and other estrogen receptor
modulators have shown in vitro and in vivo activity against a wide range of human pathogens, including viruses, fungi, parasites,
and bacteria88. The in vitro efficacy of Tamoxifen against HIV replication was attributed to inhibition of PKC and interaction
with other targets in the NF-κB pathway89. Another study suggested that Tamoxifen inhibits HCV replication by interfering
with the association of estrogen receptor alpha with RNA-dependent RNA polymerase NS5B, which affects the formation of
the replication complex90.



13 Note S13. Supplementary Datasets

Data Location

Drug-Virus dataset Andersen et al.14, available for download at
https://drugvirus.info/

Predictions from our matrix decomposition approach Supplementary File 1
protein-protein interaction network (Gysi et al.) Gysi et al.38

Drug target associations Gysi et al.38

HuRI interactome (SwissProt only) Supplementary File 2
Cheng et al. interactome (SwissProt only) Supplementary File 3
Drug target associations (SwissProt only) Supplementary File 4
Host Proteins (336 proteins - UniProt accession numbers) Supplementary File 5
Host Proteins (336 proteins - Entrez IDs) Supplementary File 6
DrugBank to ATC category map Supplementary File 7
DrugBank entries with significant τ score in CMAP Supplementary File 8
DrugBank entries with in vitro evidence Supplementary File 9
DrugBank entries in Clinical Trials in December 1, 2020 Supplementary File 10
Predictions from our network medicine approach (on 2197 FDA
approved drugs) Supplementary File 11

COVID-19 signature for CMAP query (106 upregulated genes and 41
downregulated genes) Table S2 in work by Ghandikota et al.46

Raw counts of RNAseq data expression data from 430 COVID-19
patients, and 54 controls67

https://www.ncbi.nlm.nih.gov/gds
(GEO91, 92 accession number GSE15207567)

Weights assigned to the host proteins by the kernel-based methods Supplementary File 12

Table S7. Datasets and Supplementary Files:. This table summarises the datasets used throughout our experiments, as
well as the results. When possible, we provide the data as a supplementary file available from Mendeley Data at
http://dx.doi.org/10.17632/p7y5wmschg.1. References to the original sources are provided when
redistribution rights are not granted.
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