

Supporting Information

for

Regioselective synthesis of methyl 5-(*N*-Boc-cycloaminyl)-1,2oxazole-4-carboxylates as new amino acid-like building blocks

Jolita Bruzgulienė, Greta Račkauskienė, Aurimas Bieliauskas, Vaida Milišiūnaitė, Miglė Dagilienė, Gita Matulevičiūtė, Vytas Martynaitis, Sonata Krikštolaitytė, Frank A. Sløk and Algirdas Šačkus

Beilstein J. Org. Chem. 2022, 18, 102–109. doi:10.3762/bjoc.18.11

General information, synthesis procedures, and spectral data

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of contents

1. General information	S2
2. General procedure for the synthesis of β -enamino keto esters 3a–h	S3
3. General procedure for the synthesis of compounds 4a-h	S7
4. Methyl 5-[1-(<i>tert</i> -butoxycarbonyl)azetidin-3-yl]- ¹⁵ N-1,2-oxazole-4-carboxylate (5)	S13
5. Synthesis of compounds 6a,b	S14
6. ¹ H, ¹³ C and ¹⁵ N NMR spectra of new compounds 3a–h , 4a–h , 5 , 6a , b	S15
7. Stacked chromatogram profile view of isolated enantiomers 4d-g	S41
8. The ¹ H NMR and 1D gradient NOE spectra of compound 4b	S42
9. X-ray analysis of compound 6b	S43
10. References	S46

1. General information

All reagents and solvents were purchased from commercial sources and were used without further purification. Analytical thin layer chromatography (TLC) was performed on aluminum foil backed plates (Merck Kieselgel 60 F254). Visualization of the compounds was effected by UV light (254 nm). Column chromatography was performed on silica gel SI 60 (43-60 mm, E. Merck). Melting points were determined on a Büchi M-565 melting point apparatus and were uncorrected. The IR spectra were recorded on a Bruker Vertex 70v FTIR spectrometer using neat samples. High-resolution ESI TOF mass spectra were measured on a Bruker maXis and Bruker MicrOTOF-Q III spectrometers. The ¹H, ¹³C, and ¹⁵N NMR spectra were recorded in CDCl₃ and DMSO-d₆ solutions at 25 °C on a Bruker Avance III 700 (700 MHz for ¹H, 176 MHz for ¹³C, 71 MHz for ¹⁵N) spectrometer equipped with a 5 mm TCI ¹H-¹³C/¹⁵N/D z-gradient cryoprobe, and a Bruker Avance III 400 (400 MHz for ¹H, 101 MHz for ¹³C, 40 MHz for ¹⁵N) spectrometer using a 5 mm directly detecting BBO probe. The chemical shifts (δ) expressed in ppm, were relative to tetramethylsilane (TMS). The ¹⁵N NMR spectra were referenced to neat, external nitromethane (coaxial capillary). Rotation angles of the solutions of chiral compounds in chloroform were measured with polarimeter Unipol L, with a 10 cm optical length cell at 22 °C. Single crystals of C₁₂H₁₅F₃N₂O₅ were investigated on a Rigaku, XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 150.0(1) K during data collection. Using Olex2 [1], the structure was solved with the SheIXT [2] structure solution program using Intrinsic Phasing and refined with the olex2.refine [3] refinement package using Gauss-Newton minimization. Analytical chromatographic chiral separations were carried out on a Chiral Art Amylose-SA and Chiral Art Cellulose-SB columns (100 mm x 4.6 mm, 3 µm) with a mobile phase consisting of water + 0.1% formic acid/acetonitrile, at a flow rate of 1 mL/min and maintaining the column

temperature at 36 °C. Compounds **4b**,**c** were separated on a Cellulose-SB column, isocratic mode water + 0.1% formic acid/acetonitrile 70:30. Compounds **4d**,**e** were separated on an Amylose-SA column gradient conditions from water + 0.1% formic acid/acetonitrile 70:30 to 50:50 in 10 minutes. Compounds **4f**,**g** were separated on an Amylose-SA column isocratic mode water + 0.1% formic acid/acetonitrile 70:30. Samples were prepared in methanol. The injection volume was 10 μL, sampler temperature was set at 15 °C, and the detection wavelength was set at 245 nm. Intermediate compounds **2a** [4], **2b** [5], **2c**, **2d**, **2e**, **2f**, **2g** [6] and **2h** [7,8] were obtained according to literature data. The synthesis of compound **3h** was obtained according to the patent [7].

2. General procedure for the synthesis of β -enamino keto esters 3a-h

The β -keto ester **2a**–**h** (21.6 mmol) was dissolved in 1,4-dioxane (40 mL) and *N*,*N*-dimethylformamide dimethylacetal (3.59 mL, 27 mmol) was added under argon atmosphere and the resulting mixture was stirred at 80°C for 4 h. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (Hex/EtOAc 2:1 v/v) to give compound (**3a**-**h**) as a yellowish oil.

2.1. *tert*-Butyl **3-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]azetidine-1-carboxylate (3a)** yellowish oil (5.06 g, 75%). IR, (v_{max}, cm⁻¹): 2974 (CH-aliph), 1688 (C=O), 1639 (C=O), 1576, 1365, 1117, 773. ¹H NMR (700 MHz, CDCl₃): δ 1.43 (s, 9H, 3 × CH₃), 2.87 (s, 3H, -N(CH₃)₂), 3.30 (s, 3H, -N(CH₃)₂), 3.73 (s, 3H, O-CH₃), 3.83–3.90 (m, 1H, Az 3-H), 4.00–4.08 (m, 4H, Az 2,4-H), 7.80 (s, 1H, =C*H*-N(CH₃)₂). ¹³C NMR (176 MHz, CDCl₃): δ 28.4 (3×CH₃), 38.2

(Az C-3), 42.4 (-N(CH₃)₂), 47.9 (-N(CH₃)₂), 51.1 (O-CH₃), 51.4 and 52.4 (Az C-2,4), 79.2 [\underline{C} (CH₃)₃], 99.8 (\underline{C} =CH-N(CH₃)₂), 156.3 (*N*-Boc C=O), 159.0 (C= \underline{C} H-N(CH₃)₂), 167.7 (COOMe C=O), 195.4 (C=O). ¹⁵N NMR (71 MHz, CDCl₃): δ -309.6 (*N*-Boc), -269.7 (C=CH-N(CH₃)₂). HRMS (ESI), m/z: calcd. for C₁₅H₂₄N₂O₅Na⁺ 335.1577 [M+Na]⁺; found 335.1576.

2.2. *tert*-Butyl (*2R*)-2-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]pyrrolidine-1carboxylate (3b) yellowish oil (6.70 g, 95%). IR, (v_{max}, cm⁻¹): 2976 (CH-aliph), 1674 (C=O), 1644 (C=O), 1584, 1404, 1094, 768. ¹H NMR (700 MHz, CDCl₃): (two rotamers are seen in the spectra ratio~1:0.8) *δ* 1.37 (s, 7.2H, 3 × CH₃ of *minor rotamer*), 1.42 (s, 9H, 3 × CH₃ of *major rotamer*), 1.76–2.00 (m, 5.4H of *both rotamers*), 2.17–2.32 (m, 1.8H of *both rotamers*), 2.88 (s, 5.4H, -N(CH₃)₂ of *both rotamers*), 3.25 (s, 5.4H, -N(CH₃)₂ of *both rotamers*), 3.39–3.49 (m, 1.8H of *both rotamers*), 3.53–3.59 (m, 1.8H of *both rotamers*), 3.71 (s, 3H, O-CH₃ of *major rotamer*), 3.75 (s, 2.4H, O-CH₃ of *minor rotamer*), 4.82–5.10 (m, 1.8H of *both rotamers*), 7.78 (s, 0.8H, =C<u>*H*</u>-N(CH₃)₂ of *minor rotamer*), 7.80 (s, 1H, =C<u>*H*</u>-N(CH₃)₂ of *major rotamer*). ¹³C NMR (176 MHz, CDCl₃): *δ*23.2, 24.1, 28.38, 28.42, 30.9, 31.3, 41.9, 42.5, 46.8, 47.4, 47.9, 50.8, 51.0, 62.9, 63.2, 78.9, 79.0, 99.6, 99.8, 154.2, 154.5, 158.5, 159.5, 168.1, 196.2, 197.4. HRMS (ESI), m/z: calcd. for C₁₆H₂₆N₂O₅Na⁺ 349.1734 [M+Na]⁺; found 349.1736.

2.3. *tert*-Butyl (2*S*)-2-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]pyrrolidine-1-

carboxylate (3c) yellowish oil (6.42 g, 91%). IR, (v_{max} , cm⁻¹): 2976 (CH-aliph), 1673 (C=O), 1644 (C=O), 1583, 1403, 1093, 767. ¹H NMR (700 MHz, CDCl₃): (two rotamers are seen in the spectra ratio~1:0.8) δ 1.37 (s, 7.2H, 3 × CH₃ of *minor rotamer*), 1.42 (s, 9H, 3 × CH₃ of *major rotamer*), 1.75–2.01 (m, 5.4H of both rotamers), 2.17–2.33 (m, 1.8H of both rotamers), 2.89 (s, 5.4H, -

N(CH₃)₂ of both rotamers), 3.25 (s, 5.4H, -N(CH₃)₂ of both rotamers), 3.39–3.49 (m, 1.8H of both rotamers), 3.54–3.59 (m, 1.8H of both rotamers), 3.70 (s, 3H, O-CH₃ of major rotamer), 3.75 (s, 2.4H, O-CH₃ of minor rotamer), 4.92–5.02 (m, 1.8H of both rotamers), 7.78 (s, 0.8H, =C<u>H</u>-N(CH₃)₂ of minor rotamer), 7.80 (s, 1H, =C<u>H</u>-N(CH₃)₂ of major rotamer). ¹³C NMR (176 MHz, CDCI₃): δ 23.2, 24.2, 28.41, 28.44, 30.9, 31.3, 41.9, 42.5, 46.8, 47.4, 47.9, 50.8, 51.0, 63.0, 63.3, 78.9, 79.0, 99.6, 99.9, 154.2, 154.5, 158.5, 159.5, 168.1, 196.3, 197.6. HRMS (ESI), m/z: calcd. for C₁₆H₂₆N₂O₅Na⁺ 349.1734 [M+Na]⁺; found 349.1739.

2.4. *tert*-Butyl (3*S*)-3-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]pyrrolidine-1carboxylate (3d) yellowish oil (5.99 g, 85%). IR, (v_{max}, cm⁻¹): 2976 (CH-aliph), 1684 (C=O), 1643 (C=O), 1580, 1402, 1096, 771. ¹H NMR (700 MHz, CDCl₃): (two rotamers are seen in the spectra ratio~1:0.8) *δ* 1.45 (s, 9H, 3 × CH₃ of both rotamers), 1.99–2.19 (m, 2H of both rotamers), 2.79 (s, 3H, -N(CH₃)₂ of both rotamers), 3.27 (s, 3H, -N(CH₃)₂ of both rotamers), 3.28–3.36 (m, 1H of both rotamers), 3.41–3.52 (m, 2H of both rotamers), 3.52–3.62 (m, 1H of both rotamers), 3.75 (s, 1.3H, O-CH₃ of minor rotamer), 3.76 (s, 1.7H, O-CH₃ of major rotamer), 3.80 (m, 1H of both rotamers), 7.70-7.74 (m, 1H, =C<u>H</u>-N(CH₃)₂ of both rotamers. ¹³C NMR (176 MHz, CDCl₃): *δ*28.5, 29.1, 29.3, 41.9, 45.5, 45.9, 47.8, 49.1, 49.2, 51.2, 79.0, 79.02, 101.2, 154.4, 154.5, 157.8, 168.32, 168.35, 197.3. HRMS (ESI), m/z: calcd. for C₁₆H₂₆N₂O₅Na⁺ 349.1734 [M+Na]⁺; found 349.1738.

2.5. *tert*-Butyl (3*R*)-3-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]pyrrolidine-1carboxylate (3e) yellowish oil (5.78 g, 82%). IR, (v_{max}, cm⁻¹): 2975 (CH-aliph), 1685 (C=O), 1641 (C=O), 1577, 1403, 1112, 772. ¹H NMR (700 MHz, CDCl₃): (two rotamers are seen in the spectra ratio~1:0.8) δ 1.45 (s, 9H, 3 × CH₃ of both rotamers), 2.01–2.17 (m, 2H of both rotamers), 2.79 (s, 3H, -N(CH₃)₂ of both rotamers), 3.25 (s, 3H, -N(CH₃)₂ of both rotamers), 3.28–3.37 (m, 1H of both rotamers), 3.41–3.51 (m, 2H of both rotamers), 3.52–3.63 (m, 1H of both rotamers), 3.74 (s, 1.3H, O-CH₃ of minor rotamer), 3.76 (s, 1.7H, O-CH₃ of major rotamer), 3.80 (m, 1H of both rotamers), 7.70-7.75 (m, 1H, =C<u>H</u>-N(CH₃)₂ of both rotamers. ¹³C NMR (176 MHz, CDCl₃): δ 28.5, 29.15, 29.33, 41.9, 45.55, 45.88, 47.8, 49.09, 49.23, 51.2, 78.95, 79.02, 101.2, 154.45, 154.52, 157.9, 168.4, 197.3. HRMS (ESI), m/z: calcd. for C₁₆H₂₆N₂O₅Na⁺ 349.1734 [M+Na]⁺; found 349.1735.

2.6. *tert*-Butyl (2*R*)-2-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]piperidine-1carboxylate (3f) yellowish oil (5.66 g, 77%). IR, (v_{max}, cm⁻¹): 2975 (CH-aliph), 1685 (C=O), 1644 (C=O), 1579, 1421, 1159, 729. ¹H NMR (700 MHz, CDCl₃): δ1.15–1.35 (m, 1H), 1.37–1.51 (m, 9H), 1.52–1.79 (m, 3H), 1.96–2.11 (m, 1H), 2.86 (s, 3H), 2.99–3.11 (m, 2H), 3.22 (s, 3H), 3.74 (s, 3H), 3.82–4.06 (m, 1H), 5.34–5.69 (m, 1H), 7.66–7.78 (m, 1H). ¹³C NMR (176 MHz, CDCl₃): δ20.6, 24.9, 25.2, 26.5, 27.0, 28.28, 28.41, 41.4, 42.7, 47.7, 51.13, 51.40, 57.8, 58.5, 79.2, 99.8, 100.9, 156.1, 158.2, 168.1, 196.6, 196.8. HRMS (ESI), m/z: calcd. for C₁₇H₂₈N₂O₅Na⁺ 363.1890 [M+Na]⁺; found 363.1892.

2.7. *tert*-Butyl (2*S*)-2-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]piperidine-1carboxylate (3g) yellowish oil (5.59 g, 76%). IR, (v_{max}, cm⁻¹): 2973 (CH-aliph), 1686 (C=O), 1644 (C=O), 1579, 1421, 1158, 730. ¹H NMR (700 MHz, CDCl₃): δ 1.17–1.29 (m, 1H), 1.32–1.53 (m, 9H), 1.53–1.80 (m, 3H), 1.95–2.11 (m, 1H), 2.86 (s, 3H), 2.98–3.11 (m, 2H), 3.22 (s, 3H), 3.74 (s, 3H), 3.82–4.07 (m, 1H), 5.31–5.70 (m, 1H), 7.64–7.80 (m, 1H). ¹³C NMR (176 MHz, CDCl₃): *δ* 18.7, 22.99, 23.27, 24.7, 25.1, 26.40, 26.53, 39.5, 40.8, 45.9, 49.25, 49.52, 55.9, 56.6, 77.3, 98.0, 98.9, 154.2, 156.3, 166.2, 194.69, 194.97. HRMS (ESI), m/z: calcd. for C₁₇H₂₈N₂O₅Na⁺ 363.1890 [M+Na]⁺; found 363.1893.

2.8. *tert*-Butyl **4-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]piperidine-1-carboxylate (3h)** yellowish oil (5.22 g, 71%). IR, (v_{max} , cm⁻¹): 2974 (CH-aliph), 1683 (C=O), 1642 (C=O), 1579, 1365, 1122, 729. ¹H NMR (700 MHz, CDCl₃): δ 1.45 (s, 9H), 1.50–1.59 (m, 2H), 1.70–1.83 (m, 2H), 2.61–2.94 (m, 5H), 3.05–3.40 (m, 4H), 3.74 (s, 3H), 4.03–4.24 (m, 2H), 7.69 (s, 1H). ¹³C NMR (176 MHz, CDCl₃): δ 28.47, 28.84, 41.7, 43.3, 44.0, 46.3, 47.7, 51.1, 79.3, 100.8, 154.8, 157.5, 168.6, 200.5. HRMS (ESI), m/z: calcd. for C₁₇H₂₈N₂O₅Na⁺ 363.1890 [M+Na]⁺; found 363.1892.

3. General procedure for the synthesis of 1,2-oxazole-4-carboxylates 4a-h

To a solution of appropriate β -enamino keto ester **3a**–**h** (5 mmol) in ethanol (**3a** and **3h**, 50 mL) or in methanol (**3b**–**g**, 33 mL), hydroxylamine hydrochloride (0.52 g, 7.5 mmol) was added and the reaction mixture was stirred and refluxed for 4 h (**3a** and **3h**) or was stirred at rt for 20 h (**3b**–**g**). The solvent was removed under reduced pressure and the residue was purified by column chromatography using an appropriate eluent.

3.1. Methyl 5-[1-(*tert*-butoxycarbonyl)azetidin-3-yl]-1,2-oxazole-4-carboxylate (4a)

Purified by column chromatography on silica gel with (Hex/EtOAc 4:1 v/v) to afford the title compound **4a** as white crystalline solid (0.92 g, 65%), mp 84–85 °C (from ethyl acetate). IR,

(v_{max}, cm⁻¹): 3014 (CH-arom), 2967 (CH-aliph), 1723 (C=O), 1687 (C=O), 1407, 1137, 1091, 771. ¹H NMR (700 MHz, CDCl₃): δ 1.46 (s, 9H, 3 × CH₃), 3.87 (s, 3H, O-CH₃), 4.24 (dd, *J* = 8.7, 6.5 Hz, 2H, Az 2,4-H), 4.32 (t, *J* = 8.8 Hz, 2H, Az 2,4-H), 4.48 (tt, *J* = 8.9, 6.5 Hz, 1H, Az 3-H), 8.52 (s, 1H, Isox 3-H). ¹³C NMR (176 MHz, CDCl₃): δ 26.0 (Az C-3), 28.4 (3×CH₃), 52.1 (O-CH₃), 52.9 (Az C-2,4), 80.1 [*C*(CH₃)₃], 109.8 (Isox C-4), 150.5 (Isox C-3), 156.1 (*N*-Boc C=O), 161.5 (C=O), 175.3 (Isox C-5). ¹⁵N NMR (71 MHz, CDCl₃): δ -311.8 (*N*-Boc), -1.2 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₁₃H₁₈N₂O₅Na⁺ 305.1108 [M+Na]⁺; found 305.1108.

3.2. Methyl 5-[(2*R*)-1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl]-1,2-oxazole-4-carboxylate (4b)

Purified by column chromatography on silica gel with (Hex/EtOAc 8:1 v/v) to afford the title compound **4b** as colorless oil (0.92 g, 62%), $[\alpha]_{D}^{23}$ -7.8 (c 2.55 CHCl₃). IR, (v_{max}, cm⁻¹): 3011 (CH-arom), 2976 (C-aliph), 1723 (C=O), 1695 (C=O), 1389, 1242, 1061, 780. ¹H NMR (700 MHz, CDCl₃): (two rotamers are seen in the spectra ratio~1:0.6) δ 1.25 (s, 9H, 3 × CH₃ of major rotamer), 1.44 (s, 5.4H, 3 × CH₃ of minor rotamer), 1.90–2.03 (m, 3.2H, Pyr 4-Ha, Pyr 3-Ha of both rotamers), 2.04–2.15 (m, 1.6H, Pyr 4-Hb, of both rotamers), 2.34–2.45 (m, 1.6H, Pyr 3-Hb of both rotamers), 3.48–3.62 (m, 1.6H, Pyr 5-Hb of both rotamers), 3.63–3.71 (m, 1.6H, Pyr 5-Ha of both rotamers), 3.85 (s, 1.8H, O-CH₃ of minor rotamer), 3.87 (s, 3H, O-CH₃ of major rotamer), 5.54 (dd, *J* = 8.0, 4.4 Hz, 1H, Pyr 2-H of major rotamer), 5.63 (dd, *J* = 8.2, 3.1 Hz, 0.6H, Pyr 2-H of minor rotamer), 8.47 (s, 0.6H, Isox 3-H of minor rotamer), 8.49 (s, 1H, Isox 3-H of major rotamer), 28.0 (3 × CH₃ of major rotamer), 28.4 (3 × CH₃ of minor rotamer), 32.7 (Pyr C-3 of major rotamer), 46.6 (Pyr C-5 of major rotamer), 51.9 (O-CH₃ of minor rotamer), 52.0 (O-CH₃ of major rotamer),

53.4 (Pyr C-2 of major rotamer), 53.7 (Pyr C-2 of minor rotamer), 80.01 [C(CH₃)₃ of major rotamer], 80.04 [C(CH₃)₃ of minor rotamer], 108.41 (Isox C-4 of major rotamer), 108.45 (Isox C-4 of minor rotamer), 150.0 (Isox C-3 of major rotamer), 150.3 (Isox C-3 of minor rotamer), 153.5 (*N*-Boc C=O of major rotamer), 154.1 (*N*-Boc C=O of minor rotamer), 161.6 (C=O of both rotamers), 177.8 (Isox C-5 of minor rotamer), 178.1 (Isox C-5 of major rotamer). ¹⁵N NMR (71 MHz, CDCI₃): δ -283.8 (*N*-Boc of both rotamers), -3.3 (*N*-Isox of minor rotamer), -3.2 (*N*-Isox of major rotamer). HRMS (ESI), m/z: calcd. for C₁₄H₂₀N₂O₅Na⁺ 319.1264 [M+Na]⁺; found 319.1264.

3.3. Methyl 5-[(2S)-1-(*ter*t-butoxycarbonyl)pyrrolidin-2-yl]-1,2-oxazole-4-carboxylate (4c)

Purified by column chromatography on silica gel with (Hex/Acetone 5:1 v/v) to afford the title compound **4c** as colorless oil (0.86 g, 58%), $a_{J}b^{23}$ 7.9 (c 2.78 CHCl₃). IR, (v_{max} , cm⁻¹): 3077 (CH-arom), 2976 (CH-aliph), 1722 (C=O), 1694 (C=O), 1389, 1241, 1080, 780. ¹H NMR (400 MHz, CDCl₃): (two rotamers are seen in the spectra ratio~1:0.6) δ 1.23 (s, 9H, 3 × CH₃ of major rotamer), 1.42 (s, 9H, 3 × CH₃ of minor rotamer), 1.92–2.02 (m, 3.2H, Pyr 4-Ha, Pyr 3-Ha of both rotamers), 2.04–2.13 (m, 1.6H, Pyr 4-Hb, of both rotamers), 2.33–2.44 (m, 1.6H, 3-Hb of both rotamers), 3.46–3.58 (m, 1.6H, Pyr 5-Hb of both rotamers), 3.63–3.70 (m, 1.6H, Pyr 5-Ha of both rotamers), 3.84 (s, 1.8H, O-CH₃ of minor rotamer), 3.86 (s, 3H, O-CH₃ of major rotamer), 5.60–5.63 (m, 0.6H, Pyr 2-H of minor rotamer), 8.46 (s, 0.6H, Isox 3-H of minor rotamer), 8.47 (s, 1H, Isox 3-H of major rotamer), 28.1 (3 × CH₃ of major rotamer), 32.2 (Pyr C-3 of minor rotamer), 32.8 (Pyr C-3 of major rotamer), 32.8 (Pyr C-3 of minor rotamer), 32.8 (Pyr C-3 of minor rotamer), 52.1 (O-CH₃ of both rotamers), 53.5 (Pyr C-2 of major rotamer), 53.8 (Pyr C-2 of minor rotamer), 80.1

[$C(CH_3)_3$], 108.5 (Isox C-4 of both rotamers), 150.1 (Isox C-3 of major rotamer), 150.4 (Isox C-3 of minor rotamer), 153.6 (*N*-Boc C=O of major rotamer), 154.2 (*N*-Boc C=O of minor rotamer), 161.7 (C=O of both rotamers), 177.9 (Isox C-5 of minor rotamer), 178.2 (Isox C-5 of major rotamer). ¹⁵N NMR (71 MHz, CDCI₃): δ -284.0 (*N*-Boc of both rotamers), -3.3 (*N*-Isox of minor rotamer), -3.2 (*N*-Isox of major rotamer). HRMS (ESI), m/z: calcd. for C₁₄H₂₀N₂O₅Na⁺ 319.1264 [M+Na]⁺; found 319.1264.

3.4. Methyl 5-[(3S)-1-(*tert*-butoxycarbonyl)pyrrolidin-3-yl]-1,2-oxazole-4-carboxylate (4d)

Purified by column chromatography on silica gel with (Hex/EtOAc 7:1 v/v) to afford the title compound **4d** as colorless oil (0.79 g, 53%), [α]p²³ -20.6 (c 3.11 CHCl₃). IR, (v_{max}, cm⁻¹): 3014 (CH-arom), 2974 (CH-aliph), 1720 (C=O), 1686 (C=O), 1391, 1237, 1120, 770. ¹H NMR (400 MHz, CDCl₃): δ 1.43 (s, 9H, 3 × CH₃), 2.21–2.29 (m, 2H, Pyr 4-Ha, Pyr 4-Hb), 3.41–3.52 (m, 2H, Pyr 5-Ha, Pyr 2-Ha), 3.59–3.65 (m, 1H, Pyr 5-Hb), 3.71–3.77 (m, 1H, Pyr 2-Hb), 3.84 (s, 3H, O-CH₃), 4.10–4.24 (m, 1H, Pyr 3-H), 8.46 (s, 1H, Isox 3-H). ¹³C NMR (100 MHz, CDCl₃): δ 28.5 (3 × CH₃), 29.6 (Pyr C-4 *of major rotamer*), 30.2 (Pyr C-4 *of minor rotamer*), 35.8 (Pyr C-3 *of minor rotamer*), 36.6 (Pyr C-3 *of major rotamer*), 45.4 (Pyr C-5 *of major rotamer*), 45.6 (Pyr C-5 *of minor rotamer*), 49.2 (Pyr C-2 *of both rotamers*), 52.1 (O-CH₃), 79.7 [*C*(CH₃)₃], 109.5 (Isox C-4), 150.3 (Isox C-3), 154.3 (*N*-Boc C=O), 161.7 (C=O), 176.2 (Isox C-5 *of major rotamer*), 176.5 (Isox C-5 *of minor rotamer*). ¹⁵N NMR (71 MHz, CDCl₃): δ -292.2 (*N*-Boc of both rotamers), -1.9 (*N*-*Isox of both rotamers*). HRMS (ESI), m/z: calcd. for C₁₄H₂₀N₂O₅Na⁺ 319.1264 [M+Na]⁺; found 319.1265.

3.5. Methyl 5-[(*3R*)-1-(*tert*-butoxycarbonyl)pyrrolidin-3-yl]-1,2-oxazole-4-carboxylate (4e) Purified by column chromatography on silica gel with (Hex/EtOAc 6:1 v/v) to afford the title compound **4e** as white crystalline solid (0.68 g, 46%), mp 96–97 °C (from ethyl acetate), [α]p²³ 19.1 (c 3.3 CHCl₃). IR, (v_{max}, cm⁻¹): 3014 (CH-arom), 2974 (CH-aliph), 1719 (C=O), 1685 (C=O), 1404, 1237, 1120, 770. ¹H NMR (400 MHz, CDCl₃): *δ* 1.46 (s, 9H, 3 × CH₃), 2.24–2.31 (m, 2H, Pyr 4-H_a, Pyr 4-H_b), 3.46–3.70 (m, 3H, Pyr 5-H_a, Pyr 2-H_a, Pyr 5-H_b), 3.75–3.82 (m, 1H, Pyr 2-H_b), 3.87 (s, 3H, O-CH₃), 4.19–4.25 (m, 1H, Pyr 3-H), 8.49 (s, 1H, Isox 3-H). ¹³C NMR (100 MHz, CDCl₃): *δ* 28.6 (3 × CH₃), 29.7 (Pyr C-4 of major rotamer), 30.3 (Pyr C-4 of minor rotamer), 35.8 (Pyr C-3 of minor rotamer), 36.7 (Pyr C-3 of major rotamer), 45.5 (Pyr C-5 of major rotamer), 45.7 (Pyr C-5 of minor rotamer), 49.3 (Pyr C-2 of both rotamers), 52.1 (O-CH₃), 79.8 [*C*(CH₃)₃], 109.6 (Isox C-4), 150.4 (Isox C-3), 154.3 (*N*-Boc C=O), 161.8 (C=O), 176.3 (Isox C-5 of major rotamer), 176.6 (Isox C-5 of minor rotamer). ¹⁵N NMR (71 MHz, CDCl₃): *δ*-292.1 (*N*-Boc of both rotamers), -1.9 (*N*-Isox of both rotamers). HRMS (ESI), m/z: calcd. for C₁₄H₂₀N₂O₅Na⁺ 319.1264 [M+Na]⁺; found 319.1265.

3.6. *tert*-Butyl (2*R*)-2-[4-(methoxycarbonyl)-1,2-oxazol-5-yl]piperidine-1-carboxylate (4f) Purified by column chromatography on silica gel with (Hex/EtOAc 10:1 v/v) to afford the title compound **4f** as colorless oil (0.54 g, 35%), [α]p²³ -11.0 (c 2.02 CHCl₃). IR, (v_{max}, cm⁻¹): 3004 (CH-arom), 2971 (CH-alph), 1719 (C=O), 1682 (C=O), 1393, 1224, 1157, 782. ¹H NMR (400 MHz, CDCl₃): δ1.37 (s, 9H, 3 × CH₃), 1.46–1.56 (m, 2H, Pip 4-H), 1.66–1.69 (m, 1H, Pip 5-H_a), 1.75–1.83 (m, 1H, Pip 5-H_b), 1.91–2.04 (m, 2H, Pip 3-H), 3.35–3.38 (m, 1H, Pip 6-H_a), 3.85 (s, 3H, O-CH₃), 4.09–4.11 (m, 1H, Pip 6-H_b), 6.01 (s, 1H, Pip 2-H), 8.49 (s, 1H, Isox 3-H). ¹³C NMR (100 MHz, CDCl₃): δ 19.7 (Pip C-4), 24.8 (Pip C-5), 28.4 (3 × CH₃), 29.1 (Pip C-3), 42.1 (br.s, Pip C-6), 48.6 (Pip C-2), 52.1 (O-CH₃), 80.5 [*C*(CH₃)₃], 108.5 (Isox C-4), 150.2 (Isox C-3), 155.3 (*N*-Boc C=O), 161.5 (C=O), 178.6 (Isox C-5). ¹⁵N NMR (41 MHz, CDCl₃): δ -292.3 (*N*-Boc), -1.9 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₁₅H₂₂N₂O₅Na⁺ 333.1421 [M+Na]⁺; found 333.1421.

3.7. *tert*-Butyl (2S)-2-[4-(methoxycarbonyl)-1,2-oxazol-5-yl]piperidine-1-carboxylate (4g)

Purified by column chromatography on silica gel with (Hex/Acetone 5:1 v/v) to afford the title compound **4g** as colorless oil (0.57 g, 37%), $[\alpha]_D^{23}$ 11.2 (c 2.05 CHCl₃). IR, (v_{max}, cm⁻¹): 3000 (CH-arom), 2975 (CH-aliph), 1732 (C=O), 1692 (C=O), 1394, 1234, 1153, 781. ¹H NMR (400 MHz, CDCl₃): δ 1.36 (s, 9H, 3 × CH₃), 1.44–1.56 (m, 2H, Pip 4,5-Ha), 1.65–1.67 (m, 1H, Pip 4-Hb), 1.75–1.83 (m, 1H, Pip 5-Hb), 1.90–2.02 (m, 2H, Pip 3-H), 3.34–3.37 (m, 1H, Pip 6-Ha), 3.85 (s, 3H, O-CH₃), 4.08–4.10 (m, 1H, Pip 6-Hb), 6.00 (br. s, 1H, Pip 2-H), 8.49 (s, 1H, Isox 3-H). ¹³C NMR (100 MHz, CDCl₃): δ 19.7 (Pip C-4), 24.8 (Pip C-5), 28.4 (3 × CH₃), 29.1 (Pip C-3), 42.0 (br s, Pip C-6), 48.5 (Pip C-2), 52.1 (O-CH₃), 80.4 [*C*(CH₃)₃], 108.5 (Isox C-4), 150.2 (Isox C-3), 155.3 (*N*-Boc C=O), 161.5 (C=O), 178.6 (Isox C-5). ¹⁵N NMR (71 MHz, CDCl₃): δ -292.7 (*N*-Boc), -2.2 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₁₅H₂₂N₂O₅Na⁺ 333.1421 [M+Na]⁺; found 333.1421.

3.8. *tert*-Butyl 4-[4-(methoxycarbonyl)-1,2-oxazol-5-yl]piperidine-1-carboxylate (4h)

Purified by column chromatography on silica gel with (eluent: Hex/ EtOAc 4:1) to afford the title compound **4h** as white crystals (0.99 g, 64%), mp 91–92°C (from ethyl acetate). IR, (v_{max}, cm⁻ ¹): 3015 (CH-arom), 2997 (C-aliph), 1728 (C=O), 1677 (C=O), 1432, 1225, 1060, 776. ¹H NMR (400 MHz, CDCl₃): *δ*1.47 (s, 9H, 3 × CH₃), 1.79–1.89 (m, 4H, Pip 3,5-H_a, Pip 3,5-H_b), 2.76–2.95 (m, 2H, Pip 2-H_b, 6-H_b), 3.61–3.69 (m, 1H, Pip 4-H), 3.85 (s, 3H, O-CH₃), 4.13–4.30 (m, 2H, Pip

2-H_a, 6-H_a), 8.46 (s, 1H, Isox 3-H). ¹³C NMR (100 MHz, CDCl₃): δ28.6 (3 × CH₃), 29.3 (Pip C-3, C-5), 34.9 (Pip C-4), 43.6 (br. s, Pip C-2, C-6), 52.0 (O-CH₃), 79.9 [*C*(CH₃)₃], 108.3 (Isox C-4), 150.2 (Isox C-3), 154.8 (*N-Boc* C=O), 162.0 (C=O), 179.5 (Isox C-5). ¹⁵N NMR (71 MHz, CDCl₃): δ-294.7 (*N*-Boc), -3.1 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₁₅H₂₂N₂O₅Na⁺ 333.1421 [M+Na]⁺; found 333.1423.

4. Methyl 5-[1-(*tert*-butoxycarbonyl)azetidin-3-yl]-¹⁵N-1,2-oxazole-4-carboxylate (5)

To a solution of *tert*-butyl 3-[3-(dimethylamino)-2-(methoxycarbonyl)prop-2-enoyl]azetidine-1carboxylate (**3a**) (0.2 g, 0.64 mmol) in ethanol (7 mL) was added ¹⁵N hydroxylamine hydrochloride (0.1 g, 0.77 mmol) and the reaction mixture was stirred at rt for 4 h. The solvent was removed at reduced pressure and the residue was subjected to flash column chromatography on silica gel (eluent: Hex/ EtOAc 8:1) to afford the title compound **5** as colorless oil (0.12 g, 67%). IR, (v_{max}, cm⁻¹): 3115 (CH-arom), 2968 (CH-aliph), 1723 (C=O), 1688 (C=O), 1409, 1138, 857, 779. ¹H NMR (700 MHz, CDCl₃): δ 1.46 (s, 9H, 3 × CH₃), 3.87 (s, 3H, O-CH₃), 4.24 (dd, *J* = 8.8, 6.6 Hz, 2H, Az 2,4-H), 4.32 (t, *J* = 8.8 Hz, 2H, Az 2,4-H), 4.48 (tt, *J* = 9.0, 6.5 Hz, 1H, Az 3-H), 8.52 (d, ²*J*_{H,N} = 14.4 Hz, 1H, Isox 3-H). ¹³C NMR (176 MHz, CDCl₃): δ 26.0 (Az C-3), 28.4 (3×CH₃), 52.1 (O-CH₃), 52.9 (Az C-2,4), 80.1 [*C*(CH₃)₃], 109.8 (d, ²*J*_{*C*,N} = 1.30 Hz, Isox C-4), 150.4 (d, ¹*J*_{*C*,N} = 4.55 Hz, Isox C-3), 156.0 (*N*-Boc C=O), 161.5 (C=O), 175.3 (d, ²*J*_{*C*,N} = 1.96 Hz, Isox C-5). ¹⁵N NMR (71 MHz, CDCl₃): δ -312.2 (*N*-Boc), -1.5 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₁₃H₁₈¹⁵NNO₅Na⁺ 306.1139 [M+Na]⁺; found 306.1139.

5. Synthesis of compounds 6a,b

5.1. (*2R*)-2-[4-(Methoxycarbonyl)-1,2-oxazol-5-yl]pyrrolidin-1-ium trifluoroacetate (6a) To a compound **4b** (0.20 g, 0.70 mmol) in dichloromethane (2.0 mL) was added trifluoroacetic acid (2.0 mL) and the mixture was stirred at rt for 1.0 h. After removal of the solvent *in vacuo* the residue were washed with acetone and dried to afford the title compound **6a** as whitish resin (0.12g, 90%). IR, (v_{max}, cm⁻¹): 2963 (CH-arom), 2725 (CH-aliph), 1727 (C=O), 1665 (C=O). ¹H NMR (700 MHz, CDCl₃): δ 2.21–2.42 (m, 3H, Pyr 4-H, Pyr 3-H_a), 2.50–2.58 (m, 1H, Pyr 3-H_b), 3.60 (m, 2H, Pyr 5-H), 3.88 (s, 3H, O-CH₃), 5.43 (t, *J* = 7.4 Hz, 1H, Pyr 2-H), 8.52 (s, 1H, Isox 3-H). ¹³C NMR (176 MHz, CDCl₃) δ 24.2 (Pyr C-4), 29.5 (Pyr C-3), 45.8 (Pyr C-5), 52.6 (O-CH₃), 53.3 (Pyr C-2), 111.8 (Isox C-4), 116.3 (q, ¹*J*_{C,F} = 291.4 Hz, CF₃), 150.3 (Isox C-3), 161.4 (C=O), 162.3 (q, ²*J*_{C,F} = 35.4 Hz, C=O, TFA), 169.8 (Isox C-5). ¹⁵N NMR (71 MHz, CDCl₃): δ -325.0 (*NH*²⁺), 3.8 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₉H₁₃N₂O₃ 197.0921 [M – CF₃COO⁻]⁺; found 197.0921.

5.2. (2S)-2-[4-(Methoxycarbonyl)-1,2-oxazol-5-yl]piperidin-1-ium trifluoroacetate (6b)

To a compound **4g** (0.31 g, 1.0 mmol) in dichloromethane (2.0 mL) was added trifluoroacetic acid (2.0 mL) and the mixture was stirred at rt for 1.0 h. After removal of the solvent *in vacuo*, the residue was kept at 5°C, the formed crystals were washed with acetone and dried to afford the title compound **6b** as whitish crystals (0.28g, 88%), mp 139–140°C. IR, (v_{max} , cm⁻¹): 3071 (CH-arom), 2965 (CH-aliph), 1728 (C=O), 1658 (C=O). ¹H NMR (700 MHz, CDCl₃): δ 1.71–1.79 (m, 1H, Pip 5-H_a), 1.91–2.25 (m, 5H, Pip 3-CH₂, 4-CH₂, 5-CH_b), 3.23 (t, *J* = 11.0 Hz, 1H, Pip 6-H_a), 3.67 (d, *J* = 12.8 Hz, 1H, Pip 6-H_b), 3.91 (s, 3H, O-CH₃), 4.95 (d, *J* = 9.7 Hz, 1H, Pip 2-H),

8.53 (s, 1H, Isox 3-H), 9.04 (s, 1H, NH₂⁺), 10.00 (s, 1H, NH₂⁺). ¹³C NMR (176 MHz, CDCl₃): δ 21.7 and 21.8 (Pip C-4 and C-5), 27.0 (Pip C-3), 45.4 (Pip C-6), 52.6 (Pip C-2), 53.0 (O-CH₃), 111.2 (Isox C-4), 115.5 (q, ¹*J*_{C,*F*} = 288.6 Hz, CF₃), 150.1 (Isox C-3), 161.1 (q, ²*J*_{C,*F*} = 38.7 Hz, C=O, TFA), 162.3 (C=O), 170.4 (Isox C-5). ¹⁵N NMR (71 MHz, CDCl₃): δ -335.6 (*NH*₂⁺), 4.0 (*N*-Isox). HRMS (ESI), m/z: calcd. for C₁₀H₁₅N₂O₃ 211.1077 [M – CF₃COO⁻]⁺; found 211.1077.

6. ¹H, ¹³C and ¹⁵N NMR spectra of compounds 3a-h, 4a-h, 5, 6a,b

Figure S3: ¹⁵N NMR of 3a, (CDCl₃, 71 MHz).

Figure S4: ¹H NMR of 3b, (CDCl₃, 700 MHz).

Figure S5: ¹³C NMR of 3b, (CDCl₃, 176 MHz).

Figure S7: ¹³C NMR of 3c, (CDCl₃, 176 MHz).

Figure S9: ¹³C NMR of 3d, (CDCl₃, 176 MHz).

Figure S11: ¹³C NMR of 3e, (CDCl₃, 176 MHz).

Figure S13: ¹³C NMR of 3f, (CDCl₃, 176 MHz).

Figure S15: ¹³C NMR of 3g, (CDCl₃, 176 MHz).

Figure S17: ¹³C NMR of 3h, (CDCl₃, 176 MHz).

Figure S19: ¹³C NMR of 4a, (CDCl₃, 176 MHz).

Figure S21: ¹H NMR of 4b, (CDCl₃, 700 MHz).

Figure S23: ¹⁵N NMR of 4b, (CDCl₃, 71 MHz).

Figure S25: ¹³C NMR of 4c, (CDCl₃, 100 MHz).

Figure S27: ¹H NMR of 4d, (CDCI₃, 400 MHz).

Figure S29: ¹⁵N NMR of 4d, (CDCl₃, 71 MHz).

Figure S31: ¹³C NMR of 4e, (CDCl₃, 100 MHz).

Figure S33: ¹H NMR of 4f, (CDCl₃, 400 MHz).

Figure S35: ¹⁵N NMR of 4f, (CDCl₃, 41 MHz).

Figure S37: ¹³C NMR of 4g, (CDCl₃, 100 MHz).

Figure S38: ¹⁵N NMR of 4g, (CDCl₃, 71 MHz).

Figure S39: ¹H NMR of 4h, (CDCl₃, 400 MHz).

Figure S41: ¹⁵N NMR of 4h, (CDCl₃, 71 MHz).

Figure S43: ¹³C NMR of 5, (CDCl₃, 176 MHz).

Figure S45: ¹H NMR of 6a, (CDCl₃, 700 MHz).

Figure S47: ¹⁵N NMR of 6a, (CDCl₃, 71 MHz).

S39

7. Stacked chromatogram profile view of isolated enantiomers 4d-g

Figure S51: Stacked chromatogram profile view of isolated enantiomers **4d** and **4e**: (*S*)-**4d**, ee 98%, ($t_{\rm R} = 7.65$ min) and (*R*)-**4e**, ee 98% ($t_{\rm R} = 8.6$ min).

Figure S52: Stacked chromatogram profile view of isolated enantiomers **4f** and **4g**: (*R*)-**4f**, ee 97%, ($t_R = 17.18 \text{ min}$) and (*S*)-**4g**, ee 97% ($t_R = 16.08 \text{ min}$).

Figure S53: The superimposed ¹H NMR and 1D gradient NOE spectra with selective irradiation of signal at δ 1.44 ppm (a) and δ 5.61–5.65 ppm (b).

9. X-ray analysis of compound 6b

The X-ray intensity data was measured on a Rigaku, XtaLAB Synergy, Dualflex, HyPix diffractometer. Cu K\α micro focus sealed X-ray tube and PhotonJet (Cu) X-ray source. The structure was solved by direct methods and refined by full-matrix least squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were fitted to the peaks of the difference synthesis as well as calculated geometrically and refined with a riding model. The following software was used: CrysAlisPro (Rigaku corporation, 2020), Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the olex2.refine [3] refinement package using Gauss-Newton minimization. Experimental data and CCDC-code can be found in Table S1. Crystal data, data collection parameters, and structure refinement details are given in Tables S2 and S3. Molecular structure of asymmetric unit of **6b** as "Ortep View" is displayed in Figure S37.

Sample	Machine	Source	Temp.	Detector	Time/Frame	Fra-	Frame	CCDC
				distance		mes	width	
			[K]	[mm]	[s]		[°]	
5b	Rigaku,	micro-	150	31.4	0.33	2692	0.50	2003749
	XtaLAB	focus						
	Synergy,	sealed X-						
	Dualflex,	ray tube,						
	HyPix	PhotonJet						
		(Cu)						

Table S1: Experimental parameters and CCDC-Code

 Table S2: Sample and crystal data of compound 6b.

Chemical formula	$C_{10}H_{15}N_2O_3C_2F_3O_2$	Crystal system	Monoclinic		
Formula weight [g/mol]	324.26	Space group	P21		
Temperature [K]	150	z	4		
Measurement method	φ and ω scans	Volume [Å ³]	1422.77 (3)		
Radiation wavelength [Å]	1.54184	Unit cell dimensions	9.1009 (1) 90		
		[ų] and [°]	17.8668 (1)	117.186 (2)	
			9.8366 (1)	90	
Crystal size/ [mm ³]	0.22 × 0.18 × 0.17				
Crystal habit	Block, pale yellow				
Density (calculated)/	1.514	Absorption	1.25		
[g/cm³]		coefficient [mm ⁻¹]			
Abs. Correction T _{min}	0.746	Abs. Correction T _{max}	0.867		
Abs. Correction type	multi-scan	F(000) [e ⁻]	6	72	
	CrysAlis PRO				
	1.171.40.35a (Rigaku				
	Oxford Diffraction,				
	2018) Empirical				
	absorption correction				
	using spherical				
	harmonics,				
	implemented in				
	SCALE3 ABSPACK				
	scaling algorithm.				

Table S3: Data collection and structure refinement of compound **6b**.

Index ranges	-11 ≤ h ≤ 11	Theta range for	5-78
_	-22≤ k ≤ 14	data collection	

	-12 ≤ I ≤ 12	[°]			
Reflections numbers	4362	Data / restraints / parameters	4362/1/415		
Refinement method	Least squares matrix: full	Final R indices	All data	R1 = 0.0384; wR2 = 0.0992	
Function minimized	$\Sigma W[F_0 ^2 - (1/k) F_c ^2]$		l > 2σ(l)	R1 = 0.0382; wR2 = 0.0989	
Goodness-of-fit on F ₂	1.0658	Weighting scheme	$w = 1/[\sigma^{2}(F_{0}^{2}) + (0.0678P)^{2} + 0.2756P]$ where $P = (F_{0}^{2} + 2F_{c}^{2})/3$		
Largest diff. peak and hole [e Å₃]	+0.255 and -0.285				

Figure S54: ORTEP view of asymmetric unit of crystal 6b.

10. References

- 1. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J.A. K.; Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339-341. doi:10.1107/S0021889808042726
- 2. Sheldrick, G. M. Acta Cryst. A, 2015, A71, 3-8. doi:10.1107/S2053273314026370
- 3. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *Acta Cryst. A*, **2015**, *A71*, 59-75. doi:10.1107/S2053273314022207
- 4. Dzedulionytė, K.; Voznikaitė, P.; Bieliauskas, A.; Malinauskienė, V.; Sløk, F. A.; Šačkus,
 A. *Molbank* 2021, 2021, M1207. https://doi.org/10.3390/M1207
- Greck, C.; Thomassigny, C.; Le Bouc, G. Arkivoc 2012, 8, 231–249.
 doi:10.3998/ark.5550190.0013.821
- Malinauskienė, V.; Kveselytė, A.; Dzedulionytė, K.; Bieliauskas, A.; Sløk, A. F.; Šačkus,
 A. Chem. Heterocycl. Compd. 2018, 54, 469–473. doi:10.1007/s10593-018-2291-1
- 7. Gao, W.; Lau, T.; Pan, S.; Phillips, D. P.; Wang, X. Compounds and compositions as TGR5 agonists. WO Patent 2012/082947A1, June 21, 2012.
- Matulevičiūtė, G.; Arbačiauskienė, E.; Kleizienė, N.; Kederienė, V.; Ragaitė, G;
 Dagilienė, M.; Bieliauskas, A.; Milišiūnaitė, V.; Sløk, F.A.; Šačkus, A. *Molecules* 2021, 26, 3808. doi:10.3390/molecules26133808