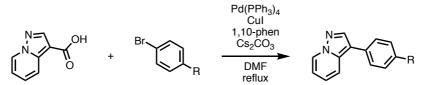
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

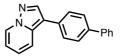
Ring-Opening Fluorination of Bicyclic Azaarenes Masaaki Komatsuda,¹ Ayane Suto,¹ Hiroki Kondo Jr.,¹ Hiroyuki Takada,² Kenta Kato,¹ Bunnai Saito,² and Junichiro Yamaguchi^{*} ¹ Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan ² Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan

E-mail: junyamaguchi@waseda.jp

Table of Contents

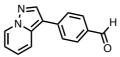

1.	General	S2
2.	Preparation of Pyrazolo[1,5- <i>a</i>]pyridines 1	S3–S15
3.	Preparation of Other Bicyclic or Tricyclic Azaarens 1	S15-S20
4.	Ring-Opening Fluorination of Bicyclic Azaarenes 1	S20–S34
5.	Effect of Parameters	S35–S37
6.	Fluorination Tracking by ¹ H NMR	S38
7.	Another Role of Selectfluor [®]	S39–S40
8.	Fluorination of 5 and 7	S40–S41
9.	Studies Toward Asymmetric Fluorination	S42-S55
10.	Derivatization of Products	S55–S58
11.	References	S59–S60
12.	¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S60-S283

1. General


Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. Selectfluor[®] and N-fluorobenzenesulfonimide (NFSI) were obtained from TCI. (DHQD)₂PHAL was obtained from KANTO chemical. 6-Bromopyrazolo[1,5-a]pyrimidine (7) was obtained from Combi-Blocks. 3-Phenylpyrazolo[1,5-a]pyridine (1A), ^[1] 3-(*p*-tolyl)pyrazolo[1,5-a]*a*]pyridine (**1B**),^[1] 3-(4-(tert-butyl)phenyl)pyrazolo[1,5-*a*]pyridine (**1C**),^[1] <math>3-mesitylpyrazolo[1,5-*a*]pyridine (**1C**),^[1] <math>3-mesitylpyrazolo[1,5-*a*]pyrazolo[1,5-*a*](1E).^[1] 3-(naphthalen-2-yl)pyrazolo[1,5-a]pyridine $(1F)^{[1]}$ *a*]pvridine 3-(4-(trifluoromethyl)phenyl)pyrazolo[1,5-a]pyridine (1J),^[1] 3-(4-chlorophenyl)pyrazolo[1,5-a]pyridine (1L),^[2] pyrazolo[1,5-*a*]pyridine-3-carbonitrile (1Q),^[3] ethyl pyrazolo[1,5-*a*]pyridine-3-carboxylate (1S),^[4] pyrazolo[1,5-*a*]pyridine-3-carboxylic acid (1Y),^[1] 3-phenylpyrazolo[1,5-*a*]pyrimidine (1AG),^[5] zaleplon (1AM),^[6] and 2,3-diphenylpyrazolo[1,5-*a*]pyridine (5)^[1] were synthesized according to procedures and the spectra matched with those of compounds reported in the literature. Unless otherwise noted, all reactions were performed with dry solvents under an atmosphere of N2 in dried glassware using standard vacuum-line techniques. All ring-opening fluorinations of azaarenes were performed in an 8-mL glass vessel tube equipped with a screw cap and heated (IKA Plate RCT digital) in a 16-well aluminum reaction block (IKA DB4.3 Block) unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents in air. Analytical thin-layer chromatography (TLC) was performed using Silica-gel 70 TLC Plate-Wako (0.25 mm). The developed chromatogram was analyzed by UV lamp (254, 365 nm). Flash column chromatography was performed with Biotage Isolera[®] equipped with Biotage Sfär Cartridge Silica D columns and hexane/EtOAc as an eluent. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (0.75 mm) prepared in our laboratory. Preparative recycling gel permeation chromatography (GPC) was performed with a JAI LaboACE LC-5060 instrument equipped with JAIGEL-2HR columns using chloroform as an eluent. High-resolution mass spectra (HRMS) were conducted on Thermo Fisher Scientific ExactivePlus (ESI and DART). Chiral high performance liquid chromatography (HPLC) was performed using SHIMADZU Prominence-i LC-2030C Plus[®] equipped with DAICEL Chiralcel[®] and Chiralpak[®]. Details of chromatographic conditions on the separation of the products are described with compound data. Nuclear magnetic resonance (NMR) spectra were recorded on JEOL JNM-ECS-400 and JNM-ECZ-400S (¹H 400 MHz, ¹³C 101 MHz, ¹⁹F 376 MHz) spectrometers. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm) or acetonitrile d_3 (δ 1.94 ppm). Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (δ 77.0 ppm) or acetonitrile- d_3 (δ 1.32 ppm). Chemical shifts for ¹⁹F NMR are expressed in ppm relative to PhF (δ – 113.15 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets of doublets, dt = doublet of triplets, t = triplet, td = triplet of doublets, q = quartet, m = multiplet, brs = broad singlet), coupling constant (Hz), and integration.

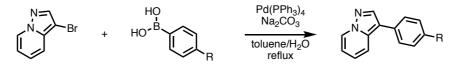
2. Preparation of Pyrazolo[1,5-a]pyridines 1

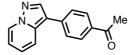
2-1. Synthesis of 1D and 1G



A round-bottom flask containing a magnetic stirring bar and cesium carbonate (244 mg, 0.750 mmol, 1.5 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (28.9 mg, 25.0 μ mol, 5.0 mol%), copper iodide (9.5 mg, 50.0 μ mol, 10 mol%), 1,10-phenanthroline (9.5 mg, 50.0 μ mol, 10 mol%), and pyrazolo[1,5-*a*]pyridine-3-carboxylic acid (1L: 81.1 mg, 0.500 mmol, 1.0 equiv). The flask was placed under vacuum and refilled with N₂ gas three times. To this flask were added aryl bromide (0.750 mmol, 1.5 equiv) and DMF (2.5 mL). The mixture was heated under reflux and stirred for several hours. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent, and then concentrated *in vacuo*. The residue was purified by Isolera[®] to afford the corresponding 3-arylpyrazolo[1,5-*a*]pyridine 1.

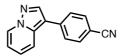
3-([1,1'-Biphenyl]-4-yl)pyrazolo[1,5-a]pyridine (1D)


Purification by Isolera[®] (hexane/EtOAc = 9:1 to 1:1) afforded **1D** (69.8 mg, 52% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 7.2 Hz, 1H), 8.20 (s, 1H), 7.88 (d, *J* = 9.2 Hz, 1H), 7.72–7.62 (m, 6H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.21 (dd, *J* = 9.2, 6.8 Hz, 1H), 6.82 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 140.4, 138.9, 136.9, 132.1, 129.0, 128.8, 127.6, 127.23, 127.18, 126.9, 124.0, 117.5, 112.4, 112.0; HRMS (ESI) *m/z* calcd for C₁₉H₁₅N₂ [M+H]⁺: 271.1230 found 271.1227.

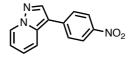

4-(Pyrazolo[1,5-a]pyridin-3-yl)benzaldehyde (1G)

Purification by Isolera[®] (hexane/EtOAc = 9:1 to 1:1) afforded **1G** (61.1 mg, 55% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 10.0 (s, 1H), 8.54 (d, *J* = 6.8 Hz, 1H), 8.25 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.29 (ddd, *J* = 8.8, 6.8, 0.8 Hz, 1H), 6.88 (td, *J* = 6.8, 0.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 140.9, 139.6, 137.2, 133.9, 130.5, 129.3, 126.7, 125.2, 117.3, 112.6, 111.5; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₁N₂O [M+H]⁺: 223.0866 found 223.0865.

2-2. Synthesis of 1H, 1I, and 1K



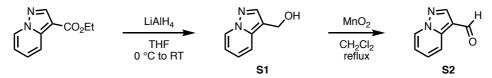
A round-bottom flask containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (10 mol%), 3-bromopyrazolo[1,5-*a*]pyridine^[7] (1.0 equiv), and arylboronic acid (1.5 equiv). The flask was placed under vacuum and refilled with N₂ gas three times. To the flask were added degassed 1.0 M Na₂CO₃ aq. (3.0 equiv), and toluene (0.13 M) under stream of N₂ gas. The mixture was heated at 130 °C and stirred for several hours. After cooling the reaction mixture to room temperature, the reaction was quenched with H₂O. The mixture was extracted with Et₂O. The combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] to afford the corresponding 3-arylpyrazolo[1,5-*a*]pyridine 1.


1-(4-(Pyrazolo[1,5-a]pyridin-3-yl)phenyl)ethan-1-one (1H)

Purification by Isolera[®] (hexane/EtOAc = 9:1 to 4:1) afforded **1H** (47.9 mg, 25% yield, 0.800 mmol scale) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 7.2 Hz, 1H), 8.23 (s, 1H), 8.05 (dt, *J* = 8.8, 1.6 Hz, 2H), 7.87 (dt, *J* = 8.8, 1.2 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.26 (td, *J* = 8.8, 1.2 Hz, 1H), 6.86 (td, *J* = 7.2, 0.8 Hz, 1H), 2.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.3, 140.7, 138.1, 137.1, 134.5, 129.2, 129.1, 126.3, 124.9, 117.3, 112.4, 111.6, 26.5; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₃N₂O [M+H]⁺: 237.1022 found 237.1021.

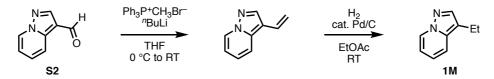
4-(Pyrazolo[1,5-*a*]pyridin-3-yl)benzonitrile (11)^[8]

Purification by Isolera[®] (hexane/EtOAc = 9:1 to 1:1) to afford **1I** (129 mg, 59% yield, 1.00 mmol scale) as a yellow solid. The spectra were in accordance with those of the compounds reported in the literature.



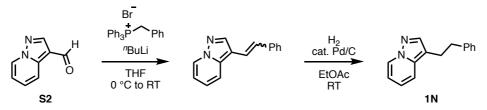
3-(4-Nitrophenyl)pyrazolo[1,5-a]pyridine (1K)

Purification by Isolera[®] (hexane/EtOAc = 9:1 to 1:1) afforded **1K** (55.5 mg, 29% yield, 0.800 mmol scale) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 6.8 Hz, 1H), 8.32 (d, *J* = 8.8 Hz,


2H), 8.25 (s, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.36–7.29 (m, 1H), 6.91 (t, J = 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 141.1, 140.2, 137.3, 129.6, 126.6, 125.7, 124.6, 117.2, 112.9, 110.7; HRMS (ESI) *m/z* calcd for C₁₃H₁₀N₃O₂ [M+H]⁺: 240.0768 found 240.0767.

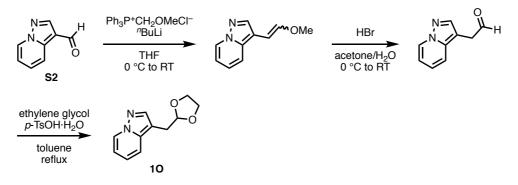
2-3. Synthesis of 1M and 1N

To a solution of $1F^{[4]}$ (965 mg, 5.10 mmol, 1.0 equiv) in THF (50 mL) was added lithium aluminum hydride (LiAlH₄: 212 mg, 5.58 mmol, 1.1 equiv) at 0 °C. After consumption of the starting material, the reaction was quenched with H₂O (0.30 mL), 3.0 M NaOH aq. (0.30 mL), and H₂O (0.90 mL). The precipitates were removed by filtration with Celite[®]. The filtrate was concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 4:1 to 1:1) to afford pyrazolo[1,5-*a*]pyridin-3-ylmethanol (S1: 752 mg, quant.) as a yellow oil.


To a solution of **S1** (889 mg, 6.00 mmol, 1.0 equiv) in CH_2Cl_2 (24 mL) was added MnO_2 (5.22 g, 60.0 mmol, 10 equiv). The mixture was stirred with refluxing for 2 h. After cooling the reaction mixture to room temperature, the mixture was passed through a pad of Celite[®] with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 9:1 to 4:1) to afford pyrazolo[1,5-*a*]pyridine-3-carbaldehyde (**S2**: 744 mg, 85% yield) as a white solid. The spectra were in accordance with those of the compounds reported in the literature.^[9]

A two-necked flask containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added methyltriphenylphosphonium bromide (1.18 g, 3.30 mmol, 1.1 equiv) and THF (10 mL). The mixture was cooled to 0 °C and then *n*-butyllithium (1.57 M in hexane, 2.10 mL, 3.30 mmol, 1.1 equiv) was slowly added. After stirring at 0 °C for 15 min, **S2** (438 mg, 3.00 mmol, 1.0 equiv) was added. The mixture was further stirred at room temperature for 12 h. The reaction was quenched with NH₄Cl aq. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 15:1) to afford 3-vinylpyrazolo[1,5-*a*]pyridine (300 mg, 69% yield) as a yellow oil.

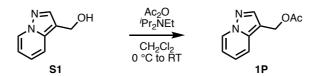
To a solution of 3-vinylpyrazolo[1,5-*a*]pyridine (300 mg, 2.08 mmol, 1.0 equiv) in EtOAc (20 mL) was added Pd/C (15.1 mg, 5 wt%). The flask was subjected to H₂ gas with a balloon (1 atm), then the mixture was stirred overnight at room temperature. The mixture was passed through a pad of Celite[®].


The filtrate was concentrated *in vacuo*, and purified by Isolera[®] (hexane/EtOAc = 19:1 to 15:1) to afford 3-ethylpyrazolo[1,5-*a*]pyridine (**1M**: 267 mg, 88% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 7.6 Hz, 1H), 7.80 (s, 1H), 7.45 (dt, *J* = 8.8, 1.2 Hz, 1H), 7.03 (ddd, *J* = 8.8, 7.6, 1.2 Hz, 1H), 6.69 (td, *J* = 7.6, 1.2 Hz, 1H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.31 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 137.6, 128.5, 121.7, 116.7, 113.0, 111.1, 16.7, 15.0; HRMS (ESI) *m/z* calcd for C₉H₁₁N₂ [M+H]⁺: 147.0917 found 147.0916.

A two-necked flask containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added benzyltriphenylphosphonium bromide (953 mg, 2.20 mmol, 1.1 equiv) and THF (6.7 mL). The mixture was cooled to 0 °C and then *n*-butyllithium (1.57 M in hexane, 1.40 mL, 2.20 mmol, 1.1 equiv) was slowly added. After stirring at 0 °C for 15 min, **S2** (292 mg, 2.00 mmol, 1.0 equiv) was added. The mixture was further stirred at room temperature for 12 h. The reaction was quenched with NH₄Cl aq. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 15:1) to afford (*E*)-3-styrylpyrazolo[1,5-*a*]pyridine (174 mg, 40% yield) as a colorless oil and (*Z*)-3-styrylpyrazolo[1,5-*a*]pyridine (193 mg, 44% yield) as a colorless oil.

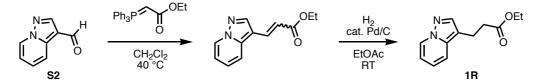
To a solution of (*E*)-3-styrylpyrazolo[1,5-*a*]pyridine (174 mg, 0.790 mmol, 1.0 equiv) in EtOAc (7.9 mL) was added Pd/C (8.70 mg, 5 wt%). The flask was subjected to H₂ gas with a balloon (1 atm). After stirred overnight at room temperature, the mixture was passed through a pad of Celite[®]. The filtrate was concentrated *in vacuo*, and purified by Isolera[®] (hexane/EtOAc = 19:1 to 15:1) to afford 3-phenethylpyrazolo[1,5-*a*]pyridine (**1N**: 146 mg, 84% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 6.8 Hz, 1H), 7.74 (s, 1H), 7.31–7.24 (m, 3H), 7.23–7.15 (m, 3H), 7.02–6.96 (m, 1H), 6.68 (td, *J* = 6.8, 0.8 Hz, 1H), 3.07–3.00 (m, 2H), 2.99–2.92 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 140.9, 138.0, 128.5, 128.3, 126.0, 121.9, 116.6, 111.2, 110.4, 37.1, 25.6 (one peak is missing due to overlapping); HRMS (ESI) *m/z* calcd for C₁₅H₁₅N₂ [M+H]⁺: 223.1230 found 223.1228.

2-4. Synthesis of 10



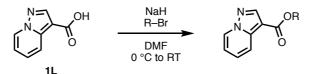
A two-necked flask containing a magnetic stirring bar was dried with a heat-gun in vacuo and filled То with N_2 gas after cooling to room temperature. this flask were added (methoxymethyl)triphenylphosphonium chloride (1.22 g, 3.57 mmol, 1.1 equiv) and THF (12 mL). The mixture was cooled to 0 °C and then *n*-butyllithium (1.57 M in hexane, 2.30 mL, 3.57 mmol, 1.1 equiv) was slowly added. After stirring the mixture at 0 °C for 15 min, S2 (475.0 mg, 3.25 mmol, 1.0 equiv) was added. After stirring at room temperature for 12 h, the reaction was quenched with NH₄Cl aq. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude material was used for the next step without further purification.

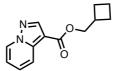
To a round-bottom flask containing the crude material in acetone (5.0 mL) was added HBr aq. (3.0 mL) slowly at 0 °C. The mixture was stirred at room temperature for 18 h. The reaction was quenched with NaHCO₃ aq. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 3:1 to 1:1) to afford 2-(pyrazolo[1,5-*a*]pyridin-3-yl)acetaldehyde (102 mg, 21% yield over two steps) as a white solid.


To a round-bottom flask containing 2-(pyrazolo[1,5-*a*]pyridin-3-yl)acetaldehyde (109 mg, 0.686 mmol, 1.0 equiv) were added *p*-toluenesulfonic acid monohydrate (6.50 mg, 34.0 µmol, 5.0 mol%), ethylene glycol (1.10 mL, 20.4 mmol, 30 equiv), and toluene (2.3 mL). The reaction mixture was stirred with refluxing for 5 h. After cooled to room temperature, the reaction was quenched with NaHCO₃ aq. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 3:1 to 1:1) to afford 3-((1,3-dioxolan-2-yl)methyl)pyrazolo[1,5-*a*]pyridine (**10**: 88.2 mg, 63% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 7.2 Hz, 1H), 7.88 (s, 1H), 7.56 (d, *J* = 9.2 Hz, 1H), 7.07 (ddd, *J* = 9.2, 6.8, 1.2 Hz, 1H), 6.71 (td, *J* = 6.8, 1.2 Hz, 1H), 5.09 (t, *J* = 4.8 Hz, 1H), 3.97–3.81 (m, 4H), 3.09 (d, *J* = 4.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 138.9, 128.4, 122.3, 117.1, 111.3, 104.6, 104.1, 65.0, 28.9; HRMS (ESI) *m/z* calcd for C₁₁H₁₃N₂O₂ [M+H]⁺: 205.0972 found 205.0971.

2-5. Synthesis of 1P

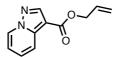
To a solution of **S1** (190 mg, 1.28 mmol, 1.0 equiv) in CH₂Cl₂ (6.4 mL) were added to acetic anhydride (130 μ L, 1.41 mmol, 1.1 equiv) and *N*,*N*-diisopropylethylamine (268 μ L, 1.54 mmol, 1.2 equiv) at 0 °C. The mixture was stirred at room temperature for 3 h. The reaction was quenched with H₂O. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. Purification by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) afforded pyrazolo[1,5-*a*]pyridin-3-ylmethyl acetate (**1P**: 144 mg, 59% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 7.2 Hz, 1H), 8.00 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.19 (ddd, *J* = 8.8, 7.2, 1.2 Hz, 1H), 6.80 (td, *J* = 7.2, 1.2 Hz, 1H), 5.30 (s, 2H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 142.8, 139.3, 128.7, 123.9, 116.8, 112.1, 105.8, 56.5, 21.0; HRMS (ESI) *m/z* calcd for C₁₀H₁₁N₂O₂ [M+H]⁺: 191.0815 found 191.0814.


2-6. Synthesis of 1R


To a solution of **S2** (496 mg, 3.39 mmol, 1.0 equiv) in CH₂Cl₂ (11.3 mL) was added (carbethoxymethylene)triphenylphosphorane (2.36 g, 6.78 mmol, 2.0 equiv). The mixture was stirred at 40 °C for 12 h. After completion of the reaction, the solvent was removed under reduced pressure. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) to afford ethyl 3-(pyrazolo[1,5-*a*]pyridin-3-yl)acrylate (699 mg, 95% yield) as a white solid.

To a solution of ethyl 3-(pyrazolo[1,5-*a*]pyridin-3-yl)acrylate (659 mg, 3.05 mmol, 1.0 equiv) in EtOAc (15 mL) was added Pd/C (32.5 mg, 5 wt%). The flask was subjected to H₂ gas with a balloon (1 atm). After stirred for 16 h at room temperature, the mixture was passed through a pad of Celite[®]. The filtrate was concentrated *in vacuo*, and purified by Isolera[®] (hexane/EtOAc = 19:1 to 15:1) to afford ethyl 3-(pyrazolo[1,5-*a*]pyridin-3-yl)propanoate (**1R**: 462 mg, 69% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 6.8 Hz, 1H), 7.80 (s, 1H), 7.49 (d, *J* = 9.2 Hz, 1H), 7.06 (ddd, *J* = 9.2, 6.8, 1.2 Hz, 1H), 6.71 (td, *J* = 6.8, 1.2 Hz, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.07 (t, *J* = 7.6 Hz, 2H), 2.66 (t, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.8, 140.7, 137.9, 128.5, 122.2, 116.6, 111.3, 109.3, 60.3, 35.3, 18.8, 14.1; HRMS (ESI) *m/z* calcd for C₁₂H₁₄N₂O₂Na [M+Na]⁺: 241.0948 found 241.0947.

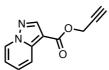
2-7. Synthesis of 1T–1W



To a solution of **1L** (81.1 mg, 0.500 mmol, 1.0 equiv) in DMF (2.0 mL) was added sodium hydride (60% oil dispersion; 30.0 mg, 0.750 mmol, 1.5 equiv) at 0 °C. The mixture was stirred for 30 min at 0 °C and then alkyl bromide (0.750 mmol, 1.5 equiv) was added. The mixture was stirred for several hours at room temperature with monitoring the reaction progress by TLC. The reaction was quenched with NH₄Cl aq. at 0 °C. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] to afford the corresponding alkyl pyrazolo[1,5-*a*]pyridine-3-carboxylate **1**.

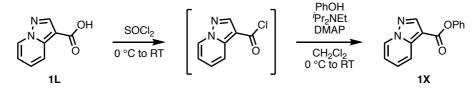
Cyclobutylmethyl pyrazolo[1,5-*a*]pyridine-3-carboxylate (1T)

Purification by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) afforded **1T** (67.0 mg, 58% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 6.8 Hz, 1H), 8.41 (s, 1H), 8.14 (d, *J* = 9.2 Hz, 1H), 7.40 (ddd, *J* = 9.2, 6.8, 1.2 Hz, 1H), 6.94 (td, *J* = 6.8, 1.2 Hz, 1H), 4.31 (d, *J* = 7.2 Hz, 2H), 2.86–2.72 (m, 1H), 2.23–2.07 (m, 2H), 2.85–1.84 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5, 144.8, 140.7, 129.2, 127.2, 119.0, 113.6, 103.9, 67.7, 34.3, 24.8, 18.4; HRMS (ESI) *m*/*z* calcd for C₁₃H₁₅N₂O₂ [M+H]⁺: 231.1128 found 231.1127.

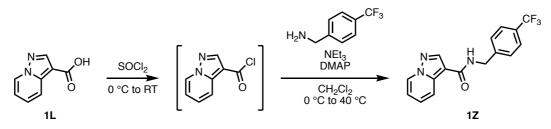

Allyl pyrazolo[1,5-*a*]pyridine-3-carboxylate (1U)

Purification by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) afforded **1U** (65.7 mg, 65% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 6.8 Hz, 1H), 8.43 (s, 1H), 8.18 (d, *J* = 9.2 Hz, 1H), 7.42 (ddd, *J* = 9.2, 6.8, 1.2 Hz, 1H), 6.96 (td, *J* = 6.8, 1.2 Hz, 1H), 6.13–6.01 (m, 1H), 5.49–5.38 (m, 1H), 5.34–5.26 (m, 1H), 4.85 (dt, *J* = 5.2, 1.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 144.9, 140.9, 132.6, 129.3, 127.4, 119.1, 118.0, 113.7, 103.5, 64.6; HRMS (ESI) *m/z* calcd for C₁₁H₁₁N₂O₂ [M+H]⁺: 203.0815 found 203.0815.

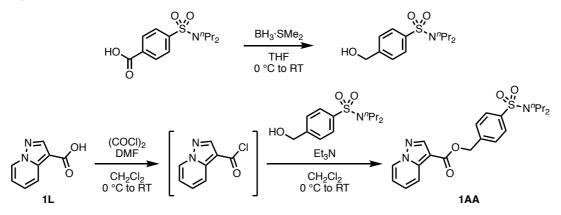
Benzyl pyrazolo[1,5-a]pyridine-3-carboxylate (1V)


Purification by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) afforded **1V** (82.0 mg, 65% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 7.2 Hz, 1H), 8.43 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.42–7.31 (m, 4H), 6.93 (td, *J* = 6.8, 0.8 Hz, 1H), 5.38 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.1, 144.9, 140.9, 136.4, 129.3, 128.5, 128.1, 127.4, 119.0, 113.7, 103.5, 65.7 (one peak is missing due to overlapping); HRMS (ESI) *m/z* calcd for C₁₅H₁₃N₂O₂ [M+H]⁺: 253.0972 found 253.0970.

Prop-2-yn-1-yl pyrazolo[1,5-a]pyridine-3-carboxylate (1W)


Purification by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) afforded **1W** (80.2 mg, 64% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 6.8 Hz, 1H), 8.44 (s, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 7.45 (ddd, *J* = 8.8, 6.8, 0.8 Hz, 1H), 6.93 (td, *J* = 6.8, 0.8 Hz, 1H), 4.94 (d, *J* = 2.4 Hz, 2H), 2.52 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.3, 145.0, 141.0, 129.4, 127.7, 119.0, 113.9, 102.7, 78.1, 74.7, 51.5; HRMS (ESI) *m/z* calcd for C₁₁H₉N₂O₂ [M+H]⁺: 201.0659 found 201.0658.

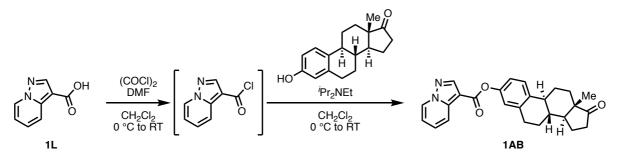
2-8. Synthesis of 1X


To a round-bottom flask with **1L** (162 mg, 1.00 mmol, 1.0 equiv) was added thionyl chloride (2.40 mL, 4.00 mmol, 4.0 equiv). After the mixture was stirred at room temperature for 1 h, the solution was concentrated *in vacuo*. To the resulting mixture were added *N*,*N*-dimethylaminopyridine (DMAP: 11.0 mg, 50.0 µmol, 5.0 mol%), phenol (104 mg, 1.10 mmol, 1.1 equiv), CH₂Cl₂ (4.0 mL), and then *N*,*N*-diisopropylethylamine (210 µL, 1.20 mmol, 1.2 equiv) slowly at 0 °C. The mixture was stirred for 12 h. After the reaction was quenched with NaHCO₃ aq., the mixture was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) to afford phenyl pyrazolo[1,5-*a*]pyridine-3-carboxylate (**1X**: 196 mg, 82% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.61–8.54 (m, 2H), 8.22 (d, *J* = 9.2 Hz, 1H), 7.49–7.39 (m, 3H), 7.30–7.22 (m, 3H), 7.00 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 150.6, 145.3, 141.3, 129.43, 129.37, 127.9, 125.6, 121.9, 119.1, 114.0, 102.8; HRMS (ESI) *m/z* calcd for C₁₄H₁₁N₂O₂ [M+H]⁺: 239.0815 found 239.0815.

2-9. Synthesis of 1Z

To a round-bottom flask containing a magnetic stirring bar and **1L** (361 mg, 2.00 mmol, 1.0 equiv) was added thionyl chloride (4.90 mL, 8.00 mmol, 4.0 equiv). After the mixture was stirred at room temperature for 1 h, the solution was concentrated *in vacuo*. To the resulting mixture were added *N*,*N*-dimethylaminopyridine (DMAP: 12.2 mg, 0.100 mmol, 5.0 mol%), 4-(trifluoromethyl)benzylamine (450 μ L, 3.00 mmol, 1.5 equiv), CH₂Cl₂ (8.0 mL), and then triethylamine (340 μ L, 2.40 mmol, 1.2 equiv) slowly at 0 °C. The reaction mixture was stirred at 40 °C for 4 h. After the reaction was quenched with NaHCO₃ aq., the mixture was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) to afford *N*-(4-(trifluoromethyl)benzyl)pyrazolo[1,5-*a*]pyridine-3-carboxamide (**1Z**: 449 mg, 66% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 6.8 Hz, 1H), 8.32 (d, *J* = 8.8 Hz, 1H), 8.18 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.37 (dd, *J* = 8.8, 6.8 Hz, 1H), 6.94 (t, *J* = 6.8 Hz, 1H), 6.40 (brs, 1H), 4.71 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 142.8, 140.7, 140.4, 129.5 (q, *J*_{C-F} = 33.0 Hz), 128.9, 127.8, 126.7, 125.5 (q, *J*_{C-F} = 3.8 Hz), 124.0 (q, *J*_{C-F} = 273.5 Hz), 119.5, 113.8, 106.2, 42.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; HRMS (ESI) *m*/z calcd for C₁₆H₁₃F₃N₃O [M+H]⁺: 320.1005 found 320.1005.

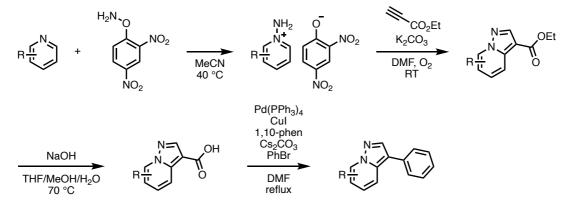
2-10. Synthesis of Probenecid Derivative 1AA



To a solution of probenecid (856 mg, 3.00 mmol, 1.0 equiv) in THF (30 mL) was added $BH_3 \cdot SMe_2$ (570 µL, 6.00 mmol, 2.0 equiv) dropwise at 0 °C. The mixture was stirred at room temperature for 24 h. The reaction was quenched with MeOH carefully at 0 °C. Solvent was removed *in vacuo* and the

residue was purified by Isolera[®] (hexane/EtOAc = 4:1 to 1:1) to afford 4-(hydroxymethyl)-N,N-dipropylbenzenesulfonamide (814 mg, quant.) as a colorless oil.

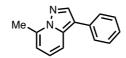
To a solution of **1L** (81.1 mg, 0.500 mmol, 1.0 equiv) in CH₂Cl₂ (5.0 mL) were added oxalyl chloride (52.0 μ L, 0.600 mmol, 1.2 equiv) and one drop of DMF. After the mixture was stirred at room temperature for 1.5 h, the solution was concentrated *in vacuo*. To the resulting mixture were added 4- (hydroxymethyl)-*N*,*N*-dipropylbenzenesulfonamide (163 mg, 0.600 mmol, 1.2 equiv), CH₂Cl₂ (5.0 mL), and then triethylamine (200 μ L, 1.50 mmol, 3.0 equiv) slowly at 0 °C. The mixture was stirred at room temperature for 12 h. After the reaction was quenched with NaHCO₃ aq., the mixture was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (toluene/EtOAc = 2:1) to afford 4-(*N*,*N*-dipropylsulfamoyl)benzyl pyrazolo[1,5-*a*]pyridine-3-carboxylate (**1AA**: 112 mg, 54% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (dt, *J* = 6.8, 1.2 Hz, 1H), 8.45 (s, 1H), 8.15 (dd, *J* = 8.8, 1.2 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.42 (ddd, *J* = 8.8, 6.8, 1.2 Hz, 1H), 6.99 (td, *J* = 6.8, 1.2 Hz, 1H), 5.44 (s, 2H), 3.11–3.05 (m, 4H), 1.62–1.51 (m, 4H), 0.88 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 144.9, 141.0, 140.9, 139.7, 129.4, 128.1, 127.7, 127.3, 118.9, 113.9, 103.0, 64.5, 50.1, 22.0, 11.1; HRMS (ESI) *m*/z calcd for C₂₁H₂₆N₃O₄S [M+H]⁺: 416.1639 found 416.1635.


2-11. Synthesis of Estrone Derivative 1AB

To a solution of **1L** (162 mg, 1.00 mmol, 1.0 equiv) in CH₂Cl₂ (5.0 mL) were added oxalyl chloride (103 μ L, 1.20 mmol, 1.2 equiv) and one drop of DMF. After the mixture was stirred at room temperature for 1.5 h, the solution was concentrated *in vacuo*. To the resulting mixture were added estrone (324 mg, 1.20 mmol, 1.2 equiv), CH₂Cl₂ (5.0 mL), and then *N*,*N*-diisopropylethylamine (440 μ L, 2.50 mmol, 2.5 equiv) slowly at 0 °C. The mixture was stirred at room temperature for 12 h. After the reaction was quenched with NaHCO₃ aq., the mixture was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (hexane/EtOAc = 2:1) to afford (8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanth-ren-3-yl pyrazolo[1,5-*a*]pyridine-3-carboxylate (**1AB**: 281 mg, 68% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 6.8 Hz, 1H), 8.55 (s, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 7.47 (ddd, *J* = 8.8, 6.8, 1.2 Hz, 1H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.05–6.96 (m, 3H), 2.95 (dd, *J* = 8.8, 4.4 Hz, 2H), 2.52 (dd, *J* = 18.8, 8.4 Hz, 1H), 2.48–2.40 (m, 1H), 2.38–2.28 (m, 1H),

2.22–2.15 (m, 4H), 1.71–1.42 (m, 6H), 0.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 220.7, 161.8, 148.4, 145.2, 141.3, 137.9, 137.2, 129.4, 127.8, 126.3, 121.9, 119.1, 114.0, 102.9, 50.3, 47.9, 44.1, 37.9, 35.8, 31.5, 29.6, 29.4, 26.3, 25.7, 21.5, 13.8; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₇N₂O₃ [M+H]⁺: 415.2016 found 415.2013.

2-12. Synthesis of 1AC-1AF



To a round-bottom flask containing a magnetic stirring bar were added methylpyridine (446 mg, 5.00 mL). То this mmol, 1.0 equiv) and MeCN (4.0 mixture was added *O*-(2,4dinitrophenyl)hydroxylamine^[10] (996 mg, 5.00 mmol, 1.0 equiv) in one portion. The mixture was stirred at 40 °C for 24 h. The solvent was removed under reduced pressure and the residue was triturated with Et₂O. The resulting solid was filtered and dried in vacuo. The obtained solid containing Naminopyridinium salt was used for the next step without further purification.

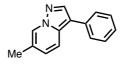
To a round-bottom flask containing a magnetic stirring bar were added a solution of the crude material in DMF (2.0 mL), potassium carbonate (967 mg, 7.00 mmol, 1.4 equiv) and ethyl propiolate (562 μ L, 5.50 mmol, 1.1 equiv) at room temperature. Air was introduced to the reaction mixture by diaphragm pump. The reaction mixture was stirred for 24 h. The solvent was removed *in vacuo*. The mixture was extracted with Et₂O and washed with brine. The combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] to afford the corresponding ethyl methylpyrazolo[1,5-*a*]pyridine-3-carboxylate.

To a round-bottom flask containing a magnetic stirring bar and ethyl methylpyrazolo[1,5-*a*]pyridine-3-carboxylate (1.0 equiv) were added THF (0.9 M), MeOH (0.9 M), H₂O (0.9 M), and 6.0 M NaOH aq. (2.0 equiv) at room temperature. The reaction mixture was stirred at 70 °C. After completion of the reaction, the mixture was adjusted to pH = 7 with DOWEX[®] 50W. The mixture was filtered, washed with MeOH, and the filtrate was concentrated *in vacuo* to afford the corresponding methylpyrazolo[1,5*a*]pyridine-3-carboxylic acid. The crude material was used for the next step without further purification.

A round-bottom flask containing a magnetic stirring bar and cesium carbonate (1.5 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (5.0 mol%), copper iodide (10 mol%), 1,10-phenanthroline (10 mol%), and methylpyrazolo[1,5-*a*]pyridine-3-carboxylic acid (1.0 equiv). The flask was placed under vacuum and refilled with N_2 gas three times. To this flask were added bromobenzene (1.0 equiv) and DMF (0.2 M). The mixture was heated under reflux and stirred for several hours. After cooled to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent, and then concentrated *in vacuo*. The residue was purified by Isolera[®] to afford the corresponding methyl-3-phenylpyrazolo[1,5-*a*]pyridine **1**.

7-Methyl-3-phenylpyrazolo[1,5-*a*]pyridine (1AC)

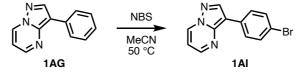
Purification by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) afforded **1AC** (533 mg, 51% yield over 4 steps) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.61 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.14 (dd, *J* = 8.8, 6.8 Hz, 1H), 6.67 (d, *J* = 6.8 Hz, 1H), 2.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 138.5, 137.3, 133.5, 128.9, 127.1, 126.1, 124.0, 115.0, 113.1, 111.4, 17.9; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₃N₂ [M+H]⁺: 209.1073 found 209.1072.


4-Methyl-3-phenylpyrazolo[1,5-a]pyridine (1AD)

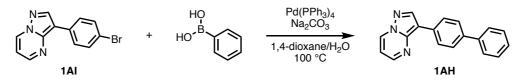
Purification by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) afforded **1AD** (294 mg, 28% yield over 4 steps) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 7.2 Hz, 1H), 7.89 (s, 1H), 7.41–7.34 (m, 5H), 6.84 (dt, *J* = 7.2, 1.2 Hz, 1H), 6.68 (t, *J* = 7.2 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 137.2, 134.1, 130.9, 128.8, 127.7, 126.8, 123.4, 114.3, 111.6, 19.8 (one peak is missing due to overlapping); HRMS (ESI) *m/z* calcd for C₁₄H₁₃N₂ [M+H]⁺: 209.1073 found 209.1072.

5-Methyl-3-phenylpyrazolo[1,5-*a*]pyridine (1AE)

Purification by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) afforded **1AE** (167 mg, 16% yield over 4 steps) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 6.8 Hz, 1H), 8.09 (s, 1H), 7.60–7.57 (m, 3H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.28 (t, *J* = 7.8 Hz, 1H), 6.61 (dd, *J* = 6.8, 1.6 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 137.1, 134.8, 133.5, 128.9, 128.2, 126.9, 126.0, 115.7, 114.6, 111.7, 21.4; HRMS (ESI) *m/z* calcd for C₁₄H₁₃N₂ [M+H]⁺: 209.1073 found 209.1073.

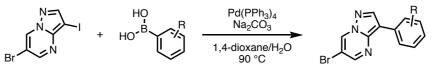


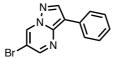
6-Methyl-3-phenylpyrazolo[1,5-a]pyridine (1AF)


Purification by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) afforded **1AF** (127 mg, 12% yield over 4 steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.08 (s, 1H), 7.73 (d, *J* = 9.2 Hz, 1H), 7.59 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 9.2 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.7, 135.5, 133.4, 128.9, 127.1, 126.90, 126.87, 126.0, 121.8, 116.8, 112.5, 18.1; HRMS (ESI) *m/z* calcd for C₁₄H₁₃N₂ [M+H]⁺: 209.1073 found 209.1072.

3. Preparation of Other Bicyclic or Tricyclic Azaarenes 1

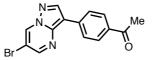
3-1. Synthesis of 1AH and 1AI


To a solution of **1AG** (78.1 mg, 0.400 mol, 1.0 equiv) in MeCN (2.0 mL) was added *N*-bromosuccinimide (NBS: 78.3 mg, 0.440 mmol, 1.1 equiv) in one portion at room temperature. The mixture was stirred at 50 °C for 24 h. After cooling the mixture to room temperature, the mixture was concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) to afford 3-(4-bromophenyl)pyrazolo[1,5-*a*]pyrimidine (**1AI**: 109 mg, quant.) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, *J* = 7.2, 1.6 Hz, 1H), 8.57 (dd, *J* = 3.6, 1.6 Hz, 1H), 8.42 (s, 1H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 6.87 (dd, *J* = 7.2, 3.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 144.8, 142.6, 135.4, 131.8, 130.8, 127.8, 120.1, 109.7, 108.2; HRMS (ESI) *m/z* calcd for C₁₂H₉BrN₃ [M+H]⁺: 273.9974 found 273.9973.

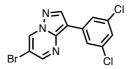

A round-bottom flask containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (23.1 mg, 20.0 μ mol, 5.0 mol%), **1AI** (109 mg, 0.400 mmol, 1.0 equiv), and phenylboronic acid (48.8 mg, 0.400 mmol, 1.0 equiv). The flask was placed under vacuum and refilled with N₂ gas three times. To the flask were added degassed 1.0 M Na₂CO₃ aq. (800 μ L, 0.800 mmol, 2.0 equiv) and 1,4-dioxane (3.2 mL) under stream of N₂ gas. The mixture was stirred at 100 °C for 18 h. After cooling the reaction mixture to room temperature, H₂O was added. The mixture was extracted with Et₂O and washed with brine. The

combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) to afford 3-([1,1'-biphenyl]-4-yl)pyrazolo[1,5-*a*]pyrimidine (**1AH**: 86.8 mg, 80% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, *J* = 6.8, 1.2 Hz, 1H), 8.59 (dd, *J* = 4.0, 1.2 Hz, 1H), 8.49 (s, 1H), 8.12 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 6.87 (dd, *J* = 6.8, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 144.9, 142.8, 140.9, 139.1, 135.4, 130.9, 128.8, 127.5, 127.2, 126.9, 126.7, 110.5, 108.1; HRMS (ESI) *m/z* calcd for C₁₈H₁₄N₃ [M+H]⁺: 272.1182 found 272.1180.

3-2. Synthesis of 1AJ-1AL

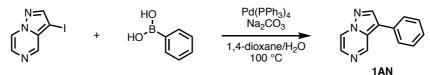


A round-bottom flask containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (5.0 mol%), 6-bromo-3-iodopyrazolo[1,5-*a*]pyrimidine^[11] (1.0 equiv), and aryl boronic acid (1.0 equiv). The flask was placed under vacuum and refilled with N₂ gas three times. To the flask were added degassed 1.0 M Na₂CO₃ aq. (2.0 equiv) and 1,4-dioxane (0.10 M) under stream of N₂ gas. The mixture was stirred at 90 °C for 24 h. After cooling the reaction mixture to room temperature, H₂O was added. The mixture was extracted with Et₂O and washed with brine. The combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] to afford the corresponding 3-aryl-6bromopyrazolo[1,5-*a*]pyrimidine **1**.

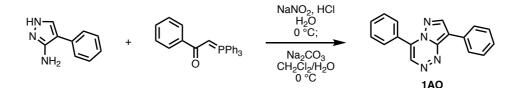

6-Bromo-3-phenylpyrazolo[1,5-a]pyrimidine (1AJ)

Purification by Isolera[®] (hexane/EtOAc = 99:1 to 19:1) afforded **1AJ** (203 mg, 74% yield, 1.00 mmol scale) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 2.4 Hz, 1H), 8.53 (d, *J* = 2.4 Hz, 1H), 8.41 (s, 1H), 8.00 (dd, *J* = 7.6, 1.2 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 143.1, 142.9, 135.0, 131.1, 128.8, 126.7, 126.3, 111.7, 103.7; HRMS (ESI) *m/z* calcd for C₁₂H₉BrN₃ [M+H]⁺: 273.9974 found 273.9974.

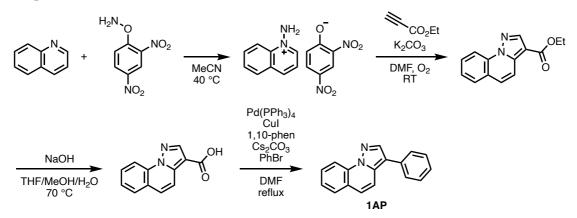
1-(4-(6-Bromopyrazolo[1,5-a]pyrimidin-3-yl)phenyl)ethan-1-one (1AK)


Purification by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) afforded **1AK** (128 mg, 51% yield, 0.800 mmol scale) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 2.0 Hz, 1H), 8.60 (d, *J* = 2.0 Hz, 1H), 8.48 (s, 1H), 8.14 (d, *J* = 8.8 Hz, 2H), 8.05 (d, *J* = 8.8 Hz, 2H), 2.64 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 150.6, 143.5, 143.4, 136.1, 135.3, 135.1, 129.0, 126.0, 110.5, 104.3, 26.6; HRMS (ESI) *m/z* calcd for C₁₄H₁₁BrN₃O [M+H]⁺: 316.0080 found 316.0081.

6-Bromo-3-(3,5-dichlorophenyl)pyrazolo[1,5-a]pyrimidine (1AL)


Purification by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) afforded **1AL** (189 mg, 69% yield, 0.800 mmol scale) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 2.4 Hz, 1H), 8.59 (d, *J* = 2.4 Hz, 1H), 8.39 (s, 1H), 7.95 (d, *J* = 2.0 Hz, 2H), 7.27 (t, *J* = 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 143.1, 135.4, 134.1, 126.5, 124.2, 114.7, 108.9, 104.6; HRMS (ESI) *m/z* calcd for C₁₂H₆BrCl₂N₃ [M]⁺: 340.9117 found 340.9115.

3-3. Synthesis of 1AN

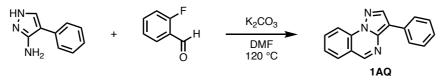

A round-bottom flask containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (57.7 mg, 50.0 µmol, 5.0 mol%), 3-iodopyrazolo[1,5-*a*]pyrazine^[12] (245 mg, 1.00 mmol, 1.0 equiv), and phenylboronic acid (121 mg, 1.00 mmol, 1.0 equiv). The flask was placed under vacuum and refilled with N₂ gas three times. To the flask were added degassed 1.0 M Na₂CO₃ aq. (2.0 mL, 2.00 mmol, 2.0 equiv) and 1,4-dioxane (8.0 mL) under stream of N₂ gas. The mixture was stirred at 100 °C for 12 h. After cooling the reaction mixture to room temperature, H₂O was added. The mixture was extracted with Et₂O and washed with brine. The combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) to afford 3-phenylpyrazolo[1,5-*a*]pyrazine (**1AN**: 195 mg, quant.) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.30 (d, *J* = 1.6 Hz, 1H), 8.40 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.21 (s, 1H), 7.90 (d, *J* = 4.8 Hz, 1H), 7.66–7.63 (m, 2H), 7.53–7.49 (m, 2H), 7.40–7.36 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.3, 132.4, 131.4, 129.5, 129.3, 127.5, 127.4, 122.0, 115.7; HRMS (ESI) *m/z* calcd for C₁₂H₁₀N₃ [M+H]⁺: 196.0869 found 196.0869.

3-4. Synthesis of 1AO

To a round-bottom flask containing a magnetic stirring bar were added 4-phenyl-1*H*-pyrazol-3amine^[13] (79.6 mg, 0.500 mmol, 1.0 equiv) and conc. HCl (0.20 mL) and H₂O (0.40 mL). To the mixture was added a solution of NaNO₂ (38.0 mg, 0.550 mmol, 1.1 equiv) in H₂O (0.13 mL) dropwise at 0 °C. After the mixture was stirred for 30 min at 0 °C, CH₂Cl₂ (4.0 mL) and Na₂CO₃ aq. (2.2 mL) were added. To the resulting mixture was added a solution of 1-phenyl-2-(triphenyl- λ^5 -phosphaneylidene)ethan-1one^[14] (209 mg, 0.550 mmol, 1.1 equiv) in CH₂Cl₂ (1.9 mL) dropwise at 0 °C. After stirring for 5 min, CH₂Cl₂ and H₂O added and the mixture was extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) to afford 4,8-diphenylpyrazolo[5,1-*c*][1,2,4]triazine (**1AO**: 91.4 mg, 68% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.61 (s, 1H), 8.26 (dd, *J* = 8.8, 1.2 Hz, 2H), 8.23–8.21 (m, 2H), 7.68–7.63 (m, 3H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 142.8, 134.0, 132.1, 131.8, 130.3, 129.4, 129.0, 128.9, 127.5, 127.4, 127.1, 113.5; HRMS (ESI) *m/z* calcd for C₁₇H₁₃N₄ [M+H]⁺: 273.1135 found 273.1133.

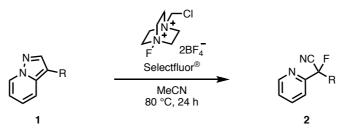
3-5. Preparation of 1AP

To a round-bottom flask containing a magnetic stirring bar were added quinoline (646 mg, 5.00 mmol, 1.0 equiv) and MeCN (4.0 mL). To this mixture was added O-(2,4-dinitrophenyl)hydroxylamine^[10] (996 mg, 5.00 mmol, 1.0 equiv) in one portion. The mixture was stirred at 40 °C for 24 h. The solvent was removed under reduced pressure and the residue was triturated with Et₂O. The resulting solid was filtered and dried *in vacuo*. The obtained solid containing *N*-aminoquinolinium salt was used for the next step without further purification.


To a round-bottom flask containing a magnetic stirring bar and a solution of the crude material in DMF (2.0 mL) were added potassium carbonate (967 mg, 7.00 mmol, 1.4 equiv) and ethyl propiolate (562 μ L, 5.50 mmol, 1.1 equiv) at room temperature. Air was introduced to the reaction mixture by diaphragm

pump. The reaction mixture was stirred for 24 h. The solvent was removed *in vacuo*, and the mixture was extracted with Et_2O . The combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) to afford ethyl pyrazolo[1,5-*a*]quinoline-3-carboxylate (420 mg, 35% yield over two steps) as a pale yellow solid.

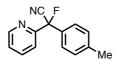
To a round-bottom flask containing a magnetic stirring bar and ethyl pyrazolo[1,5-*a*]quinoline-3carboxylate (365 mg, 1.52 mmol, 1.0 equiv) were added THF (1.7 mL), MeOH (1.7 mL), H₂O (1.7 mL), and 6.0 M NaOH aq. (500 μ L, 3.04 mmol, 2.0 equiv) at room temperature. The reaction mixture was stirred at 70 °C. After completion of the reaction, the mixture was adjusted to pH = 7 with DOWEX[®] 50W. The mixture was filtered and washed with MeOH. The filtrate was concentrated *in vacuo* to afford pyrazolo[1,5-*a*]quinoline-3-carboxylic acid. The crude material was used for the next step without further purification.


A round-bottom flask containing a magnetic stirring bar and cesium carbonate (744 mg, 2.28 mmol, 1.5 equiv) was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this flask were added Pd(PPh₃)₄ (87.8 mg, 76.0 µmol, 5.0 mol%), copper iodide (28.9 mg, 1.52 mmol, 10 mol%), 1,10-phenanthroline (27.3 mg, 1.52 mmol, 10 mol%), and the crude material containing pyrazolo[1,5-*a*]quinoline-3-carboxylic acid. The flask was placed under vacuum and refilled with N₂ gas three times. To this flask were added bromobenzene (160 µL, 1.52 mmol, 1.0 equiv) and DMF (7.1 mL). The mixture was heated under reflux and stirred for 18 h. After cooled to room temperature, the mixture was passed through a short silica-gel pad with EtOAc as an eluent, and then concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 49:1 to 19:1) to afford 3-phenylpyrazolo[1,5-*a*]quinoline (**1AP**: 87.9 mg, 24% yield over two steps) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 8.8 Hz, 1H), 8.20 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.70 (td, *J* = 8.8, 1.2 Hz, 1H), 7.63 (d, *J* = 6.8 Hz, 2H), 7.50–7.45 (m, 4H), 7.34 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 134.7, 133.0, 129.6, 129.0, 128.3, 127.5, 126.6, 125.1, 124.9, 123.4, 115.93, 115.86, 115.5 (one peak is missing due to overlapping); HRMS (ESI) *m/z* calcd for C₁₇H₁₃N₂ [M+H]⁺: 245.1073 found 245.1071.

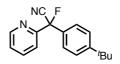
3-6. Synthesis of 1AQ

To a round-bottom flask containing a magnetic stirring bar were added 4-phenyl-1*H*-pyrazol-3amine^[13] (477 mg, 3.00 mmol, 1.0 equiv), 2-fluorobenzaldehyde (372 mg, 3.00 mmol, 1.0 equiv), potassium carbonate (1.24 g, 9.00 mmol, 3.0 equiv), and DMF (10 mL) at room temperature. The mixture was stirred at 120 °C for 24 h. After cooling the mixture to room temperature, H₂O was added. The mixture was extracted with Et₂O and washed with brine. The combined organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 4:1) to afford 3-phenylpyrazolo[1,5-*a*]quinazoline (**1AQ**: 147 mg, 20% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.48 (d, *J* = 8.4 Hz, 1H), 8.40 (s, 1H), 8.06 (dd, *J* = 8.4, 1.2 Hz, 2H), 7.96 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.91 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.56 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.48 (dd, *J* = 8.4, 7.2 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 142.0, 140.7, 136.4, 134.2, 131.9, 128.8, 128.3, 126.7, 126.6, 125.4, 118.7, 114.7, 113.7; HRMS (ESI) *m/z* calcd for C₁₆H₁₂N₃ [M+H]⁺: 246.1025 found 246.1025.

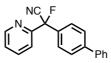
4. Ring-Opening Fluorination of Bicyclic Azaarenes


General Procedure

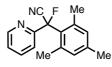
An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube were added azaarenes **1** (0.200 mmol, 1.0 equiv) and Selectfluor[®] (70.8 mg, 0.200 mmol, 1.0 equiv). The tube was placed under vacuum and refilled with N₂ gas three times. To this tube was added MeCN (1.0 mL). The tube was sealed with a screw cap and then heated at 80 °C for 24 h with stirring. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. The residue was purified to afford the corresponding fluorinated compound **2**.


2-Fluoro-2-phenyl-2-(pyridin-2-yl)acetonitrile (2A)

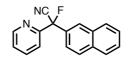
Purification by PTLC (hexane/EtOAc = 4:1) afforded **2A** (41.2 mg, 97% yield) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dt, *J* = 4.4, 0.8 Hz, 1H), 7.82 (td, *J* = 7.6, 1.2 Hz, 1H), 7.60 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.58–7.53 (m, 2H), 7.46–7.40 (m, 3H), 7.38–7.32 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1 (d, *J*_{C-F} = 28.9 Hz), 149.7, 137.6, 135.8 (d, *J*_{C-F} = 24.1 Hz), 130.2, 128.9, 125.8 (d, *J*_{C-F} = 5.9 Hz), 124.5, 119.6 (d, *J*_{C-F} = 5.9 Hz), 116.7 (d, *J*_{C-F} = 33.7 Hz), 92.0 (d, *J*_{C-F} = 186.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –142.2; HRMS (ESI) *m/z* calcd for C₁₃H₁₀FN₂ [M+H]⁺: 213.0823 found 213.0821.


2-Fluoro-2-(pyridin-2-yl)-2-(p-tolyl)acetonitrile (2B)

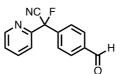
Purification by PTLC (hexane/EtOAc = 4:1) afforded **2B** (30.8 mg, 68% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.8 Hz, 1H), 7.82 (td, *J* = 8.0, 1.2 Hz, 1H), 7.61 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.35 (ddd, *J* = 7.6, 4.8, 1.2 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.4 (d, *J*_{C-F} = 28.9 Hz), 149.7, 140.5, 137.5, 133.0 (d, *J*_{C-F} = 24.0 Hz), 129.6, 125.9 (d, *J*_{C-F} = 5.8 Hz), 124.4, 119.7 (d, *J*_{C-F} = 4.8 Hz), 116.8 (d, *J*_{C-F} = 34.6 Hz), 92.0 (d, *J*_{C-F} = 185.8 Hz), 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -140.3; HRMS (ESI) *m/z* calcd for C₁₄H₁₁FN₂Na [M+Na]⁺: 249.0799 found 249.0798.


2-(4-(tert-Butyl)phenyl)-2-fluoro-2-(pyridin-2-yl)acetonitrile (2C)

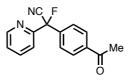
Purification by PTLC (hexane/EtOAc = 4:1) afforded **2C** (31.1 mg, 58% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 5.2 Hz, 1H), 7.82 (td, *J* = 7.6, 1.6 Hz, 1H), 7.62 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.49–7.41 (m, 4H), 7.35 (ddd, *J* = 7.6, 5.2, 0.8 Hz, 1H), 1.30 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (d, *J*_{C-F} = 29.1 Hz), 153.5, 149.7, 137.5, 132.9 (d, *J*_{C-F} = 24.2 Hz), 125.9, 125.7 (d, *J*_{C-F} = 4.8 Hz), 124.4, 119.7 (d, *J*_{C-F} = 4.8 Hz), 116.8 (d, *J*_{C-F} = 33.0 Hz), 92.0 (d, *J*_{C-F} = 185.2 Hz), 34.7, 31.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –140.3; HRMS (ESI) *m*/*z* calcd for C₁₇H₁₇FN₂Na [M+Na]⁺: 291.1268 found 291.1266.


2-([1,1'-Biphenyl]-4-yl)-2-fluoro-2-(pyridin-2-yl)acetonitrile (2D)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2D** (32.9 mg, 57% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.85 (td, *J* = 7.6, 1.6 Hz, 1H), 7.67–7.61 (m, 5H), 7.58–7.55 (m, 2H), 7.47–7.43 (m, 2H), 7.39–7.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2 (d, *J*_{C-F} = 29.1 Hz), 149.8, 143.2, 139.8, 137.6, 134.6 (d, *J*_{C-F} = 23.2 Hz), 128.9, 128.0, 127.7, 127.2, 126.4 (d, *J*_{C-F} = 5.8 Hz), 124.6, 119.7 (d, *J*_{C-F} = 5.8 Hz), 116.7 (d, *J*_{C-F} = 34.9 Hz), 91.9 (d, *J*_{C-F} = 187.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –141.6; HRMS (ESI) *m/z* calcd for C₁₉H₁₄FN₂ [M+H]⁺: 289.1136 found 289.1133.

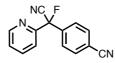

2-Fluoro-2-mesityl-2-(pyridin-2-yl)acetonitrile (2E)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2E** (20.9 mg, 41% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 4.4 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.41–7.35 (m, 2H), 6.90 (s, 2H), 2.30–2.26 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 155.4 (d, *J*_{C-F} = 23.1 Hz), 149.8, 139.2, 137.6, 136.3, 131.7, 128.6 (d, *J*_{C-F} = 21.2 Hz), 124.9 (d, *J*_{C-F} = 2.8 Hz), 121.6 (d, *J*_{C-F} = 2.9 Hz), 116.6 (d, *J*_{C-F} = 35.7 Hz), 94.8 (d, *J*_{C-F} = 182.0 Hz), 22.5 (d, *J*_{C-F} = 7.8 Hz), 20.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –128.4; HRMS (ESI) *m/z* calcd for C₁₆H₁₆FN₂ [M+H]⁺: 255.1292 found 255.1291.

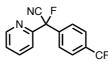

2-Fluoro-2-(naphthalen-2-yl)-2-(pyridin-2-yl)acetonitrile (2F)

Purification by PTLC (hexane/EtOAc = 4:1) and GPC afforded **2F** (28.3 mg, 54% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.4 Hz, 1H), 8.13 (s, 1H), 7.93–7.80 (m, 4H), 7.67 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.57–7.53 (m, 3H), 7.37 (dd, *J* = 7.6, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.2 (d, *J*_{C-F} = 29.0 Hz), 149.8, 137.6, 133.7, 132.9 (d, *J*_{C-F} = 24.1 Hz), 132.6, 129.1, 128.7, 127.7, 127.6, 127.0, 125.8 (d, *J*_{C-F} = 6.7 Hz), 124.6, 122.4 (d, *J*_{C-F} = 4.8 Hz), 119.8 (d, *J*_{C-F} = 5.9 Hz), 116.7 (d, *J*_{C-F} = 32.4 Hz), 92.3 (d, *J*_{C-F} = 185.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –141.9; HRMS (ESI) *m*/*z* calcd for C₁₇H₁₁FN₂Na [M+Na]⁺: 285.0799 found 285.0798.

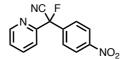
2-Fluoro-2-(4-formylphenyl)-2-(pyridin-2-yl)acetonitrile (2G)


Purification by PTLC (hexane/EtOAc = 4:1) afforded **2G** (38.4 mg, 80% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.1 (s, 1H), 8.67 (dd, *J* = 4.0, 0.8 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.85 (td, *J* = 8.0, 1.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.65 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.39 (dd, *J* = 8.0, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.2, 154.4 (d, *J*_{C-F} = 28.9 Hz), 149.9, 141.5 (d, *J*_{C-F} = 24.0 Hz), 137.8, 137.3, 130.1, 126.4 (d, *J*_{C-F} = 5.9 Hz), 124.9, 119.5 (d, *J*_{C-F} = 5.8 Hz), 116.1 (d, *J*_{C-F} = 32.7 Hz), 91.4 (d, *J*_{C-F} = 187.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -146.2; HRMS (ESI) *m/z* calcd for C₁₄H₁₀FN₂O [M+H]⁺: 241.0772 found 241.0770.

2-(4-Acetylphenyl)-2-fluoro-2-(pyridin-2-yl)acetonitrile (2H)

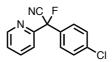

Purification by filtration with chloroform afforded **2H** (50.8 mg, quant.) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 4.4 Hz, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.85 (td, J = 7.6, 2.0 Hz, 1H), 7.70 S22

(d, J = 8.4 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.38 (dd, J = 7.6, 4.4 Hz, 1H), 2.61 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.0, 154.6 (d, $J_{C-F} = 28.9$ Hz), 149.8, 140.2 (d, $J_{C-F} = 24.0$ Hz), 138.2, 137.8, 128.8, 126.0 (d, $J_{C-F} = 5.8$ Hz), 124.8, 119.5 (d, $J_{C-F} = 5.8$ Hz), 116.2 (d, $J_{C-F} = 32.7$ Hz), 91.5 (d, $J_{C-F} = 187.8$ Hz), 26.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –145.7; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂FN₂O [M+H]⁺: 255.0928 found 255.0927.


4-(Cyanofluoro(pyridin-2-yl)methyl)benzonitrile (2I)

Purification by filtration with chloroform afforded **2I** (45.6 mg, 96% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (dt, *J* = 4.8, 1.2 Hz, 1H), 7.86 (td, *J* = 8.0, 1.6 Hz, 1H), 7.76–7.73 (m, 4H), 7.65–7.63 (m, 1H), 7.40 (dd, *J* = 8.0, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.0 (d, *J*_{C-F} = 29.1 Hz), 149.9, 140.3 (d, *J*_{C-F} = 24.2 Hz), 137.9, 132.6, 126.4 (d, *J*_{C-F} = 6.8 Hz), 125.0, 119.4 (d, *J*_{C-F} = 5.8 Hz), 117.7, 115.8 (d, *J*_{C-F} = 33.0 Hz), 114.2, 91.0 (d, *J*_{C-F} = 189.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –147.5; HRMS (ESI) *m/z* calcd for C₁₄H₉FN₃ [M+H]⁺: 238.0775 found 238.0776.

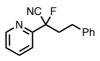
2-Fluoro-2-(pyridin-2-yl)-2-(4-(trifluoromethyl)phenyl)acetonitrile (2J)


Purification by PTLC (hexane/EtOAc = 4:1) afforded **2J** (46.0 mg, quant.) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 5.2 Hz, 1H), 7.85 (td, *J* = 7.6, 1.2 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.39 (dd, *J* = 8.0, 5.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4 (d, *J*_{C-F} = 28.2 Hz), 149.9, 139.5 (d, *J*_{C-F} = 24.0 Hz), 137.8, 132.3 (q, *J*_{C-F} = 32.8 Hz), 126.2 (d, *J*_{C-F} = 5.8 Hz), 126.0 (q, *J*_{C-F} = 3.8 Hz), 124.9, 123.5 (q, *J*_{C-F} = 273.9 Hz), 119.5 (d, *J*_{C-F} = 5.9 Hz), 116.1 (d, *J*_{C-F} = 32.8 Hz), 91.3 (d, *J*_{C-F} = 188.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0, -146.1; HRMS (ESI) *m*/*z* calcd for C₁₄H₉F₄N₂ [M+H]⁺: 281.0696 found 281.0695.

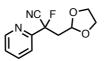
2-Fluoro-2-(4-nitrophenyl)-2-(pyridin-2-yl)acetonitrile (2K)

Purification by filtration with chloroform afforded **2K** (51.4 mg, quant.) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dd, J = 4.8, 1.2 Hz, 1H), 8.30 (d, J = 9.2 Hz, 2H), 7.87 (td, J = 7.6, 1.2 Hz, 1H), 7.83 (d, J = 9.2 Hz, 2H), 7.67 (dd, J = 7.6, 0.8 Hz, 1H), 7.40 (dd, J = 7.6, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.0 (d, J_{C-F} = 28.1 Hz), 150.0, 148.8, 142.0 (d, J_{C-F} = 24.2 Hz), 138.0, 126.8 (d, J_{C-F}

= 6.9 Hz), 125.0, 124.1, 119.4 (d, J_{C-F} = 5.8 Hz), 115.8 (d, J_{C-F} = 32.9 Hz), 90.9 (d, J_{C-F} = 189.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –147.5; HRMS (ESI) *m*/*z* calcd for C₁₃H₉FN₃O₂ [M+H]⁺: 258.0673 found 258.0672.


2-(4-Chlorophenyl)-2-fluoro-2-(pyridin-2-yl)acetonitrile (2L)

Purification by filtration with chloroform afforded **2L** (49.3 mg, quant.) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.8 Hz, 1H), 7.84 (td, *J* = 7.6, 1.2 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.38 (dd, *J* = 7.6, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7 (d, *J*_{C-F} = 29.1 Hz), 149.8, 137.7, 136.5, 134.4 (d, *J*_{C-F} = 24.2 Hz), 129.2, 127.3 (d, *J*_{C-F} = 5.9 Hz), 124.7, 119.5 (d, *J*_{C-F} = 5.9 Hz), 116.3 (d, *J*_{C-F} = 32.9 Hz), 91.4 (d, *J*_{C-F} = 188.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –143.0; HRMS (ESI) *m/z* calcd for C₁₃H₉ClFN₂ [M+H]⁺: 247.0433 found 247.0432.


2-Fluoro-2-(pyridin-2-yl)butanenitrile (2M)

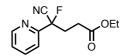
Purification by filtration with chloroform afforded **2M** (26.3 mg, 80% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dd, *J* = 4.8, 0.8 Hz, 1H), 7.83 (td, *J* = 8.0, 0.8 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.36 (dd, *J* = 8.0, 4.8 Hz, 1H), 2.49–2.27 (m, 2H), 1.13 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6 (d, *J*_{C-F} = 27.0 Hz), 149.6, 137.4, 124.4, 119.4 (d, *J*_{C-F} = 6.8 Hz), 116.8 (d, *J*_{C-F} = 33.7 Hz), 92.7 (d, *J*_{C-F} = 185.9 Hz), 33.2 (d, *J*_{C-F} = 23.1 Hz), 7.7 (d, *J*_{C-F} = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –157.1 (t, *J*_{F-H} = 20.9 Hz); HRMS (ESI) *m*/*z* calcd for C₉H₁₀FN₂ [M+H]⁺: 165.0823 found 165.0823.

2-Fluoro-4-phenyl-2-(pyridin-2-yl)butanenitrile (2N)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2N** (44.7 mg, 93% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 5.2 Hz, 1H), 7.83 (t, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.37 (dd, *J* = 8.0, 5.2 Hz, 3H), 7.31–7.24 (m, 2H), 7.23–7.15 (m, 3H), 3.01–2.78 (m, 2H), 2.78–2.50 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4 (d, *J*_{C-F} = 27.0 Hz), 149.7, 139.4, 137.5, 128.6, 128.3, 126.4, 124.6, 119.4 (d, *J*_{C-F} = 6.8 Hz), 116.7 (d, *J*_{C-F} = 33.6 Hz), 91.7 (d, *J*_{C-F} = 185.9 Hz), 41.4 (d, *J*_{C-F} = 23.0 Hz), 29.8 (d, *J*_{C-F} = 2.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –156.0 (t, *J*_{F-H} = 24.1 Hz); HRMS (ESI) *m/z* calcd for C₁₅H₁₄FN₂ [M+H]⁺: 241.1136 found 241.1134.

3-(1,3-Dioxolan-2-yl)-2-fluoro-2-(pyridin-2-yl)propanenitrile (2O)

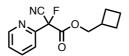
Purification by PTLC (hexane/EtOAc = 4:1) afforded **2O** (20.4 mg, 46% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.84 (td, *J* = 7.6, 1.6 Hz, 1H), 7.64 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.38 (dd, *J* = 7.6, 4.8 Hz, 1H), 5.20 (t, *J* = 4.8 Hz, 1H), 4.04–3.97 (m, 2H), 3.92–3.84 (m, 2H), 2.88–2.64 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 154.2 (d, *J*_{C-F} = 27.0 Hz), 149.6, 137.6, 124.6, 119.4 (d, *J*_{C-F} = 6.8 Hz), 116.3 (d, *J*_{C-F} = 33.6 Hz), 100.1 (d, *J*_{C-F} = 2.9 Hz), 89.1 (d, *J*_{C-F} = 185.8 Hz), 65.0 (d, *J*_{C-F} = 3.9 Hz), 43.2 (d, *J*_{C-F} = 22.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –153.7 (dd, *J*_{F-H} = 29.0, 17.3 Hz); HRMS (ESI) *m/z* calcd for C₁₁H₁₂FN₂O₂ [M+H]⁺: 223.0877 found 223.0878.


2-Cyano-2-fluoro-2-(pyridin-2-yl)ethyl acetate (2P)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2P** (37.5 mg, 90% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.87 (td, *J* = 7.6, 1.2 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.43 (dd, *J* = 7.6, 4.8 Hz, 1H), 4.79 (dd, *J*_{H-F} = 44.8 Hz, *J* = 12.8 Hz, 1H), 4.74 (dd, *J*_{H-F} = 34.4 Hz, *J* = 12.8 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 151.2 (d, *J*_{C-F} = 26.1 Hz), 149.8, 137.7, 125.2, 120.2 (d, *J*_{C-F} = 5.8 Hz), 114.8 (d, *J*_{C-F} = 33.7 Hz), 89.7 (d, *J*_{C-F} = 190.7 Hz), 66.2 (d, *J*_{C-F} = 23.0 Hz), 20.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –160.8 (dd, *J*_{F-H} = 25.8, 14.5 Hz); HRMS (ESI) *m/z* calcd for C₁₀H₉FN₂O₂ [M+H]⁺: 209.0721 found 209.0720.

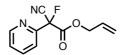
2-Fluoro-2-(pyridin-2-yl)malononitrile (2Q)

Purification by filtration afforded **2S** (27.4 mg, 85% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 4.8 Hz, 1H), 7.99 (td, *J* = 7.6, 1.6 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.61–7.56 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 148.0 (d, *J*_{C-F} = 25.0 Hz), 138.6, 127.0, 120.8 (d, *J*_{C-F} = 2.9 Hz), 110.6 (d, *J*_{C-F} = 35.6 Hz), 78.7 (d, *J*_{C-F} = 196.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -138.0.


Ethyl 4-cyano-4-fluoro-4-(pyridin-2-yl)butanoate (2R)

Purification by filtration with chloroform afforded **2R** (41.6 mg, 88% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 5.6 Hz, 1H), 7.84 (td, *J* = 7.6, 1.6 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.38 (dd, *J* = 7.6, 5.6 Hz, 1H), 4.14 (q, *J* = 7.2 Hz, 2H), 2.83–2.53 (m, 4H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 153.9 (d, *J*_{C-F} = 26.1 Hz), 149.7, 137.6, 124.7, 119.4 (d, *J*_{C-F} = 6.8 Hz), 116.3 (d, *J*_{C-F} = 33.7 Hz), 91.2 (d, *J*_{C-F} = 186.9 Hz), 60.9, 34.8 (d, *J*_{C-F} = 23.1 Hz), 28.5 (d, *J*_{C-F} = 3.8 Hz), 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –156.3 (t, *J*_{F-H} = 20.4 Hz); HRMS (ESI) *m/z* calcd for C₁₂H₁₃FN₂O₂Na [M+Na]⁺: 259.0853 found 259.0852.

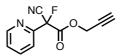
Ethyl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2S)


Purification by filtration with chloroform afforded **2S** (40.4 mg, 97% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 5.2 Hz, 1H), 7.91 (td, *J* = 7.6, 1.6 Hz, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.48 (dd, *J* = 7.6, 5.2 Hz, 1H), 4.50–4.30 (m, 2H), 1.33 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.0 (d, *J*_{C-F} = 28.0 Hz), 150.6 (d, *J*_{C-F} = 26.2 Hz), 149.8, 137.9, 125.7, 120.8 (d, *J*_{C-F} = 3.8 Hz), 113.5 (d, *J*_{C-F} = 32.9 Hz), 87.5 (d, *J*_{C-F} = 199.4 Hz), 64.4, 13.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –148.0; HRMS (ESI) *m*/*z* calcd for C₁₀H₉FN₂O₂Na [M+Na]⁺: 231.0540 found 231.0539.

Cyclobutylmethyl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2T)

Purification by filtration with chloroform afforded **2T** (46.2 mg, 93% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.4 Hz, 1H), 7.89 (td, J = 8.0, 1.2 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H),

7.51–7.40 (m, 1H), 4.31 (d, J = 6.4 Hz, 2H), 2.73–2.60 (m, 1H), 2.09–1.66 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, $J_{C-F} = 27.9$ Hz), 150.8 (d, $J_{C-F} = 25.0$ Hz), 149.9, 137.9, 125.7, 120.9 (d, $J_{C-F} = 3.8$ Hz), 113.5 (d, $J_{C-F} = 33.6$ Hz), 87.6 (d, $J_{C-F} = 197.3$ Hz), 71.5, 33.6, 24.3, 18.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –148.0; HRMS (ESI) *m/z* calcd for C₁₃H₁₄FN₂O₂ [M+H]⁺: 249.1034 found 249.1033.


Allyl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2U)

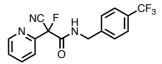
Purification by PTLC (hexane/EtOAc = 8:1) afforded **2U** (39.6 mg, 90% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.8 Hz, 1H), 7.89 (td, *J* = 7.6, 2.0 Hz, 1H), 7.27 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.48–7.44 (m, 1H), 5.95–5.84 (m, 1H), 5.40–5.28 (m, 2H), 4.88–4.77 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8 (d, *J*_{C-F} = 28.9 Hz), 150.6 (d, *J*_{C-F} = 26.1 Hz), 149.9, 137.9, 129.9, 125.8, 120.9 (d, *J*_{C-F} = 4.8 Hz), 120.1, 113.4 (d, *J*_{C-F} = 32.8 Hz), 87.5 (d, *J*_{C-F} = 197.4 Hz), 68.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –148.0; HRMS (ESI) *m/z* calcd for C₁₁H₁₀FN₂O₂ [M+H]⁺: 221.0721 found 221.0720.

Benzyl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2V)

Purification by filtration with chloroform afforded **2V** (44.9 mg, 83% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 4.8 Hz, 1H), 7.86 (td, *J* = 7.6, 1.2 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.46–7.42 (m, 1H), 7.36–7.29 (m, 5H), 5.36 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9 (d, *J*_{C-F} = 27.9 Hz), 150.5 (d, *J*_{C-F} = 25.0 Hz), 149.8, 137.9, 133.7, 128.8, 128.6, 128.2, 125.7, 121.0 (d, *J*_{C-F} = 3.8 Hz), 113.3 (d, *J*_{C-F} = 32.7 Hz), 87.6 (d, *J*_{C-F} = 197.4 Hz), 69.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –148.2; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂FN₂O₂ [M+H]⁺: 271.0877 found 271.0877.

Prop-2-yn-1-yl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2W)

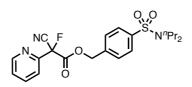
Purification by filtration with chloroform afforded **2W** (43.6 mg, quant.) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.90 (td, *J* = 7.6, 1.2 Hz, 1H), 7.75 (dt, *J* = 7.6, 0.8 Hz, 1H), 7.50–7.44 (m, 1H), 4.91 (dd, *J* = 2.0, 0.8 Hz, 2H), 2.56 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, *J*_{C-F} = 28.9 Hz), 150.3 (d, *J*_{C-F} = 25.0 Hz), 150.0, 138.0, 125.9, 121.1 (d, *J*_{C-F} = 3.8 Hz), 113.1 (d, *J*_{C-F} = 32.7 Hz), 87.4 (d, *J*_{C-F} = 199.4 Hz), 76.9, 75.3, 55.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –147.5; HRMS (ESI) *m*/*z* calcd for C₁₁H₈FN₂O₂ [M+H]⁺: 219.0564 found 219.0564.


Phenyl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2X)

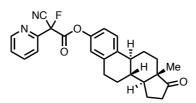
Purification by filtration with chloroform afforded **2X** (42.5 mg, 83% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 4.0 Hz, 1H), 7.95 (td, *J* = 7.2, 1.6 Hz, 1H), 7.85 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.53–7.49 (m, 1H), 7.41 (t, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.6 (d, *J*_{C-F} = 28.2 Hz), 150.6 (d, *J*_{C-F} = 25.3 Hz), 150.1 (d, *J*_{C-F} = 4.8 Hz), 149.9, 138.2, 129.7, 127.0, 126.0, 121.4 (d, *J*_{C-F} = 2.8 Hz), 120.7 (d, *J*_{C-F} = 11.6 Hz), 113.3 (d, *J*_{C-F} = 33.9 Hz), 87.4 (d, *J*_{C-F} = 198.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –146.5; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₀FN₂O₂ [M+H]⁺: 257.0721 found 257.0719.

2-Cyano-2-fluoro-2-(pyridin-2-yl)acetic acid (2Y)

The reaction was conducted with Selectfluor[®] (5.0 equiv) at 50 °C. After the reaction, the solution was concentrated *in vacuo*. To the crude material containing **2Y** was added EtOH (1.0 mL). The mixture was stirred with refluxing for 24 h. After cooling the reaction mixture to room temperature, the reaction was quenched with NaHCO₃ aq. The mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) to afford **2S** (11.8 mg, 31% yield) as a colorless oil.

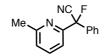

2-Cyano-2-fluoro-2-(pyridin-2-yl)-*N*-(4-(trifluoromethyl)benzyl)acetamide (2Z)

The reaction was performed at -30 °C. Purification by PTLC (chloroform/EtOAc = 10:1) afforded **2Z** (26.3 mg, 39% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.4 Hz, 1H), 7.90 (td, *J* = 8.0, 1.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.48 (ddd, *J* = 8.0, 4.4, 1.6 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.32 (brs, 1H), 4.72–4.53 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9 (d, *J*_{C-F} = 24.2 Hz), 150.6 (d, *J*_{C-F} = 24.2 Hz), 150.0, 140.6, 138.1, 130.1 (q, *J*_{C-F} = 32.9 Hz), 127.8, 125.8, 123.9 (q, *J*_{C-F} = 273.5 Hz), 114.0 (d, *J*_{C-F} = 33.0 Hz), 88.1 (d, *J*_{C-F} = 202.7 Hz), 43.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.7, –150.3; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₂F₄N₃O [M+H]⁺: 338.0911 found 338.0911.


3-Fluoropyrazolo[1,5-*a*]pyridine (2Z')

Purification by PTLC (chloroform/EtOAc = 10:1) afforded **2Z'** as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.80 (d, *J*_{H-F} = 3.6 Hz, 1H), 7.51 (dt, *J* = 8.8, 1.2 Hz, 1H), 7.07 (dd, *J* = 8.8, 6.8 Hz, 1H), 6.71 (td, *J* = 6.8, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 140.5 (d, *J*_{C-F} = 244.3 Hz), 128.3, 127.5, 127.4 (d, *J*_{C-F} = 11.6 Hz), 122.2 (d, *J*_{C-F} = 1.9 Hz), 115.2 (d, *J*_{C-F} = 4.9 Hz), 111.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –183.9; HRMS (ESI) *m*/*z* calcd for C₇H₆FN₂ [M+H]⁺: 137.0510 found 137.0509.

4-(N,N-Dipropylsulfamoyl)benzyl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2AA)


Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AA** (85.8 mg, 99% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.90 (td, *J* = 8.0, 1.2 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.49–7.43 (m, 3H), 5.42 (s, 2H), 3.07 (t, *J* = 7.6 Hz, 4H), 1.61–1.51 (m, 4H), 0.87 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8 (d, *J*_{C-F} = 28.9 Hz), 150.4 (d, *J*_{C-F} = 26.1 Hz), 149.9, 140.6, 138.1, 128.2, 127.4, 125.9, 121.1 (d, *J*_{C-F} = 3.8 Hz), 113.3 (d, *J*_{C-F} = 33.7 Hz), 87.4 (d, *J*_{C-F} = 198.4 Hz), 68.2, 50.1, 22.0, 11.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –147.9; HRMS (ESI) *m/z* calcd for C₂₁H₂₅FN₃O₄S [M+H]⁺: 434.1544 found 434.1545.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 2-cyano-2-fluoro-2-(pyridin-2-yl)acetate (2AB)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AB** (63.1 mg, 73% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.4 Hz, 1H), 7.94 (td, *J* = 7.6, 2.0 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H), 7.54–7.48 (m, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.91 (s, 1H), 2.91 (dd, *J* = 8.8, 4.0 Hz, 2H), 2.56–2.46 (m, 1H), 2.43–2.36 (m, 1H), 2.33–2.23 (m, 1H), 2.20–1.90 (m, 4H), 1.75–1.48 (m, 6H), 0.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 220.6, 160.8 (d, *J*_{C-F} = 29.1 Hz), 150.6 (d, *J*_{C-F} = 25.1 Hz), 150.0, 147.8, 138.6, 138.5, 138.1, 126.6, 125.9, 121.3 (d, *J*_{C-F} = 3.9 Hz), 120.6, 117.7, 113.3 (d, *J*_{C-F} = 33.9 Hz), 87.4 (d, *J*_{C-F} = 198.8 Hz), 50.3, 47.8, 44.0, 37.8, 35.8, 31.4, 29.3, 26.1, 25.7,

21.5, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ –146.4; HRMS (ESI) *m*/*z* calcd for C₂₆H₂₆FN₂O₃ [M+H]⁺: 433.1922 found 433.1920.

2-Fluoro-2-(6-methylpyridin-2-yl)-2-phenylacetonitrile (2AC)

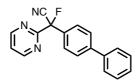
The reaction was performed with NaClO₄ (1.0 equiv). Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AC** (39.4 mg, 87% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, *J* = 8.0 Hz, 1H), 7.60–7.53 (m, 2H), 7.45–7.39 (m, 3H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 154.3 (d, *J*_{C-F} = 28.1 Hz), 137.4, 136.1 (d, *J*_{C-F} = 24.3 Hz), 130.1, 128.8, 125.9 (d, *J*_{C-F} = 5.9 Hz), 124.1, 116.9 (d, *J*_{C-F} = 33.9 Hz), 116.5 (d, *J*_{C-F} = 5.8 Hz), 92.1 (d, *J*_{C-F} = 186.2 Hz), 24.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –141.7; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₂FN₂ [M+H]⁺: 227.0979 found 227.0977.

2-Fluoro-2-(3-methylpyridin-2-yl)-2-phenylacetonitrile (2AD)

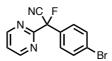
Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AD** (39.6 mg, 88% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 5.2 Hz, 1H), 7.56 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.46–7.39 (m, 5H), 7.33 (dd, *J* = 7.6, 5.2 Hz, 1H), 2.18 (d, *J*_{H–F} = 3.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9 (d, *J*_{C–F} = 25.1 Hz), 146.1, 140.8, 135.7 (d, *J*_{C–F} = 24.2 Hz), 132.5, 130.0, 128.9, 125.5 (d, *J*_{C–F} = 5.9 Hz), 124.8, 116.9 (d, *J*_{C–F} = 34.9 Hz), 94.7 (d, *J*_{C–F} = 187.3 Hz), 18.5 (d, *J*_{C–F} = 5.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –143.5; HRMS (ESI) *m/z* calcd for C₁₄H₁₂FN₂ [M+H]⁺: 227.0979 found 227.0978.

2-Fluoro-2-(4-methylpyridin-2-yl)-2-phenylacetonitrile (2AE)

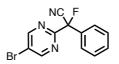
The reaction was performed with NaClO₄ (1.0 equiv). Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AE** (15.4 mg, 34% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 4.8 Hz, 1H), 7.59–7.53 (m, 2H), 7.46–7.40 (m, 4H), 7.16 (d, *J* = 4.8 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.0 (d, *J*_{C-F} = 28.1 Hz), 149.5, 149.1, 136.0 (d, *J*_{C-F} = 24.2 Hz), 130.2, 128.9, 125.8 (d, *J*_{C-F} = 5.9 Hz), 125.4, 120.4 (d, *J*_{C-F} = 5.8 Hz), 116.8 (d, *J*_{C-F} = 33.9 Hz), 92.0 (d, *J*_{C-F} = 187.3 Hz), 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –142.2; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₂FN₂ [M+H]⁺: 227.0979 found 227.0977.


2-Fluoro-2-(5-methylpyridin-2-yl)-2-phenylacetonitrile (2AF)

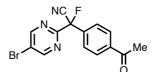
Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AF** (31.4 mg, 69% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.61 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.59–7.52 (m, 2H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.45–7.38 (m, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4 (d, *J*_{C-F} = 29.1 Hz), 150.2, 137.9, 136.1 (d, *J*_{C-F} = 24.2 Hz), 134.6, 130.1 (d, *J*_{C-F} = 1.9 Hz), 128.9, 125.8 (d, *J*_{C-F} = 5.8 Hz), 119.3 (d, *J*_{C-F} = 5.8 Hz), 116.8 (d, *J*_{C-F} = 33.9 Hz), 92.0 (d, *J*_{C-F} = 186.1 Hz), 18.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –141.0; HRMS (ESI) *m*/*z* calcd for C₁₄H₁₂FN₂ [M+H]⁺: 227.0979 found 227.0977.


2-Fluoro-2-phenyl-2-(pyrimidin-2-yl)acetonitrile (2AG)

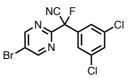
Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AG** (41.3 mg, 97% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 4.8 Hz, 2H), 7.71–7.66 (m, 2H),7.47–7.39 (m, 3H), 7.37 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (d, *J*_{C-F} = 24.0 Hz), 158.0, 134.8 (d, *J*_{C-F} = 24.1 Hz), 130.4, 128.9, 125.5 (d, *J*_{C-F} = 5.8 Hz), 121.5, 116.2 (d, *J*_{C-F} = 32.7 Hz), 91.3 (d, *J*_{C-F} = 191.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –144.5; HRMS (ESI) *m*/*z* calcd for C₁₂H₉FN₃ [M+H]⁺: 214.0775 found 214.0776.


2-([1,1'-Biphenyl]-4-yl)-2-fluoro-2-(pyrimidin-2-yl)acetonitrile (2AH)

Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AH** (50.3 mg, 87% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 5.2 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.40–7.36 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (d, *J*_{C-F} = 26.2 Hz), 158.1, 143.4, 139.8, 133.7 (d, *J*_{C-F} = 24.2 Hz), 128.9, 128.0, 127.7, 127.2, 126.1 (d, *J*_{C-F} = 5.9 Hz), 121.6, 116.2 (d, *J*_{C-F} = 32.9 Hz), 91.2 (d, *J*_{C-F} = 193.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –143.8; HRMS (ESI) *m/z* calcd for C₁₈H₁₃FN₃ [M+H]⁺: 290.1088 found 290.1087.

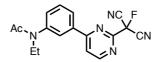

2-(4-Bromophenyl)-2-fluoro-2-(pyrimidin-2-yl)acetonitrile (2AI)

Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AI** (50.3 mg, 86% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 4.8 Hz, 1H), 7.62–7.53 (m, 4H), 7.39 (t, *J* = 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (d, *J*_{C-F} = 25.3 Hz), 158.1, 133.9 (d, *J*_{C-F} = 25.3 Hz), 132.2, 127.2 (d, *J*_{C-F} = 5.9 Hz), 125.0, 121.7, 115.8 (d, *J*_{C-F} = 32.0 Hz), 90.9 (d, *J*_{C-F} = 194.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –144.8; HRMS (ESI) *m/z* calcd for C₁₂H₇BrN₃ [M–F]⁺: 271.9818 found 271.9816.


2-(5-Bromopyrimidin-2-yl)-2-fluoro-2-phenylacetonitrile (2AJ)

Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AJ** (58.4 mg, quant.) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 2H), 7.71–7.62 (m, 2H), 7.47–7.44 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, $J_{C-F} = 26.3$ Hz), 158.8, 134.5 (d, $J_{C-F} = 25.3$ Hz), 130.6, 129.0, 125.5 (d, $J_{C-F} = 5.9$ Hz), 121.1, 115.8 (d, $J_{C-F} = 32.0$ Hz), 90.9 (d, $J_{C-F} = 193.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –144.2; HRMS (ESI) *m*/*z* calcd for C₁₂H₇BrN₃ [M–F]⁺: 271.9818 found 271.9817.

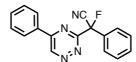
2-(4-Acetylphenyl)-2-(5-bromopyrimidin-2-yl)-2-fluoroacetonitrile (2AK)


Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AK** (59.5 mg, 89% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (s, 2H), 8.03 (d, *J* = 8.0 Hz, 2H), 8.03 (d, *J* = 8.0 Hz, 2H), 2.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 160.8 (d, *J*_{C-F} = 25.0 Hz), 158.9, 138.6 (d, *J*_{C-F} = 25.0 Hz), 138.5, 128.9, 125.7 (d, *J*_{C-F} = 5.8 Hz), 121.4, 115.3 (d, *J*_{C-F} = 31.8 Hz), 90.5 (d, *J*_{C-F} = 194.5 Hz), 26.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –146.1; HRMS (ESI) *m*/*z* calcd for C₁₄H₉BrN₃O [M–F]⁺: 313.9924 found 313.9922.

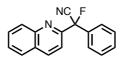
2-(5-Bromopyrimidin-2-yl)-2-(3,5-dichlorophenyl)-2-fluoroacetonitrile (2AL)

Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AL** (44.0 mg, 61% yield) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 2H), 7.57 (d, *J* = 1.6 Hz, 2H), 7.44 (t, *J* = 1.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.4 (d, *J*_{C-F} = 25.1 Hz), 159.0, 137.4 (d, *J*_{C-F} = 25.1 Hz), 135.9, 130.8,

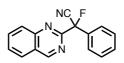
124.0 (d, $J_{C-F} = 6.8$ Hz), 121.6, 114.9 (d, $J_{C-F} = 32.0$ Hz), 89.6 (d, $J_{C-F} = 196.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –146.0; HRMS (DART) *m*/*z* calcd for C₁₂H₆BrCl₂FN₃ [M+H]⁺: 359.9101 found 359.9099.


N-(3-(2-(Dicyanofluoromethyl)pyrimidin-4-yl)phenyl)-N-ethylacetamide (2AM)

Purification by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) afforded **2AM** (31.7 mg, 49% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, *J* = 4.8 Hz, 1H), 8.20 (d, *J* = 7.6 Hz, 1H), 8.02 (s, 1H), 7.98 (d, *J* = 4.8 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 3.83 (q, *J* = 7.2 Hz, 2H), 1.89 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 164.9, 159.6, 157.7 (d, *J*_{C-F} = 22.1 Hz), 144.2, 136.0, 132.4, 130.8, 127.1, 126.9, 118.6, 110.0 (d, *J*_{C-F} = 35.6 Hz), 78.7 (d, *J*_{C-F} = 201.3 Hz), 44.0, 22.9, 13.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –137.8; HRMS (ESI) *m/z* calcd for C₁₇H₁₅FN₅O [M+H]⁺: 324.1255 found 324.1253.


2-Fluoro-2-phenyl-2-(pyrazin-2-yl)acetonitrile (2AN)

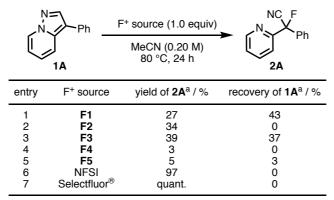
The reaction was performed with NaClO₄ (1.0 equiv). Purification by PTLC (hexane/EtOAc = 2:1) afforded **2AN** (17.1 mg, 40% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, *J* = 1.2 Hz, 1H), 8.69 (d, *J* = 2.0 Hz, 1H), 8.61–8.55 (m, 1H), 7.61–7.55 (m, 2H), 7.49–7.44 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.1 (d, *J*_{C-F} = 29.1 Hz), 145.8, 144.0, 141.3 (d, *J*_{C-F} = 6.8 Hz), 134.7 (d, *J*_{C-F} = 23.2 Hz), 130.7, 129.2, 125.6 (d, *J*_{C-F} = 5.8 Hz), 115.8 (d, *J*_{C-F} = 32.0 Hz), 91.2 (d, *J*_{C-F} = 187.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –145.6; HRMS (ESI) *m/z* calcd for C₁₂H₉FN₃ [M+H]⁺: 214.0775 found 214.0775.


2-Fluoro-2-phenyl-2-(5-phenyl-1,2,4-triazin-3-yl)acetonitrile (2AO)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AO** (18.0 mg, 31% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 8.23 (d, *J* = 8.8 Hz, 2H), 7.83–7.75 (m, 2H), 7.69–7.63 (m, 1H), 7.62–7.56 (m, 2H), 7.50–7.44 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (d, *J*_{C-F} = 25.1 Hz), 156.1, 146.2, 134.2 (d, *J*_{C-F} = 25.3 Hz), 133.7, 132.0, 130.7, 129.7, 129.1, 128.0, 125.7 (d, *J*_{C-F} = 4.8 Hz), 115.6 (d, *J*_{C-F} = 32.0 Hz), 90.8 (d, *J*_{C-F} = 194.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –146.0; HRMS (ESI) *m/z* calcd for C₁₇H₁₁FN₄Na [M+Na]⁺: 313.0860 found 313.0858.

2-Fluoro-2-phenyl-2-(quinolin-2-yl)acetonitrile (2AP)

The reaction was performed with NaClO₄ (1.0 equiv). Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AP** (45.6 mg, 87% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.4 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.81–7.77 (m, 1H), 7.64–7.60 (m, 4H), 7.44–7.41 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7 (d, *J*_{C-F} = 29.1 Hz), 147.1, 138.0, 136.0 (d, *J*_{C-F} = 24.3 Hz), 130.4, 130.1, 130.0, 128.9, 127.9, 127.6, 125.6 (d, *J*_{C-F} = 5.9 Hz), 116.7 (d, *J*_{C-F} = 32.9 Hz), 116.6 (d, *J*_{C-F} = 4.8 Hz), 92.8 (d, *J*_{C-F} = 187.3 Hz) (one peak is missing due to overlapping); ¹⁹F NMR (376 MHz, CDCl₃) δ –143.3; HRMS (ESI) *m/z* calcd for C₁₇H₁₂FN₂ [M+H]⁺: 263.0979 found 263.0980.



2-Fluoro-2-phenyl-2-(quinazolin-2-yl)acetonitrile (2AQ)

Purification by PTLC (hexane/EtOAc = 4:1) afforded **2AQ** (41.6 mg, 79% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 8.05–7.99 (m, 2H), 7.79–7.74 (m, 3H), 7.47–7.41 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.8, 159.3 (d, *J*_{C-F} = 24.2 Hz), 150.0, 135.4, 135.3 (d, *J*_{C-F} = 24.2 Hz), 130.4, 129.4, 129.0, 127.4, 125.9 (d, *J*_{C-F} = 5.9 Hz), 124.4, 116.6 (d, *J*_{C-F} = 32.0 Hz), 91.7 (d, *J*_{C-F} = 193.0 Hz) (one peak is missing due to overlapping); ¹⁹F NMR (376 MHz, CDCl₃) δ –143.9; HRMS (ESI) *m*/*z* calcd for C₁₆H₁₁FN₃ [M+H]⁺: 264.0932 found 264.0932.

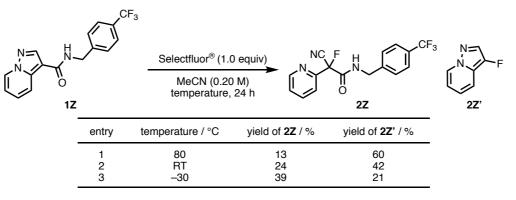
5. Effect of Parameters

5-1. Screening of Fluorinating Reagents

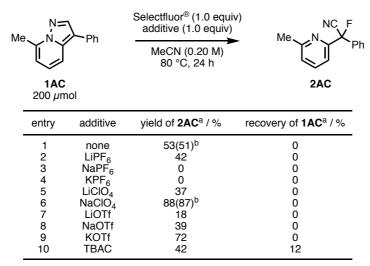
[a] Yields were determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

5-2. Effect of Solvent

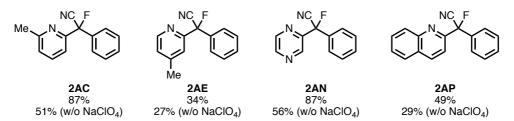
N N Ph 1A		Selectfluor [®] (1.0 equiv) solvent (0.20 M) 80 °C, 24 h	NC F Ph 2A	
entry	solvent	yield of 2A ^a / %	recovery of 1A ^a / %	
1	MeCN	guant.	0	
2	acetone	65	0	
2 3	DMF	64	0	
4	MeOH	58	0	


[a] Yields were determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

5-3. Effect of Temperature

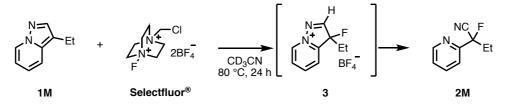

N= N	Ph Selec	ctfluor [®] (1.0 equiv)		
1/	ter	MeCN (0.20 M) mperature, 24 h	2A	
entry	temperature / °C	yield of 2A ^a / %	recovery of 1A ^a / %	
1 2 3 4	50 60 70 80	68 74 87 quant.	0 0 0 0	

[a] Yields were determined by ^1H NMR analysis using CH_2Br_2 as an internal standard.

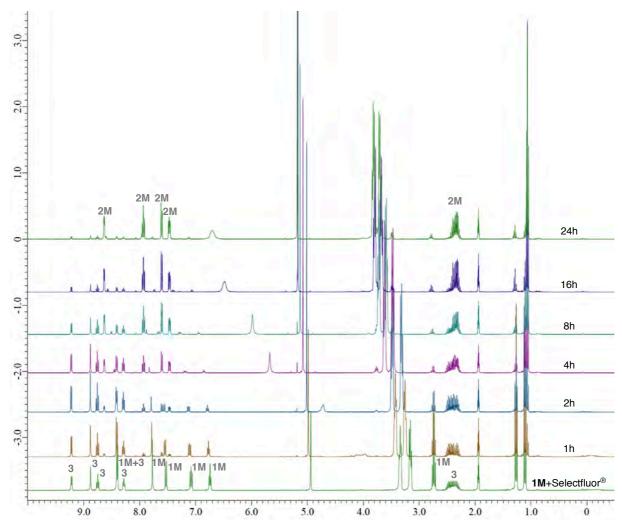

5-4. Effect of Temperature for 1Z

5-5. Effect of Additive

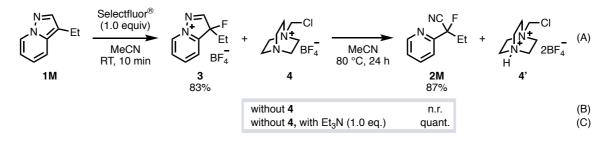
[a] Yields were determined by ¹H NMR analysis using CH_2Br_2 as an internal standard. [b] Numbers in parentheses are isolated yield.



5-6. Addition of Radical Scavengers


		electfluor [®] (1.0 equiv) additive (1.0 equiv) MeCN (0.2 M) 80 °C, 24 h		
entry	additive	yield of 2A ^a (%)	recovery of 1A ^a (%)	
1 2 3	TEMPO Galvinoxyl BHT	36 94 87	60 0 0	

[a] Yields were determined by ¹H NMR analyis using CH_2Br_2 as an internal standard.


6. Fluorination Tracking by ¹H NMR

A Wilmad[®] screw-cap NMR tube was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube was added **1M** (7.3 mg, 50.0 µmol, 1.0 equiv) and Selectfluor[®] (17.8 mg, 50.0 µmol, 1.0 equiv). The tube was placed under vacuum and refilled with N₂ gas three times. To this tube was added acetonitrile- d_3 (0.5 mL). The tube was sealed with a screw cap and then heated at 80 °C for 24 h in an oil bath. The reaction progress was measured by ¹H NMR spectra at 1, 2, 4, 8, 16, and 24 h.

7. Another Role of Selectfluor[®]

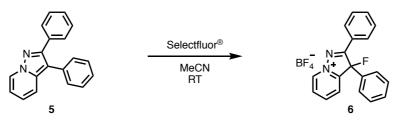
Preparation of 3

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube were added **1M** (29.2 mg, 0.200 mmol, 1.0 equiv) and Selectfluor[®] (70.8 mg, 0.200 mmol, 1.0 equiv). The tube was placed under vacuum and refilled with N₂ gas three times. To this tube was added MeCN (1.0 mL). After stirred at room temperature for 10 min, the mixture was concentrated *in vacuo* and washed with chloroform (to remove remaining **1M** and **2M**). The filtrate was concentrated *in vacuo* and extracted with acetone (to remove remaining Selectfluor[®] and **4'**). The solution was concentrated *in vacuo* to afford the crude material containing **3** (83% yield) and **4**. The yield of **3** was determined by ¹H NMR analysis using CH₂Br₂ as an internal standard.

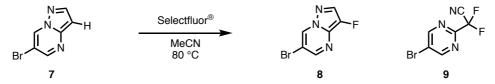
Experiment A

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N_2 gas after cooling to room temperature. To this tube was added a solution of the crude material containing **3** and **4** in MeCN (1.0 mL). The tube was sealed with a screw cap and then heated at 80 °C for 24 h. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. The residue was filtered with chloroform to afford **2M** (21.1 mg, 87% yield) as a colorless oil.

Experiment B


To the crude material containing **3** and **4** were added MeCN (1.0 mL) and 4.0 M HCl in 1,4-dioxane (100 μ L, 0.400 mmol) dropwise at 0 °C. After stirred at room temperature for 3 h, the mixture was concentrated *in vacuo* and extracted acetone (to remove remaining **4**'). An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube was added a solution of the obtained material containing **3** was added MeCN (1.0 mL). The tube was sealed with a screw cap and then heated at 80 °C for 24 h. However, no reaction progress was observed.

Experiment C


To the crude material containing **3** and **4** were added MeCN (1.0 mL) and 4.0 M HCl in 1,4-dioxane (100 μ L, 0.400 mmol) dropwise at 0 °C. After stirred at room temperature for 3 h, the mixture was concentrated *in vacuo* and extracted acetone (to remove remaining **4'**). An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with

 N_2 gas after cooling to room temperature. To this tube was added a solution of the obtained material containing **3** were added MeCN (1.0 mL) and Et₃N (28 µL, 0.200 mmol). The tube was sealed with a screw cap and then heated at 80 °C for 24 h. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. The residue was filtered with chloroform to afford **2M** (24.3 mg, quant.) as a colorless oil.

8. Fluorination of 5 and 7

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun in vacuo and filled with N₂ gas after cooling to room temperature. To this tube were added 2,3diphenylpyrazolo[1,5-a]pyridine (5: 135 mg, 0.500 mmol, 1.0 equiv) and Selectfluor[®] (177 mg, 0.500 mmol, 1.0 equiv). The tube was placed under vacuum and refilled with N2 gas three times. To this tube was added MeCN (2.5 mL). The tube was sealed with a screw cap and then the mixture was stirred at 80 °C for 24 h. After cooling the mixture to room temperature, 4.0 M HCl in 1,4-dioxane (150 µL, 0.600 mmol, 1.2 equiv) was added. After stirring the mixture for 1 h, the solution was concentrated in vacuo. The resulting material was extracted with acetone, and insoluble solids were removed by filtration. The filtrate was concentrated in vacuo, recrystallized from Et₂O/MeCN to afford 3-fluoro-2,3-diphenyl-3Hpyrazolo[1,5-a]pyridin-8-ium tetrafluoroborate (6: 160 mg, 85% yield) as a white solid. ¹H NMR (400 MHz, acetonitrile- d_3) δ 9.30 (d, J = 7.2 Hz, 1H), 8.63 (t, J = 7.2 Hz, 1H), 8.28 (t, J = 7.2 Hz, 1H), 8.22 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 8.0 Hz, 2H), 7.77 (t, J = 8.0 Hz, 1H), 7.61–7.57 (m, 2H), 7.56–7.50 (m, 5H); ¹³C NMR (101 MHz, acetonitrile- d_3) δ 173.4 (d, J_{C-F} = 15.6 Hz), 148.8, 148.0 (d, J_{C-F} = 27.2 Hz), 141.2, 136.8, 132.4, 132.2 (d, $J_{C-F} = 29.1$ Hz), 131.6, 131.0 (d, $J_{C-F} = 2.9$ Hz), 130.9, 125.5, 125.32, 125.25, 125.2 (d, $J_{C-F} = 5.8$ Hz), 103.8 (d, $J_{C-F} = 203.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –150.1 (m, 4F), -161.6; HRMS (ESI) m/z calcd for C₁₉H₁₄FN₂ [M–BF₄–]⁺: 289.1136 found 289.1136.

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube were added 6-bromopyrazolo[1,5-*a*]pyrimidine (7: 39.6 mg, 0.200 mmol, 1.0 equiv) and Selectfluor[®] (70.9 mg, 0.200 mmol, 1.0 equiv). The tube was placed under vacuum and refilled with N₂ gas three times. To this tube

was added MeCN (1.0 mL). The tube was sealed with a screw cap and then heated at 80 °C for 24 h with stirring. After cooling the reaction mixture to room temperature, the mixture was concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 19:1 to 9:1) to afford 6-bromo-3-fluoropyrazolo[1,5-*a*]pyrimidine (8: 21.6 mg, 50% yield) as a white solid and 2-(5-bromopyrimidin-2-yl)-2,2-difluoroacetonitrile (9: 4.7 mg, 10% yield) as a colorless oil.

When reaction was performed with Selectfluor[®] (2.0 equiv), only **9** was obtained (16.4 mg, 58% yield).

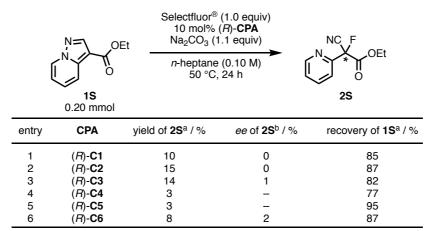
6-Bromo-3-fluoropyrazolo[1,5-a]pyrimidine (8)

¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 2.4, 1.2 Hz, 1H), 8.43 (d, J = 1.6 Hz, 1H), 8.00 (d, $J_{H-F} = 3.6$ Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.4 (d, $J_{C-F} = 20.2$ Hz), 138.7 (d, $J_{C-F} = 251.2$ Hz), 134.6, 133.3 (d, $J_{C-F} = 23.2$ Hz), 131.8 (d, $J_{C-F} = 11.6$ Hz), 104.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.9; HRMS (DART) m/z calcd for C₆H₄BrFN₃ [M+H]⁺: 215.9567 found 215.9566.

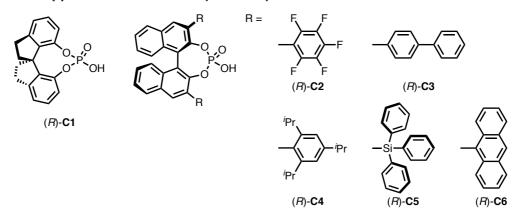
2-(5-Bromopyrimidin-2-yl)-2,2-difluoroacetonitrile (9)

¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 155.6 (t, *J*_{C-F} = 27.6 Hz), 123.7, 111.2 (t, *J*_{C-F} = 44.6 Hz), 105.9 (t, *J*_{C-F} = 250.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –137.2; HRMS (DART) *m*/*z* calcd for C₆H₅OBrF₂N₃ [M+H₃O]⁺: 251.9579 found 251.9574.

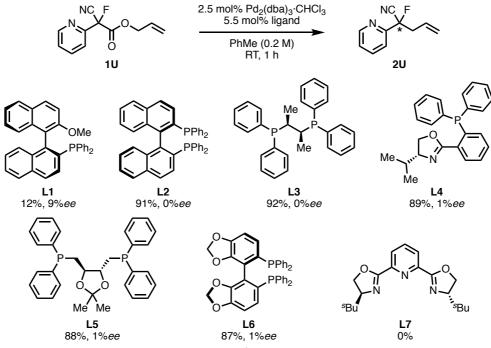
9. Studies Toward Asymmetric Fluorination


9-1. Using Chiral Phosphoric Acid^[15]

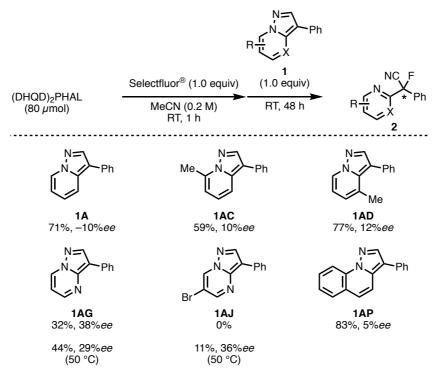
9-1-1. Screening of Solvents


N N O O O	Selectfluor [®] (1.0 e 10 mol% (<i>S</i>)- C Na ₂ CO ₃ (1.1 eq solvent (0.10 l 50 °C, 24 h		DOET OF OF OF OF
1S 0.10 mmol		2S	(<i>S</i>)- CPA
entry	solvent	yield of 2S ^a / %	recovery of 1S ^a / %
1	<i>n-</i> heptane	23	73
2	cyclohexane	15	78
3	<i>n</i> -hexane	20	83
4	PhMe	0	98
5	PhF	0	100
6	<i>m</i> -xylene	0	100
7	1,4-dioxane	0	100
8	DME	0	100
9	Et ₂ O	8	90
10	ⁱ Pr ₂ O	5	95
11	CPME	0	80
12	THF	0	100
13	CHCl₃	0	100
14	CH ₂ Cl ₂	0	100
15	ZEORORA [®] H	0	100
16	PhMe/MeCN (1:1)	9	90
17	acetone	14	78

[a] Yields were determined by ^1H NMR analysis using CH_2Br_2 as an internal standard.


9-1-2. Screening of Chiral Phosphoric Acid

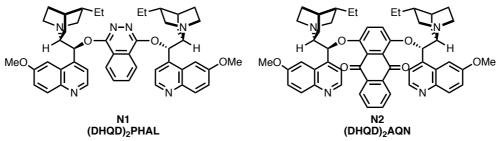
[a] Yields were determined by ¹H NMR analysis using CH_2Br_2 as an internal standard. [b] *Ee* values were determined by HPLC analysis.


9-2. Decarboxylative Asymmetric Allylation^[16]

Yields were determined by ¹⁹F NMR analysis using PhF as an internal standard.

9-3. Using Cinchona Alkaloids

9-3-1. Selection of Substrate



Yields were determined by ¹H NMR using CH_2Br_2 as an internal standard. *Ee* values were determined by HPLC analysis.

9-3-2. Screening of Cinchona Alkaloid

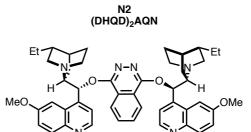
		N N Ph		
cinchona alkaloid (80 μmol)		Selectfluor [®] (1.0 equiv)	1AG (1.0 equiv)	
		MeCN (0.2 M) RT, 1 h	RT, 48 h	2AG
entry	cinchona alkaloic	yield of 2AG ^a / %	<i>ee</i> of 2AG ^b / %	recovery of 1AG ^a / %
1	N1	32	38	70
2	N2	46	10	70
3	N3	quant.	-6	0
4 5	N4	76	4	34
5	N5	44	-9	70
6	N6	85	-20	17
7	N7	26	17	73
8	N8	72	24	17
9	N9	75	12	12

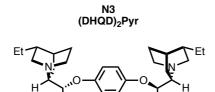
[a] Yields were determined by ¹H NMR using CH_2Br_2 as an internal standard. [b] *Ee* values were determined by HPLC analysis.

Et

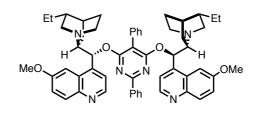
н

.OMe

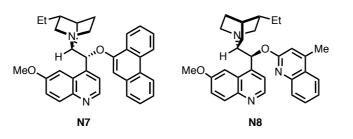

.OMe

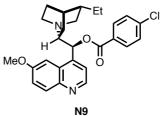

Et Ph

N N 1 Ρh


MeO

MeO




N5 (DHQ)₂AQN

N4 (DHQ)₂PHAL

N6 (DHQ)₂Pyr

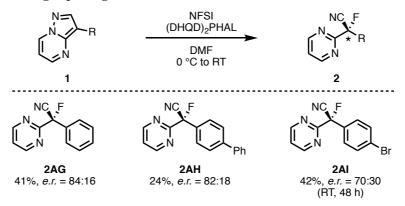
9-3-3. Effect of Solvent

			N N Ph	
		Selectfluor [®] (1.0 equiv)	1AG (1.0 equiv)	
(L	HQD) ₂ PHAL – (80 μmol)	MeCN (0.2 M) RT, 1 h; evaporation	solvent (0.2 M) RT, 48 h	2AG
entry	solvent	yield of 2AG ^a / %	<i>ee</i> of 2AG ^b / %	recovery of 1AG ^a / %
1	MeOH	trace	_	49
2 3	DMF	16	53	69
3	MeCN (no substitution		38	70
4	acetone	11	40	43
5	CH ₂ Cl ₂	17	11	57
4 5 6 7	CHCl ₃	22	-8	74
/	EtOAc	12	40	76
8 9	CPME	16	41	65
	THF 1.4 diaxona	9	25	87
10 11	1,4-dioxane	13	37 42	50
12	Et ₂ O PhF	20 7	42	60 93
13	m-xylene 24		49	93 66
14	PhMe	24 28	38	50

[a] Yields were determined by ¹H NMR analysis using CH_2Br_2 as an internal standard. [b] *Ee* value were determined by HPLC analysis.

9-3-4. Effect of Fluorinating Agent

			N= N Ph		
		fluorinating agent (1.0 equiv)	1AG (1.0 equiv)		
(DHQD)₂PHAL – (80 µmol)		MeCN (0.2 M) RT, 48 h RT, 1 h		× Ph N 2AG	
entry	fluorinationg agent	yield of 2AG ^a / %	<i>ee</i> of 2AG ^b / %	recovery of 1AG ^a / %	
1 2 3 ^c	Selectfluor [®] NFSI NFSI	32 52 3	38 35 17	70 51 87	

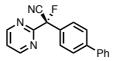

[a] Yields were determined by ¹H NMR analysis using CH_2Br_2 as an internal standard. [b] *Ee* value was determined by HPLC analysis. [c] 10 mol% of (DHQD)₂PHAL was used.

9-3-5. Condition Optimization

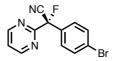
		N N N N N SI (1.0 equiv)				
	(DHQD)₂PHAL (80 µmol)	MeCN (0.2 RT, 1 h		RT, 48	3h	× Ph ⊳N 2AG
entry	variation from the standa	ard conditions	yield of	2AG ^a / %	<i>e.e.</i> of 2AG ^b / %	recovery of 1AG ^a / %
1	none DMF (0.16 M)			30 38	50 49	67 61
2 3		0 °C for 48 h then RT for 48 h		11	70	64
4	0 °C for 48 h then 50	°C for 48 h		23	45	54
5	DMF (0.16 M), 0 °C for 48 h then RT for 48 h			41	68	59

[a] Yields were determined by ¹H NMR analysis using CH_2Br_2 as an internal standard. [b] *Ee* values were determined by HPLC analysis.

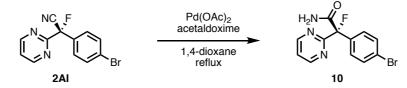
9-3-6. Asymmetric Ring-Opening Fluorination


E.r. values were determined by HPLC analysis.

General Procedure


An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube were added NFSI (25.2 mg, 80.0 μ mol, 1.0 equiv), (DHQD)₂PHAL (62.3 mg, 80.0 μ mol, 1.0 equiv), DMF (0.25 mL) at room temperature. After the mixture was stirred for 1 h, a solution pyrazolopyrimidizine **1** (80 μ mol, 1.0 equiv) in DMF (0.25 mL) was added at 0 °C. The mixture was further stirred at 0 °C for 48 h, and then warmed to room temperature. After the mixture was stirred for another 48 h, H₂O was added. The mixture was extracted Et₂O and washed with brine. The combined organic layer was dried over Mg₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (chloroform/EtOAc = 8:1) to afford the corresponding product **2**. The enantiomer ratio of **2** was determined by chiral HPLC analysis.

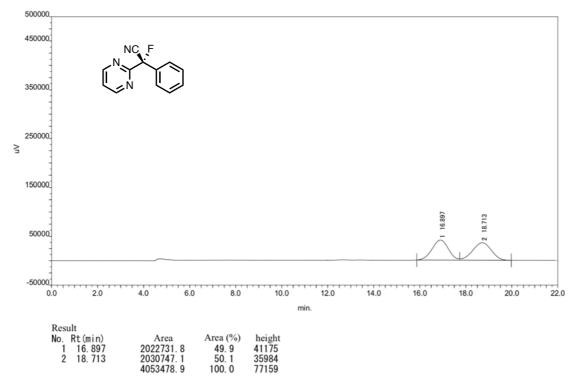
Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AG** (7.0 mg, 41% yield) as a colorless solid. *e.r.* = 84:16 [Daicel Chiralcel[®] OZ-H, *n*-hexane/2-propanol = 94:6, 40 °C, 0.7 mL/min, λ = 254 nm, *t* (minor) = 16.84 min, *t* (major) = 18.77 min].



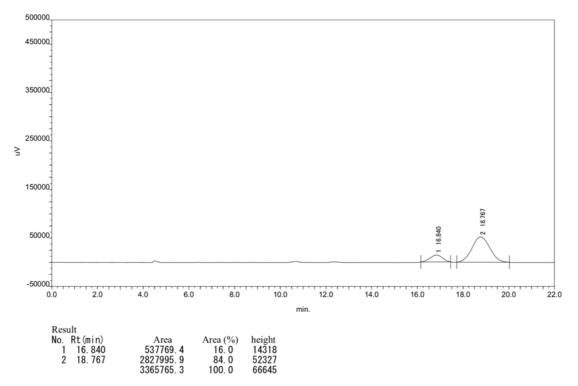
Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AH** (5.6 mg, 24% yield) as a colorless solid. *e.r.* = 82:18 [Daicel Chiralcel[®] OZ-H, *n*-hexane/2-propanol = 98:2, 30 °C, 0.7 mL/min, λ = 254 nm, *t* (minor) = 15.62 min, *t* (major) = 18.34 min]

Reaction was performed at room temperature for 48 h. Purification by PTLC (chloroform/EtOAc = 19:1) afforded **2AI** (9.8 mg, 42% yield) as a colorless solid. *e.r.* = 70:30 [Daicel Chiralcel[®] OZ-H, *n*-hexane/2-propanol = 98:2, 30 °C, 1.2 mL/min, λ = 254 nm, *t* (minor) = 17.21 min, *t* (major) = 20.27 min]

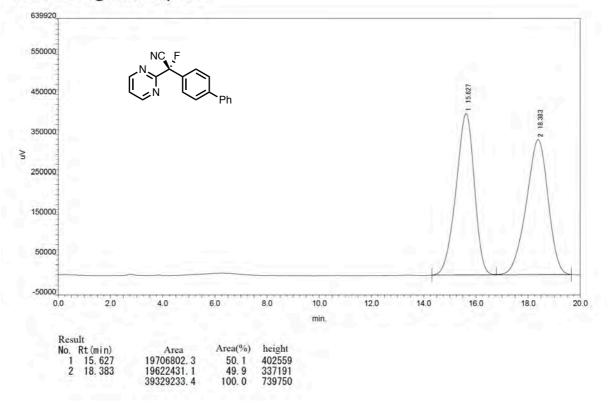
Hydrolysis of 2AI for determining the absolute configuration

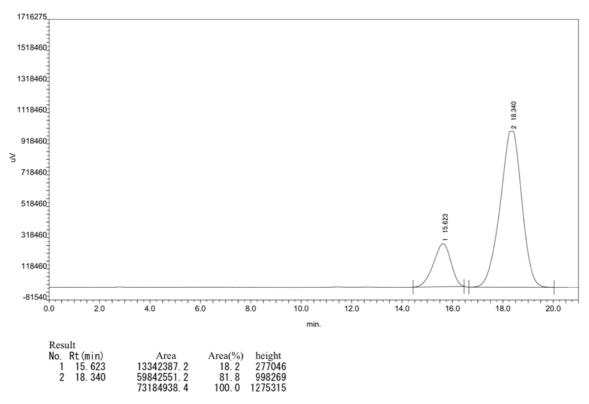


To an 8-mL glass tube containing a magnetic stirring bar and 2-(4-bromophenyl)-2-fluoro-2-(pyrimidin-2-yl)acetonitrile (**2AI**: 9.8 mg, 33.6 µmol, 1.0 equiv, *e.r.* = 70:30) were added Pd(OAc)₂ (0.30 mg, 1.34 µmol, 4.0 mol%), acetaldoxime (21 µL, 0.336 mmol, 10 equiv), and 1,4-dioxane (0.34 mL). After the mixture was stirred with refluxing for 1 h, the crude mixture was concentrated *in vacuo*, and the resulting residue was purified by PTLC (chloroform/EtOAc = 9:1) to afford 2-(4-bromophenyl)-2-fluoro-2-(pyrimidin-2-yl)acetamide (**10**: 10.4 mg, quant.) as a white solid. $[\alpha]_D^{20} = -158.0^\circ$ (*c* = 1.0, acetone), *e.r.* = 70:30 [Daicel Chiralpak[®] OD-3, *n*-hexane/2-propanol = 65:35, 30 °C, 1.2 mL/min, $\lambda =$ 230 nm, *t* (minor) = 7.94 min, *t* (major) = 12.37 min]; ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 4.8 Hz, 2H), 7.58–7.53 (m, 4H), 7.33 (td, *J* = 4.8, 1.2 Hz, 1H), 6.79 (brs, 1H), 6.08 (brs, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2 (d, *J*_{C-F} = 24.2 Hz), 165.3 (d, *J*_{C-F} = 22.3 Hz), 157.6, 134.8 (d, *J*_{C-F} = 24.2 Hz), 131.2, 128.2 (d, *J*_{C-F} = 9.7 Hz), 123.5, 121.0, 98.2 (d, *J*_{C-F} = 194.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –146.9; HRMS (ESI) *m/z* calcd for C₁₂H₁₀BrFN₂O [M+H]⁺: 309.9986 found 309.9983.

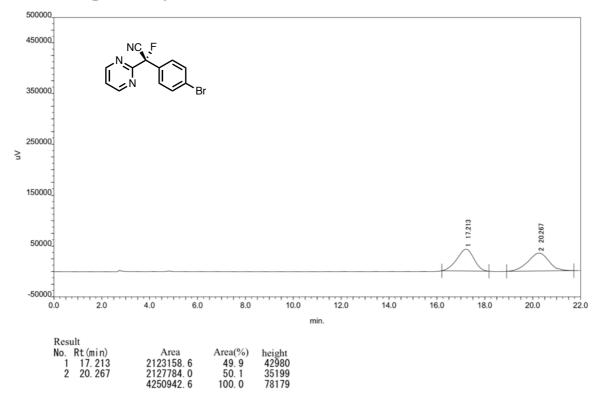

Major enantiomer of **10** was isolated by HPLC using chiral stationary phase column [Daicel Chiralpak[®] OD-3, *n*-hexane/2-propanol = 65:35, 30 °C, 1.2 mL/min, λ = 254 nm, *t* (minor) = 7.94 min, *t* (major) = 12.37 min] to afford the major enantiomer. This enantiomer was recrystallized to determine the absolute configuration.

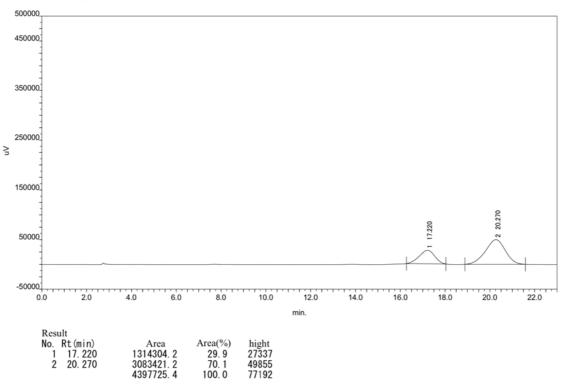
9-3-7. HPLC spectra


HPLC spectra of 2AG

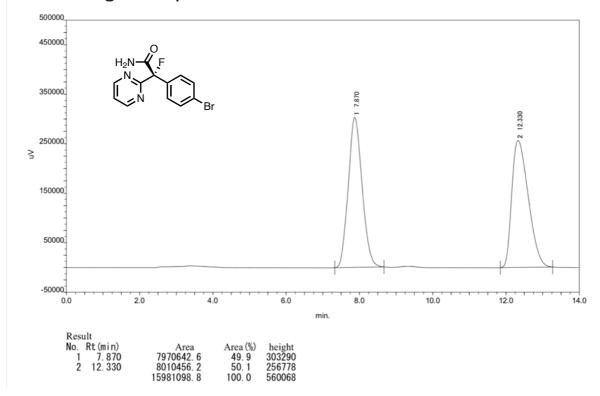

Chromatogram Report

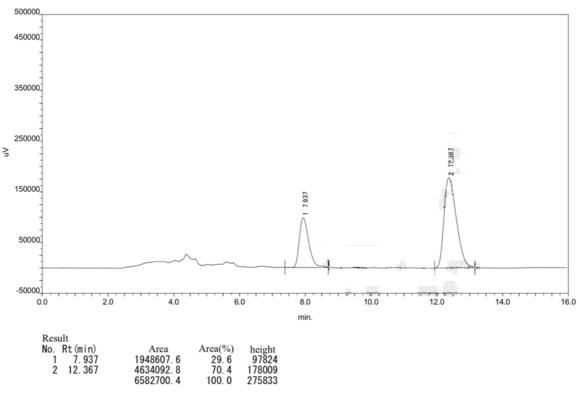
HPLC spectra of 2AH




Chromatogram Report

HPLC spectra of 2AI


Chromatogram Report



HPLC spectra of 10

Chromatogram Report

9-3-8. X-ray Crystal Structure Analysis of (S)-10

A crystal of (*S*)-10 was grown from a 2-propanol/H₂O (vapor diffusion). A suitable crystal was mounted with Paratone oil on a MiTeGen MicroMounts and transferred to the 3-axis Eulerian Goniometer of a Rigaku R-AXIS RAPID II system with Ultrax 18 kW rotating anode X-ray generator using graphite-monochromated Cu-K_a radiation and imaging plate area detector. Cell parameters were determined and refined, and raw frame data were integrated using RAPID-AUTO (RIGAKU, 1998). The structures were solved by direct methods with (SHELXT)^[17] and refined by full-matrix leastsquares techniques against F^2 (SHELXL-2018/3)^[18] by using Olex2 software package.^[19] The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

Compound	(<i>S</i>)-10		
CCDC number	2113745		
Empirical formula	C ₁₂ H ₉ BrFN ₃ O		
Formula weight	310.13		
<i>Т</i> / К	173(2)		
Crystal system	monoclinic		
Space group	$P2_1$		
a / Å	8.0916(6)		
b / Å	6.0738(5)		
<i>c</i> / Å	12.9097(10)		
α / °	90		
eta / °	105.671(7)		
γ / °	90		
$V/\text{\AA}^3$	610.89(9)		
Ζ	2		
D_{calc} , /g cm ⁻³	1.686		
μ / mm ⁻¹	4.651		
F(000)	308.0		
Crystal size / mm	0.4 imes 0.4 imes 0.3		
λ / Å	1.5418		
2θ range / °	7.112 to 136.456		
Reflns collected	7095		
Indep reflns/ <i>R</i> _{int}	2127/0.0427		
Params	163		
GOF on F^2	1.148		
R_1 , w R_2 [$I > 2\sigma(I)$]	0.0323, 0.0846		
R_1 , w R_2 [all data]	0.0324, 0.0847		
Max./Mini. Peak / e Å ⁻³	0.41/-1.05		
Flack parameter	0.031(11)		

Table S1. Crystallographic Data and Structure Refinement Details for (S)-10

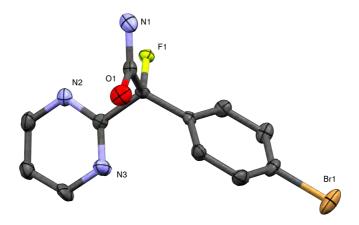
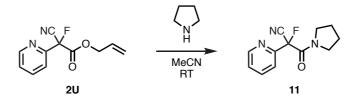
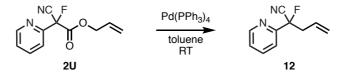
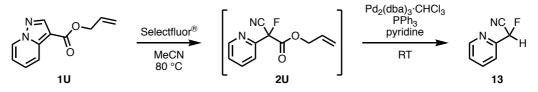
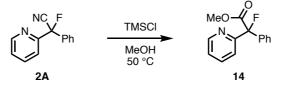




Figure S1. ORTEP drawing of (S)-10 with 50% thermal ellipsoid. All hydrogen atoms are omitted for clarity.

10. Derivatization of Products 10-1. Derivatization of 2U

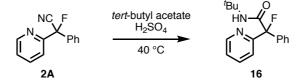


To an 8-mL glass tube equipped containing a magnetic stirring bar and **2U** (44.0 mg, 0.200 mmol, 1.0 equiv) were added pyrrolidine (71.8 mg, 1.00 mmol, 5.0 equiv) and MeCN (1.0 mL). The mixture was stirred at room temperature for 12 h. The mixture was concentrated *in vacuo*. The residue was purified by PTLC (chloroform /EtOAc = 9:1) to afford 2-fluoro-2-(pyridine-2-yl)-2-(pyrrolidin-1-yl)acetonitrile (**11**: 19.1 mg, 41% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.8 Hz, 1H), 7.88 (td, *J* = 8.0, 2.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.45–7.42 (m, 1H), 3.68–3.53 (m, 4H), 1.97–1.81 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7 (d, *J*_{C-F} = 23.3 Hz), 151.5 (d, *J*_{C-F} = 23.2 Hz), 149.8, 137.8, 125.4, 121.5 (d, *J*_{C-F} = 3.8 Hz), 114.3 (d, *J*_{C-F} = 34.9 Hz), 90.0 (d, *J*_{C-F} = 197.9 Hz), 48.2, 47.0 (d, *J*_{C-F} = 6.9 Hz), 26.5, 23.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –143.4; HRMS (ESI) *m/z* calcd for C₁₂H₁₃FN₃O [M+H]⁺: 234.1037 found 234.1036.

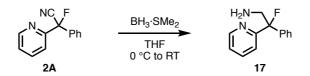

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N_2 gas after cooling to room temperature. To this tube were added **2U**

(22.0 mg, 0.100 mmol, 1.0 equiv) and Pd(PPh₃)₄ (5.78 mg, 5.00 µmol, 5.0 mol%). The tube was placed under vacuum and refilled with N₂ gas three times. To this was added toluene (1.0 mL). The tube was sealed with a screw cap and then stirred at room temperature for 1 h. Then the mixture was passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated *in vacuo*. The residue was purified by PTLC (chloroform/EtOAc = 9:1) to afford 2-fluoro-2-(pyridine-2-yl)pent-4-enenitrile (**12**: 35.2 mg, quant.) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.4 Hz, 1H), 7.83 (td, *J* = 8.0, 2.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.37 (dd, *J* = 8.0, 4.4 Hz, 1H), 5.86–5.76 (m, 1H), 5.30–5.26 (m, 2H), 3.22–2.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 154.0 (d, *J*_{C-F} = 26.2 Hz), 149.6, 137.4, 128.4 (d, *J*_{C-F} = 2.9 Hz), 124.6, 122.1, 119.6 (d, *J*_{C-F} = 6.8 Hz), 116.5 (d, *J*_{C-F} = 33.9 Hz), 91.2 (d, *J*_{C-F} = 188.2 Hz), 43.8 (d, *J*_{C-F} = 24.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –155.1 (t, *J*_{H-F} = 23.5 Hz); HRMS (ESI) *m/z* calcd for C₁₀H₁₀FN₂ [M+H]⁺: 177.0823 found 177.0823.

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this tube were added **1U** (37.6 mg, 0.200 mmol, 1.0 equiv) and Selectfluor[®] (70.8 mg, 0.200 mmol, 1.0 equiv). The tube was placed under vacuum and refilled N₂ gas three times. To this was added MeCN (1.0 mL). The tube was sealed with a screw cap and then heated at 80 °C for 24 h with stirring. After cooling the reaction mixture to room temperature, pyridine (48.3 µL, 0.600 mmol, 3.0 equiv) was added. After this mixture was stirred for 10 min, Pd₂(dba)₃·CHCl₃ (10.4 mg, 10.0 µmol, 5.0 mol%), PPh₃ (10.5 mg, 40.0 µmol, 20 mol%) were added. The mixture was further stirred at room temperature for 1 h, passed through a short silica-gel pad with EtOAc as an eluent, and then concentrated *in vacuo*. The residue was purified by PTLC (hexane/EtOAc = 8:1) to afford 2-fluoro-2-(pyridine-2-yl)acetonitrile (**13**: 25.0 mg, 92% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 4.0 Hz, 1H), 7.88 (td, *J* = 7.6, 1.6 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.47–7.40 (m, 1H), 6.18 (d, *J*_{H-F} = 46.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.7 (d, *J*_{C-F} = 23.1 Hz), 150.0, 137.7, 125.3, 121.1 (d, *J*_{C-F} = 3.8 Hz), 114.6 (d, *J*_{C-F} = 31.8 Hz), 80.5 (d, *J*_{C-F} = 184.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –182.0 (d, *J*_{F-H} = 46.2 Hz); HRMS (ESI) *m/z* calcd for C₇H₆FN₂ [M+H]⁺: 137.0510 found 137.0511.


10-2. Derivatization of 2A

An 8-mL glass tube equipped with a screw cap containing a magnetic stirring bar was dried with a heat-gun *in vacuo* and filled with N₂ after cooling to room temperature. To this tube were added **2A** (42.5 mg, 0.200 mmol, 1.0 equiv), chlorotrimethylsilane (130 μ L, 1.00 mmol, 5.0 equiv), and MeOH (1.0 mL). The tube was sealed with a screw cap and then heated at 50 °C for 6 h with stirring. The reaction was quenched with NaHCO₃ aq. and the mixture was extracted with EtOAc and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (hexane/EtOAc = 5:1) to afford methyl 2-fluoro-2-phenyl-2-(pyridine-2-yl)acetate (**14**: 40.1 mg, 82% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (dd, *J* = 5.2, 1.2 Hz, 1H), 7.72 (td, *J* = 8.0, 1.2 Hz, 1H), 7.55–7.51 (m, 2H), 7.41–7.37 (m, 4H), 7.31 (ddd, *J* = 8.0, 5.2, 0.8 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.3 (d, *J*_{C-F} = 27.1 Hz), 157.7 (d, *J*_{C-F} = 24.2 Hz), 149.0, 137.0, 136.9 (d, *J*_{C-F} = 23.2 Hz), 128.9, 128.1, 126.5 (d, *J*_{C-F} = 7.8 Hz), 123.8, 121.9 (d, *J*_{C-F} = 4.8 Hz), 97.8 (d, *J*_{C-F} = 190.1 Hz), 53.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –147.3; HRMS (ESI) *m*/z calcd for C₁₄H₁₃FNO₂ [M+H]⁺: 246.0925 found 246.0924.



To an 8-mL glass tube containing a magnetic stirring bar and **2A** (41.9 mg, 0.200 mmol, 1.0 equiv) were added Pd(OAc)₂ (1.80 mg, 8.00 µmol, 4.0 mol%), acetaldoxime (120 µL, 2.00 mmol, 10 equiv), and 1,4-dioxane (2.0 mL). After the mixture was stirred with refluxing for 1 h, the crude mixture was concentrated *in vacuo*, and the resulting residue was purified by Isolera[®] (hexane/EtOAc = 4:1 to 1:1) to afford 2-fluoro-2-phenyl-2-(pyridine-2-yl)acetamide (**15**: 42.4 mg, 92% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, *J* = 4.8, 0.8 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.60–7.58 (m, 2H), 7.48 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.42–7.36 (m, 3H), 7.32 (ddd, *J* = 7.6, 4.8, 0.8 Hz, 1H), 7.26 (brs, 1H), 5.77 (brs, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0 (d, *J*_{C-F} = 24.0 Hz), 157.4 (d, *J*_{C-F} = 24.0 Hz), 149.0, 137.4 (d, *J*_{C-F} = 22.1 Hz), 137.0, 129.0, 128.3, 126.5 (d, *J*_{C-F} = 7.7 Hz), 123.7, 122.1 (d, *J*_{C-F} = 6.8 Hz), 97.8 (d, *J*_{C-F} = 188.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –144.8; HRMS (ESI) *m/z* calcd for C₁₃H₁₁FN₂O [M+H]⁺: 231.0928 found 231.0927.

To an 8-mL glass tube containing a magnetic stirring bar and **2A** (42.4 mg, 0.200 mmol, 1.0 equiv) were added *tert*-butyl acetate (161 μ L, 1.20 mmol, 6.0 equiv) and conc. H₂SO₄ (10 μ L, 0.200 mmol, 1.0 equiv). The mixture was stirred at 40 °C for 2 h. After cooling to room temperature, the mixture was

poured into cold NaHCO₃ aq. to neutralize and extracted with EtOAc. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (hexane/EtOAc = 4:1) to afford *N*-(*tert*-butyl)-2-fluoro-2-phenyl-2-(pyridine-2-yl)acetamide (**16**: 53.8 mg, 94% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 4.4 Hz, 1H), 7.69 (td, *J* = 7.6, 1.6 Hz, 1H), 7.59–7.51 (m, 2H), 7.44 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.40–7.36 (m, 3H), 7.29–7.25 (m, 1H), 7.05 (brs, 1H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3 (d, *J*_{C-F} = 22.1 Hz), 157.9 (d, *J*_{C-F} = 23.1 Hz), 148.9, 138.2 (d, *J*_{C-F} = 22.2 Hz), 136.7, 128.8, 128.2, 126.7 (d, *J*_{C-F} = 7.7 Hz), 123.4, 122.4 (d, *J*_{C-F} = 4.8 Hz), 97.6 (d, *J*_{C-F} = 190.7 Hz), 51.6, 28.6; ¹⁹F NMR (376 MHz, CDCl₃) δ –144.0; HRMS (ESI) *m/z* calcd for C₁₇H₂₀FN₂O [M+H]⁺: 287.1554 found 287.1552.

To a solution of **2A** (42.4 mg, 0.200 mmol, 1.0 equiv) in THF (1.0 mL) was added BH₃·SMe₂ (57.0 μ L, 0.600 mmol, 3.0 equiv) dropwise at 0 °C. After stirring the mixture at room temperature for 19 h the reaction was quenched with MeOH carefully at 0 °C and concentrated *in vacuo*. To this residue were added MeOH (1.0 mL) and adjusted to pH = 2 with conc. HCl aq. at 0 °C. After stirring the mixture at room temperature for 12 h, solvent was removed *in vacuo*. The residue was adjusted to pH = 8 with NaHCO₃ aq., extracted with EtOAc, and washed with brine. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by PTLC (chloroform/EtOAc = 8:1) to afford 2-fluoro-2-phenyl-2-(pyridine-2-yl)ethan-1-amine (**17**: 17.7 mg, 41% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.72–7.67 (m, 1H), 7.56 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.51–7.48 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.29–7.25 (m, 1H), 7.22–7.19 (m, 1H), 3.75 (dd, *J*_{H-F} = 26.8 Hz, *J* = 14.4 Hz, 1H), 3.47 (dd, *J*_{H-F} = 20.0 Hz, *J* = 14.4 Hz, 1H), 1.46 (brs, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5 (d, *J*_{C-F} = 27.9 Hz), 148.8, 141.0 (d, *J*_{C-F} = 23.1 Hz), 137.0, 128.4, 127.9, 125.0 (d, *J*_{C-F} = 9.6 Hz), 122.7, 121.1 (d, *J*_{C-F} = 8.7 Hz), 100.6 (d, *J*_{C-F} = 176.2 Hz), 50.9 (d, *J*_{C-F} = 23.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –166.0 (t, *J*_{F-H} = 22.6 Hz); HRMS (ESI) *m*/z calcd for C₁₃H₁₄FN₂ [M+H]⁺: 217.1136 found 217.1134.

11. References

[1] Alam, K.; Kim, S. M.; Kim, D. J.; Park, J. K. Development of Structurally Diverse *N*-Heterocyclic Carbene Ligands via Palladium-Copper-Catalyzed Decarboxylative Arylation of Pyrazolo[1,5-*a*]pyridine-3-carboxylic Acid. *Adv. Synth. Catal.* **2016**, *358*, 2661–2670.

[2] Wu, H. C.; Chu, J. H.; Li, C. W.; Hwang, L. C.; Wu, M. J. Palladium-Catalyzed Regioselective Arylation of Pyrazolo[1,5-*a*]pyridines via C–H Activation and Synthetic Applications on P38 Kinase Inhibitors. *Organometallics* **2016**, *35*, 288–300.

[3] Ravi, C.; Samanta, S.; Mohan, D. C.; Reddy, N. N. K.; Adimurthy, S. Synthesis of Functionalized Pyrazolo[1,5-*a*]pyridines: [3+2] Cycloaddition of *N*-Aminopyridines and α , β -Unsaturated Carbonyl Compounds/Alkenes at Room Temperature. *Synthesis* **2017**, *49*, 2513–2522.

[4] Balkenhohl, M.; Salgues, B.; Hirai, T.; Karaghiosoff, K.; Knochel, P. Regioselective Metalation and Functionalization of the Pyrazolo[1,5-*a*]pyridine Scaffold Using Mg- and Zn-TMP Bases. *Org. Lett.* **2018**, *20*, 3114–3118.

[5] Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C–H Groups in Pyrazolo[1,5-*a*]pyrimidines. *Angew. Chem., Int. Ed.* **2015**, *127*, 8911–8914.

[6] Benchikh, E.; Fitzgerald, S. P.; Lowry, P. A.; Connell, I. R. Immunodetection and Quantification of Pyrazolopyrimidine Sedatives. Patent WO2011007180A1, January 20, **2011**.

[7] Bach Taña, J.; Pages Santacana, L. M.; Taltavull Moll, J.; Eastwood, P. R.; Gonzalez Rodrigues, J.; Giulio Matassa, V. Pyrazole Derivatives as JAK Inhibitors. Patent WO2011101161A1, August 25, **2011**.

[8] Bethel, P. A.; Campbell, A. D.; Goldberg, F. W.; Kemmitt, P. D.; Lamont, G. M.; Suleman, A.

Optimized Scale up of 3-Pyrimidinylpyrazolo[1,5-*a*]pyridine via Suzuki Coupling; A General Method of Accessing a Range of 3-(Hetero)arylpyrazolo[1,5-*a*]pyridines. *Tetrahedron* **2012**, *68*, 5434–5444.

[9] Ripka, A.; Shapiro, G.; Mcriner, A. J.; Bursavich, M. G. Imidazotriazinone Compounds as PDE9 Inhibitors and Their Preparation. Patent WO2013142269A1, September 26, **2013**.

[10] Li, J.; Zhang, P.; Jiang, M.; Yang, H.; Zhao, Y.; Fu, H. Visible Light as a Sole Requirement for Intramolecular C(sp³)-H Imination. *Org. Lett.* **2017**, *19*, 1994–1997.

[11] Stanton, M. G.; Noucti, N.; Sloman, D. J.; Munoz, B.; Lim, J. Pyrazolo[1,5-*a*]pyrimidine Derivatives. Patent WO2009014620A1, January 29, **2009**.

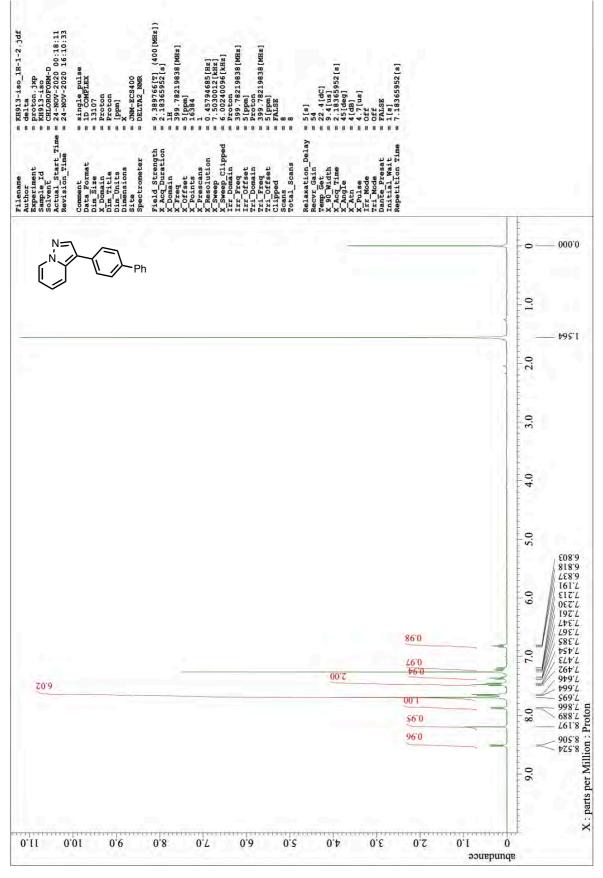
[12] Lindsay-Scott, P. J.; Charlesworth, N. G.; Grozavu, A. A Flexible Strategy for the Regiocontrolled Synthesis of Pyrazolo[1,5-*a*]pyrazines. *J. Org. Chem.* **2017**, *82*, 11295–11303.

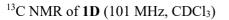
[13] Velankar, A. D.; Quintini, G.; Prabhu, A.; Weber, A.; Hunaeus, G.; Voland, B.; Wuest, M.; Orjeda, C.; Harel, D.; Varghese, S.; Gore, V.; Patil, M.; Gayke, D.; Herdemann, M.; Heit, I.; Zaliani, A. Synthesis and Biological Evaluation of Novel (4 or 5-Aryl)pyrazolyl-indoles as Inhibitors of Interleukin-2 Inducible T-Cell Kinase (ITK). *Bioorg. Med. Chem.* 2010, *18*, 4547–4559.

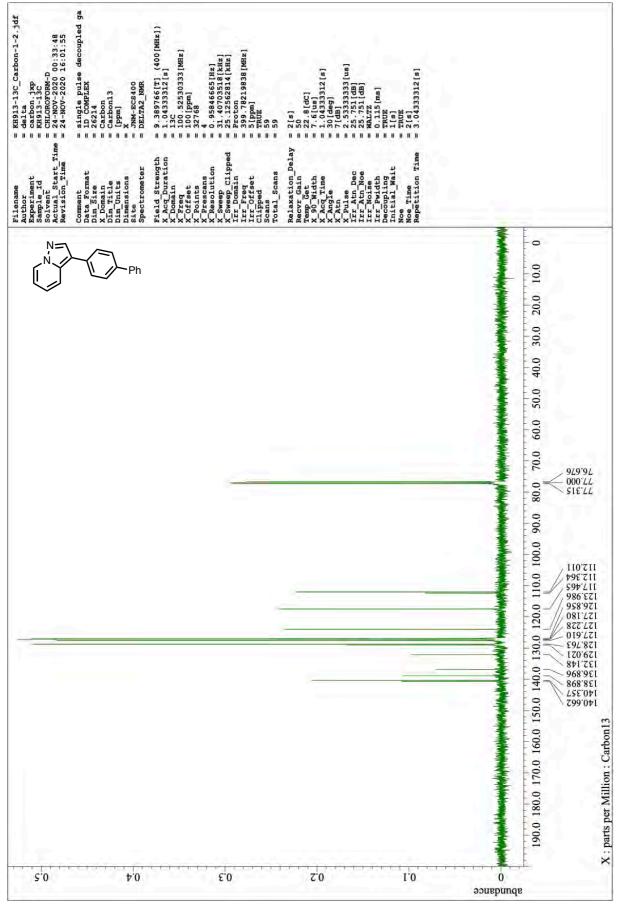
[14] Luo, Y.; Zhang, H.; Wang, S.; Zhou, Y.; Dong, S.; Feng, X. Asymmetric Catalytic Diverse Ring Opening/Cycloadditions of Cyclobutenones with (*E*)-Alkenyloxindoles and (*E*)-Dioxopyrrolidines. *Org. Lett.* **2020**, *22*, 2645–2650.

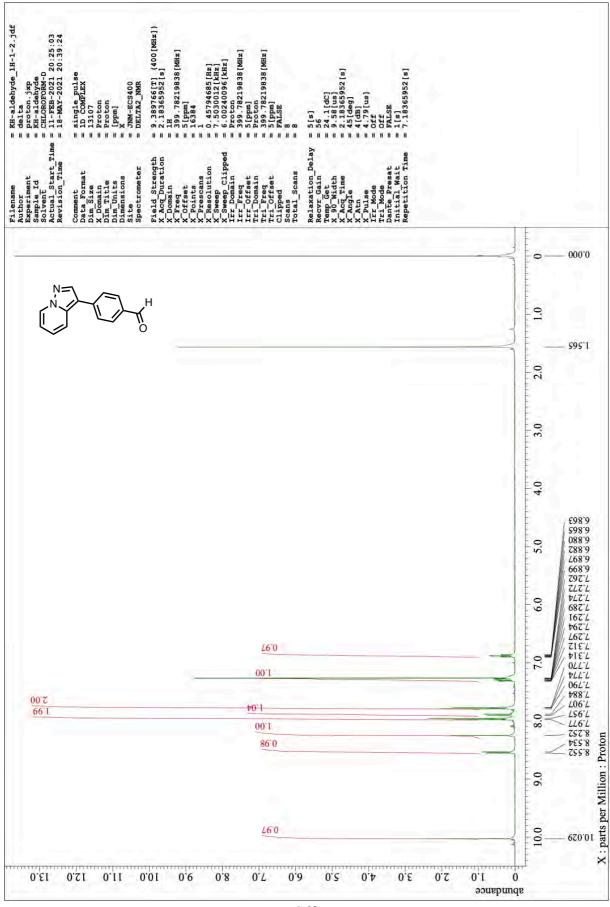
[15] Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst. *Science* **2011**, *334*, 1681–1684.

[16] Nakamura, M.; Hajra, A.; Endo, K.; Nakamura, E. Synthesis of Chiral α-Fluoroketones Through Catalytic Enantioselective Decarboxylation. *Angew. Chem., Int. Ed.* **2005**, *44*, 7248–7251.

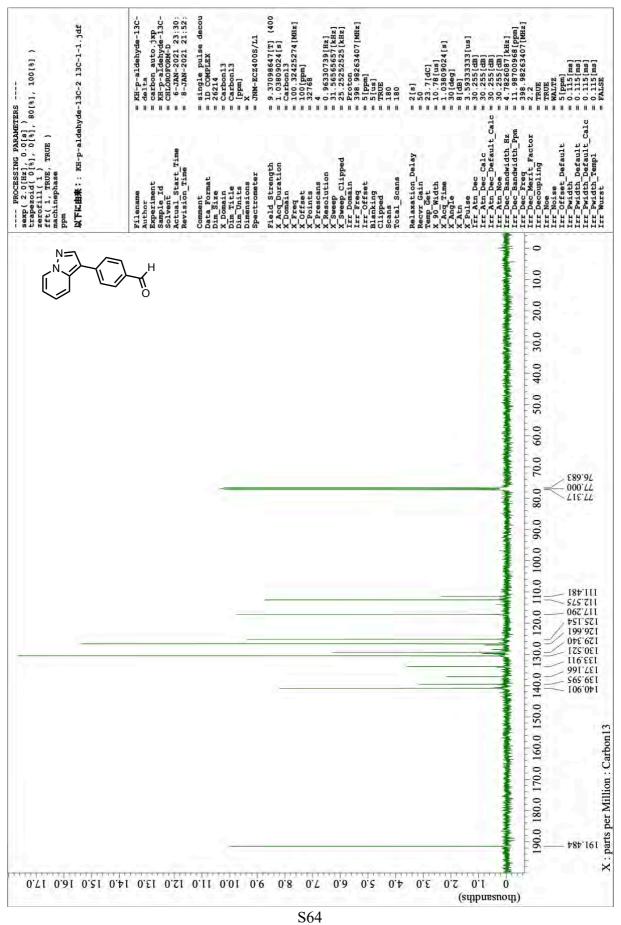

[17] Sheldrick, G. M. SHTLXT – Integrated Space-Group and Crystal-Structure Determination. *Acta Cryst.* **2015**, *A71*, 3–8.

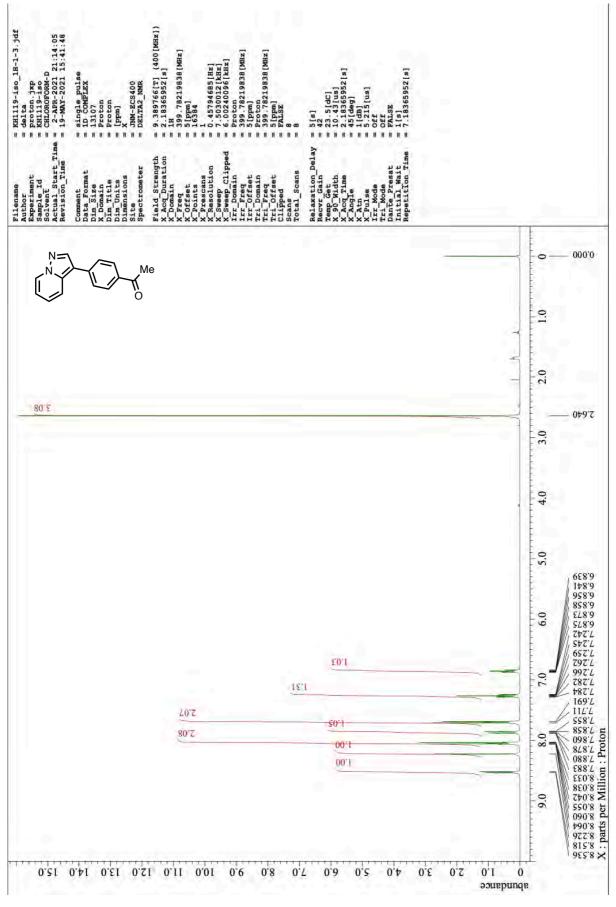

[18] Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.


[19] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341.

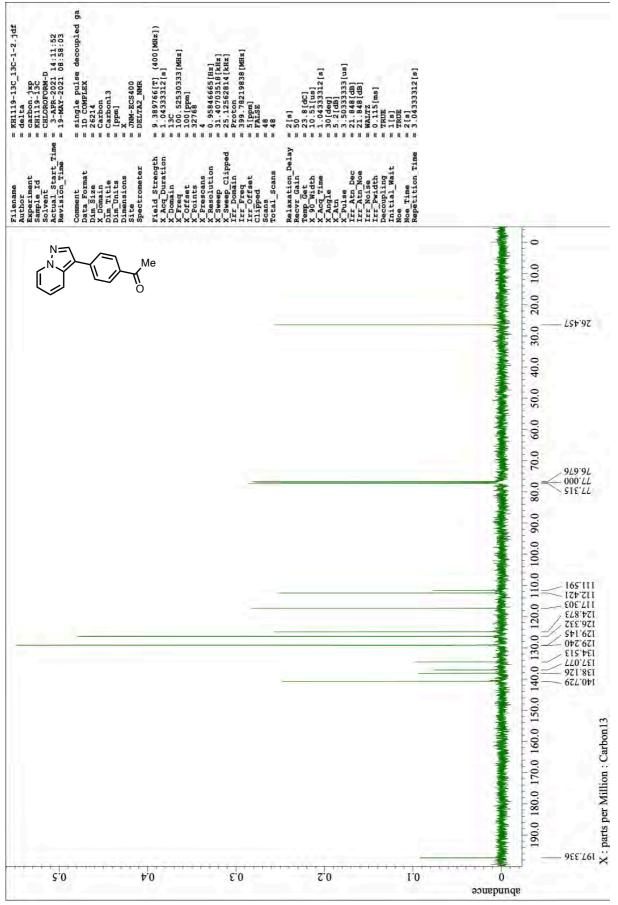

12. ¹H, ¹³C, and ¹⁹F NMR Spectra

¹H NMR of **1D** (400 MHz, CDCl₃)

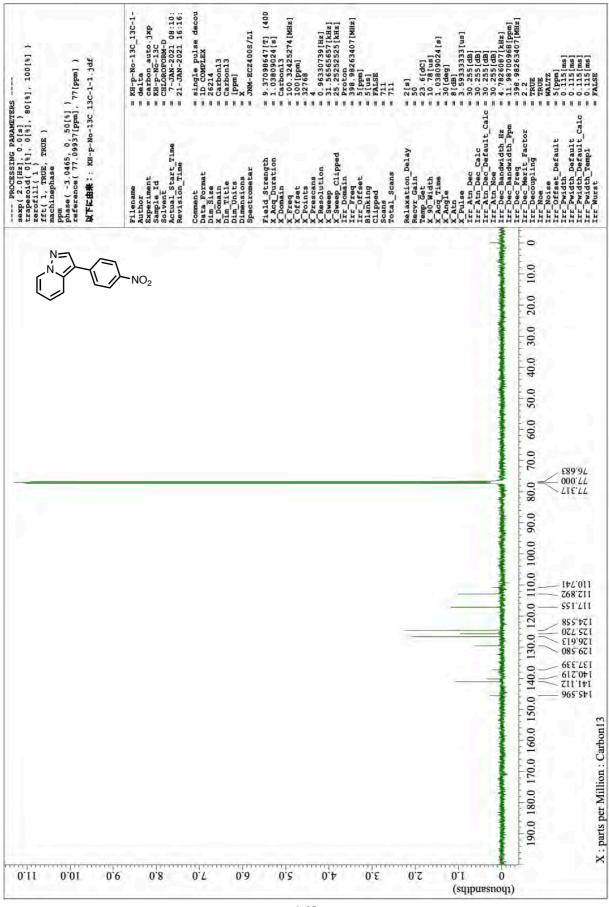


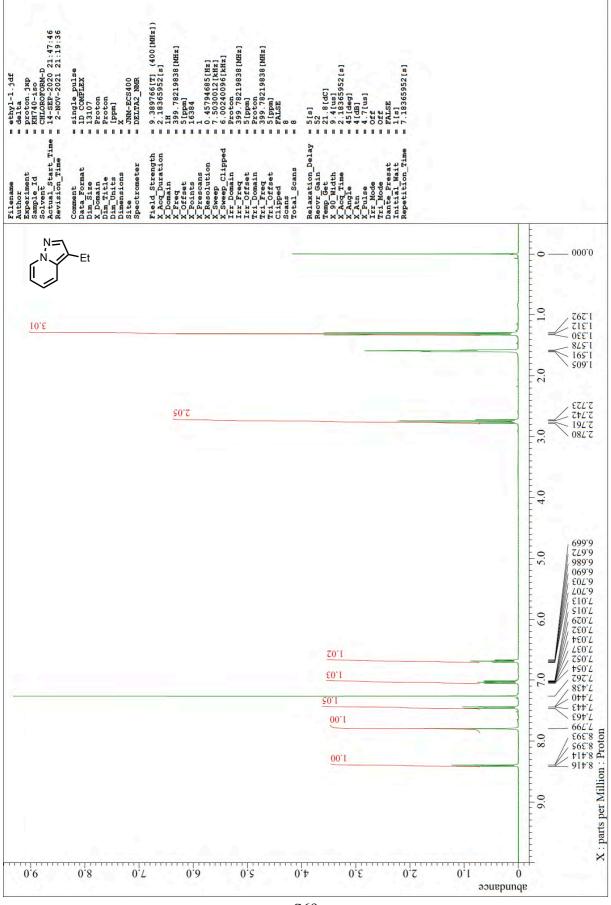


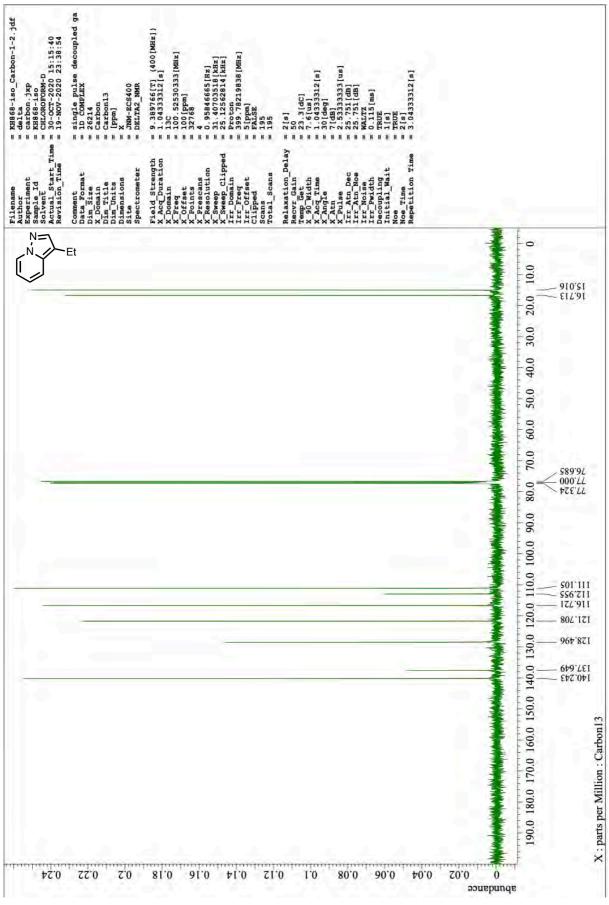
¹H NMR of **1G** (400 MHz, CDCl₃)

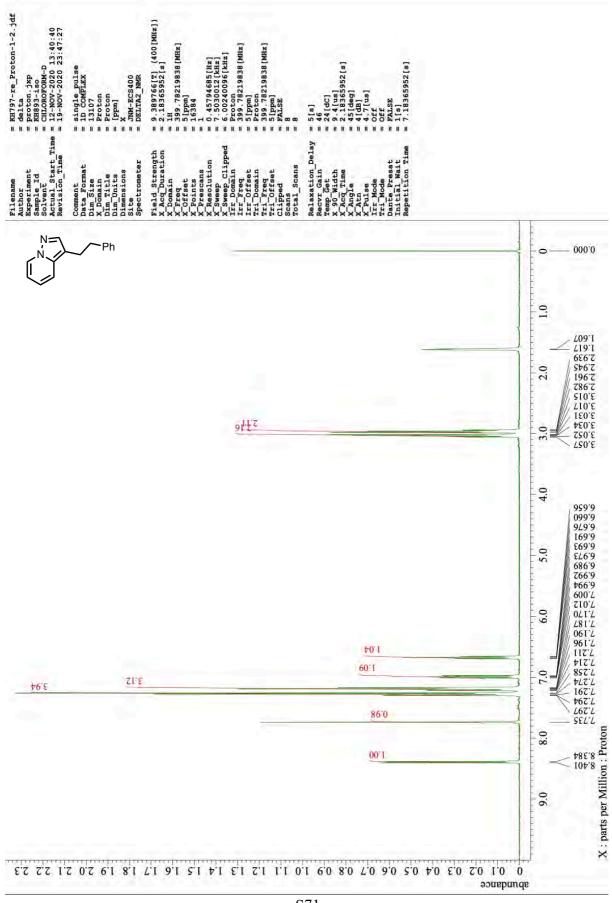

¹³C NMR of **1G** (101 MHz, CDCl₃)

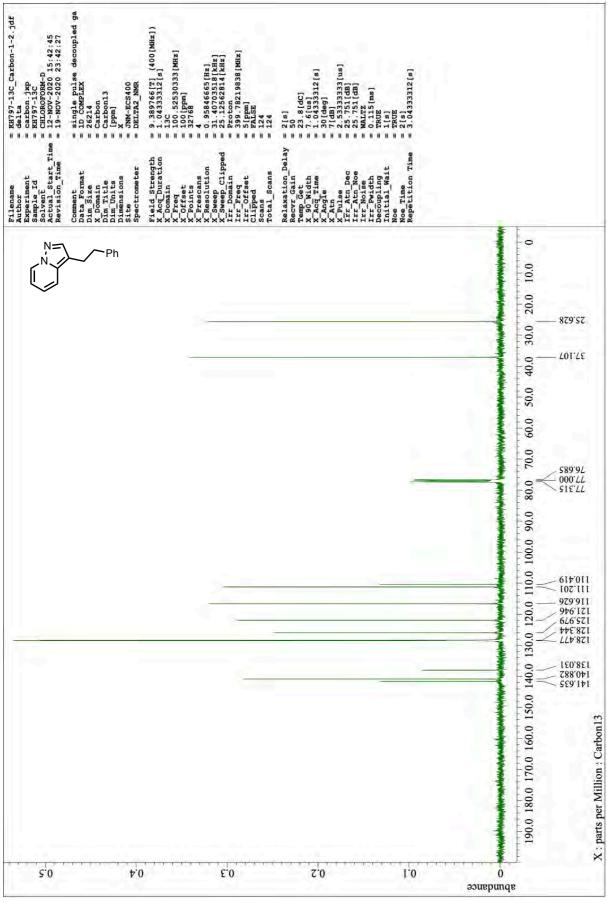
¹H NMR of **1H** (400 MHz, CDCl₃)


¹³C NMR of **1H** (101 MHz, CDCl₃)


¹H NMR of **1K** (400 MHz, CDCl₃)


¹³C NMR of **1K** (101 MHz, CDCl₃)


¹H NMR of **1M** (400 MHz, CDCl₃)


¹³C NMR of **1M** (101 MHz, CDCl₃)

¹H NMR of **1N** (400 MHz, CDCl₃)

¹³C NMR of **1N** (101 MHz, CDCl₃)

(400[MHz]) 16:12:59 KH960-iso_1H-1-2.jdf delta Proton 399.78219838[MHz] 5[ppm] FALSE LH 399.78219838[MHz] roton 199.78219838 [MHz] [[ppm] 0.45794685[Hz] 7.5030012[kHz] 6.00240096[kHz] 9.389766[T] (4 2.18365952[s] 65952 [s] 1[s] 7.18365952[s] C 15-DEC-2020 9-FEB-2021 JNM-ECS400 DELTA2 NMR jxp single puls Proton.jxp KH960-iso CHLOROFORM C C [sn ton roton 5 [ppm] 16384 [mdd] . Relaxation Delay Recvr Gain Temp Get Actual Start Time Revision Time Field Strength X Acq Duration X Domain Clipped on Time Comment Data Format Dim Size Dim Title Dim Title Dim Units Dimensions Site Spectrometer Prescans Resolution Tri_Offset Clipped Scans Total_Scans R Filename tepetiti Points vent Sol L'XX H н н N= 515 66.5 1.04 \$0'1 1.06 1.03 00°T 1.02

0000

2000 S 2005 S 2005 S 2005 S 2005 S 2009 S 2009 S 2002 S 2005 S

X: parts per Million: Proton

0

1.0

2.0

3.0

4.0

2.0

6.0

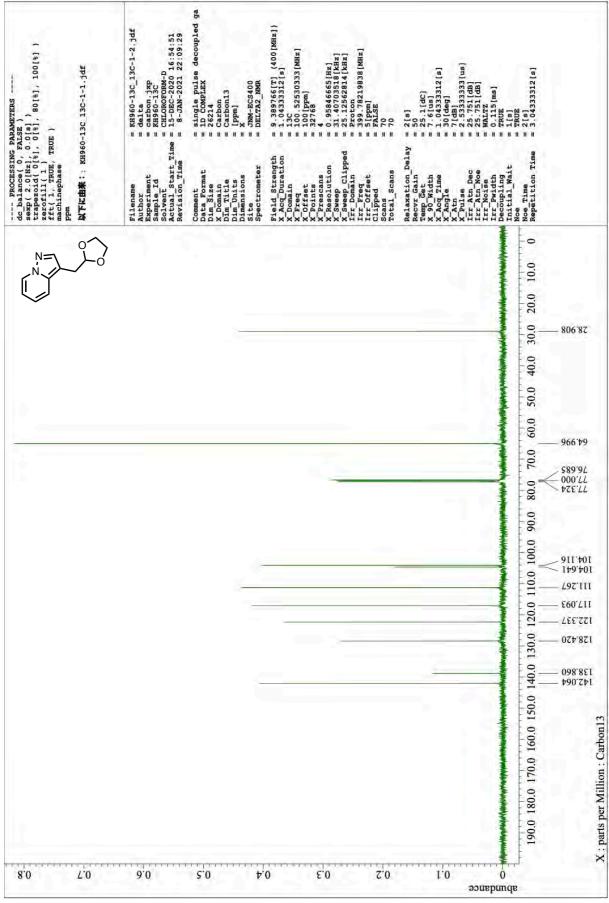
0.7

8.0

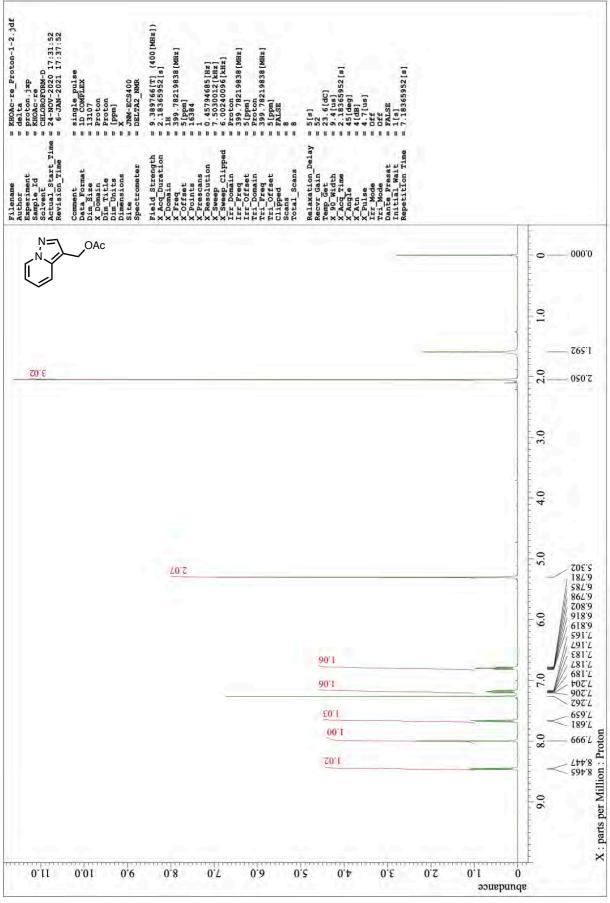
0.6

0 abundance

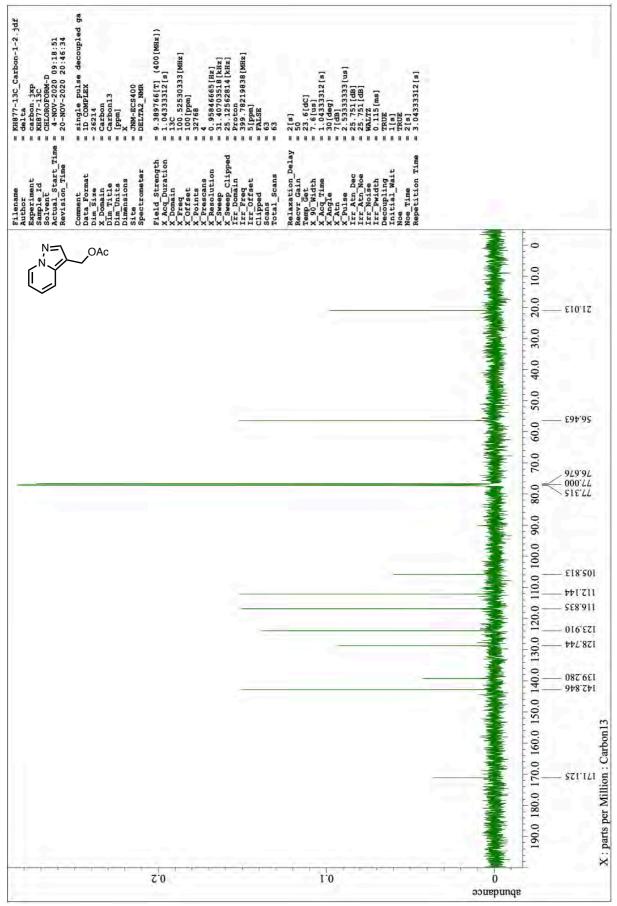
¹H NMR of **10** (400 MHz, CDCl₃)

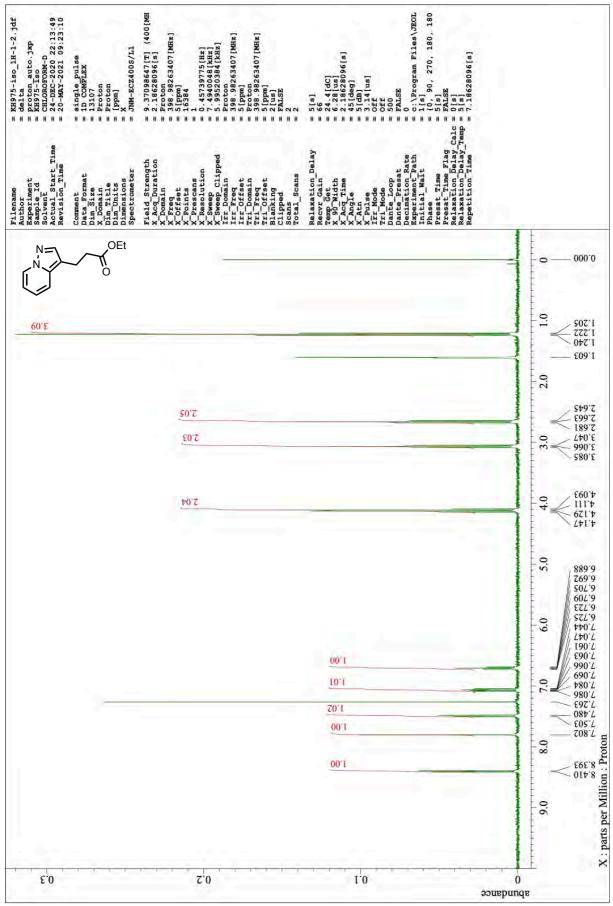

S73

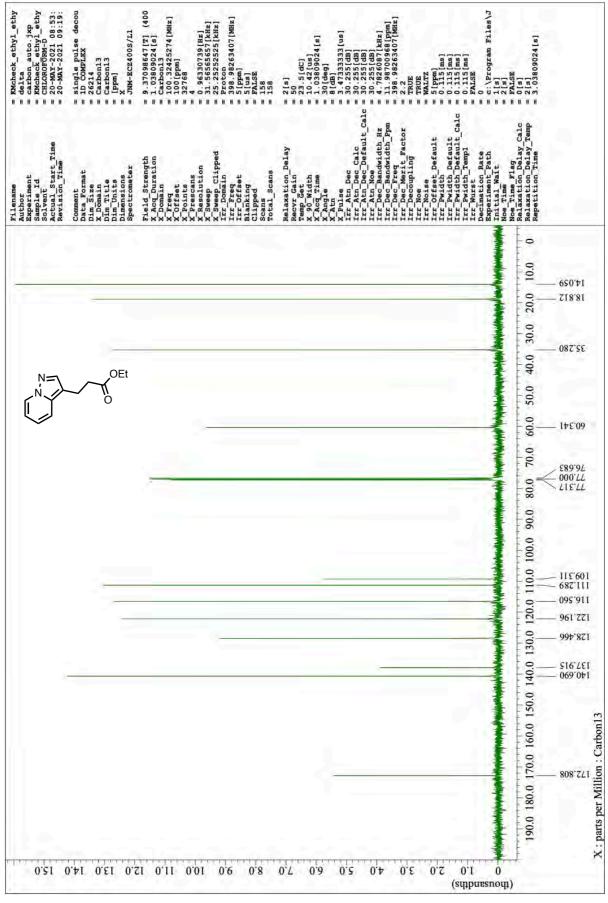
1.0

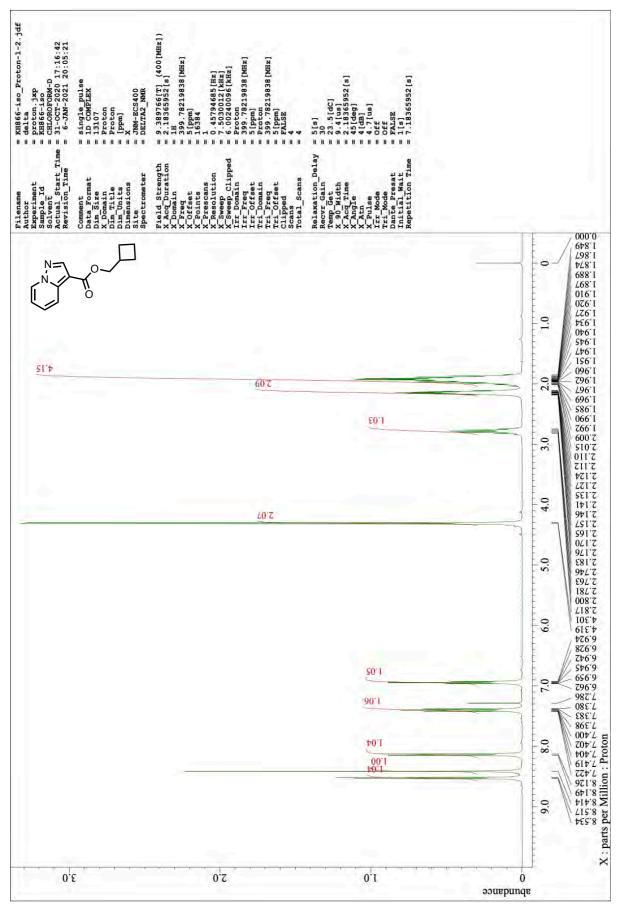

0.2

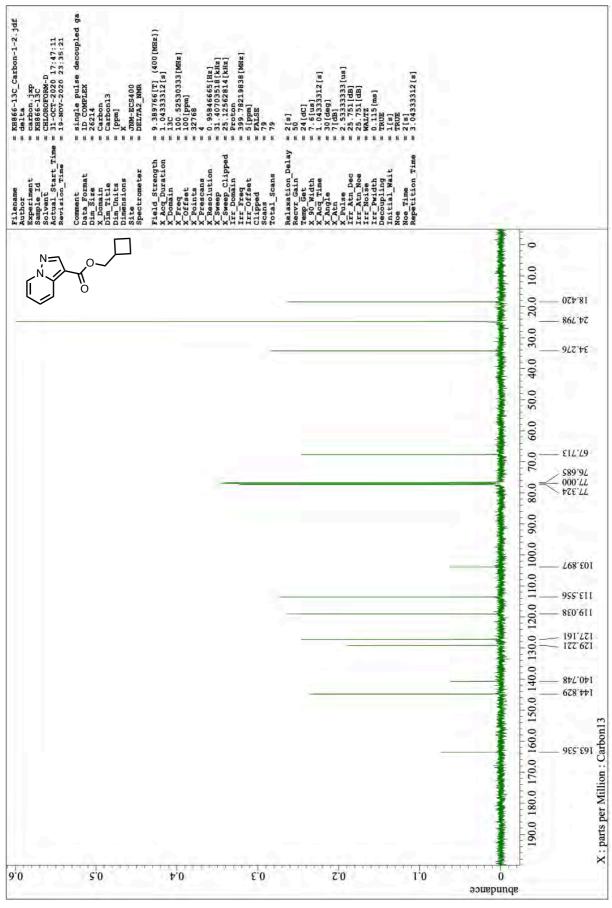
3.0

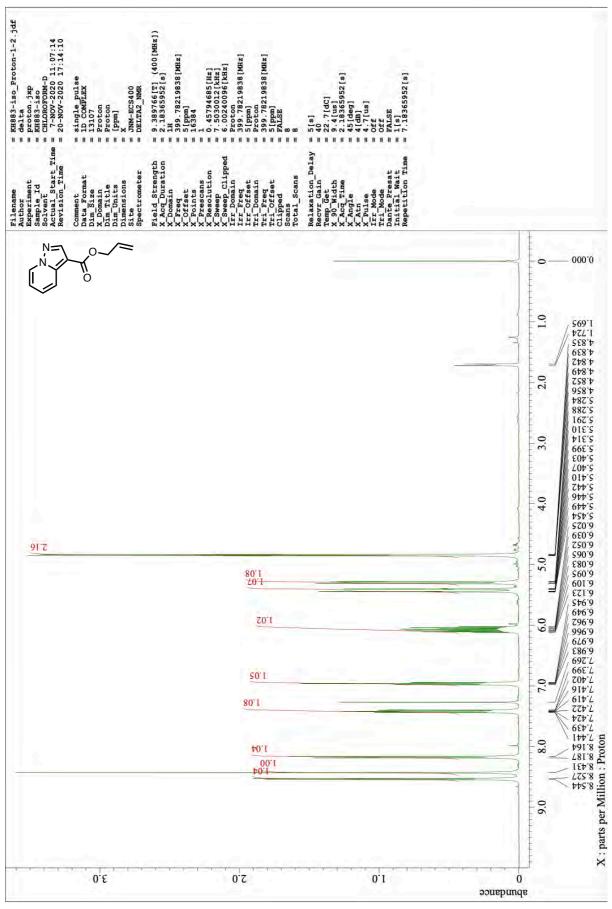

¹³C NMR of **10** (101 MHz, CDCl₃)

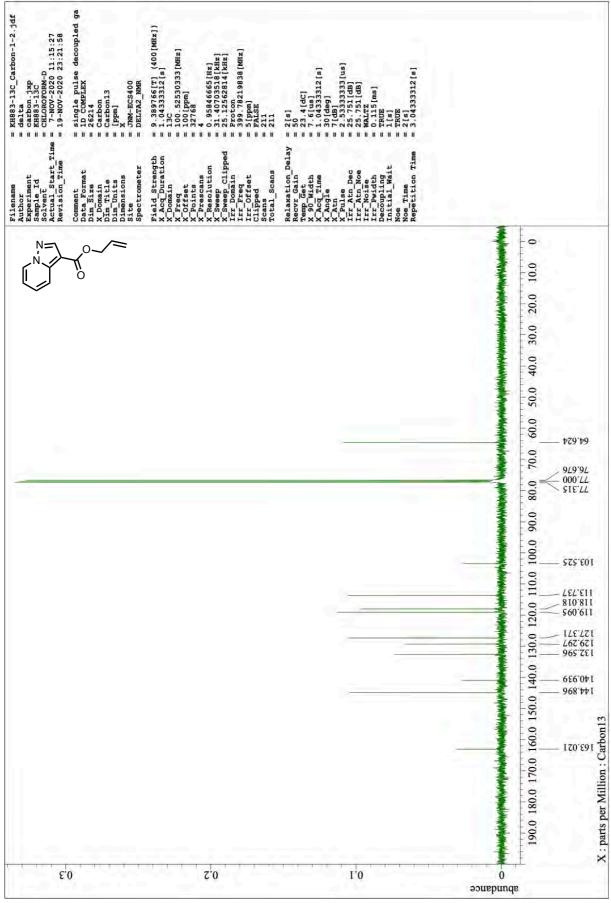

¹H NMR of **1P** (400 MHz, CDCl₃)

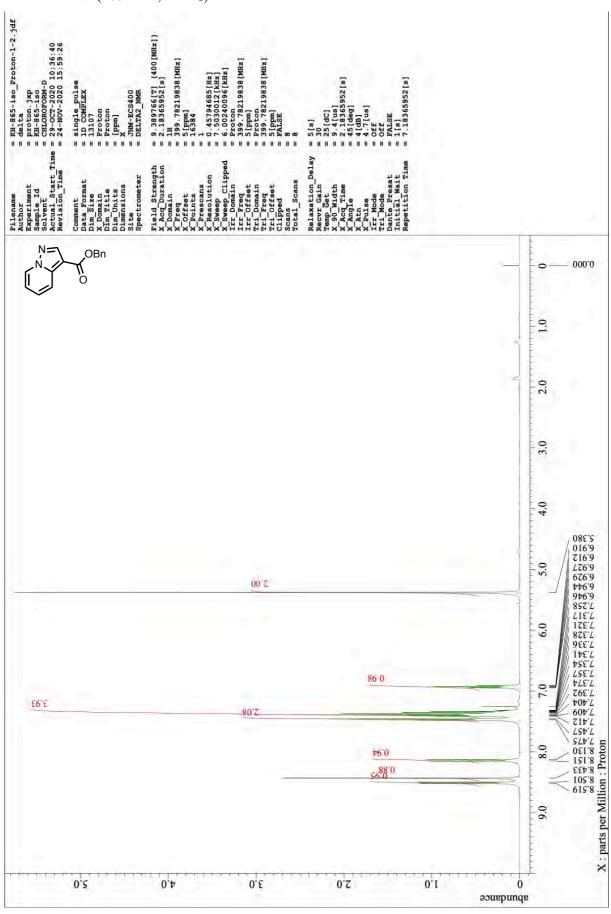

¹³C NMR of **1P** (101 MHz, CDCl₃)


¹H NMR of **1R** (400 MHz, CDCl₃)

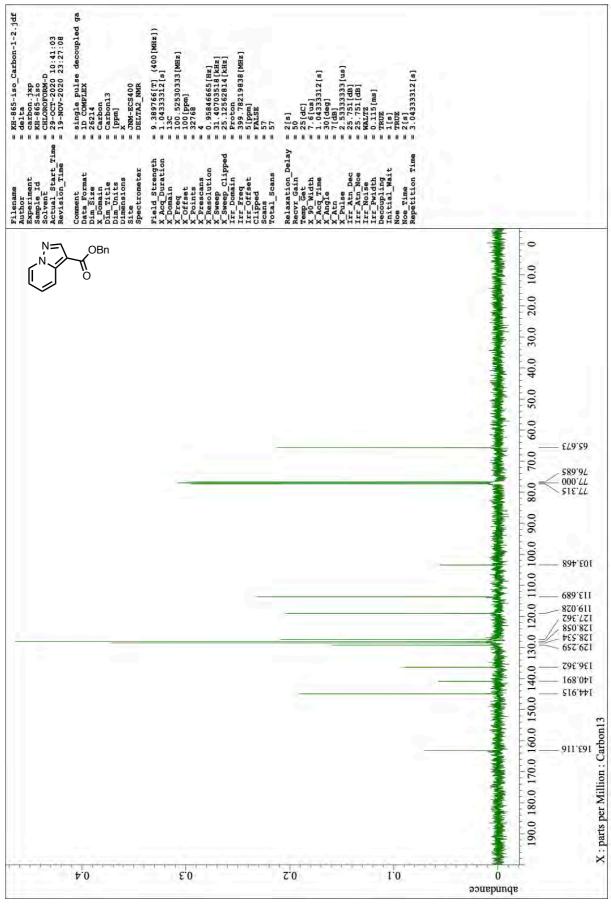

¹³C NMR of **1R** (101 MHz, CDCl₃)


¹H NMR of **1T** (400 MHz, CDCl₃)

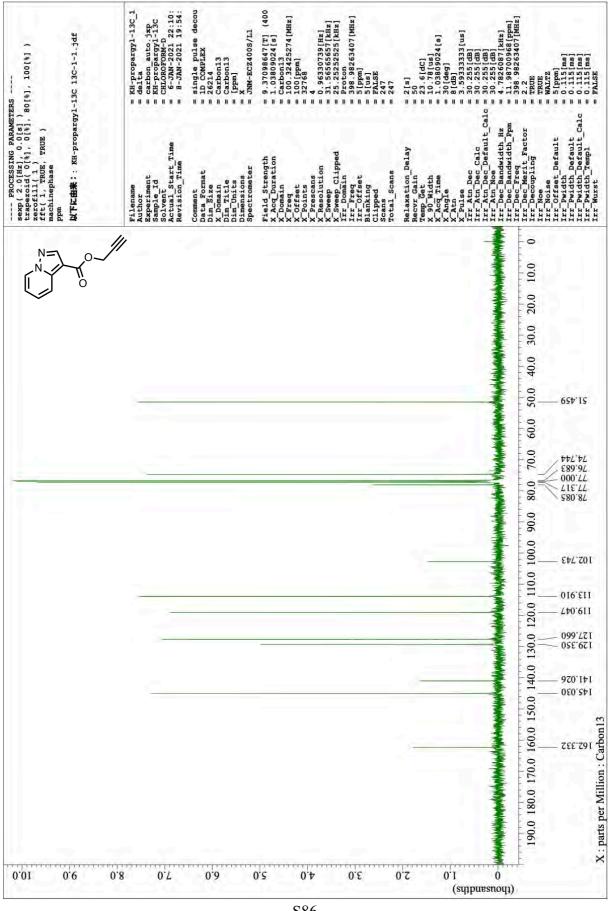

¹³C NMR of **1T** (101 MHz, CDCl₃)

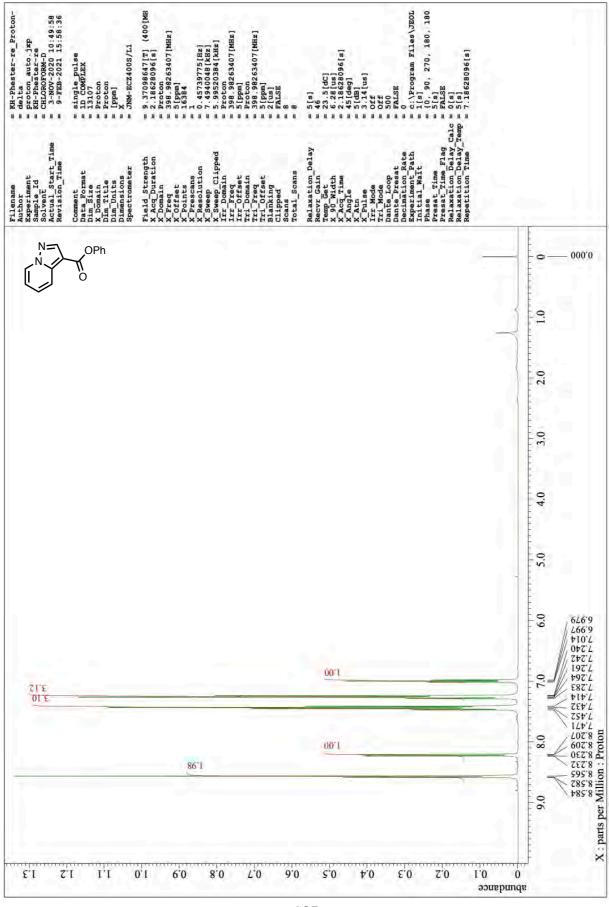


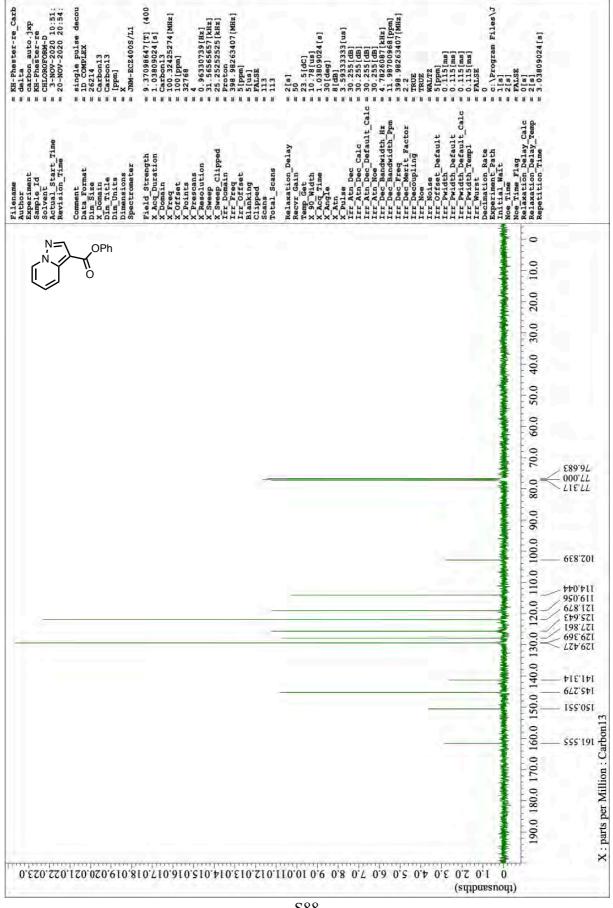
¹H NMR of **1**U (400 MHz, CDCl₃)


¹³C NMR of **1U** (101 MHz, CDCl₃)

¹H NMR of **1V** (400 MHz, CDCl₃)

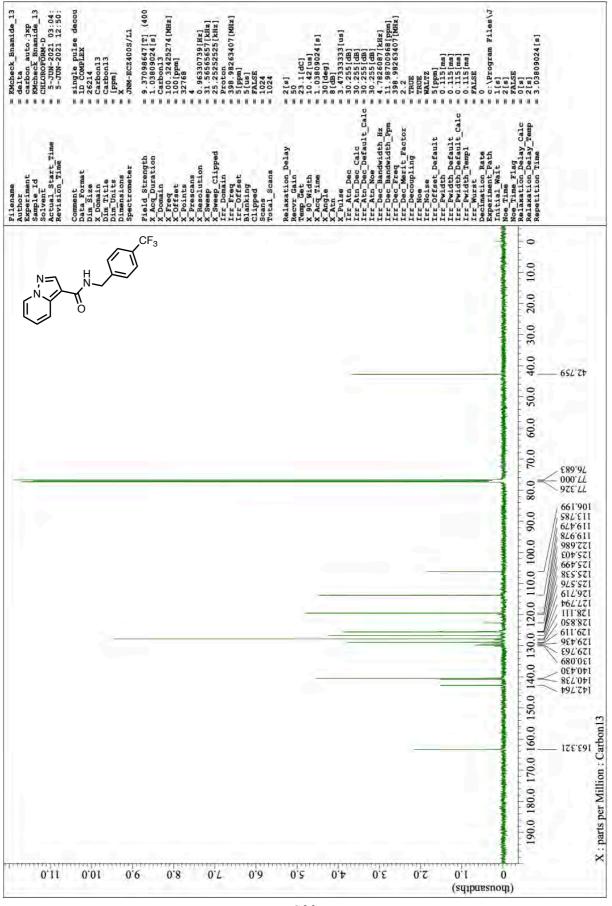

¹³C NMR of **1V** (101 MHz, CDCl₃)


¹H NMR of **1W** (400 MHz, CDCl₃)

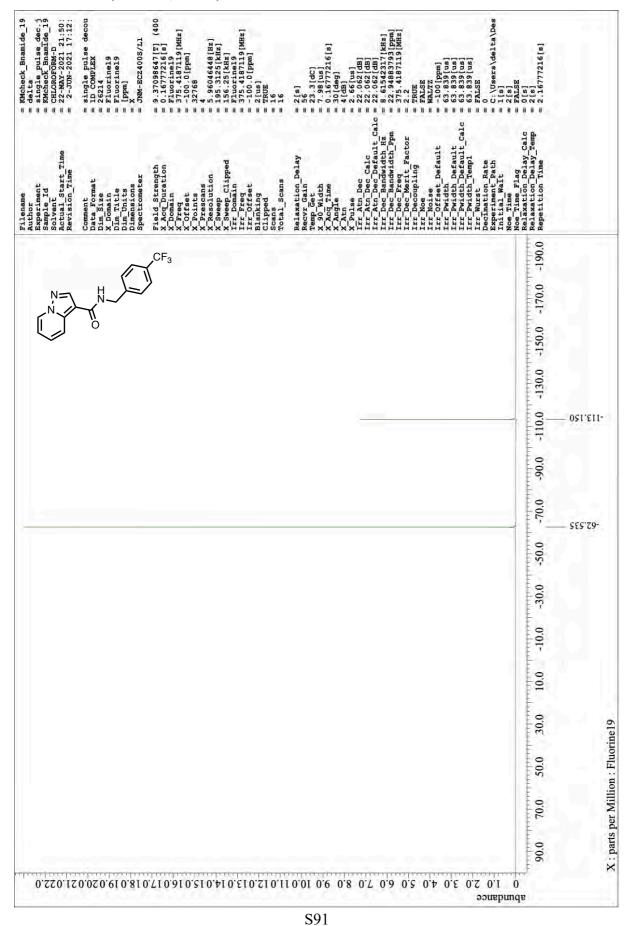

¹³C NMR of **1W** (101 MHz, CDCl₃)

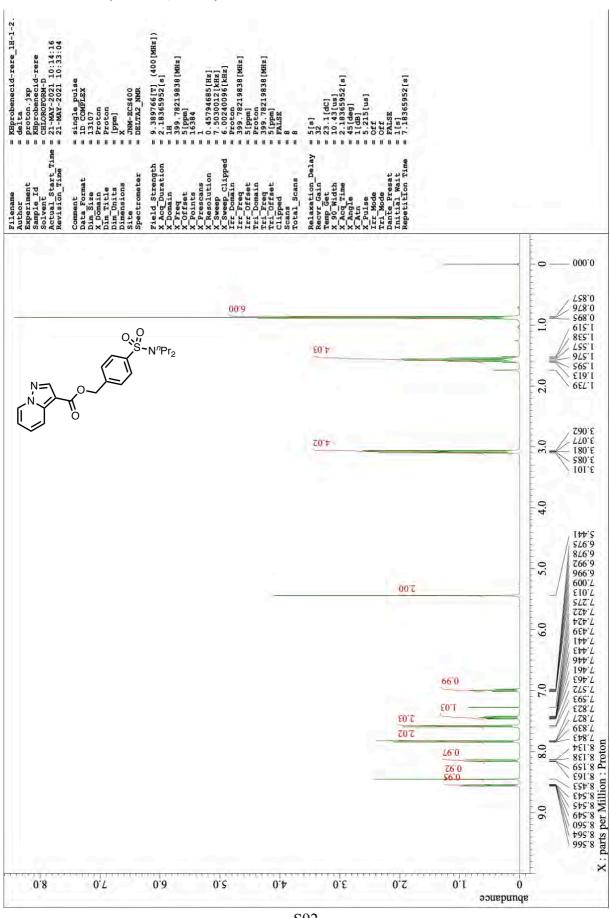
¹H NMR of **1X** (400 MHz, CDCl₃)

¹³C NMR of **1X** (101 MHz, CDCl₃)

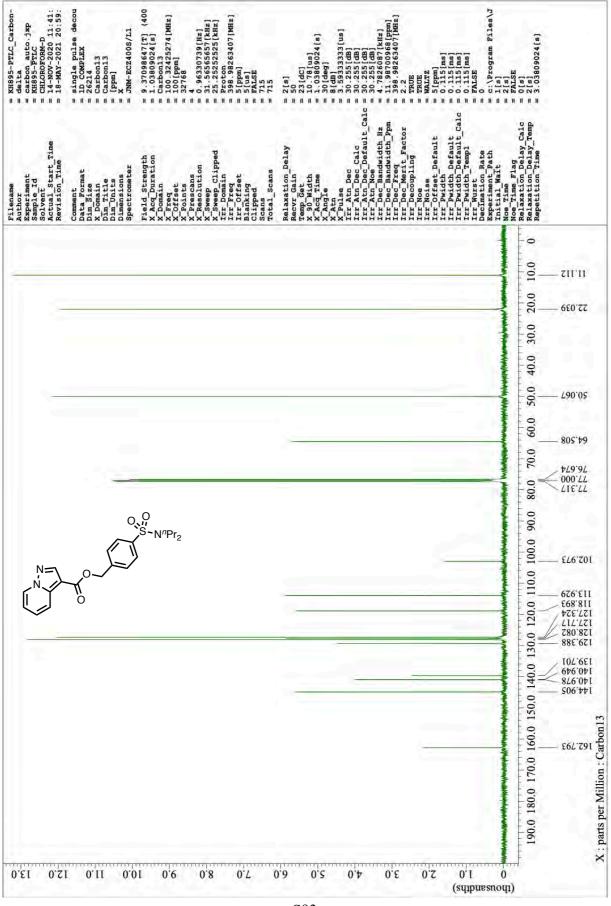


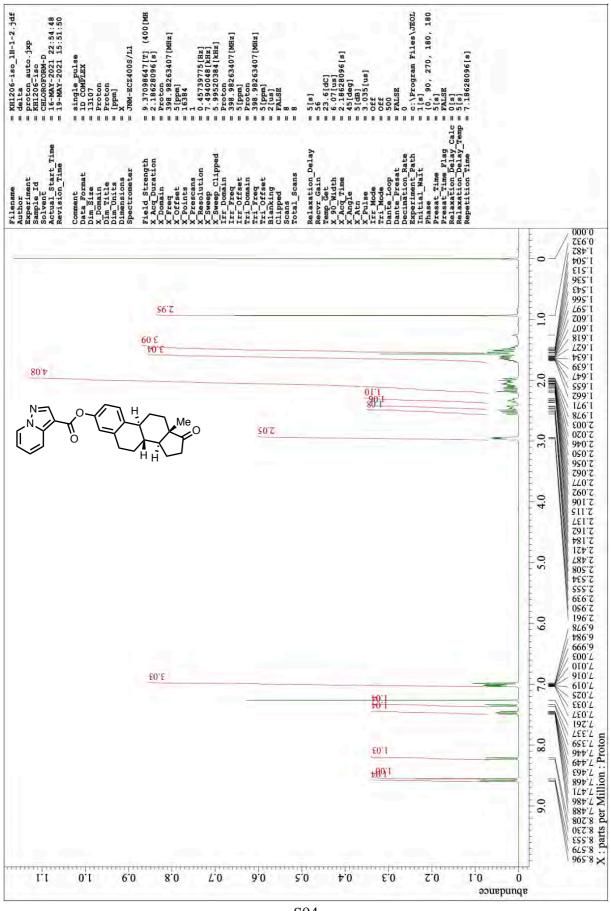
KMcheck Bnamide 1H-1-2.jd (400 [MHz]) 09:29:22 H 399.78219838[MHz] roton 199.78219838[MHz] .78219838 [MHz] .45794685[Hz] .5030012[kHz] .00240096[kHz] amide 7.18365952[s] 9.389766[T] (2.18365952[s] 65952 [s] 2-JUN-2021 proton.jxp KMcheck Bnar JNM-ECS400 DELTA2 NMR CHLOROFORM [dB] 215[us] COMPLEX single pul (C) [ppm] roton [mdd 9 . Start Time Relaxation Delay Recvr Gain Field Strength X Acq Duration X Domain Clipped Site Spectrometer Resolution Scans Comment Data Format Dim Size X Domain Dim Title Dim Units Dimensions Filename Revision Points Scans 1113 EF. 1 H CF₃ 0000 0 Ņ= Ń 1.0 999'1 2.0 3.0 4.0 707 - 00L't 5.0 X : parts per Million : Proton 6.0 66.0 86'0 0 t0'1 66'1 00'7 8.0 1.00 00¹ 66⁰ 9.0 3.0 0.2 0.1 ò

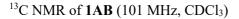

¹H NMR of **1Z** (400 MHz, CDCl₃)

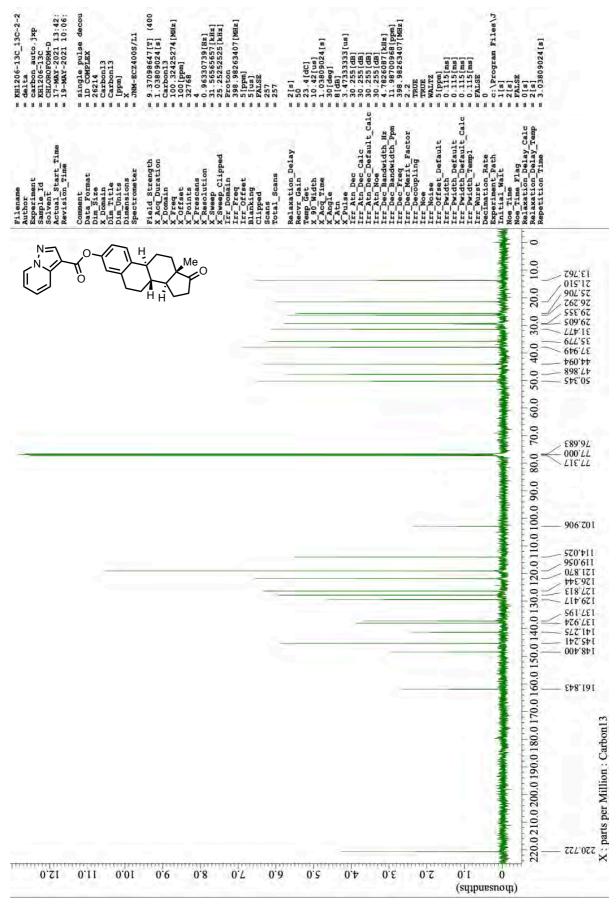

abundance

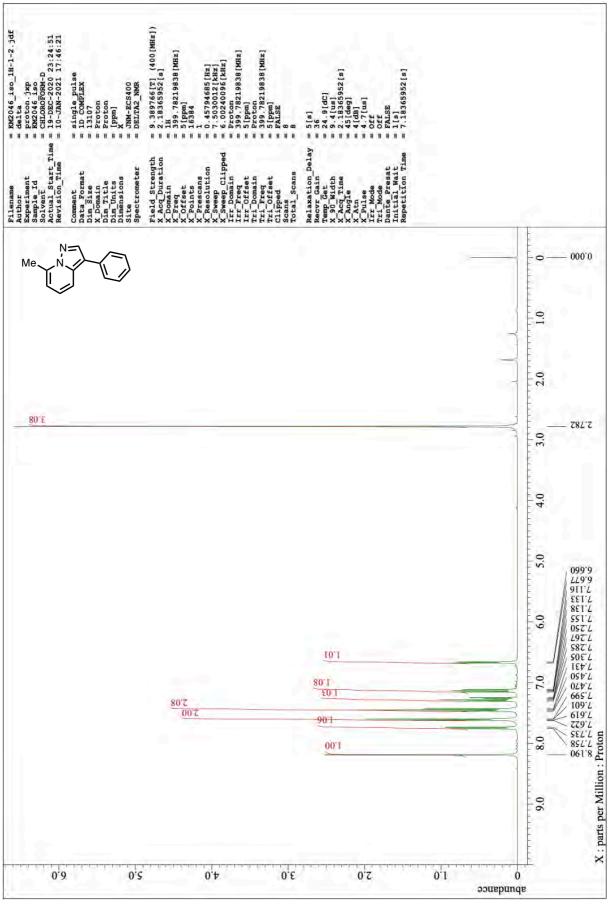
¹³C NMR of **1Z** (101 MHz, CDCl₃)

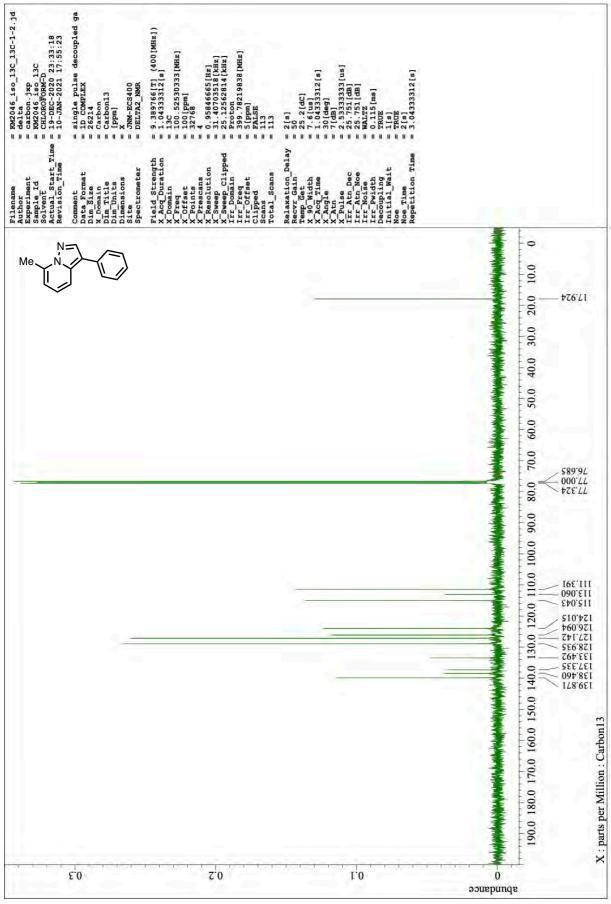

¹⁹F NMR of **1Z** (376 MHz, CDCl₃)

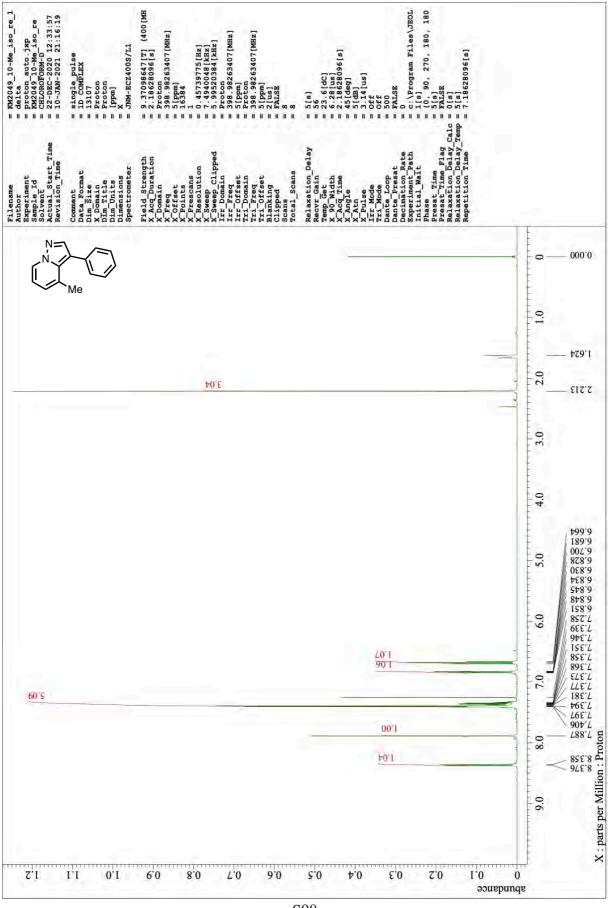


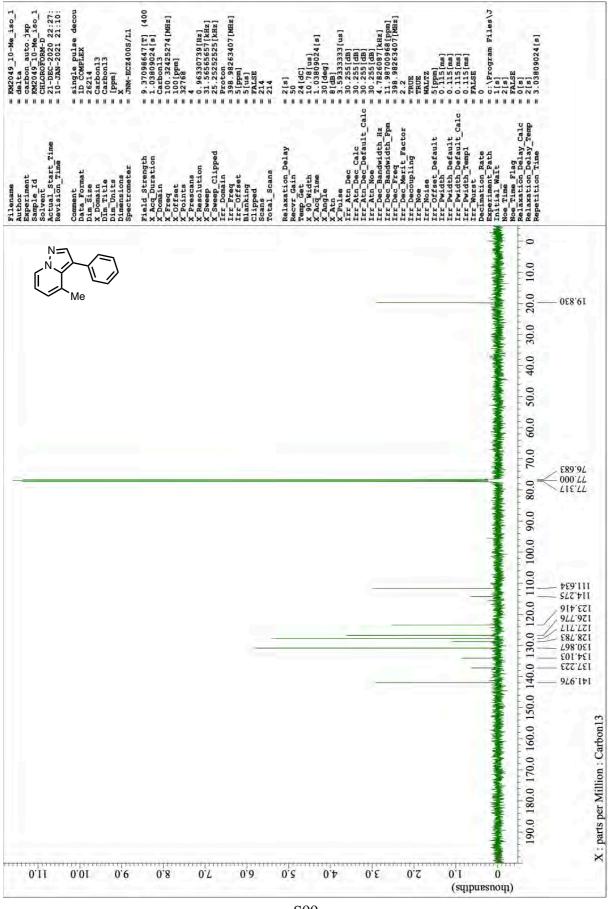

¹H NMR of **1AA** (400 MHz, CDCl₃)

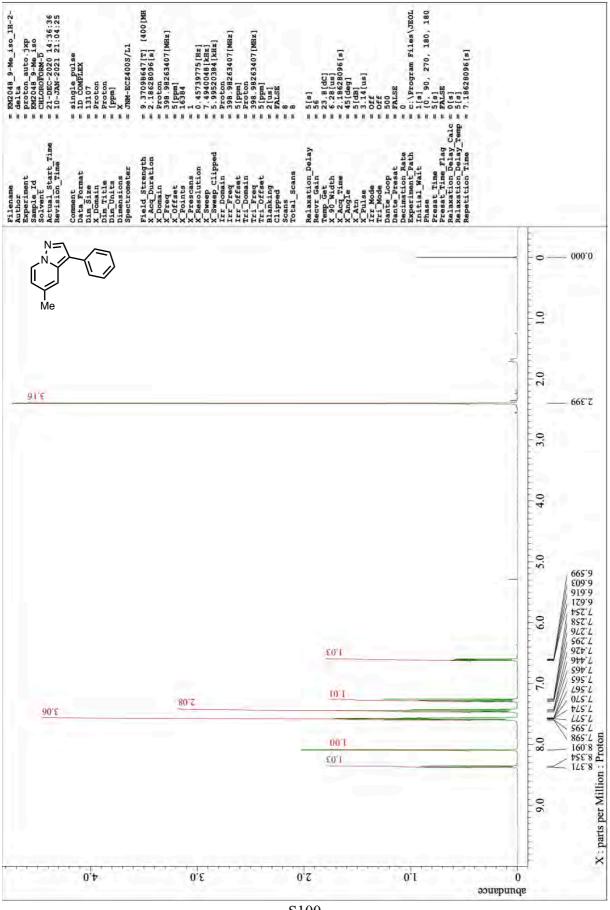

¹³C NMR of **1AA** (101 MHz, CDCl₃)

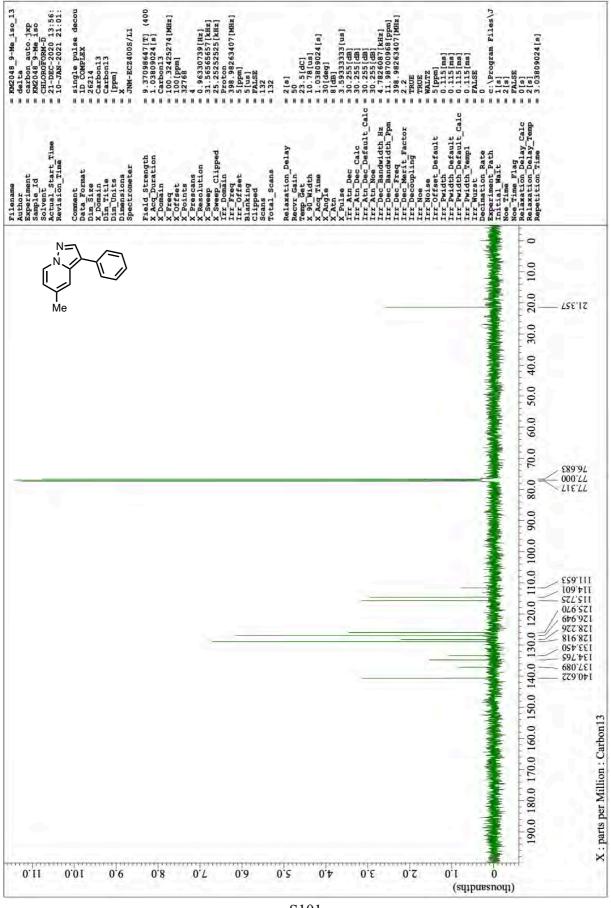

¹H NMR of **1AB** (400 MHz, CDCl₃)

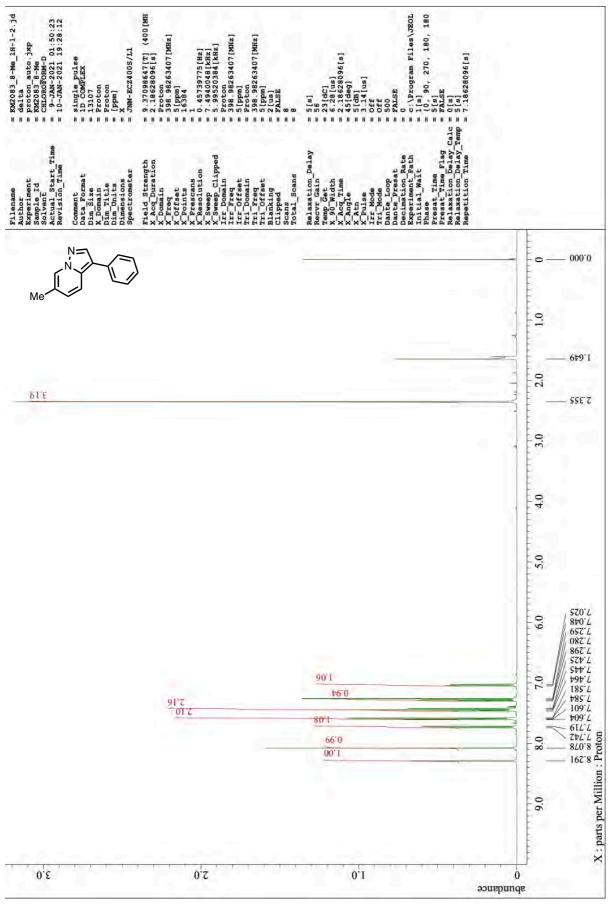



¹H NMR of **1AC** (400 MHz, CDCl₃)

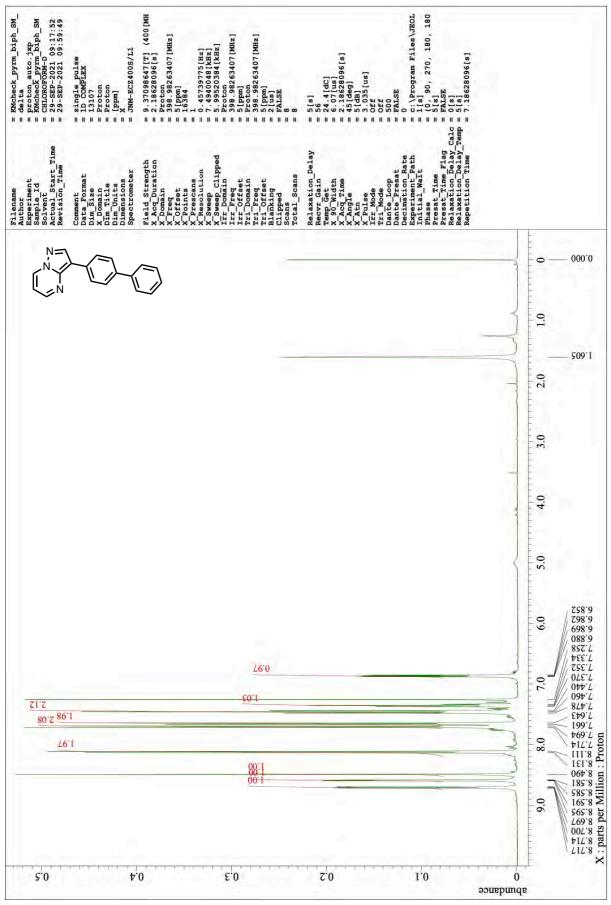

¹³C NMR of **1AC** (101 MHz, CDCl₃)

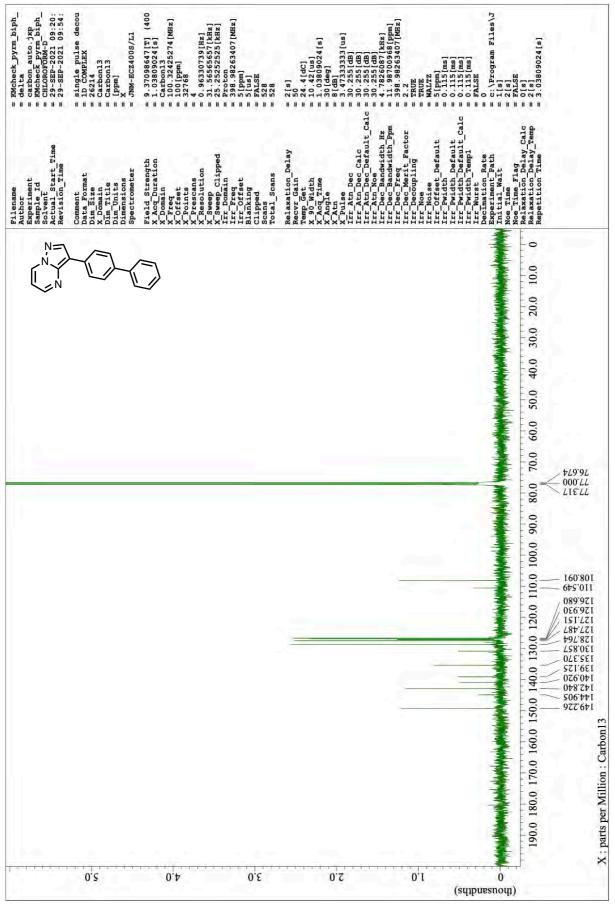

¹H NMR of **1AD** (400 MHz, CDCl₃)

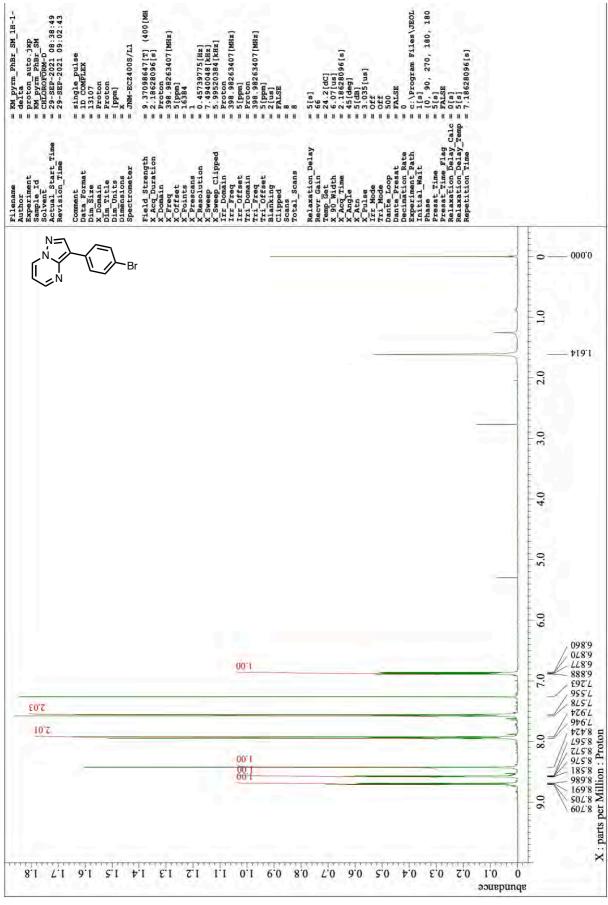

¹³C NMR of **1AD** (101 MHz, CDCl₃)


¹H NMR of **1AE** (400 MHz, CDCl₃)

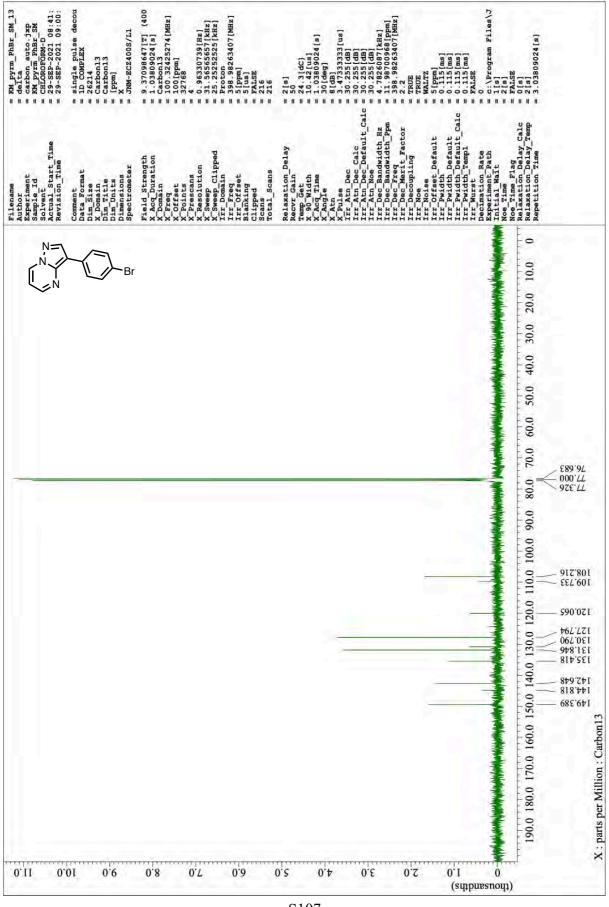
¹³C NMR of **1AE** (101 MHz, CDCl₃)

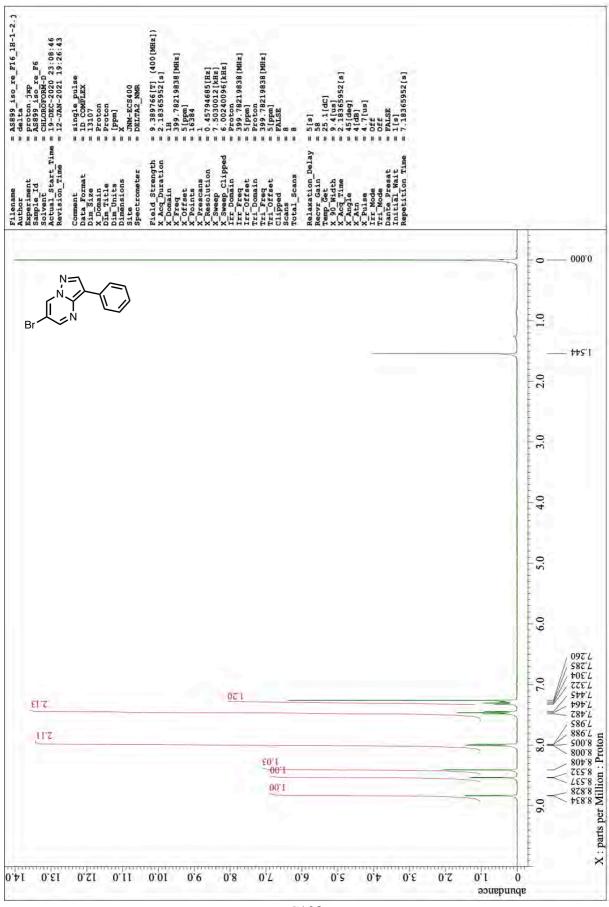

¹H NMR of **1AF** (400 MHz, CDCl₃)


¹³C NMR of **1AF** (101 MHz, CDCl₃)

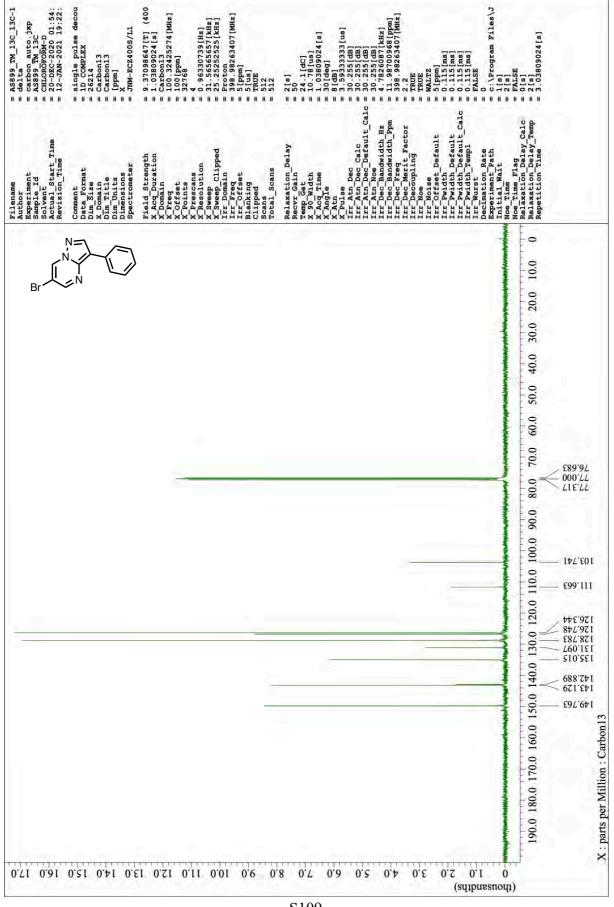

$\left(\begin{array}{c} \left(\right) \right) \right) \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\right) \right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\right) \right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\right) \right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\right) \right) \\ \left(\end{array}\right) \\ \left(\\ \left(\end{array}\right) \\ \left(\\ \left) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\bigg) \\ \left(\end{array}\right) \\ \left(\bigg) $
<pre>Addition addition additio</pre>
U
U

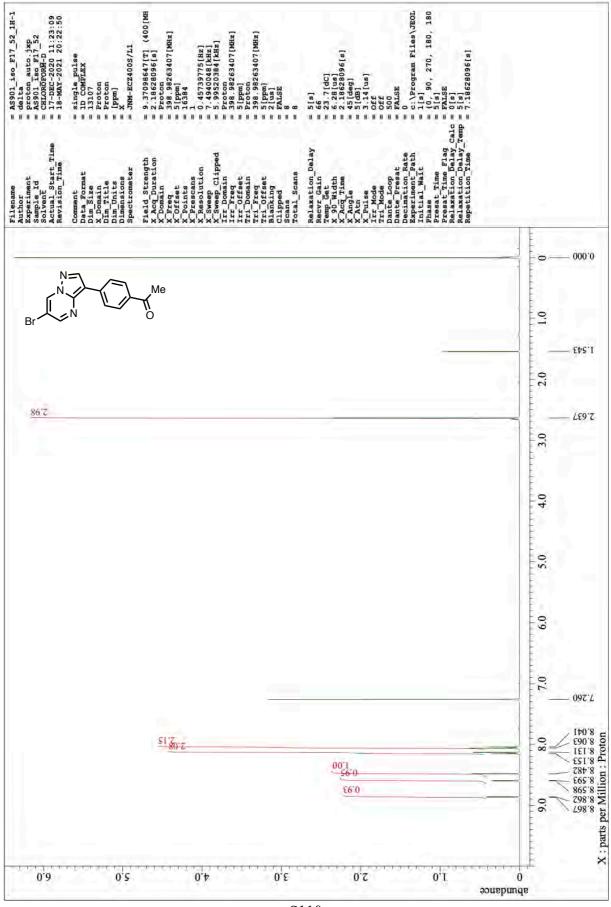
¹H NMR of **1AH** (400 MHz, CDCl₃)

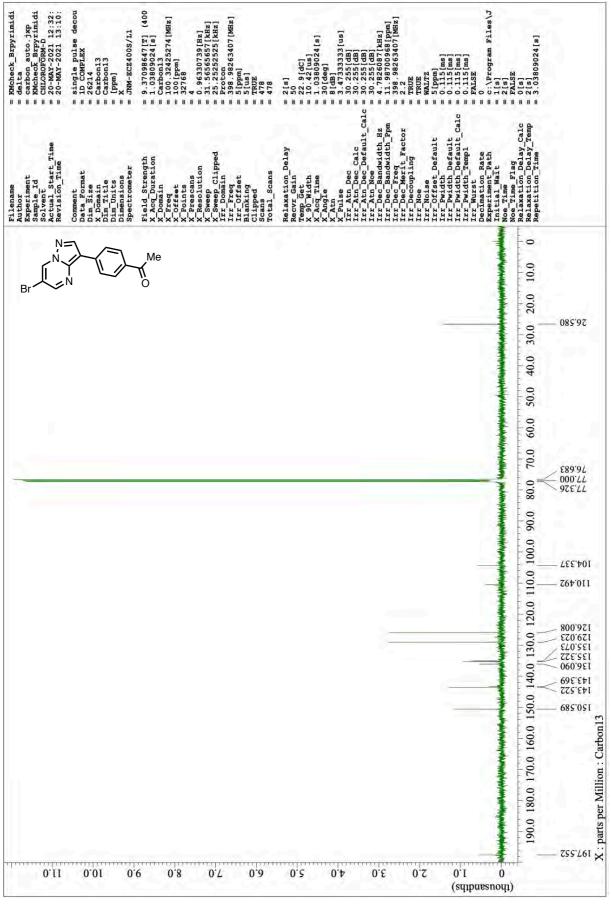

¹³C NMR of **1AH** (101 MHz, CDCl₃)

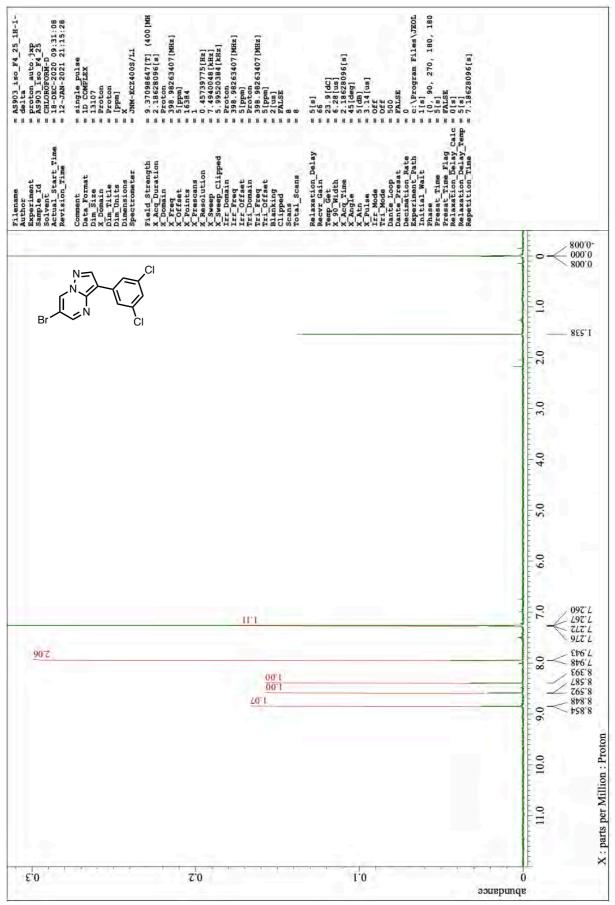


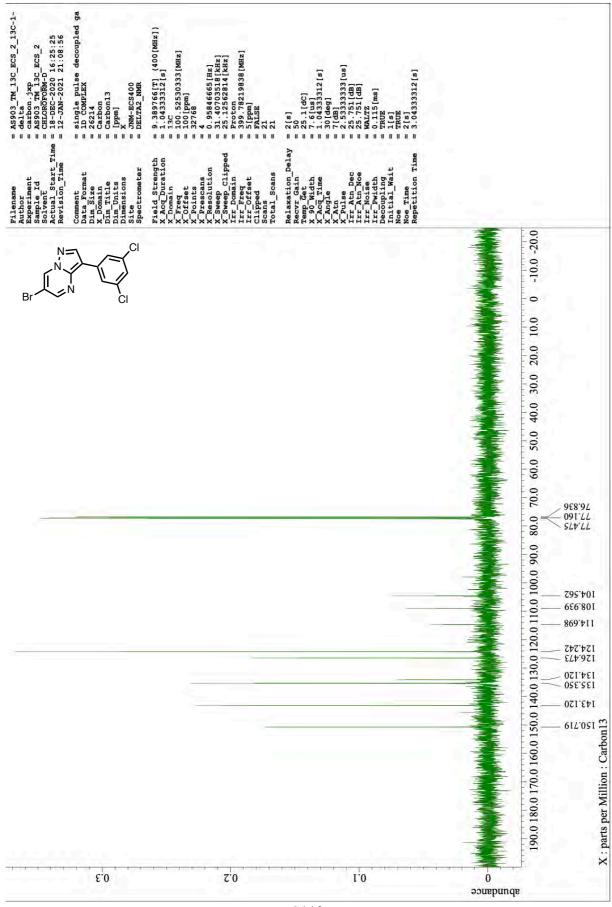
¹H NMR of **1AI** (400 MHz, CDCl₃)

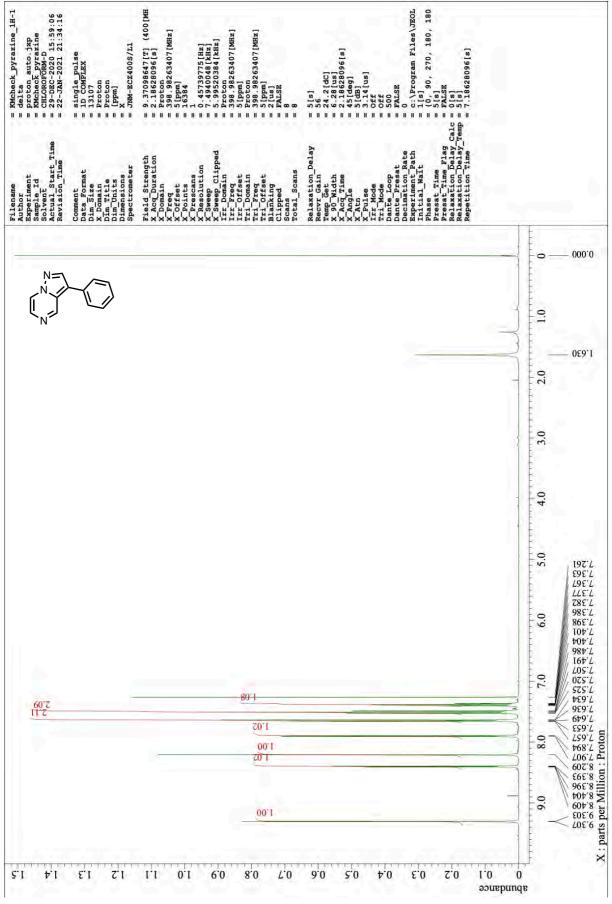

¹³C NMR of 1AI (101 MHz, CDCl₃)

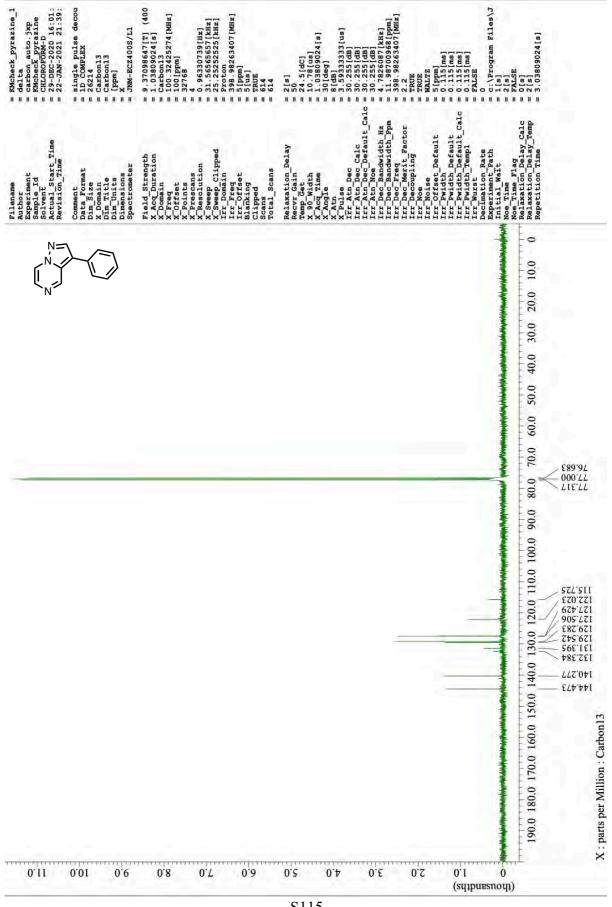

¹H NMR of **1AJ** (400 MHz, CDCl₃)

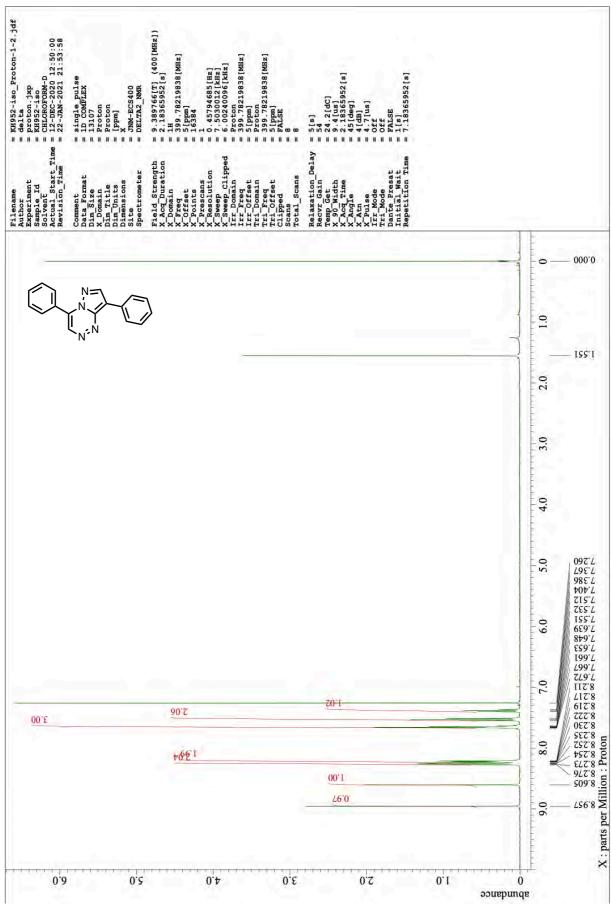

¹³C NMR of **1AJ** (101 MHz, CDCl₃)


¹H NMR of **1AK** (400 MHz, CDCl₃)

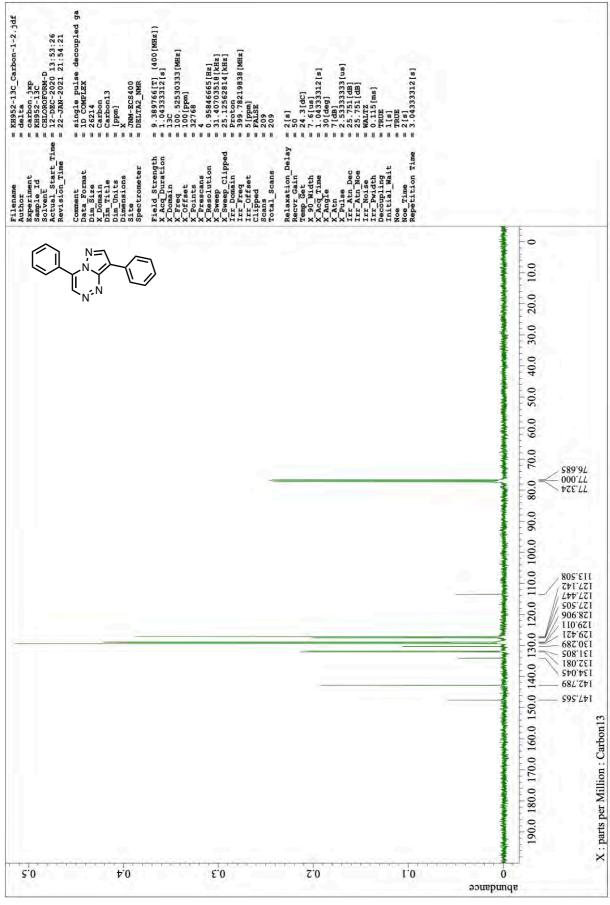

¹³C NMR of **1AK** (101 MHz, CDCl₃)

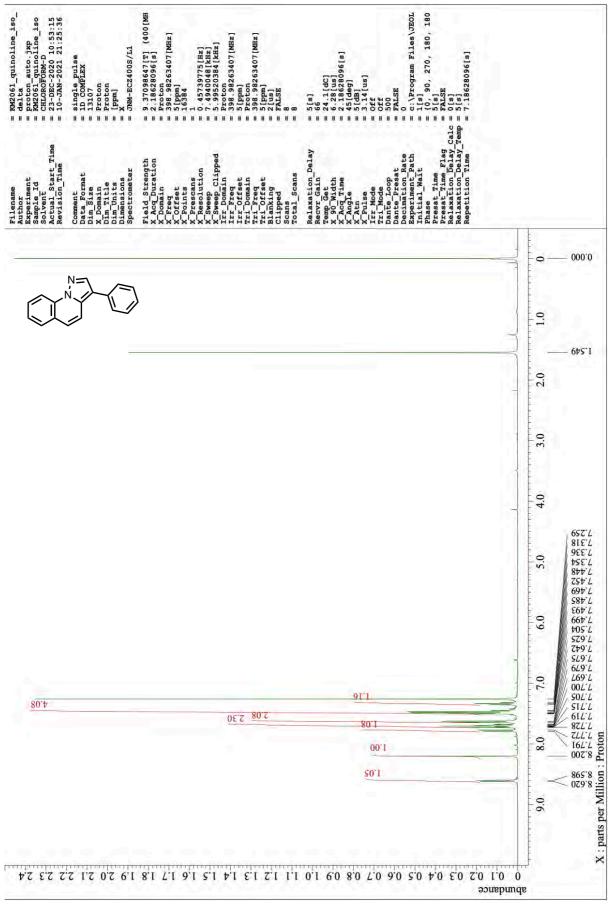

¹H NMR of **1AL** (400 MHz, CDCl₃)


¹³C NMR of **1AL** (101 MHz, CDCl₃)

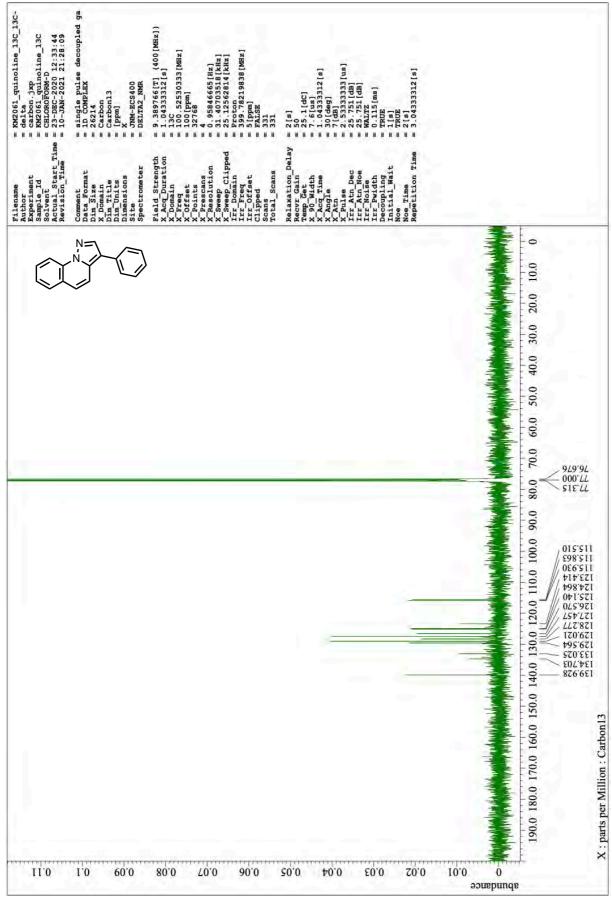


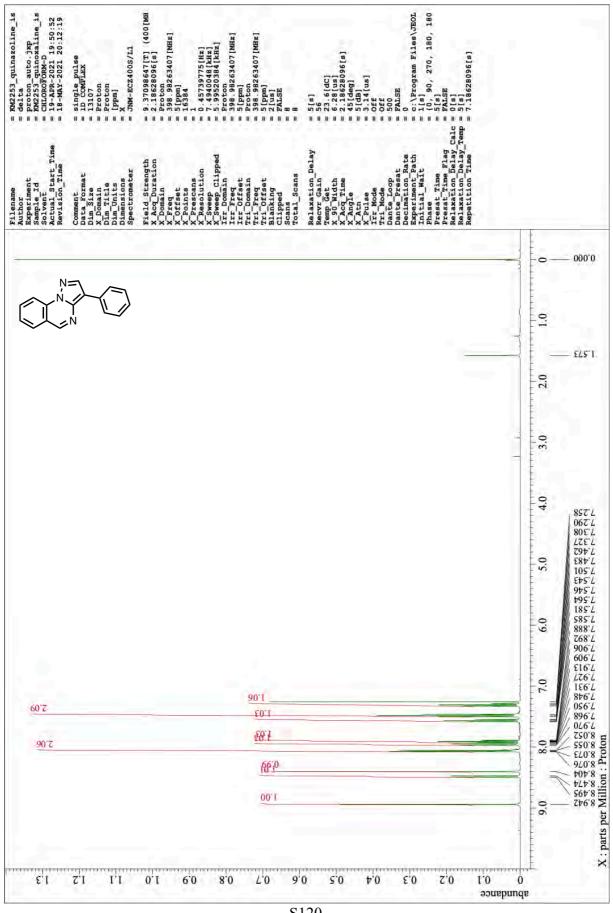
¹H NMR of **1AN** (400 MHz, CDCl₃)

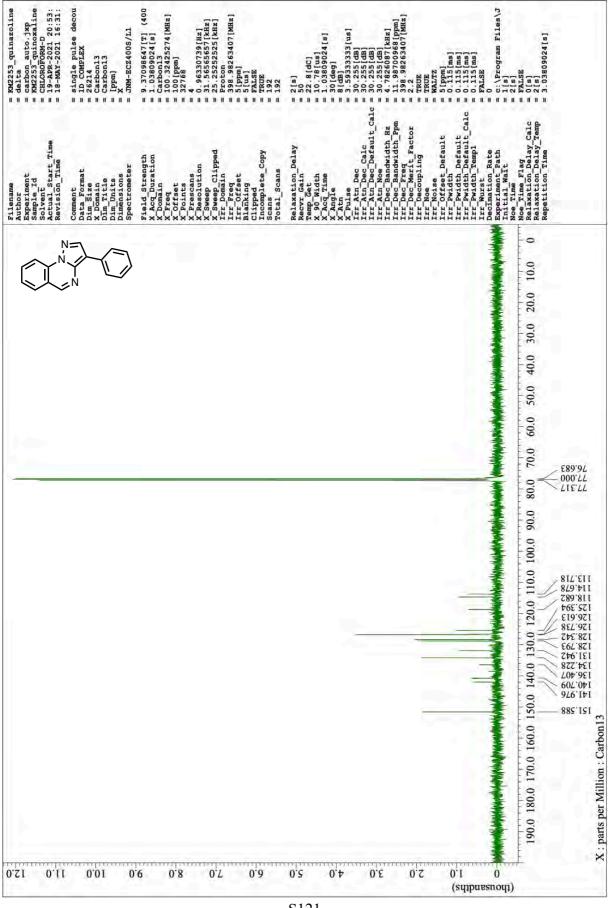

¹³C NMR of **1AN** (101 MHz, CDCl₃)



¹H NMR of **1AO** (400 MHz, CDCl₃)


¹³C NMR of **1AO** (101 MHz, CDCl₃)


¹H NMR of **1AP** (400 MHz, CDCl₃)


¹³C NMR of **1AP** (101 MHz, CDCl₃)

¹H NMR of **1AQ** (400 MHz, CDCl₃)

¹³C NMR of **1AQ** (101 MHz, CDCl₃)

KH869-PTLC-ue Proton-1-2. (400 [MHz]) 23:43:23 17:15:38 1Н 399.78219838[МНz] 5[ppm] 16384 Proton 399.78219838[MHz] 5[ppm] FALSE 99.78219838 [MHz] 1.45794685[Hz] .5030012[KHz] .00240096[kHz] an [s] 5565952 [s] = 9.389766[T] (= 2.18365952[s] 55952 [s] 30-OCT-2020 20-SEP-2021 JNM-ECS400 DELTA2 NMR ton.jxp single puls 1D COMPLEX 13107 ę Proton roton [mdd] mdd KH8 a 'n 1 Actual Start Time Revision Time Relaxation Delay Recvr Gain Clipped Field Strength X Acq Duration X Domain Comment Data Format Dim Size Dim Title Dim Title Dim Units Dimensions Site Spectrometer lution Dante Presat Initial Wait Repetition 7 Scans X Prescans X Resolutic X Sweep Cli X Sweep Cli Itr Domain Itr Freq Itr Offset Filename X Points Tri Of Tri Of Clippe Scans Total Ξ NC 0 Ph I.0 2.0 3.0 4.0 5.0 6.0 7.0 70'1 10'E Л 001 8.0 86'0 0.0

000.0

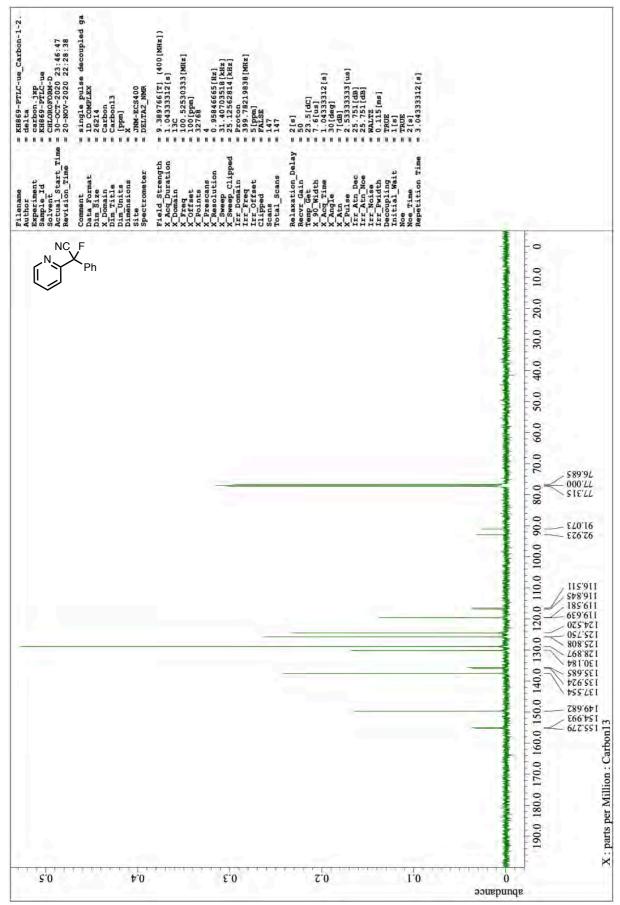
257'L 257'L

¹H NMR of **2A** (400 MHz, CDCl₃)

0.9

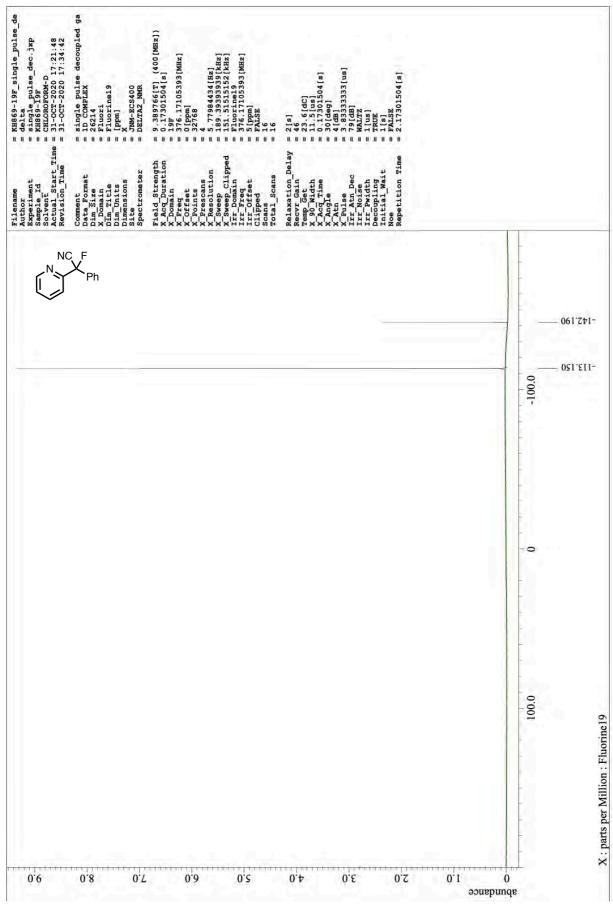
0.2

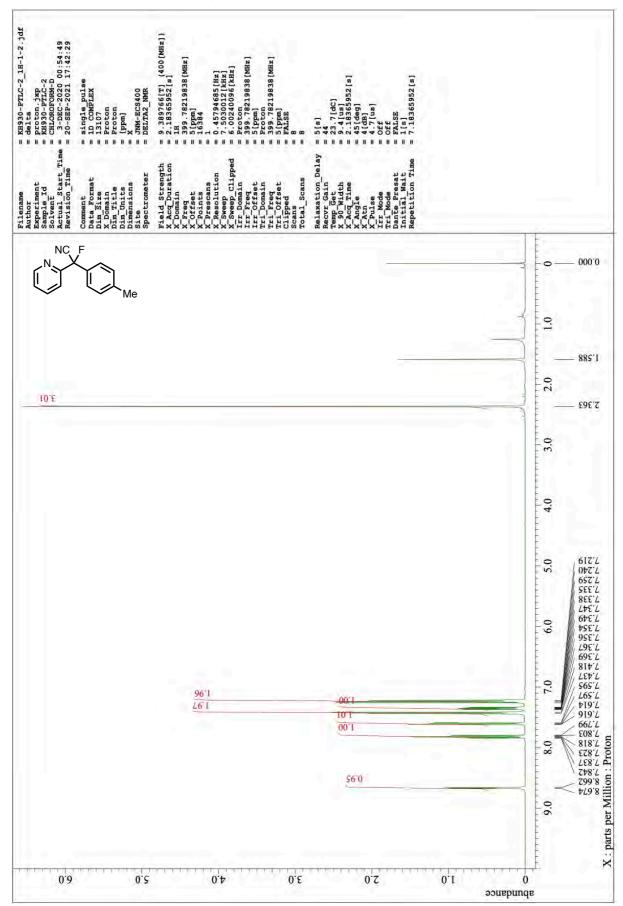
0.4

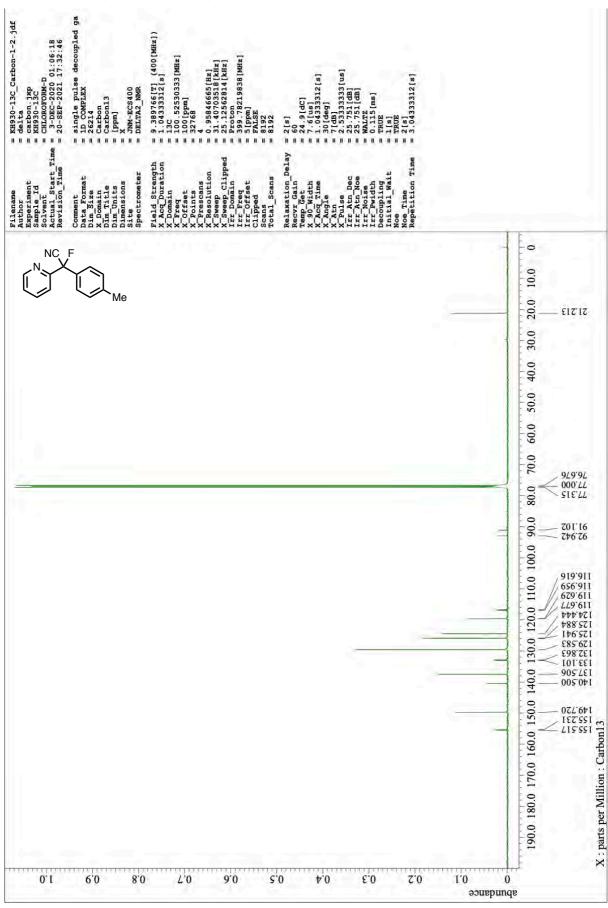

S122

0.E

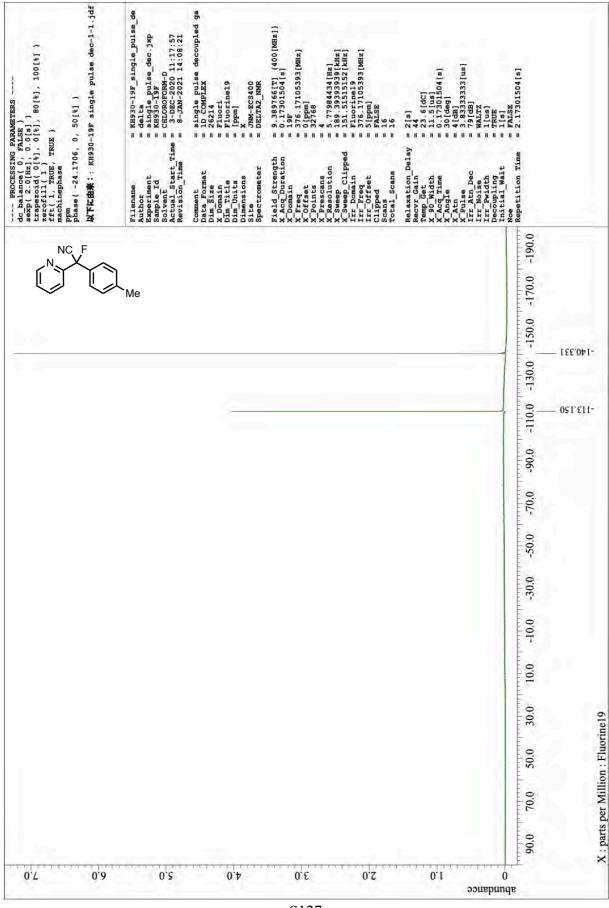
0.2


0.1

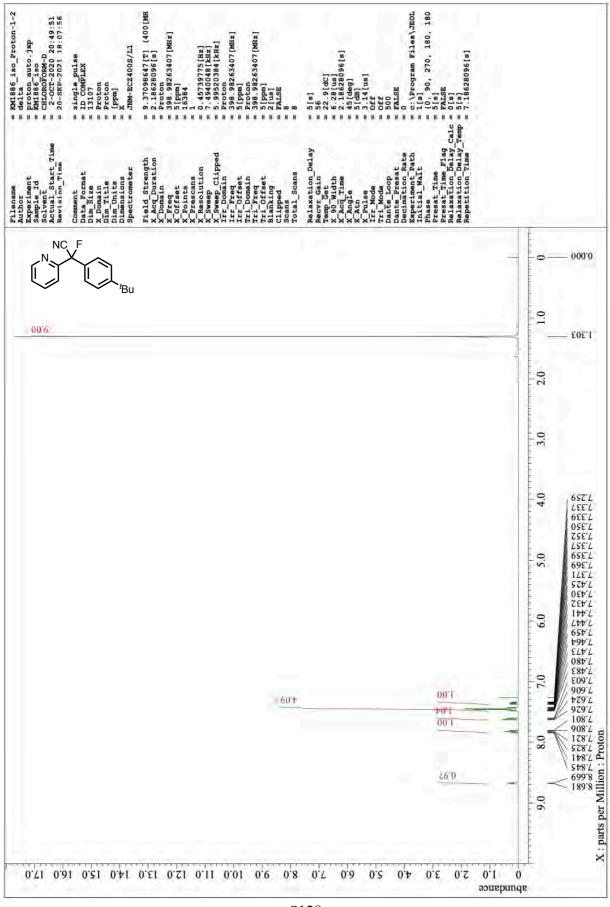

0 abundance


¹³C NMR of **2A** (101 MHz, CDCl₃)

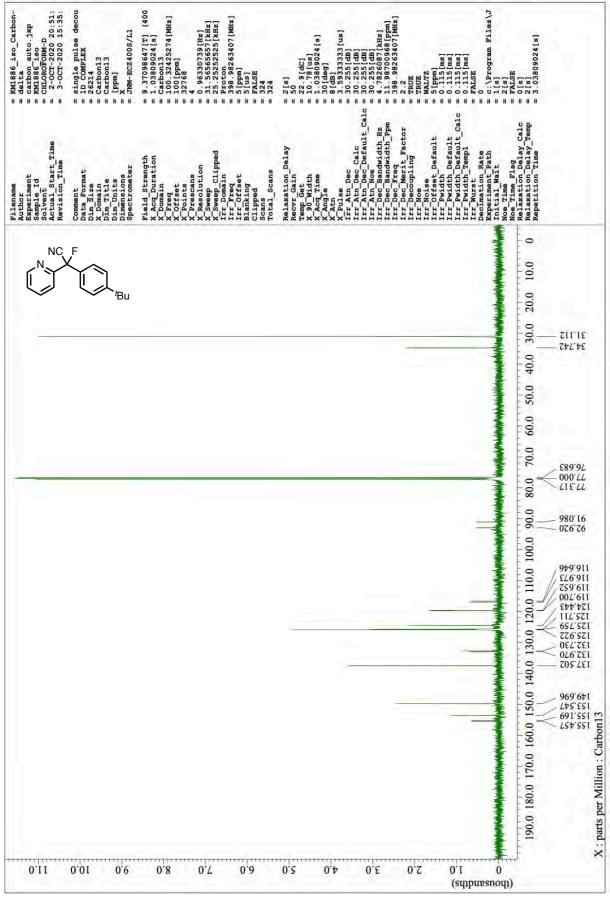
¹⁹F NMR of **2A** (376 MHz, CDCl₃)

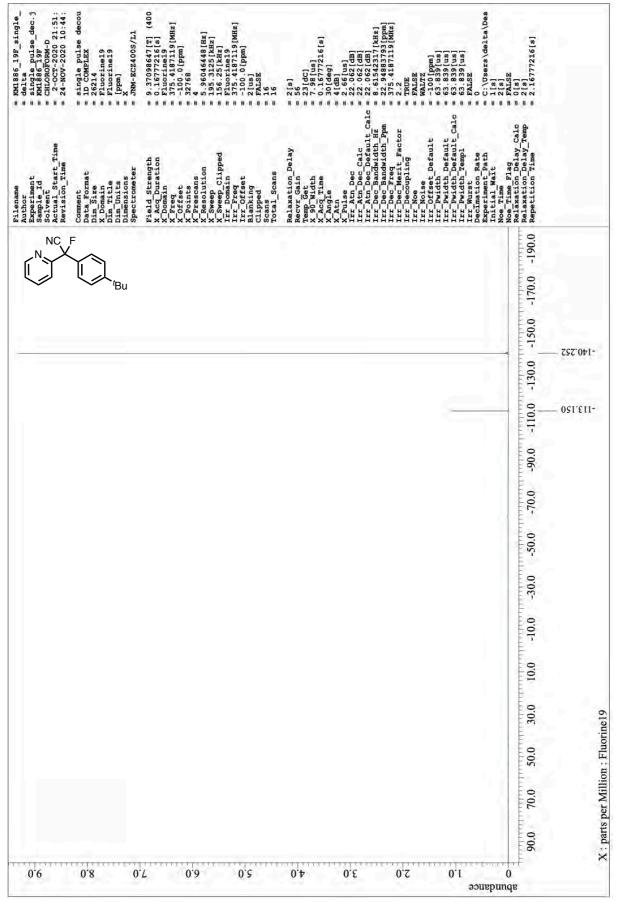


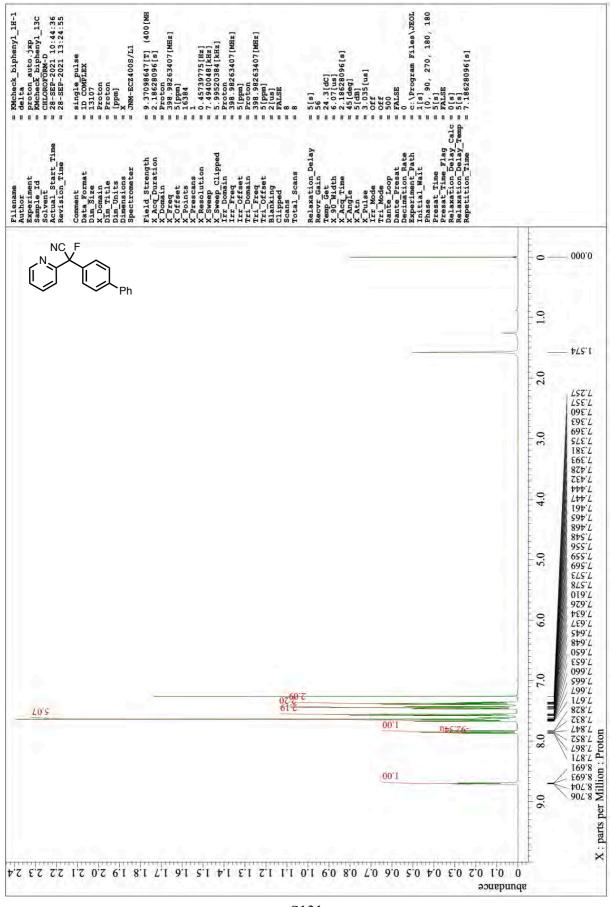
¹H NMR of **2B** (400 MHz, CDCl₃)

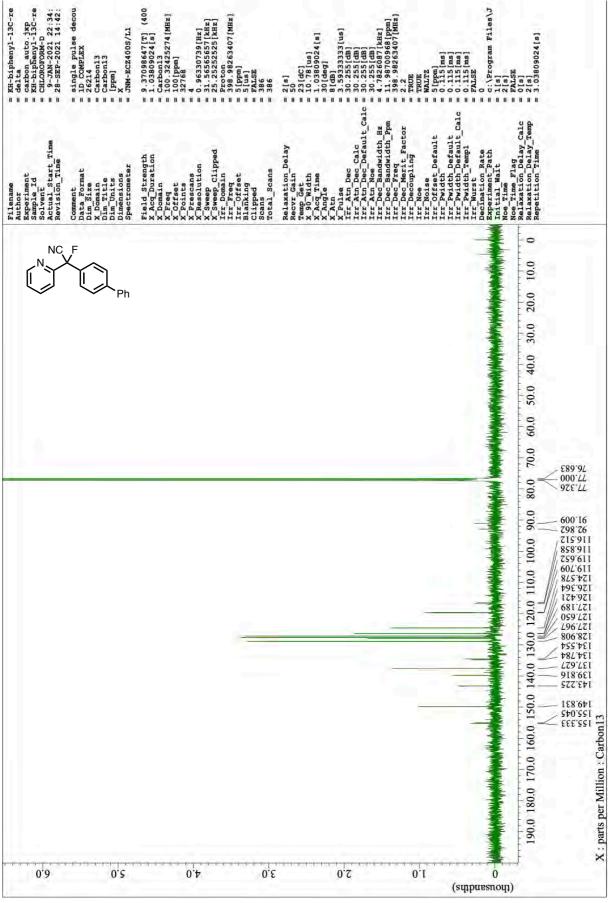


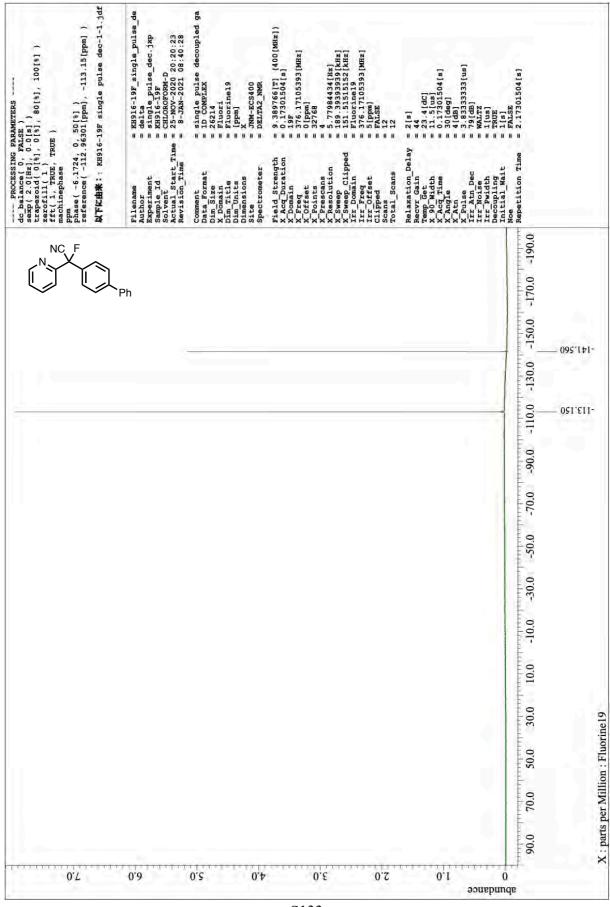
¹³C NMR of **2B** (101 MHz, CDCl₃)

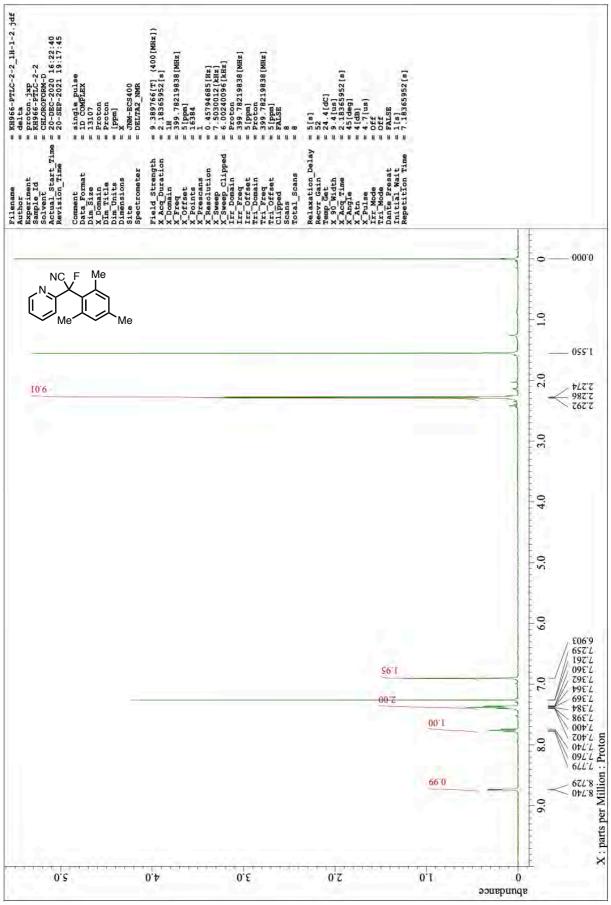

¹⁹F NMR of **2B** (376 MHz, CDCl₃)

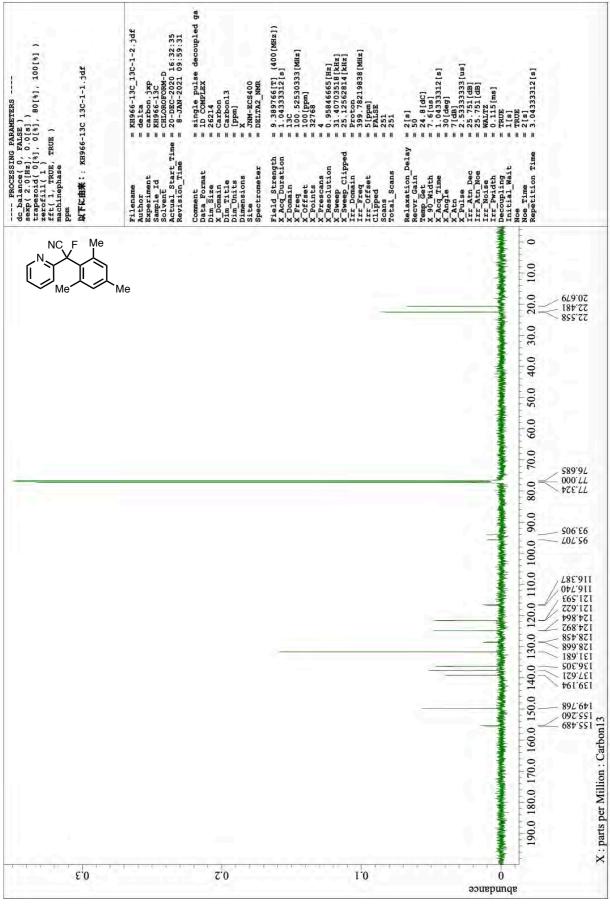

¹H NMR of **2**C (400 MHz, CDCl₃)

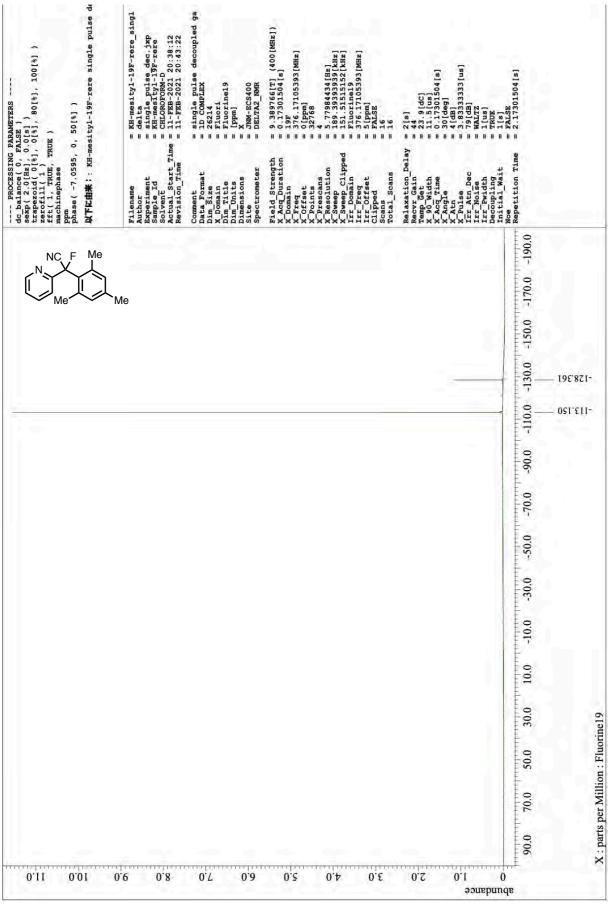

¹³C NMR of **2**C (101 MHz, CDCl₃)

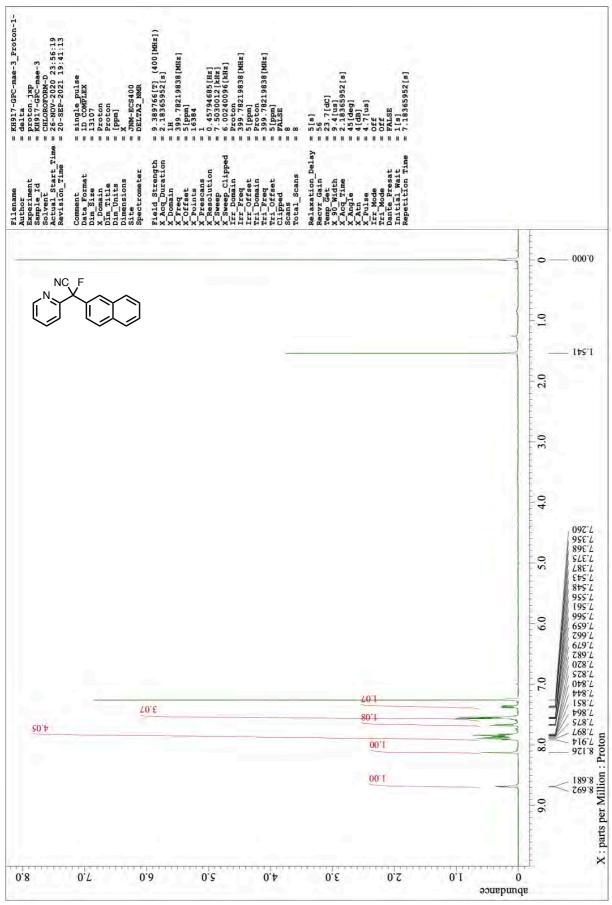

¹⁹F NMR of **2C** (376 MHz, CDCl₃)

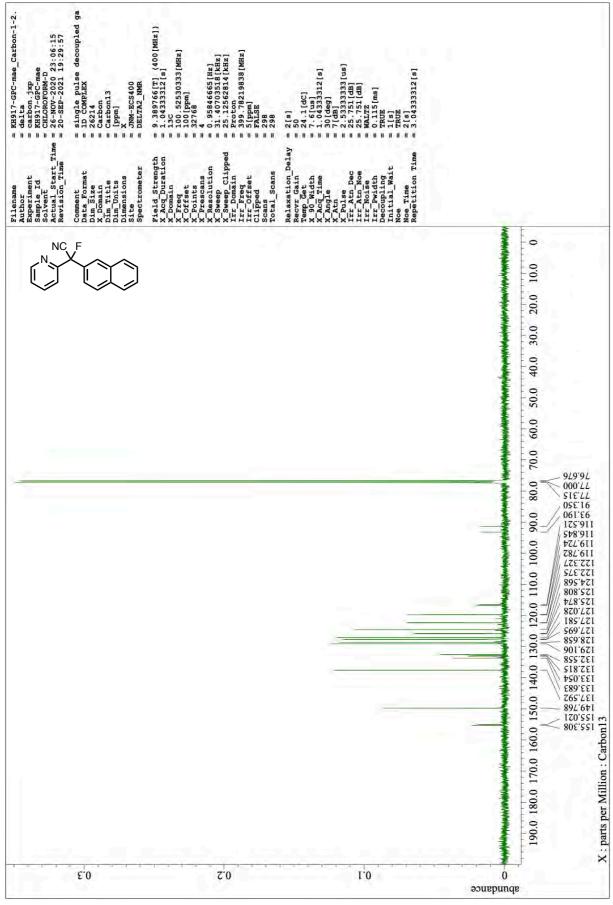

¹H NMR of **2D** (400 MHz, CDCl₃)

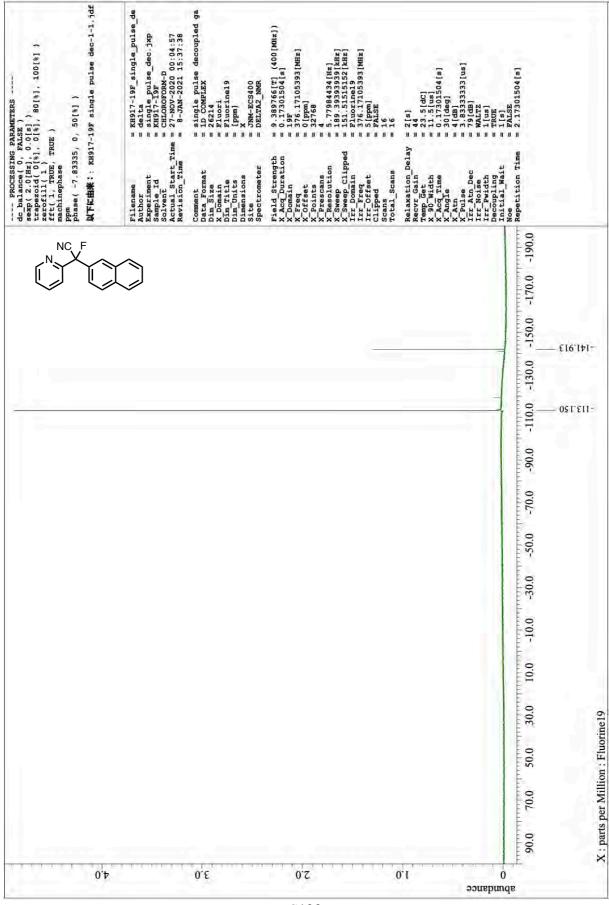

¹³C NMR of **2D** (101 MHz, CDCl₃)

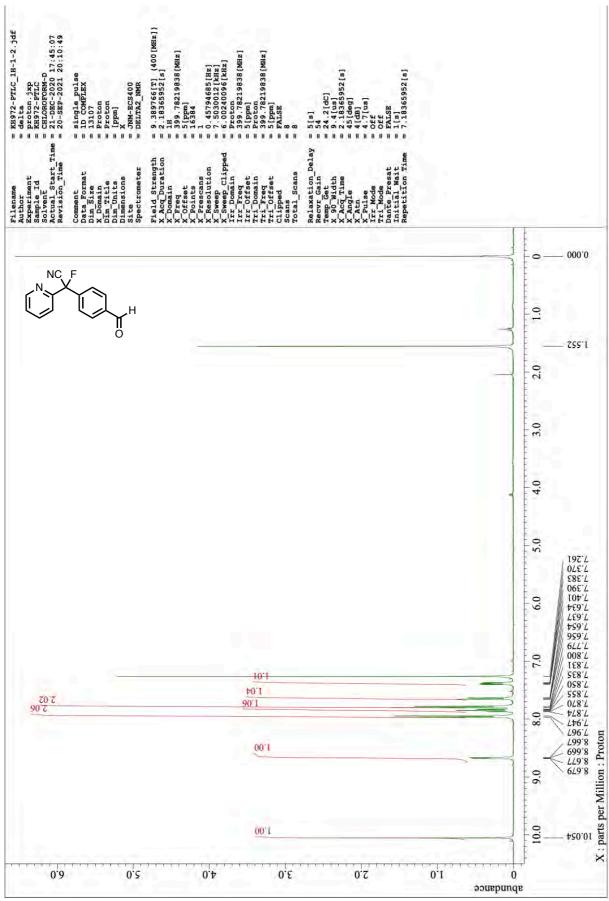

¹⁹F NMR of **2D** (376 MHz, CDCl₃)


¹H NMR of **2E** (400 MHz, CDCl₃)

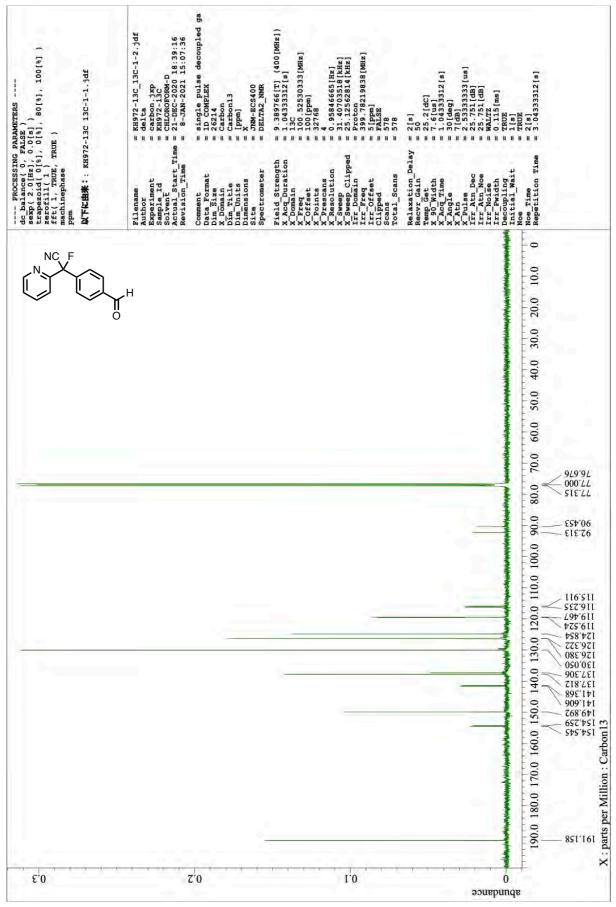

¹³C NMR of **2E** (101 MHz, CDCl₃)

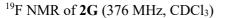

¹⁹F NMR of **2E** (376 MHz, CDCl₃)

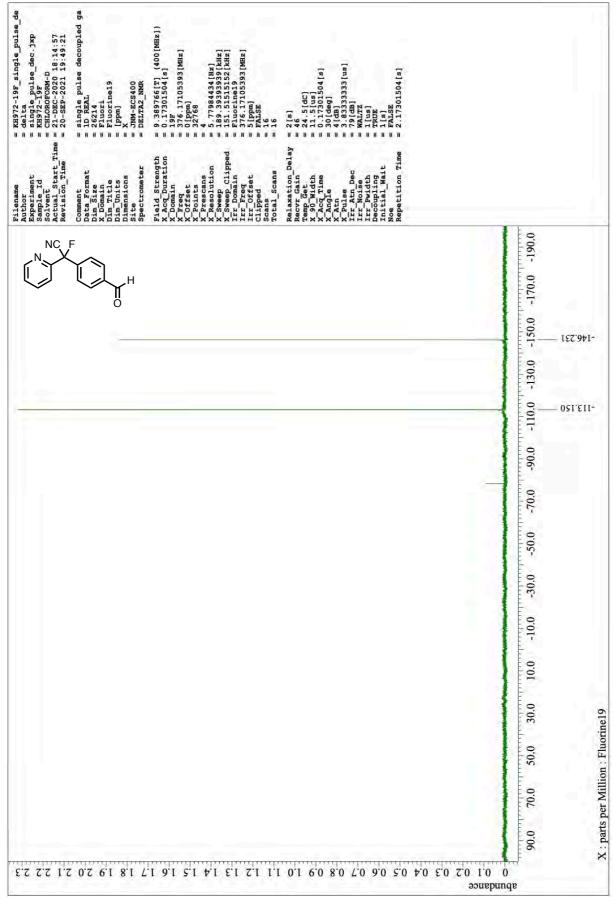

¹H NMR of **2**F (400 MHz, CDCl₃)



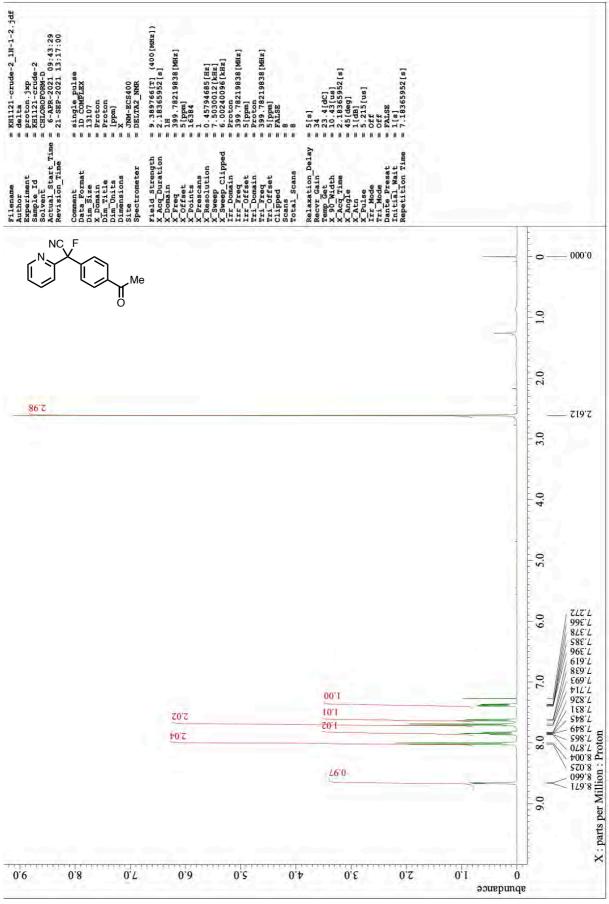
¹³C NMR of **2F** (101 MHz, CDCl₃)

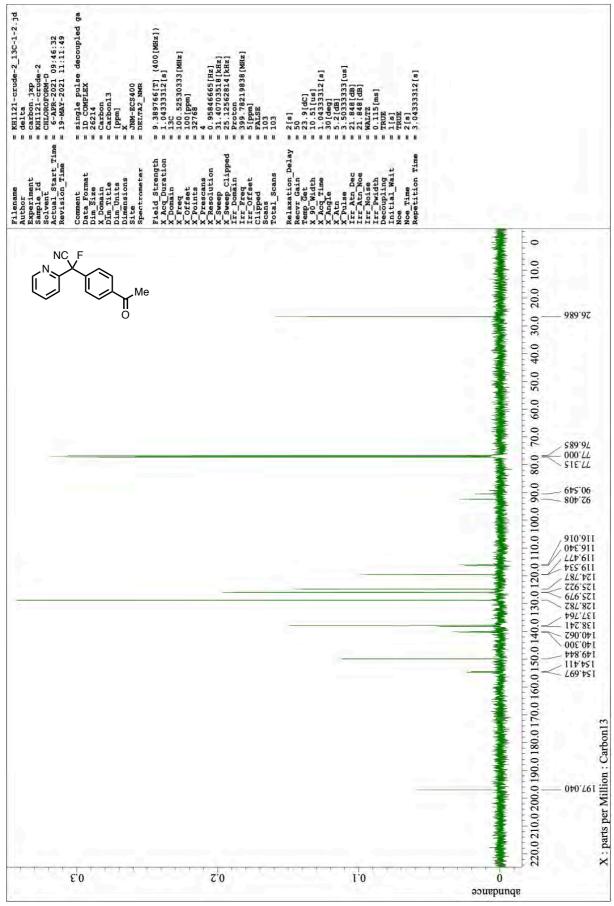

¹⁹F NMR of **2F** (376 MHz, CDCl₃)

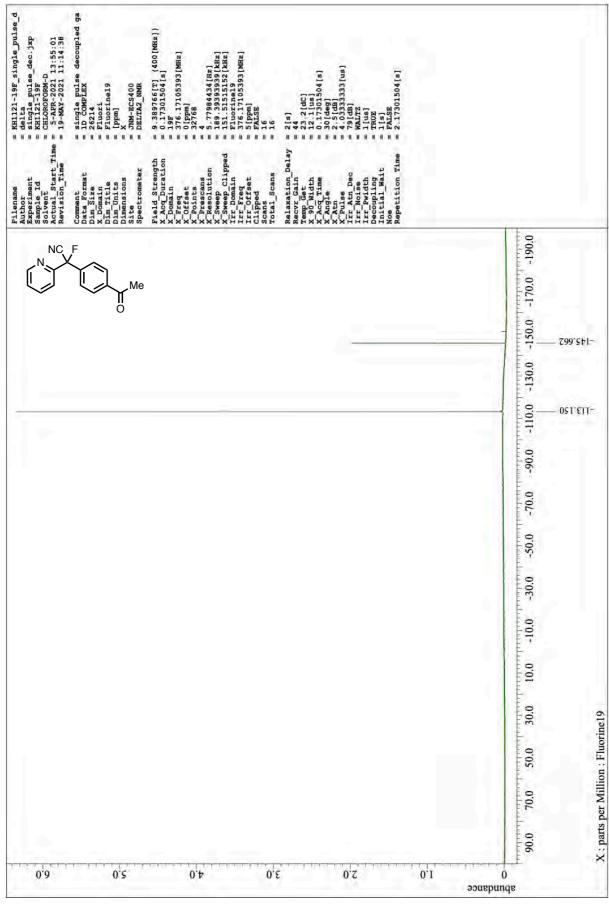


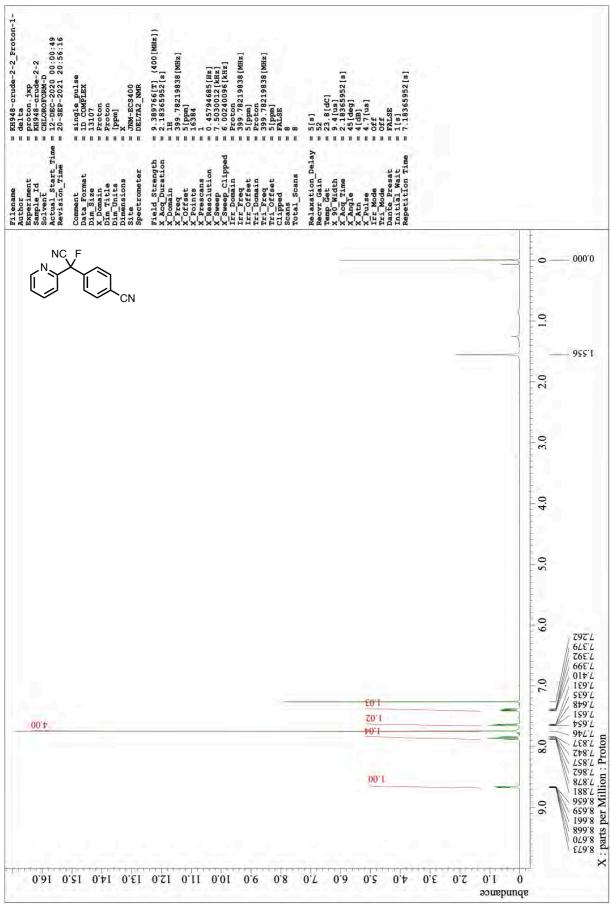


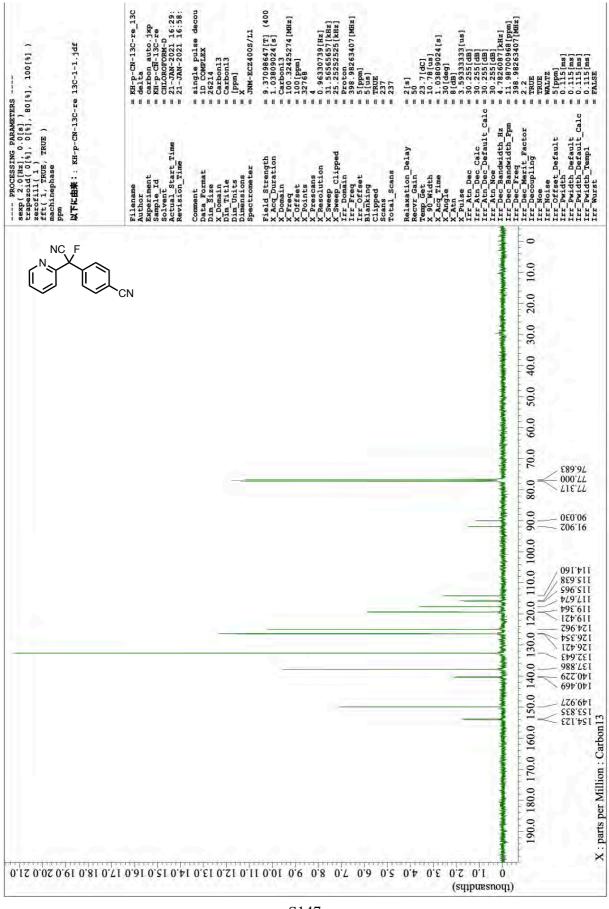
¹H NMR of **2G** (400 MHz, CDCl₃)


¹³C NMR of **2G** (101 MHz, CDCl₃)

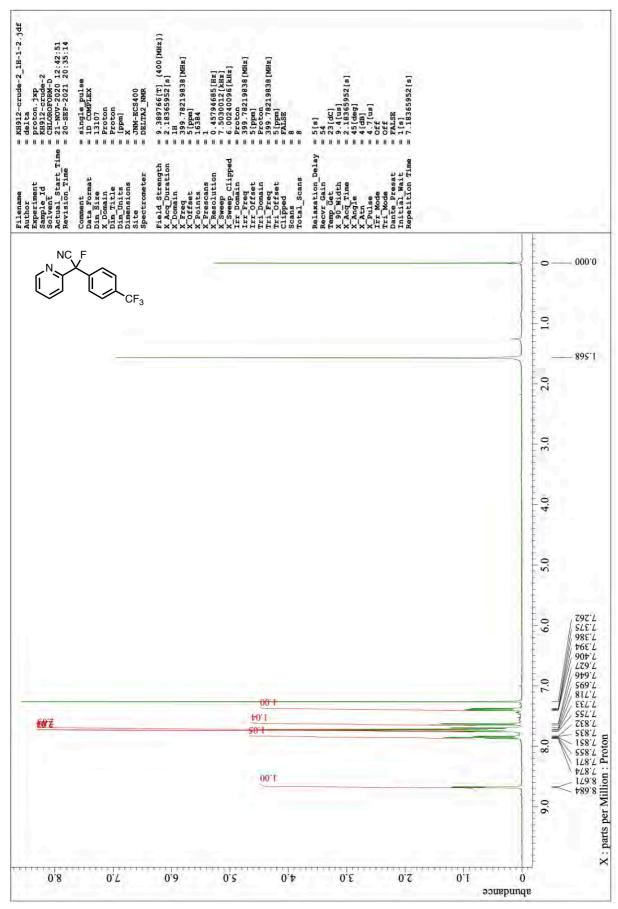


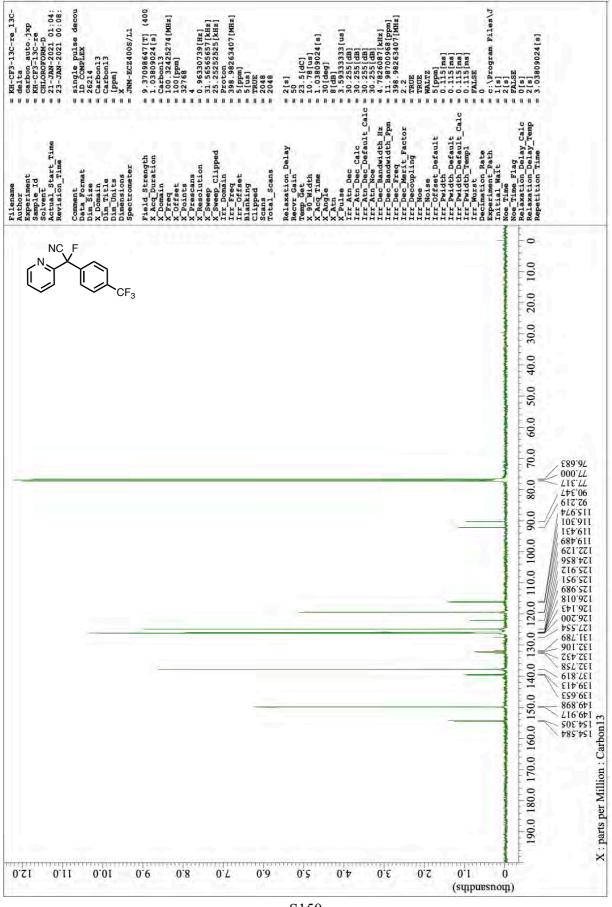

¹H NMR of **2H** (400 MHz, CDCl₃)


¹³C NMR of **2H** (101 MHz, CDCl₃)

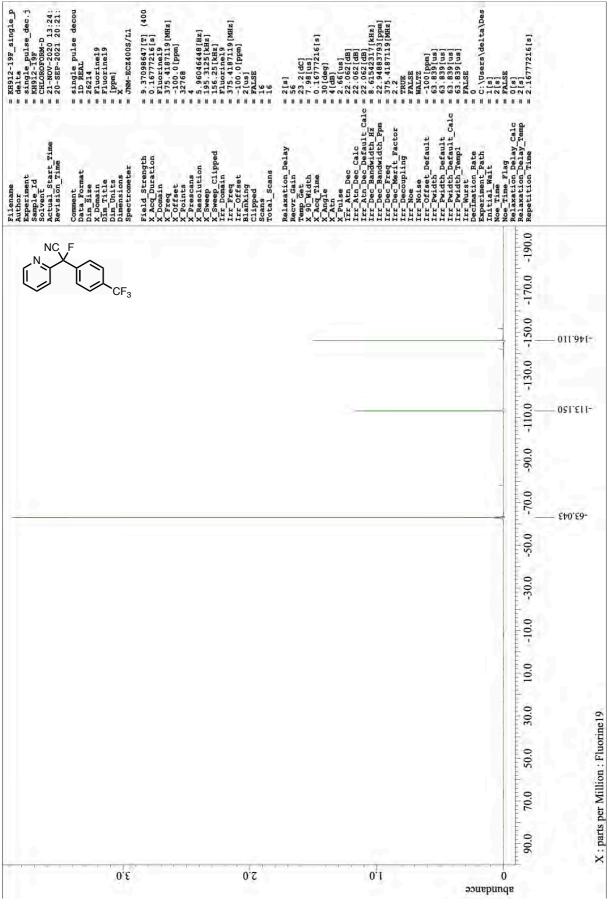

¹⁹F NMR of **2H** (376 MHz, CDCl₃)

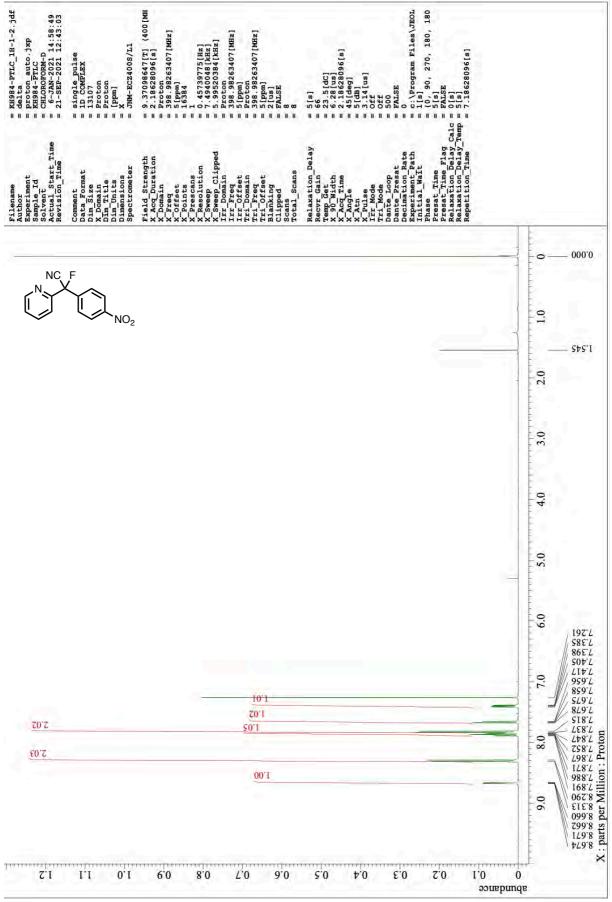
¹H NMR of **2I** (400 MHz, CDCl₃)

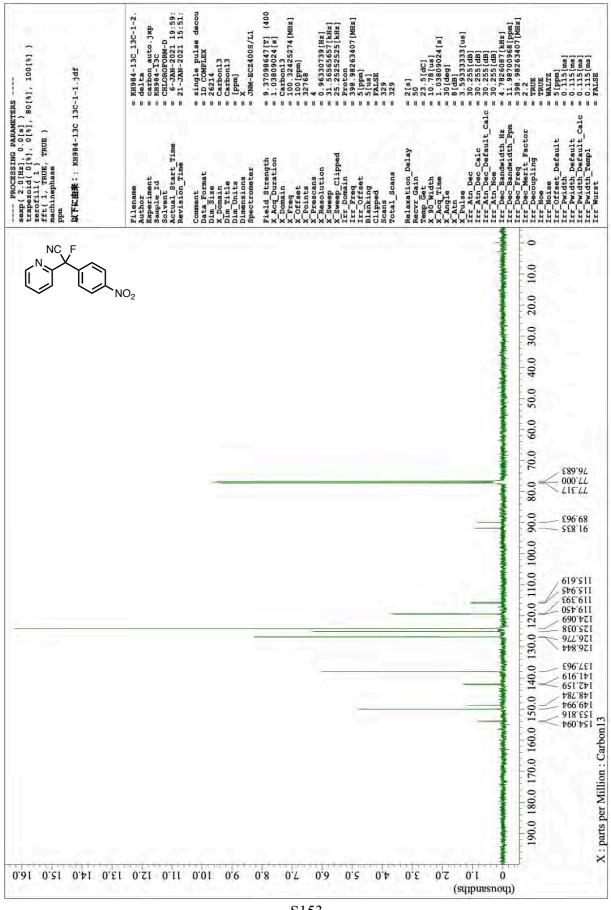

¹³C NMR of **2I** (101 MHz, CDCl₃)

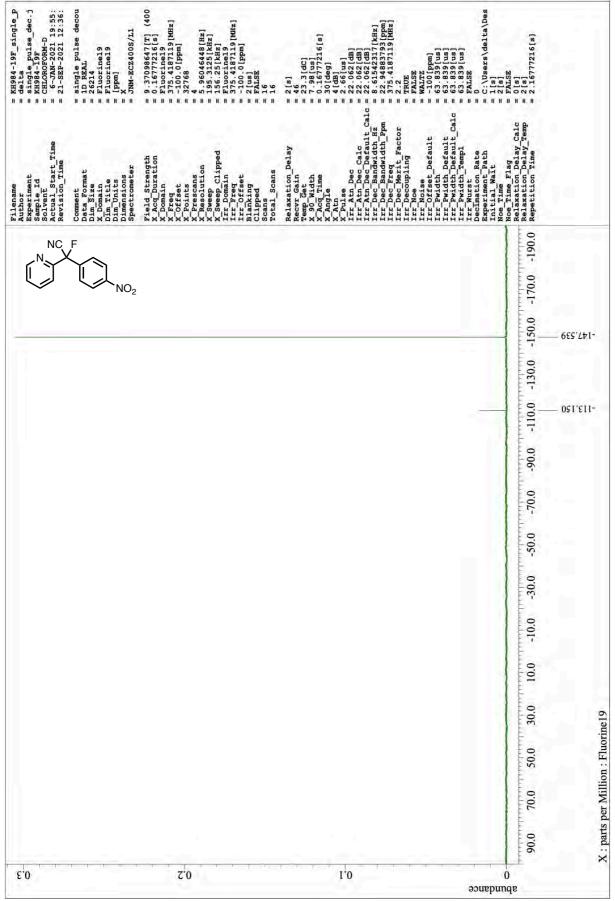

¹⁹F NMR of **2I** (376 MHz, CDCl₃)

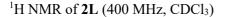
earp(2.0[HE], 0.0[5]) trapezid(0[5], 0[5], 80[5], 100[5]) acreii(1) TRUE, TRUE) achinephase PPm LFLLH#: : KH948-19F single pulse dec-1-1.jdf	= KH948-19f_single_ = dalta = single_pulse_dec.j = KH948-19f = CLOROPOR4-D = 11-DEC-2020 415:30; = 21-JAN-2021 15:30;	<pre>= single puise decou = 26214 = 24214 = Fluorine19 = Fluorine19 = The-EC24005/L1 = JNM-EC24005/L1</pre>	= 9.37098647[T] (400 = 0.10777216[s] = Fluorina19 = 7100.0[ppm] = 100.0[ppm] = 22768 = 5.96046448[Hz] = 22768 = 5.96046448[Hz] = 125.7125[MHz] = 1375.412119[MHz] = 1156.25[KHz] = 1100.0[ppm] = 116 = 156	= 2[s] = 56 = 7.98(as] = 7.98(as] = 7.98(as] = 0.16777216[s] = 0.16777216[s] = 2.062(ds] = 2.062(ds] = 2.2.062(ds] = 2.2.062(ds] = 2.2.062(ds] = 2.2.062(ds] = 2.2.062(ds] = 2.2.062(ds]) = 2.2.062(ds] = 2.2.062(ds]) = 2.2.062(ds] = 2.2.062(ds) = 2.2.062(d	
<pre>serp(2.0[Hz], 0.0[s]) serp(2.0[Hz], 00[s]) sercfill(1) TRUE, TRUE) serchinephase machinephase WFKL的*: XH948-19F single pulse dec-</pre>	Filename Author Experiment Saperiment Salvent Actual Start Time Revision_Time	comment Data Format Dia Size X Domain Dim Title Dimensions Spectrometer	Field Strength X Acq Duration X Treed X Treed X Orites X Totise X Totise X Totise X Totise C Totise Trr Domain Trr Domain Trr Tored Trr Total Scans Scans Scans Scans Total Scans	Relaxation Delay Recvr Gain Temp Get X Borg Time X Angle X Angle X Angle X Ann Dec Calc Irr Atn Dec Calc Irr Atn Dec Calc Irr Atn Dec Calc Irr Dec Bandwidth RF Irr Dec Bandwidth FF	III Dec read III Dec read III Decoupling III Nos III Nos III Noise III Noise III Noith Default III Fwidth Default III Fwidth Default III Pwidth Default Calc III Nurst Defmation Rata
NC F		-		5	-190.0
	CN				-170.0
		_			-147.500
					-130.0
					0.011
					0.06-
					-70.0
					-50.0
					-30.0
					-10.0
					10.0
					30.0
					50.0
					70.0
					0.06
1 9 I S I + I	EI ZI I	1 01 60	8'0 2'0 9'0 5'0 7'0	0 0 ⁻ 1 0 ⁻ 5 0 ⁻ 3 0 pnuqsuce	

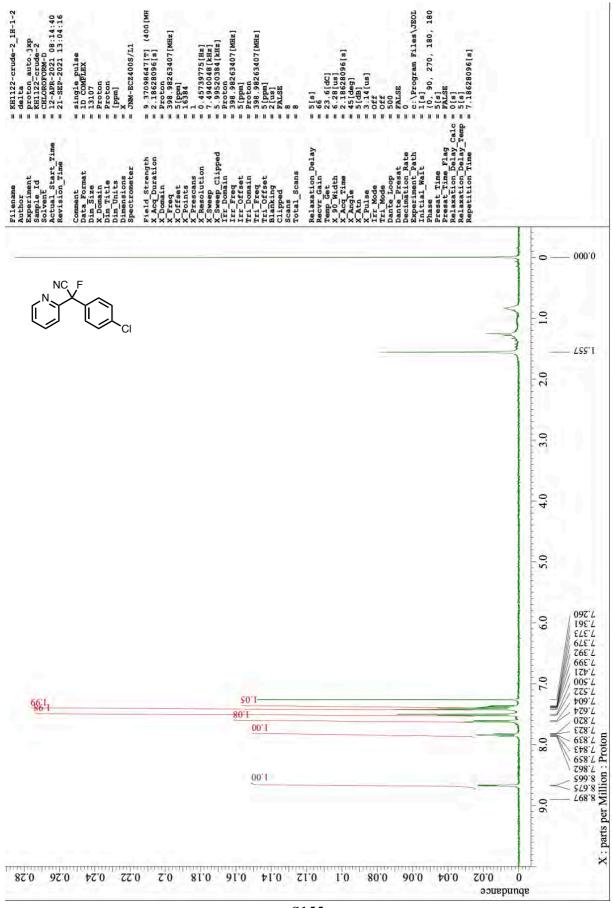

¹H NMR of **2J** (400 MHz, CDCl₃)

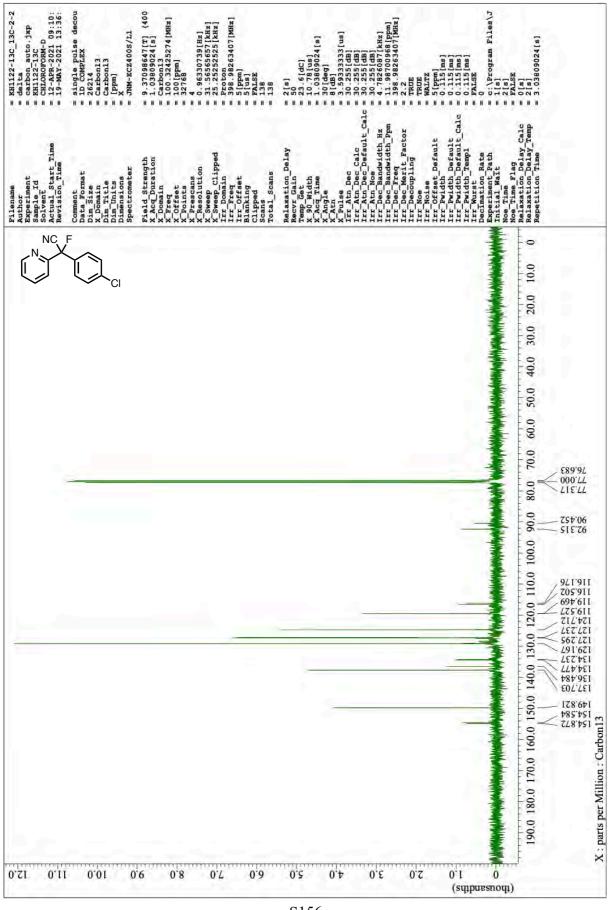

¹³C NMR of **2J** (101 MHz, CDCl₃)

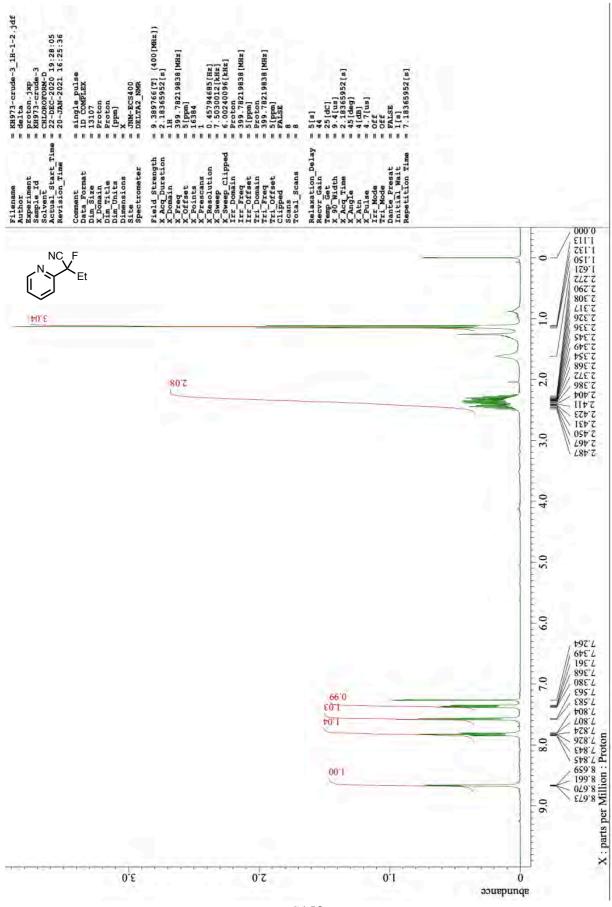

¹⁹F NMR of **2J** (376 MHz, CDCl₃)

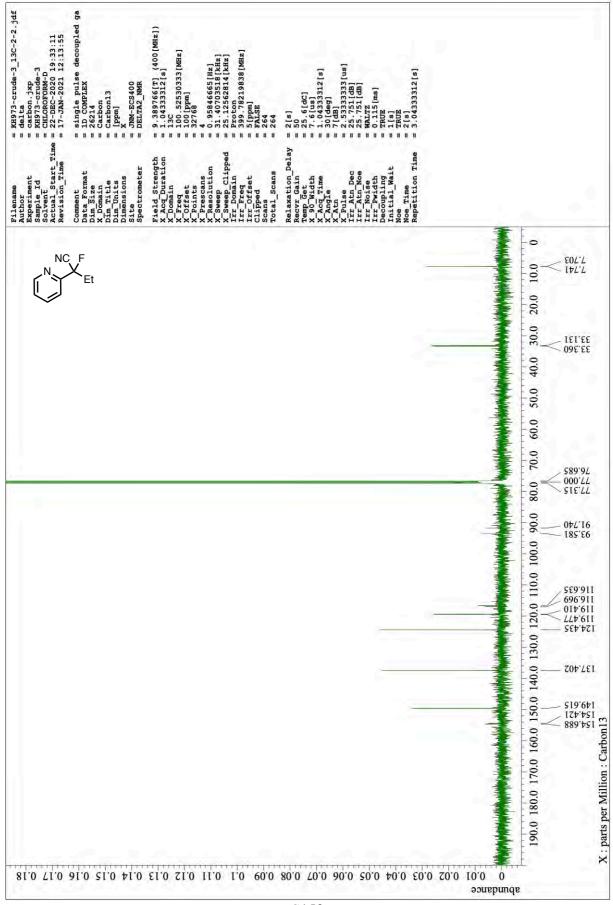

¹H NMR of **2K** (400 MHz, CDCl₃)



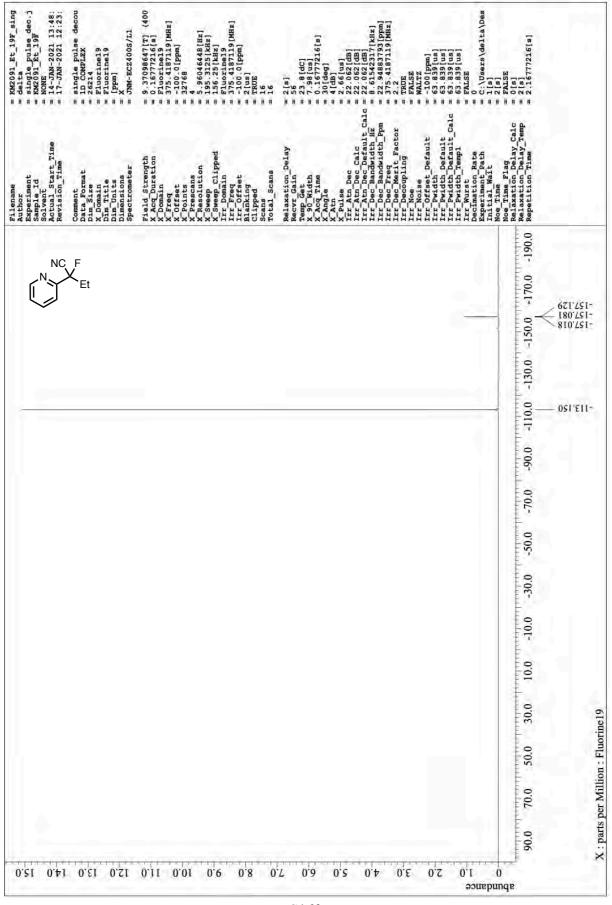

¹³C NMR of **2K** (101 MHz, CDCl₃)

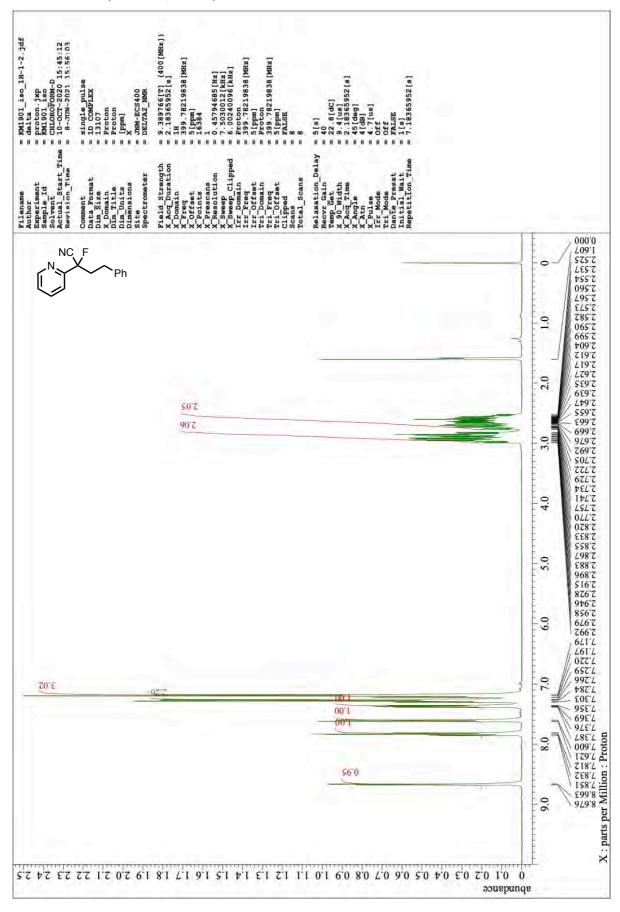

¹⁹F NMR of **2K** (376 MHz, CDCl₃)


¹³C NMR of **2L** (101 MHz, CDCl₃)

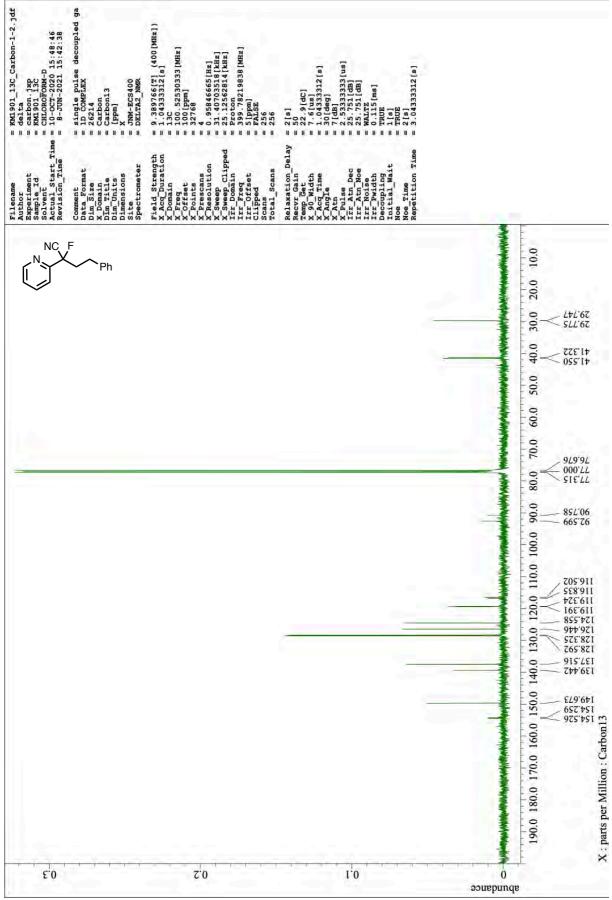

¹⁹F NMR of **2L** (376 MHz, CDCl₃)

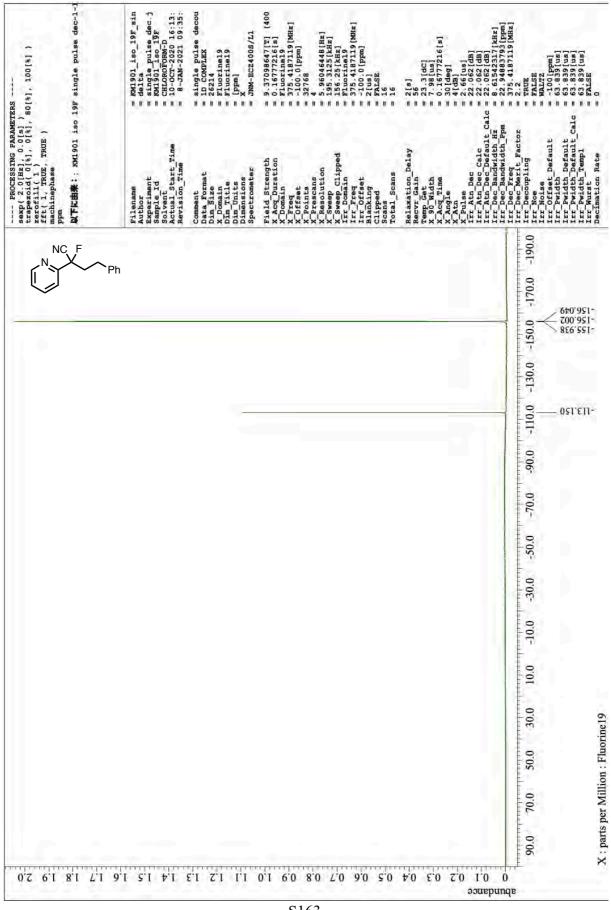
delta single pulse decu single pulse decu ritiliz-199	IIII
Author Supple Ind Supple Ind Supple Ind Supple Ind Supple Ind Supple Ind Revision Time Revision Time Data Format Dim Tites Dim	Noe_Time Flag Relaxation Delay Calc Relaxation Delay Temp Repetition Time
	0.061-
	0'021-
	-143.046
	-130.0
	0.06-
	-70.0
	-50.0
	-30,0
	-10.0
	10.0
	50,0 3
	90.0 70.0 50.0 30.0 X mark as Million - Elucrine 10
	90.00
andance 1.0 2.0 3.0 4.0 5. 2.0 4.0 5.	0


¹H NMR of **2M** (400 MHz, CDCl₃)

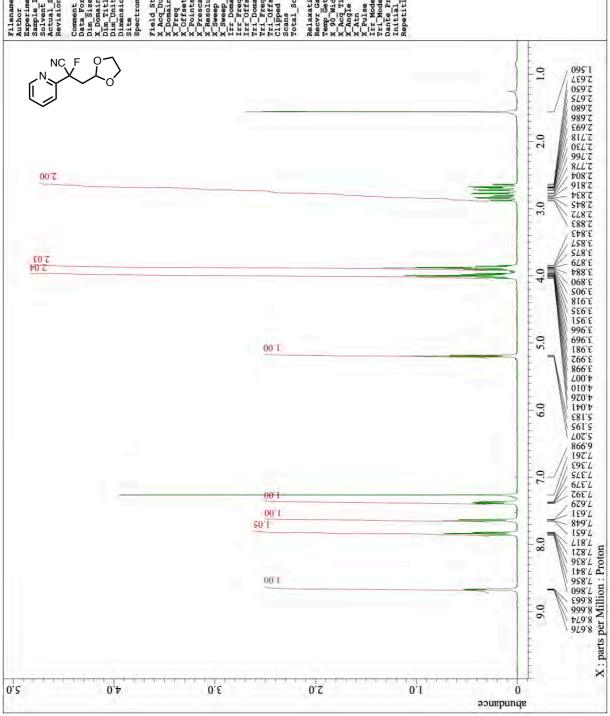


¹³C NMR of **2M** (101 MHz, CDCl₃)


¹⁹F NMR of **2M** (376 MHz, CDCl₃)

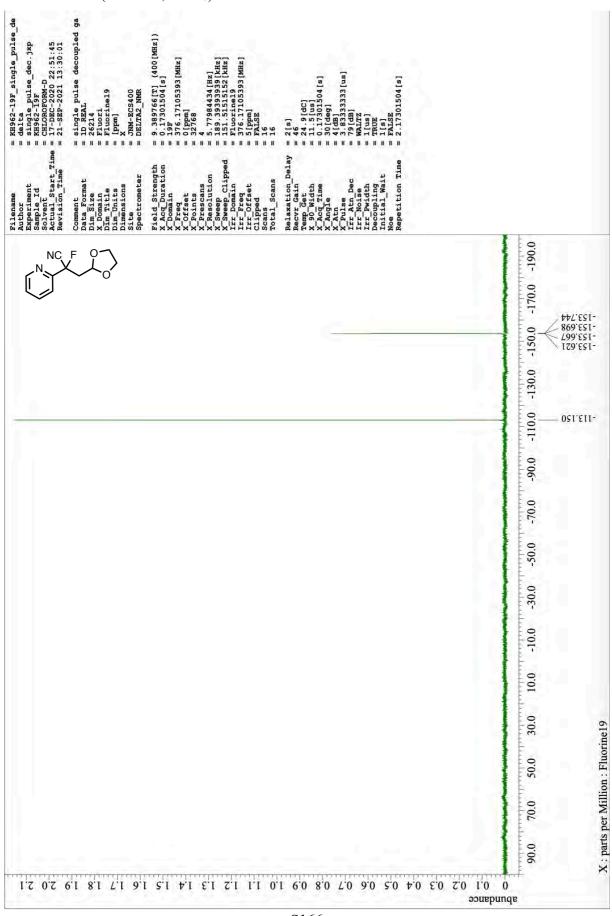


¹H NMR of **2N** (400 MHz, CDCl₃)


¹³C NMR of **2N** (101 MHz, CDCl₃)

¹⁹F NMR of **2N** (376 MHz, CDCl₃)

= KH962-PTLC_1H-1-2.jdf = delta = proton.jxp = RH962-PTLC = KH1962-PTLC = CH1202002041 = 21-SEP-2021 13:44:12 (400 [MHz]) Proton 399.78219838[MHz] 5[ppm] FALSE LH 399.78219838[MHz] Proton 399.78219838[MHz] 5[ppm] 0.45794685[Hz] 7.5030012[kHz] 6.00240096[kHz] : 9.389766[T] (4 : 2.18365952[s] 65952 [s] JNM-ECS400 DELTA2 NMR single puls 5 [ppm] 16384 Proton Proton [udd] Ĥ ii. Ĥ 1 Actual Start Time Sevision Time Relaxation Delay Clipped Field Strength X Acq_Duration X Domain X Offset X Offset X Points Prescans Resolution Site **Fotal Scans** ain imensions im Title im Units Filename Comment ta Dim

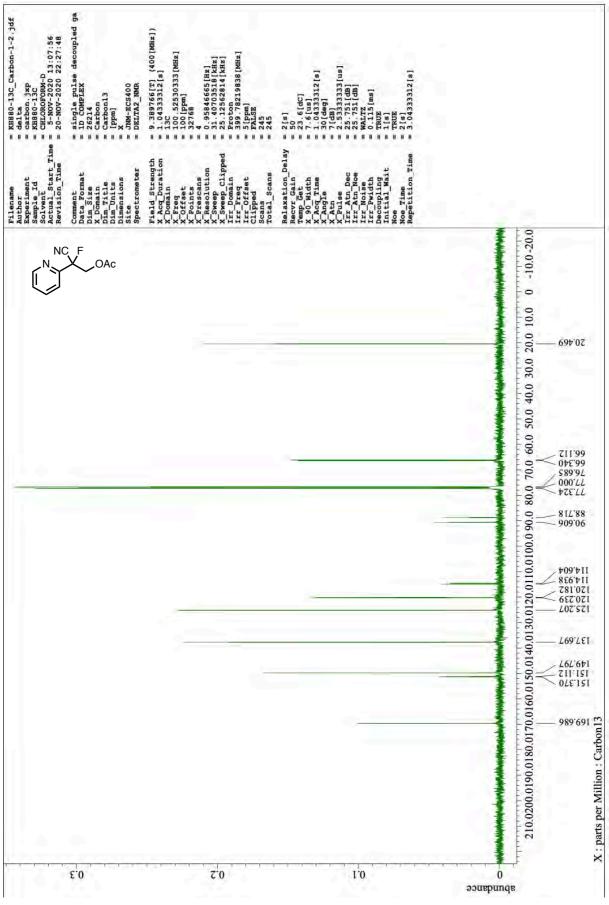

7.18365952[s]

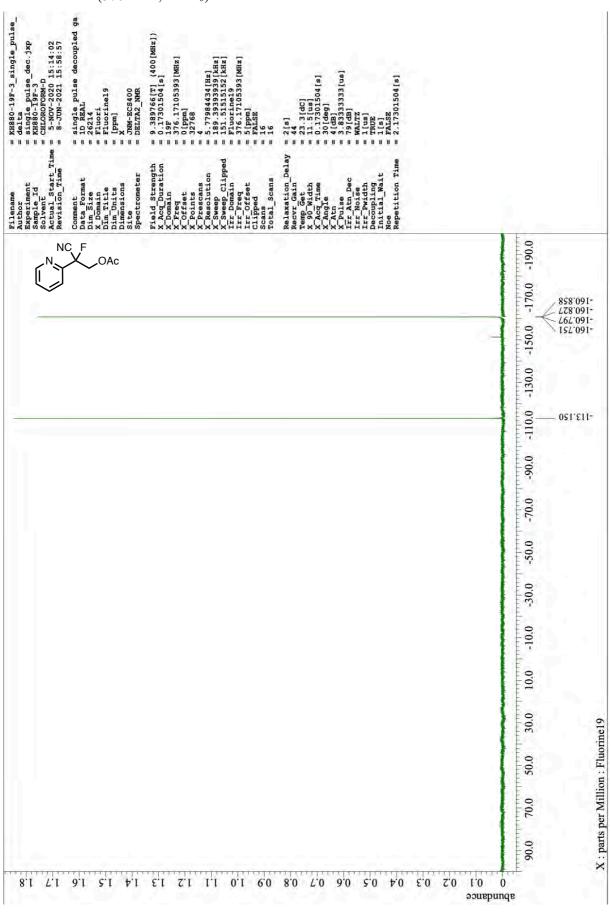
S164

¹H NMR of **2O** (400 MHz, CDCl₃)

¹³C NMR of **2O** (101 MHz, CDCl₃)

	Contaction of the second secon	Filename = KH962-13C_13C-1-2.jdf Author = delta Experiment = datbon.jxp Sample Td = KH962-13C Solver = TH200002W-D Actual start Time = 17-DEC-2020 23:34:06 Revision_Time = 0.7AN-2021 00:53:42	Comment = single pulse decoupled ga Data Format = 1D CONPLEX Dim Size = 26214 X Domain = Carbon Dim Title = Carbon Dim Title = [ppm] Dim Title = [ppm] Dim Totts = X Site = JNN-ECS400 Spectrometar = DITN2 NMR	55 B.	Delay	
304 110 130.0 140.0 130.0 20.0 1175 0.045 0.00 80.0 1175 0.045 0.00 80.0	NC F O					2000 60.0 50.0 40.0 30.0 20.0 10.0 3.124
						0002 000 0002 0002 0002 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
						140.0




¹⁹F NMR of **2O** (376 MHz, CDCl₃)

¹H NMR of **2P** (400 MHz, CDCl₃)

¹³C NMR of **2P** (101 MHz, CDCl₃)

¹⁹F NMR of **2P** (376 MHz, CDCl₃)

= KH878-crude-2_1H-1-2.jdf 21:09:26 (400 [MHz]) - 5[ppm] - 5[ppm] = Proton . 399.78219838[MHz] . 319.78219838[MHz] . ALSE . ALSE 14 399.78219838[MHz] 5[ppm] 16384 roton 399.78219838[MH⊭] 0.45794685[Hz] 7.5030012[kHz] 6.00240096[kHz] N 9.389766[T] (4 2.18365952[s] 18365952[s] 55952 [s] 4-NOV-2020 20-NOV-2020 JNM-ECS400 DELTA2 NMR proton.jxp KH878-crude OROFORM KH8 CHL ñ ú . 1 Actual Start Time Revision Time Clipped Relaxation Delay Field Strength X Acq Duration X Domain Spectrometer Resolution Scans u.T Comment Data For Dim Size oints Filename **Total** te 0 NC 1.0 2.0 3.0 4.0 5.0 6.0 7.0 00.1 £0'I 20.1 8.0 96'0 0.6

800.0 800.0 800.0

055'1

X : parts per Million : Proton

¹H NMR of **2Q** (400 MHz, CDCl₃)

S170

0.9

0.7

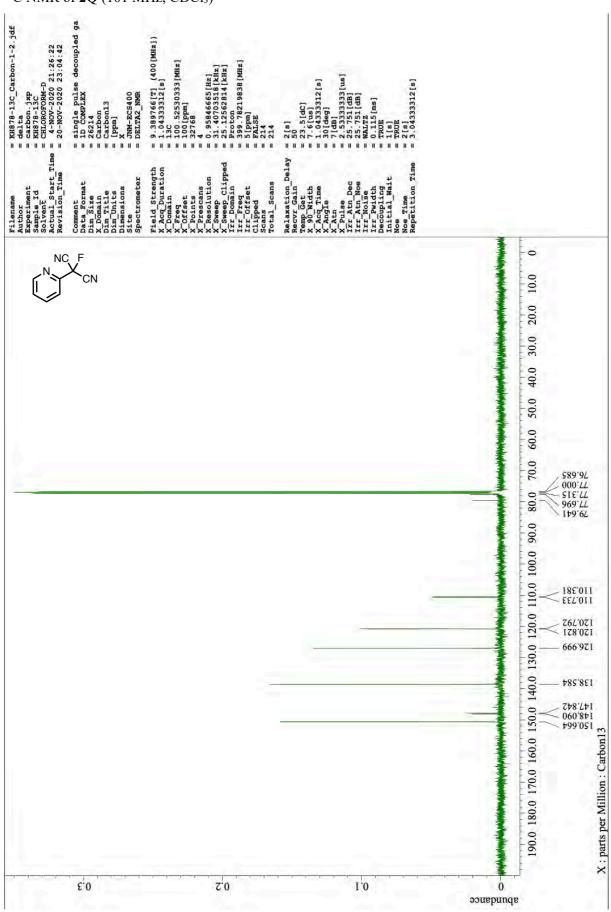
0.2

3.0

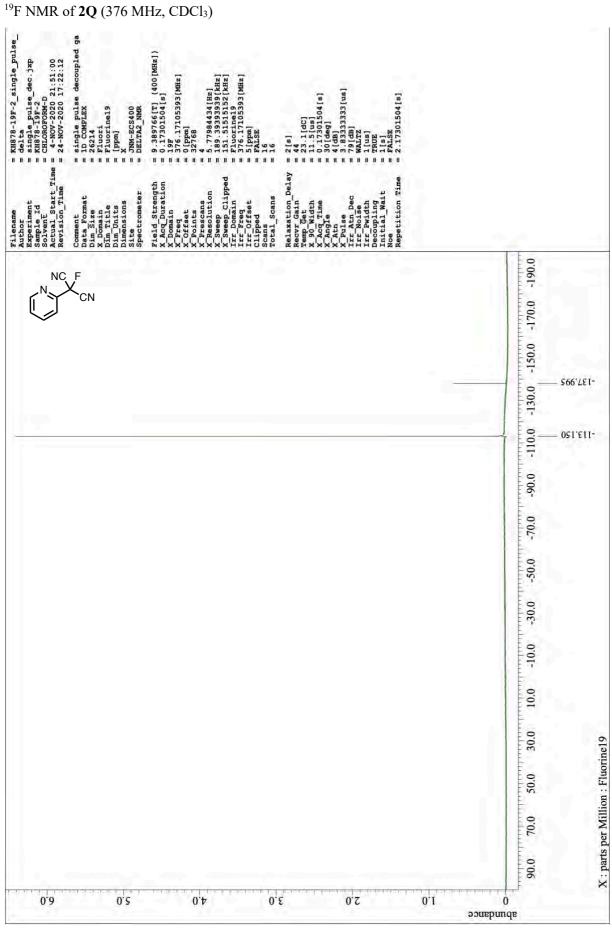
0.4

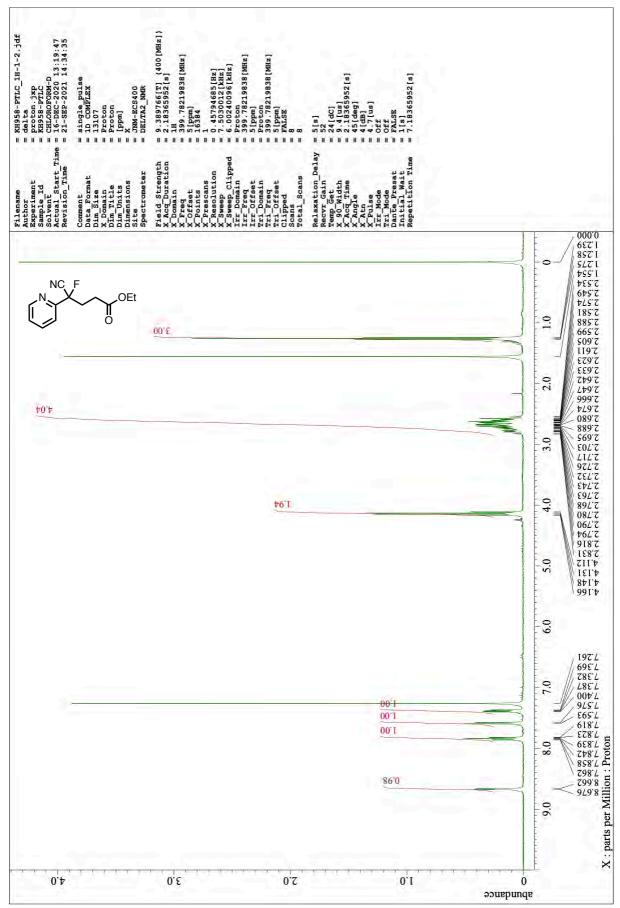
0.2

0.1

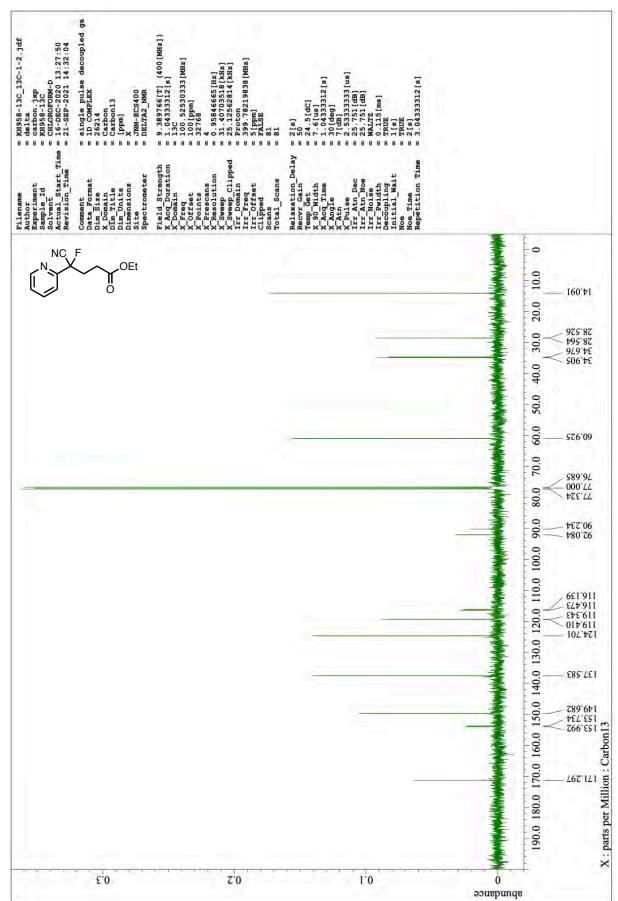

0

abundance

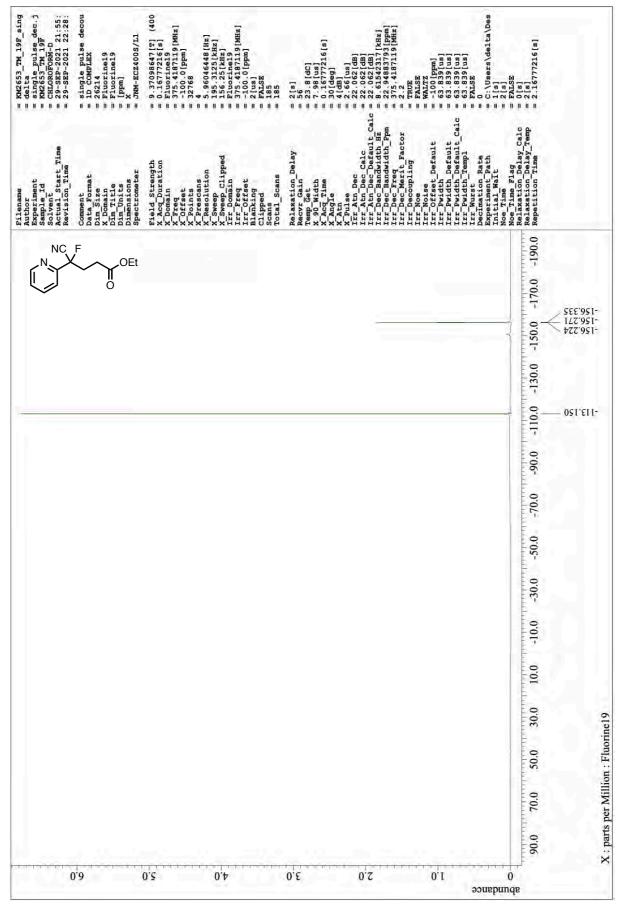

0.6


0.8

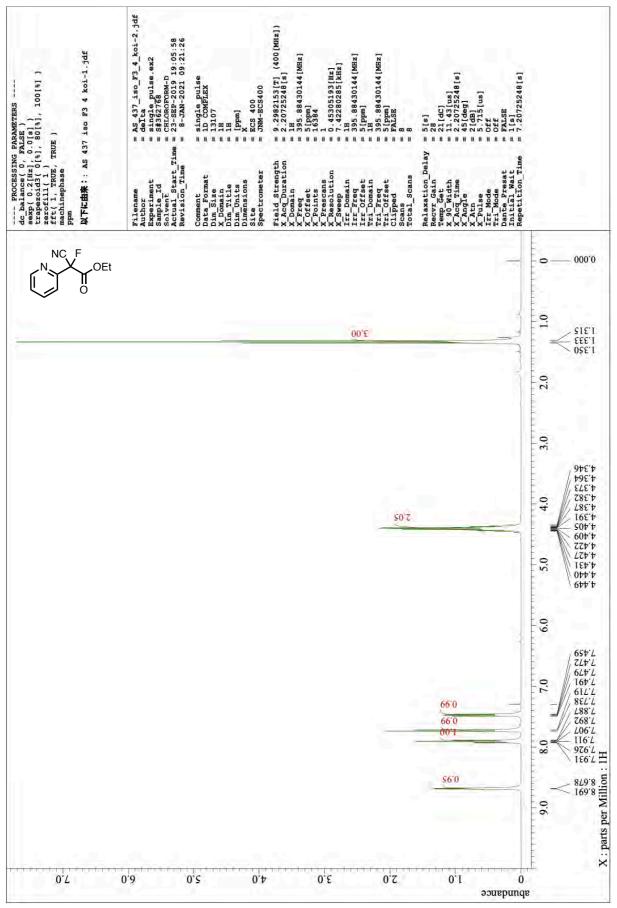
10.0 11.0 12.0 13.0 14.0



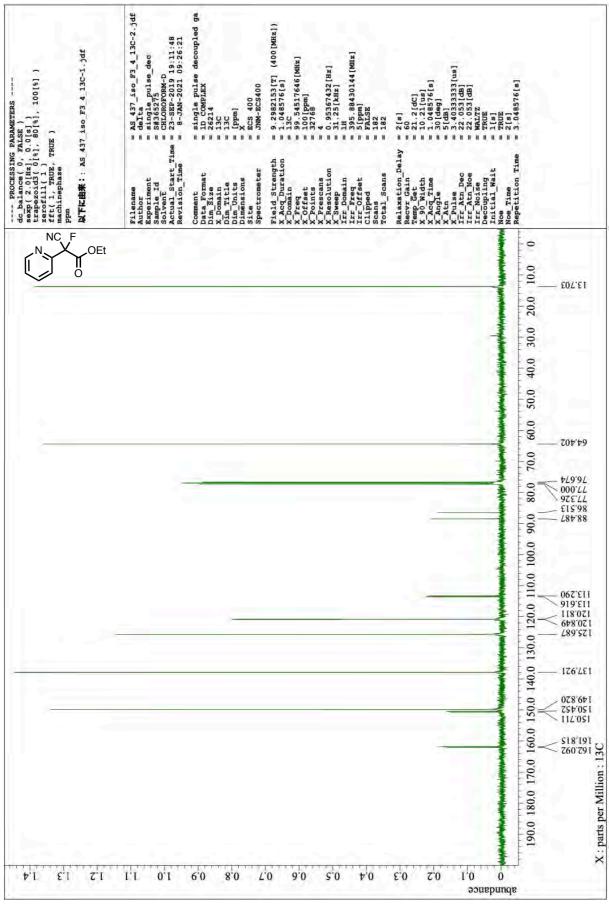
¹³C NMR of **2Q** (101 MHz, CDCl₃)



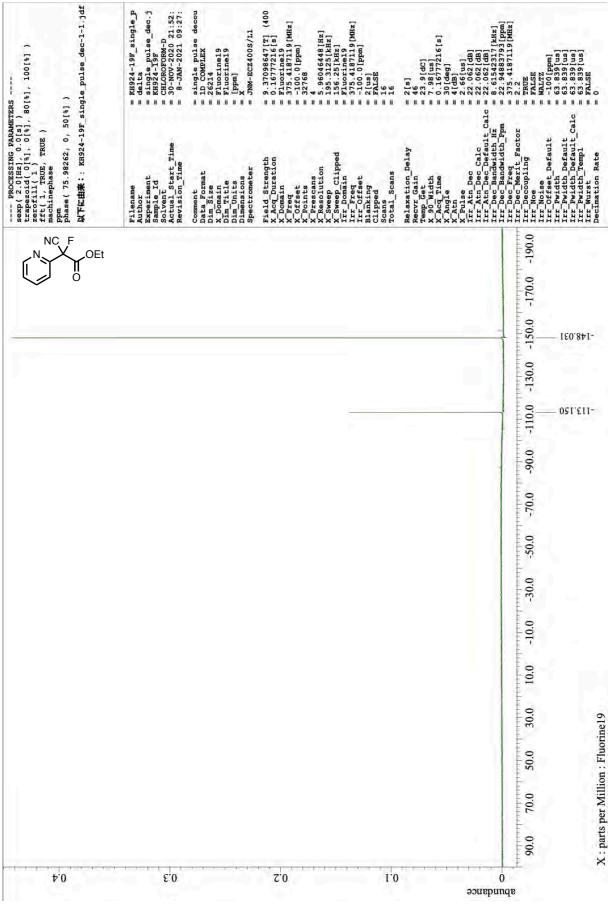
¹H NMR of **2R** (400 MHz, CDCl₃)

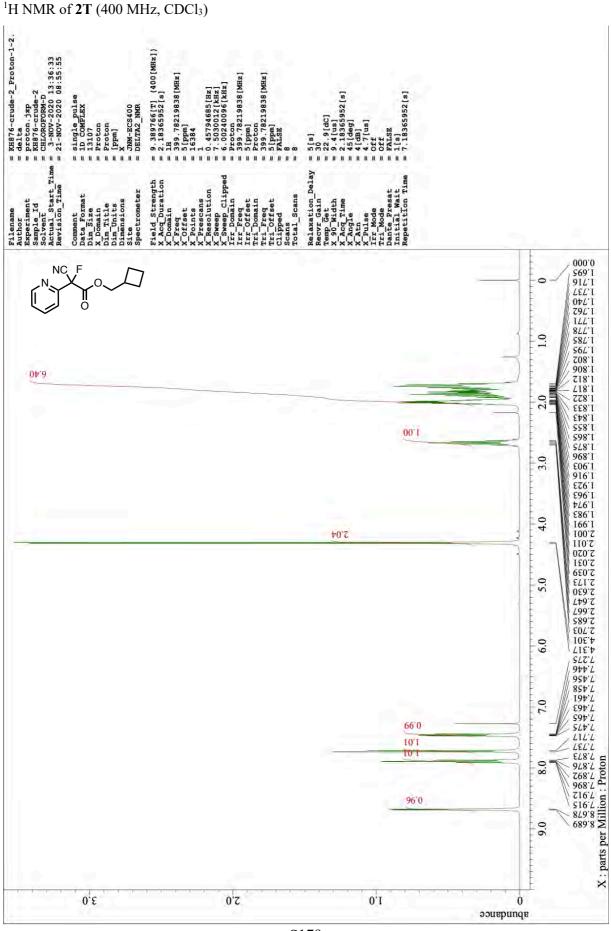

¹³C NMR of **2R** (101 MHz, CDCl₃)

¹⁹F NMR of **2R** (376 MHz, CDCl₃)

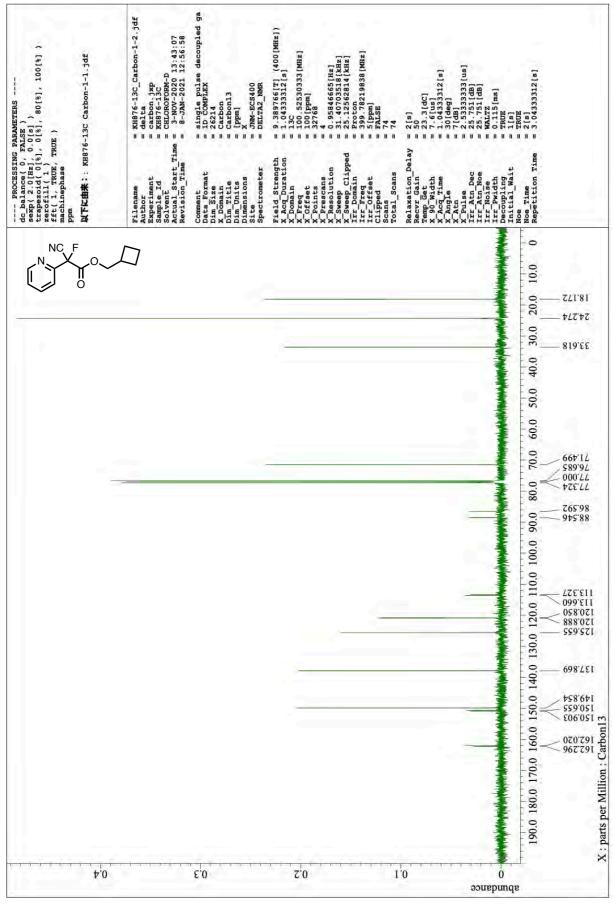


S175

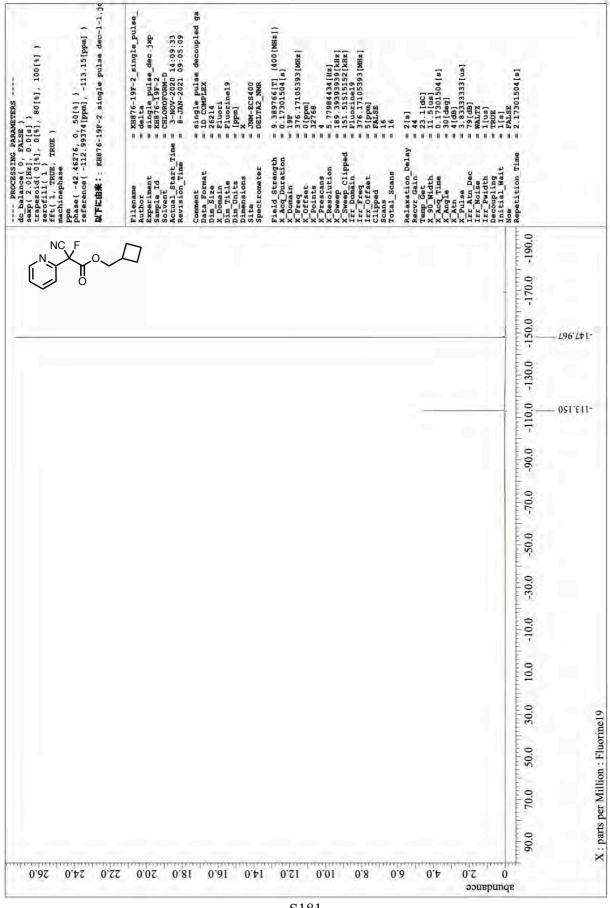

¹H NMR of **2S** (400 MHz, CDCl₃)



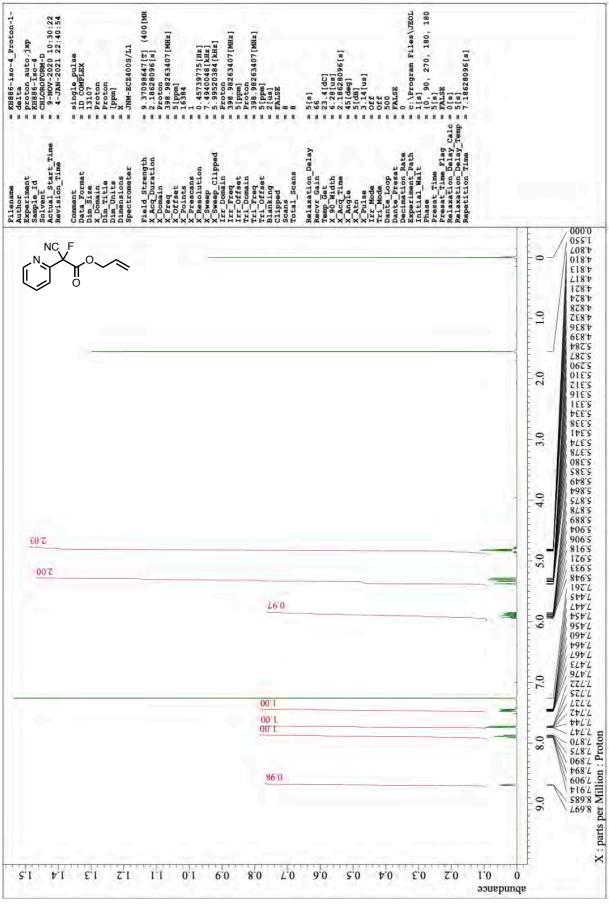
¹³C NMR of **2S** (101 MHz, CDCl₃)

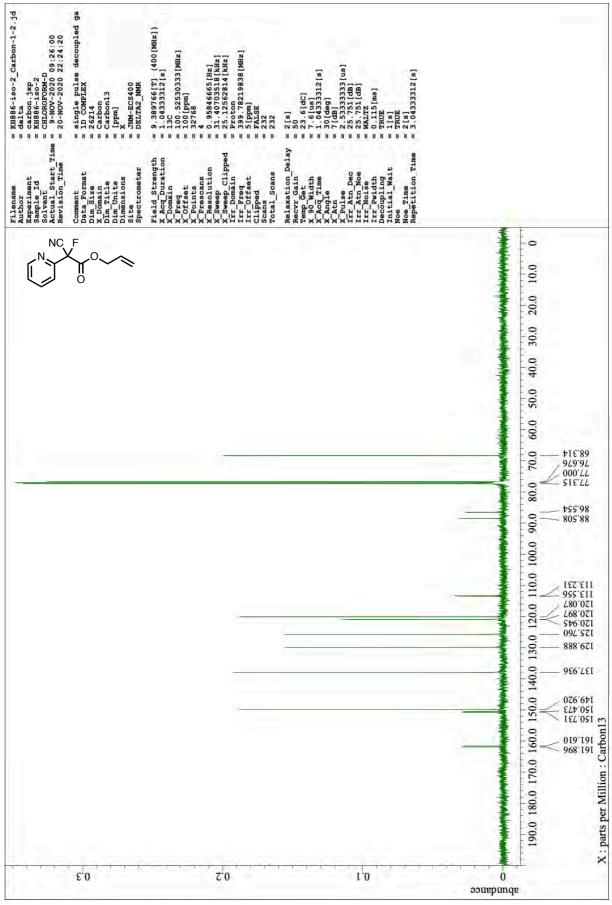


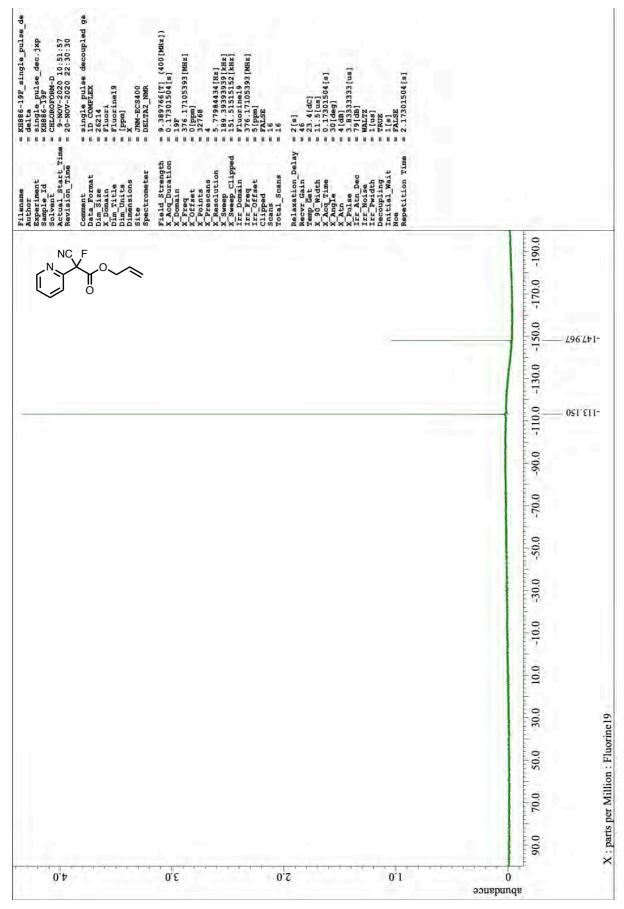
¹⁹F NMR of **2S** (376 MHz, CDCl₃)

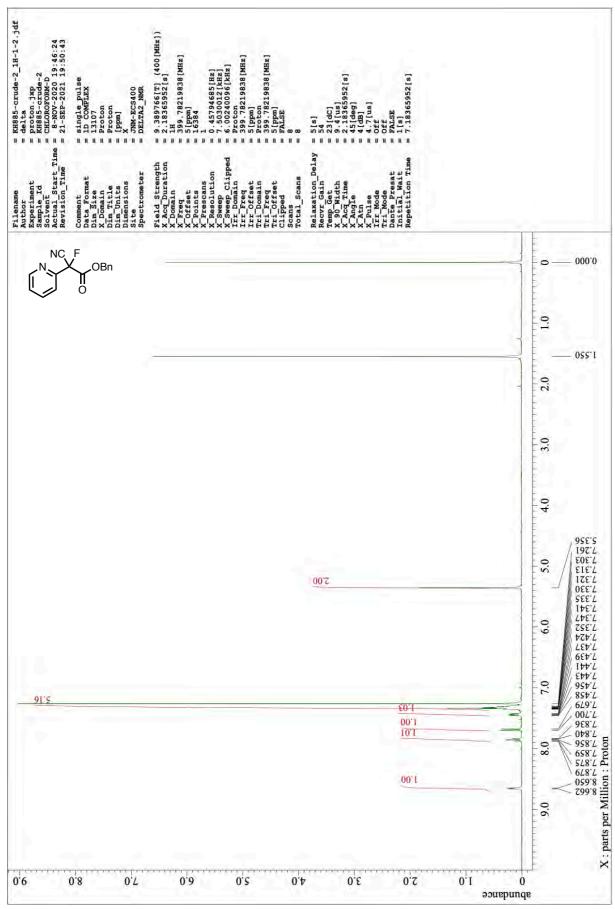


¹³C NMR of **2T** (101 MHz, CDCl₃)



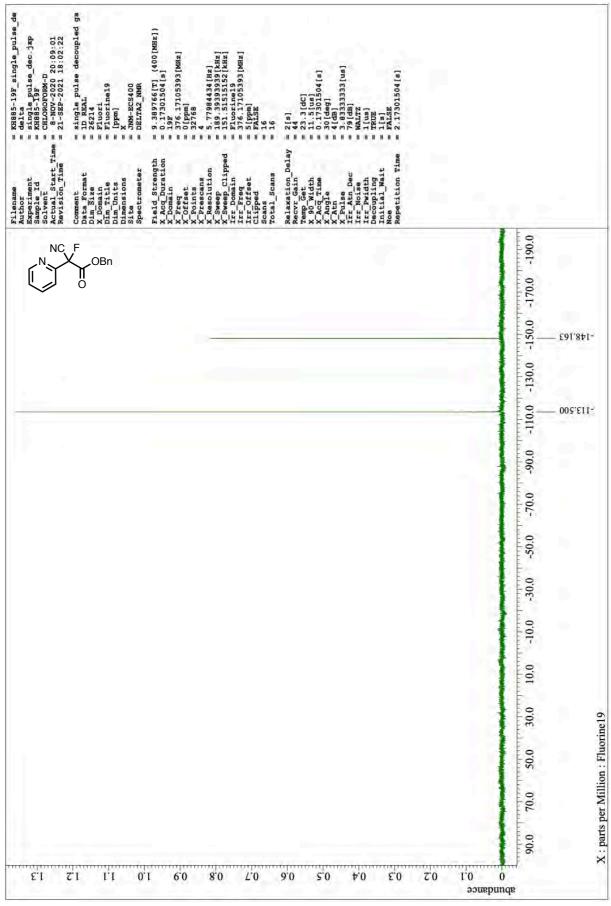

¹⁹F NMR of **2T** (376 MHz, CDCl₃)


¹H NMR of **2U** (400 MHz, CDCl₃)

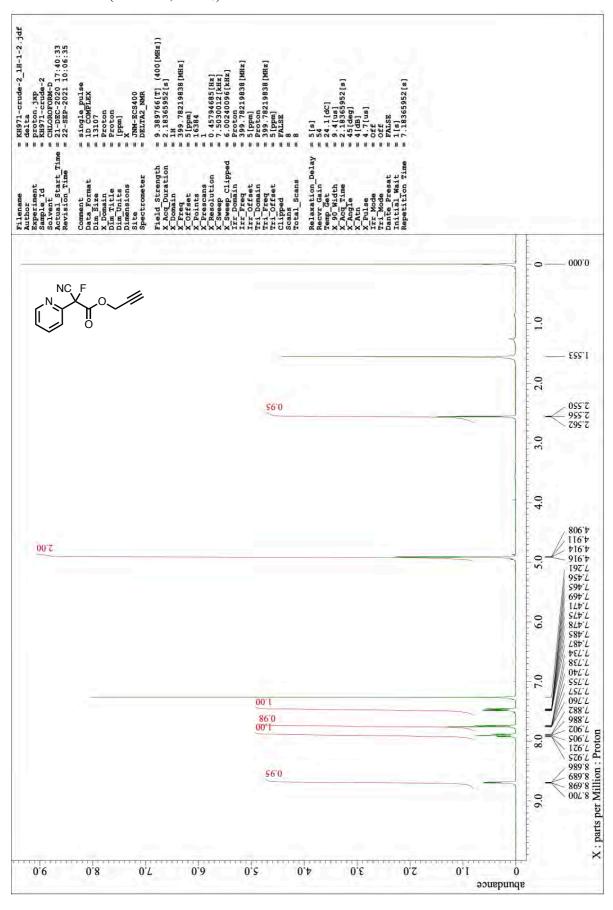


¹³C NMR of **2**U (101 MHz, CDCl₃)

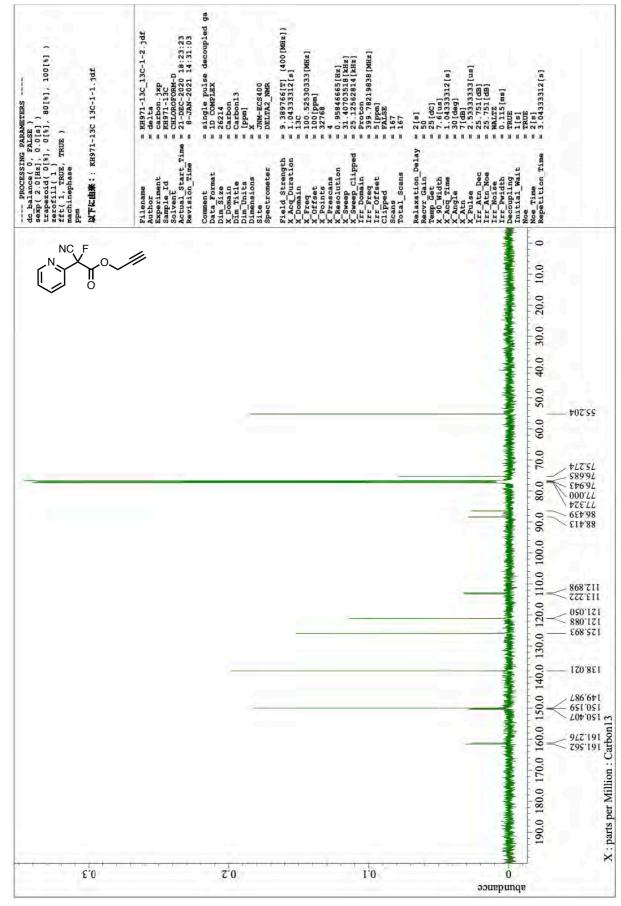
¹⁹F NMR of **2**U (376 MHz, CDCl₃)

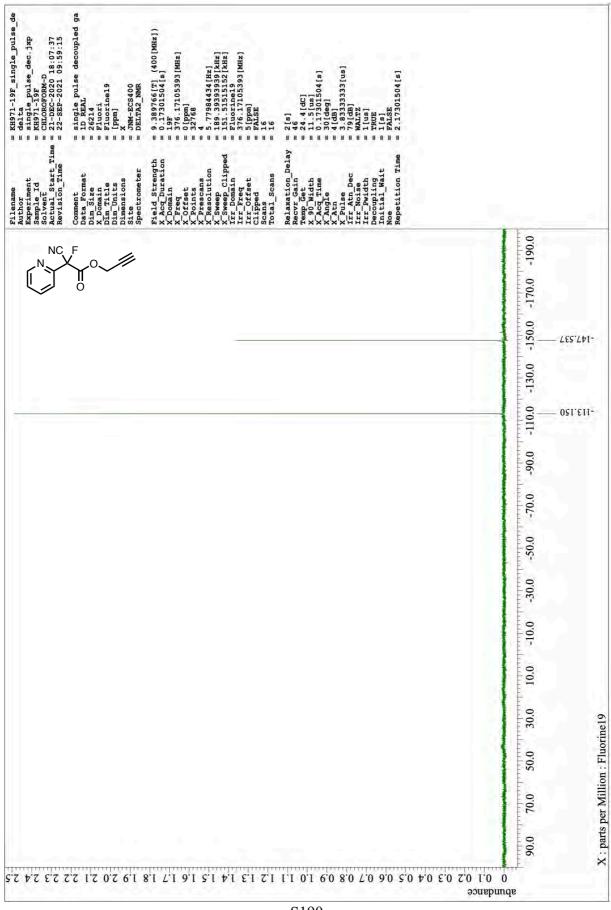

¹H NMR of **2V** (400 MHz, CDCl₃)

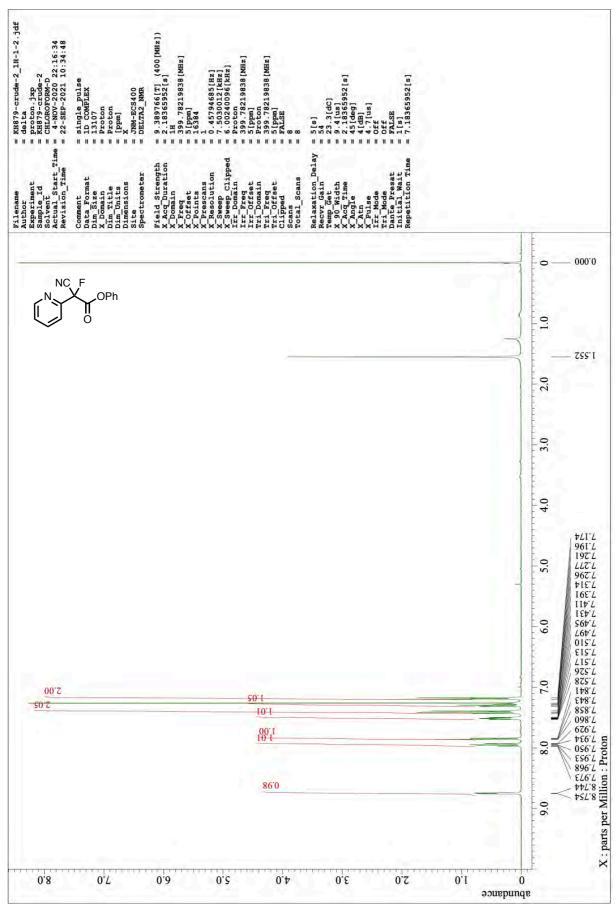
В KH885-13C_Carbon-1-2.jdf decoupled (400 [MHz]) 19:55:01 22:52:34 13C 100.52530333[MHz] 100[ppm] 32768 0.9584665[Bz] 31.40703518[kHz] 25.12562814[kHz] Proton 399.78219838[MHz] 5[ppm] 2.53333333[us] 25.751[dB] 25.751[dB] MALTZ 0.115[ms] single pulse o 1D COMPLEX 26214 2[s] 3.04333312[s] 9.389766[T] (1.04333312[s] 043333312[s] CHLOROFORM-D 8-NOV-2020 20-NOV-2020 JNM-ECS400 DELTA2_NMR carbon.jxp KH885-13C Carbon Carbon13 [gab [dc] [mdd] Ĩ. . Relaxation Delay Recyr Gain Temp Get X 90 Width X Acq Time ctual Start Time p_Clipped Field Strength X Acq_Duration X Domain X Freq Noe Time Repetition Time rescans Spectrometer Comment Data Format X Domain Dim Title Dim Units Dimensions **rotal Scans** tn Dec initial Wai Freq Filename oints 0 NC OBn 10.0 M 20.0 30.0 40.0 50.0 60.0 70.0 \$15°69 \$89'94 000'14 \$16'14 80.0 265.88 942.88 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 +81'211 32'20'22 120'22 12'20'22 12'20'22 12'20'22 12'20'22 12'20'22 12'20'22 12'20'22 137.897 X : parts per Million : Carbon13 1.0 6.0 10.4 2.0 Ó


¹³C NMR of **2V** (101 MHz, CDCl₃)

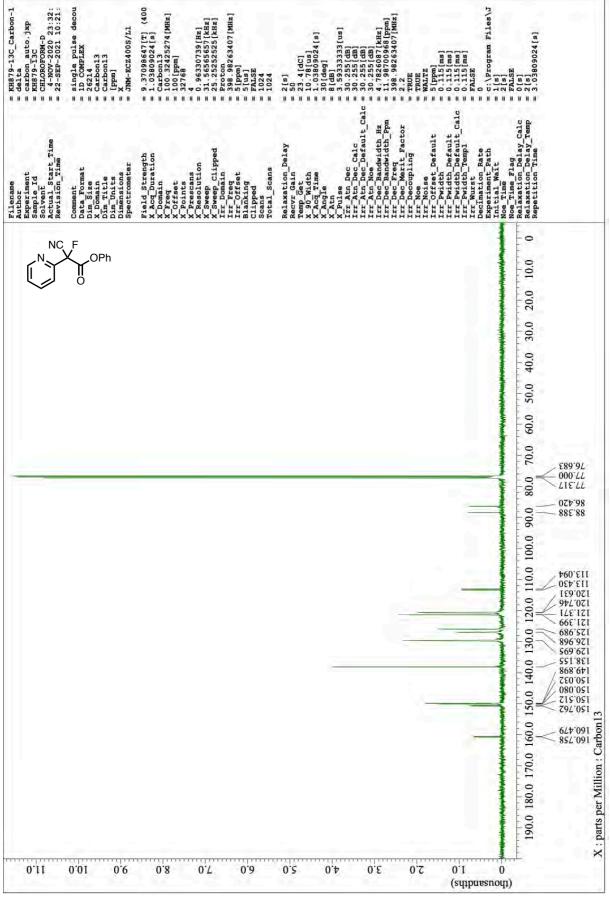
abundance

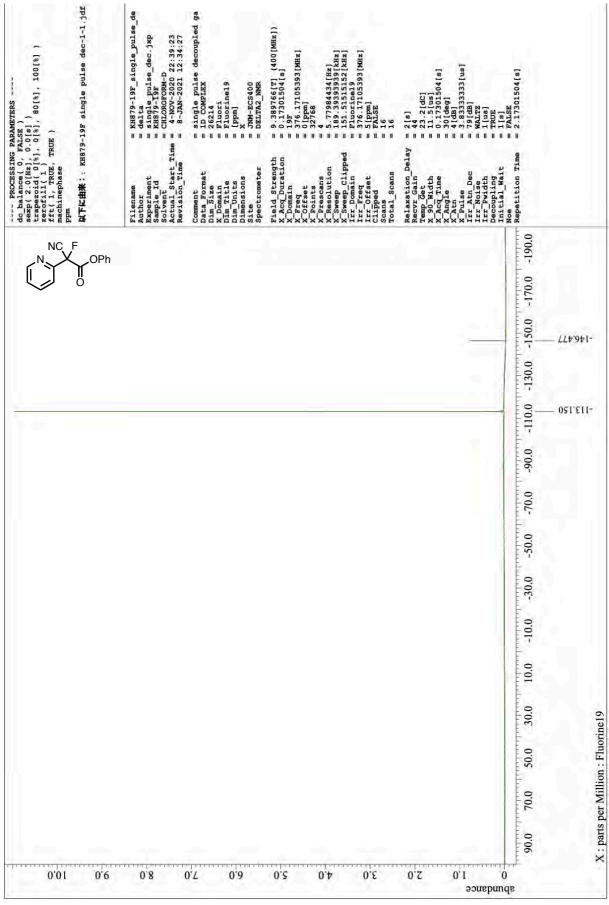

¹⁹F NMR of **2V** (376 MHz, CDCl₃)

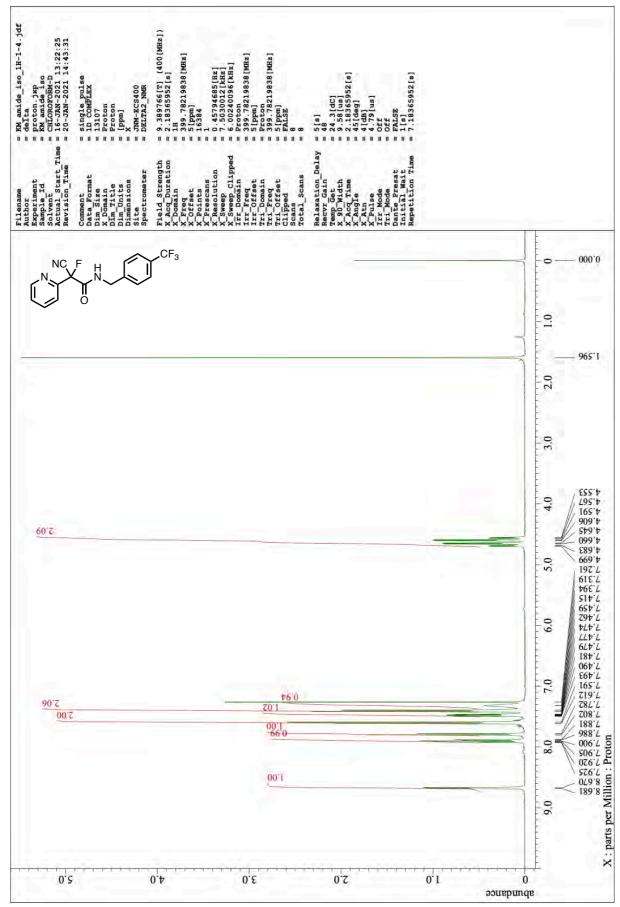

¹H NMR of **2W** (400 MHz, CDCl₃)



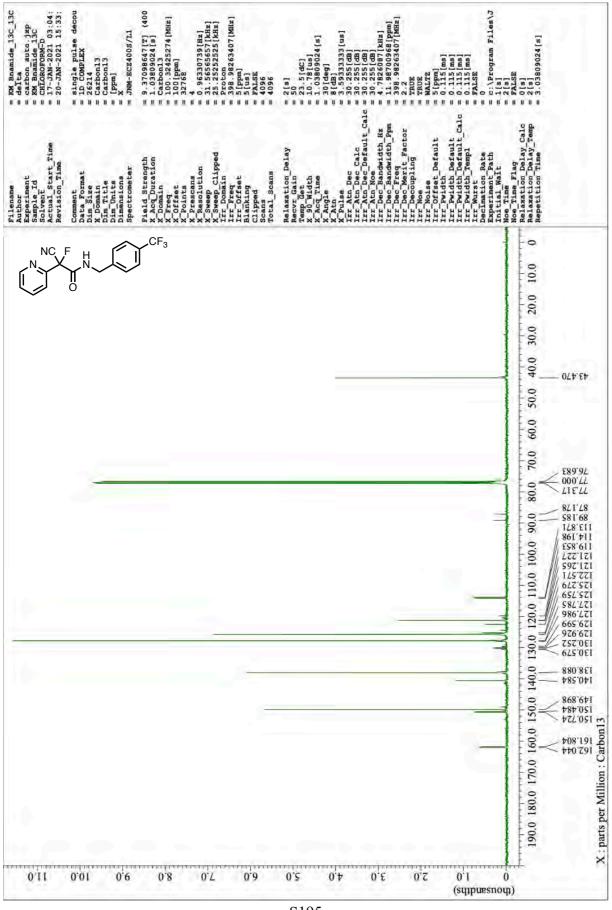
¹³C NMR of **2W** (101 MHz, CDCl₃)

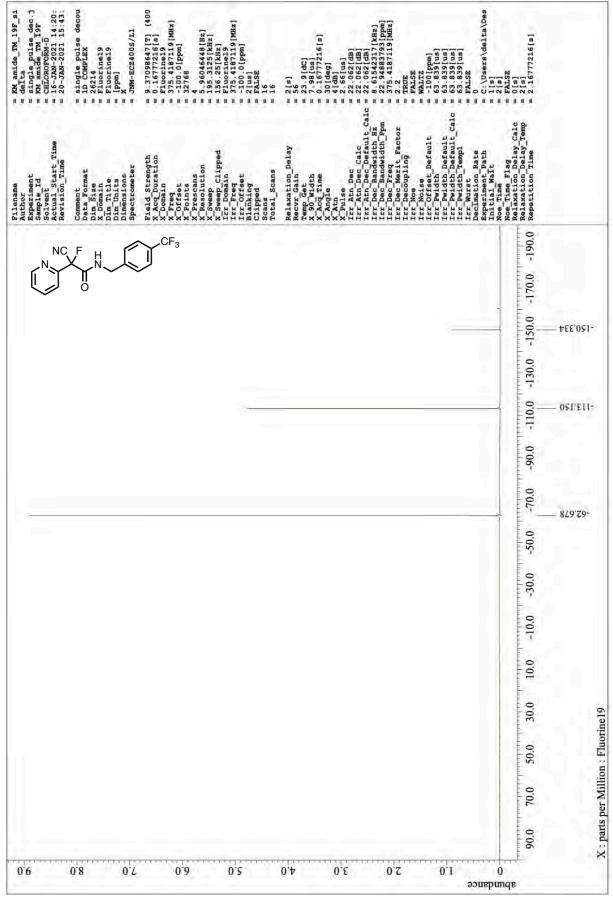

¹⁹F NMR of **2W** (376 MHz, CDCl₃)



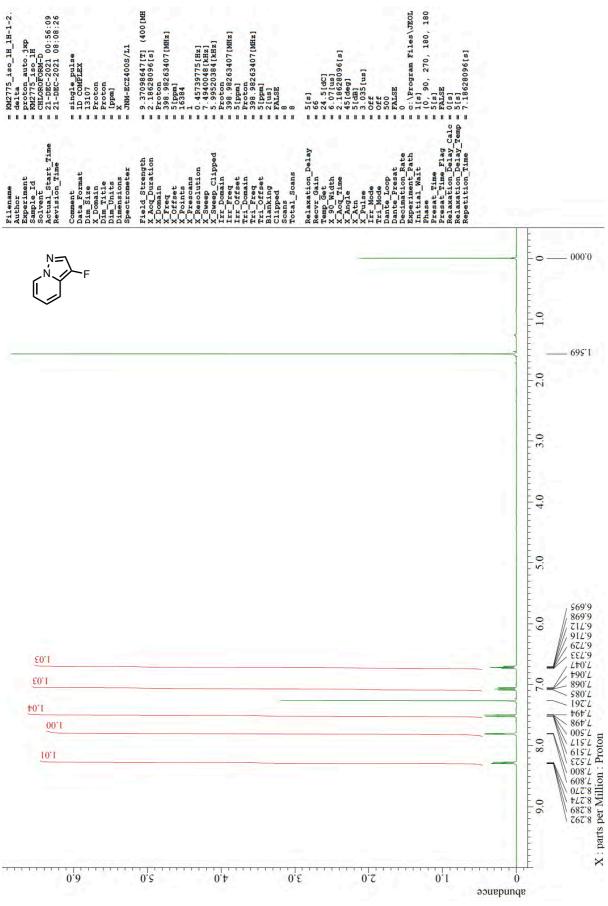

¹H NMR of **2X** (400 MHz, CDCl₃)

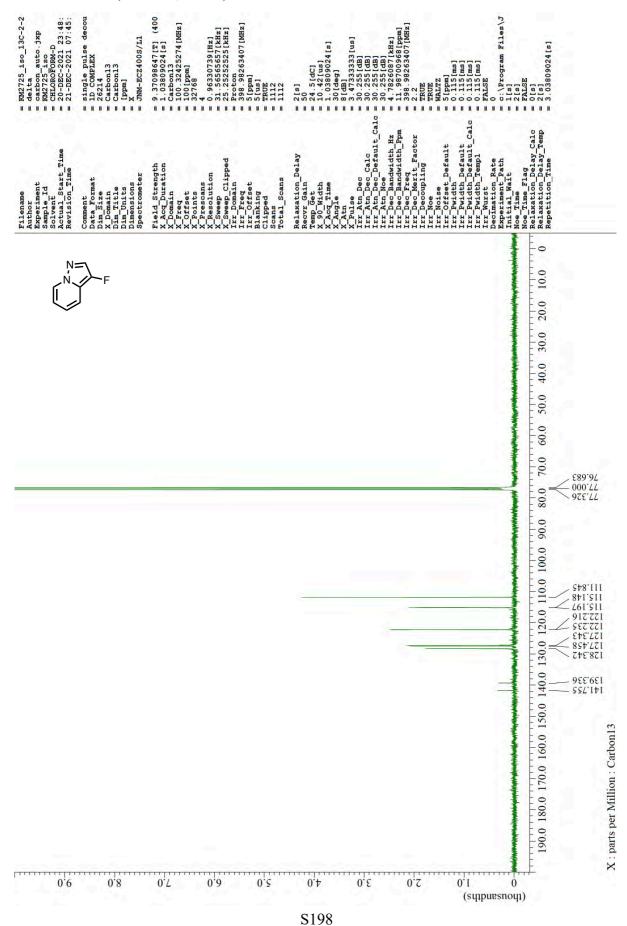
¹³C NMR of **2X** (101 MHz, CDCl₃)

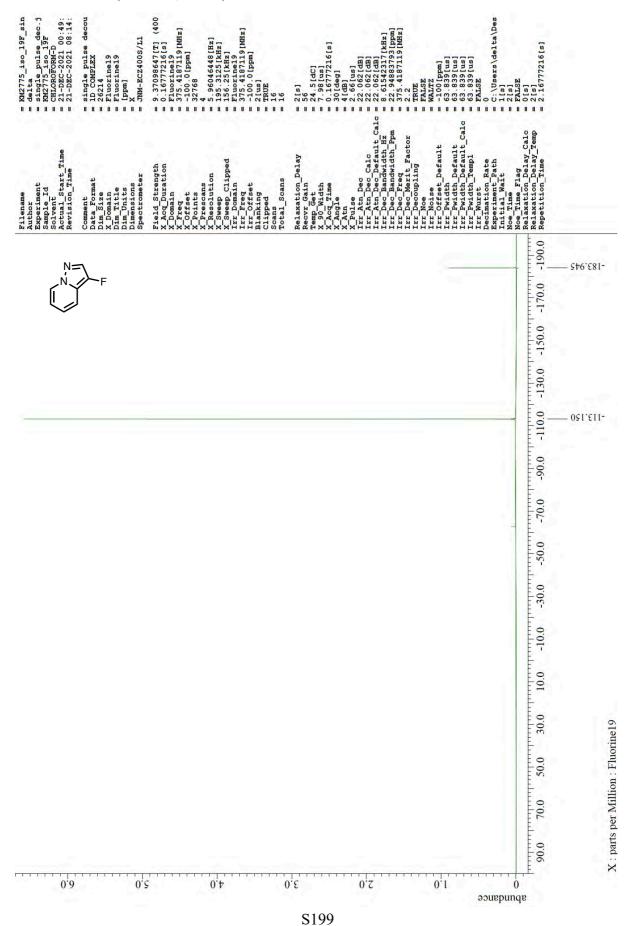

¹⁹F NMR of **2X** (376 MHz, CDCl₃)

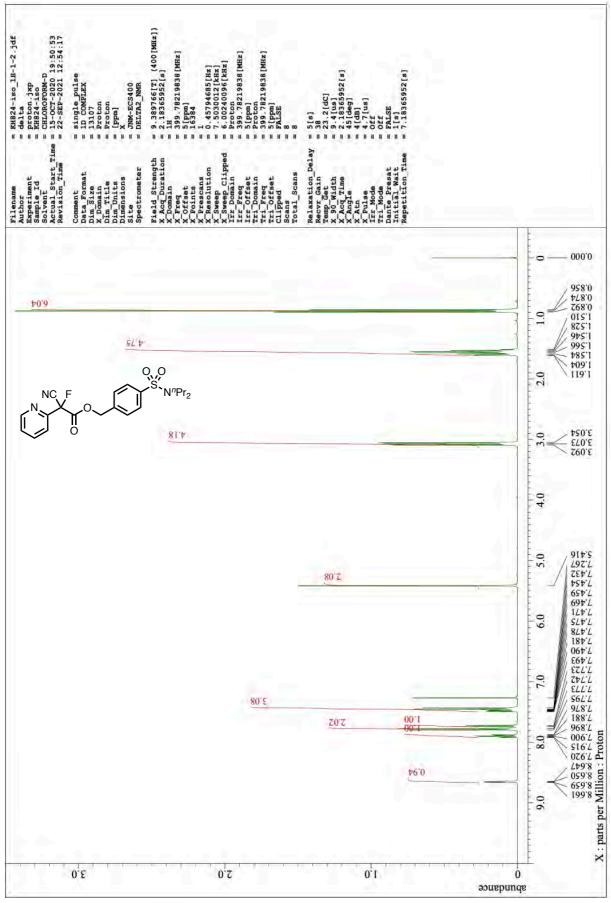


¹H NMR of **2Z** (400 MHz, CDCl₃)

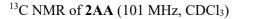

¹³C NMR of **2Z** (101 MHz, CDCl₃)

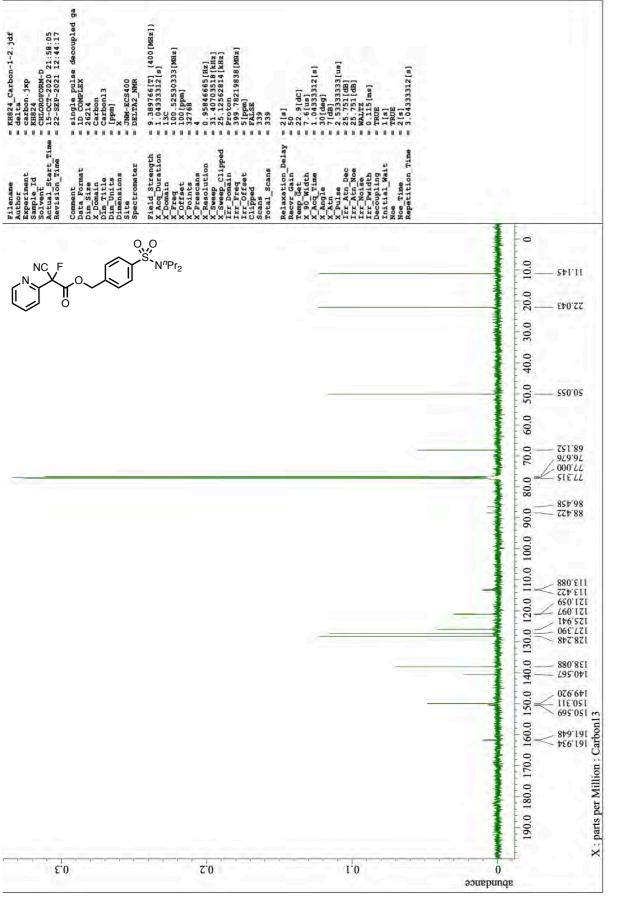

¹⁹F NMR of **2Z** (376 MHz, CDCl₃)

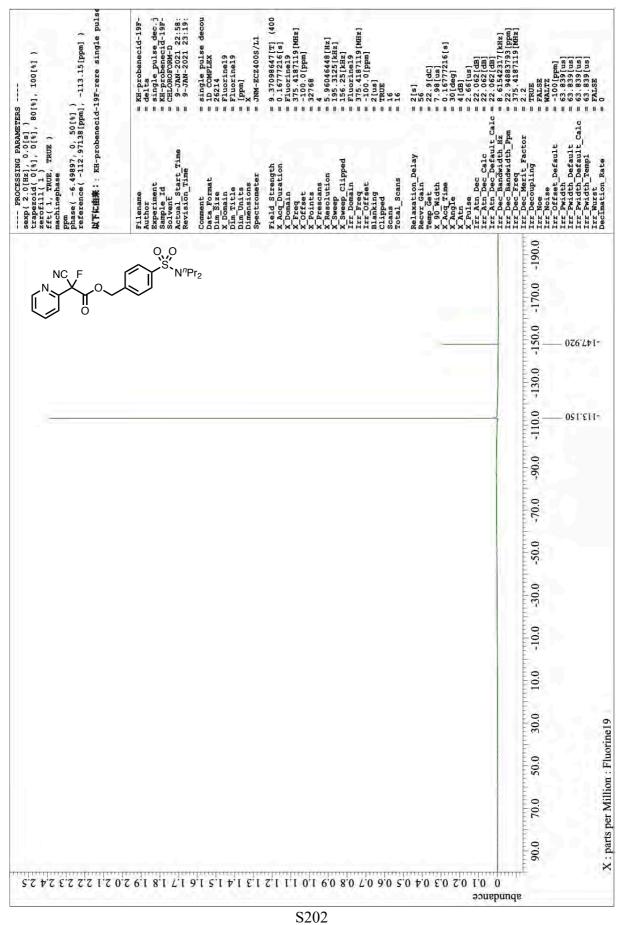

¹H NMR of **2Z'** (400 MHz, CDCl₃)



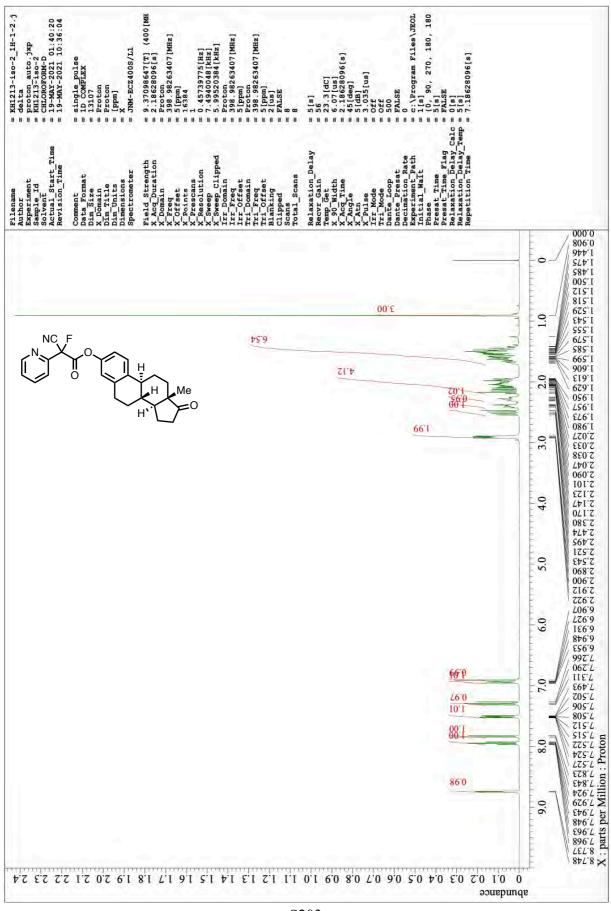
¹³C NMR of **2Z'** (101 MHz, CDCl₃)

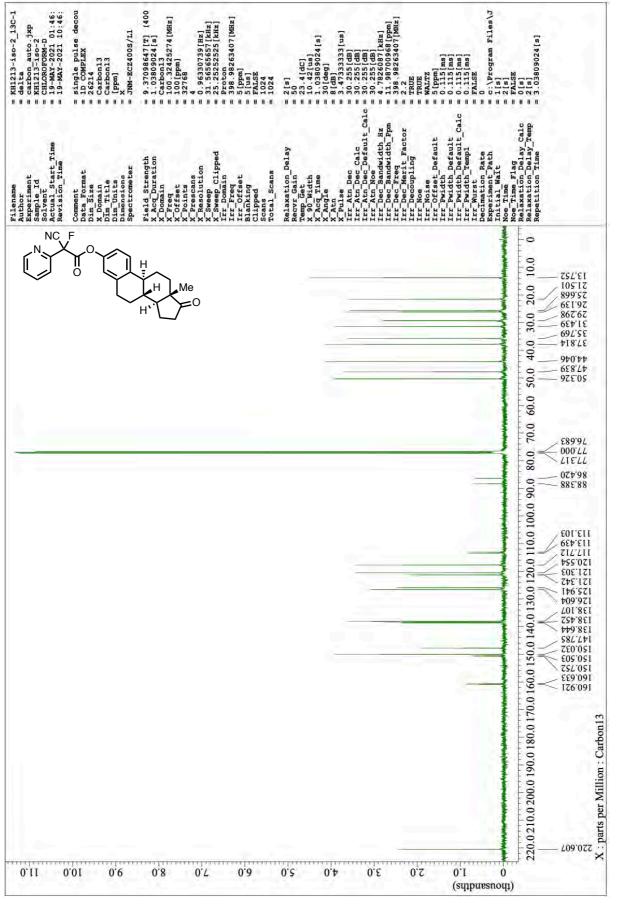


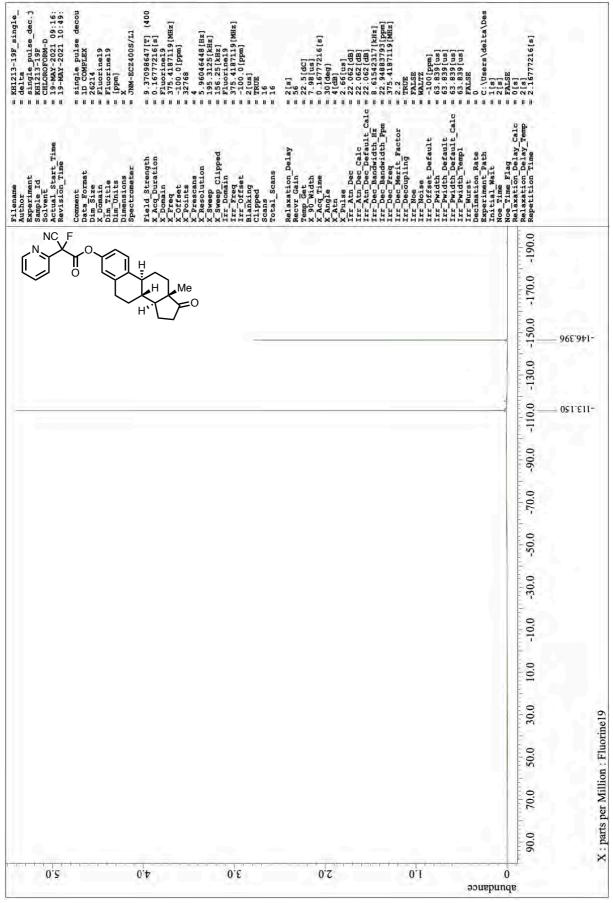

¹⁹F NMR of **2Z'** (376 MHz, CDCl₃)

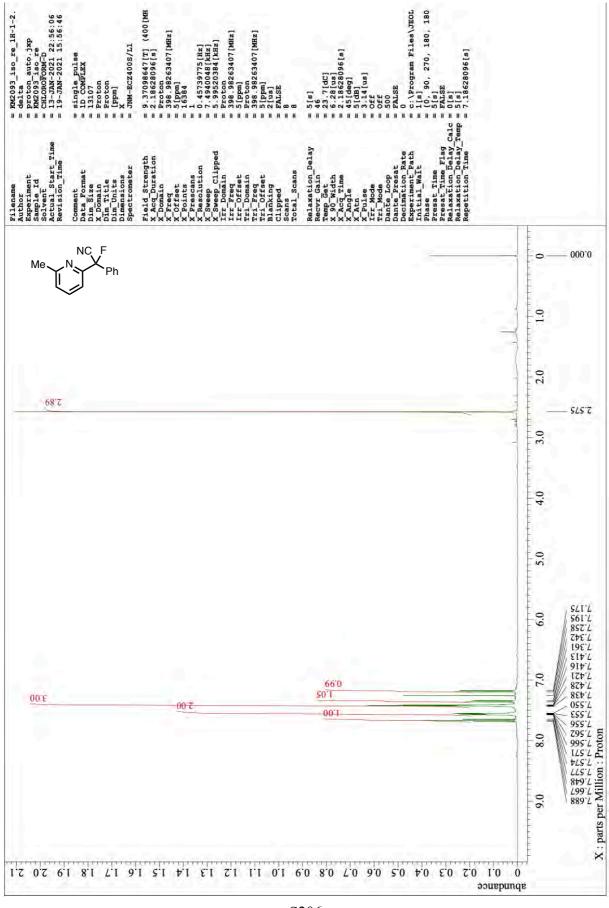


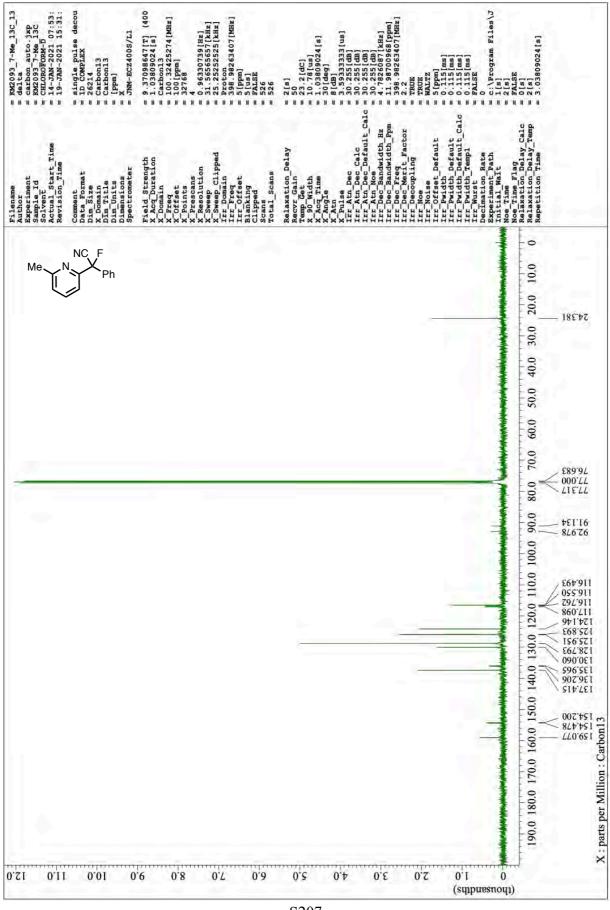
¹H NMR of **2AA** (400 MHz, CDCl₃)



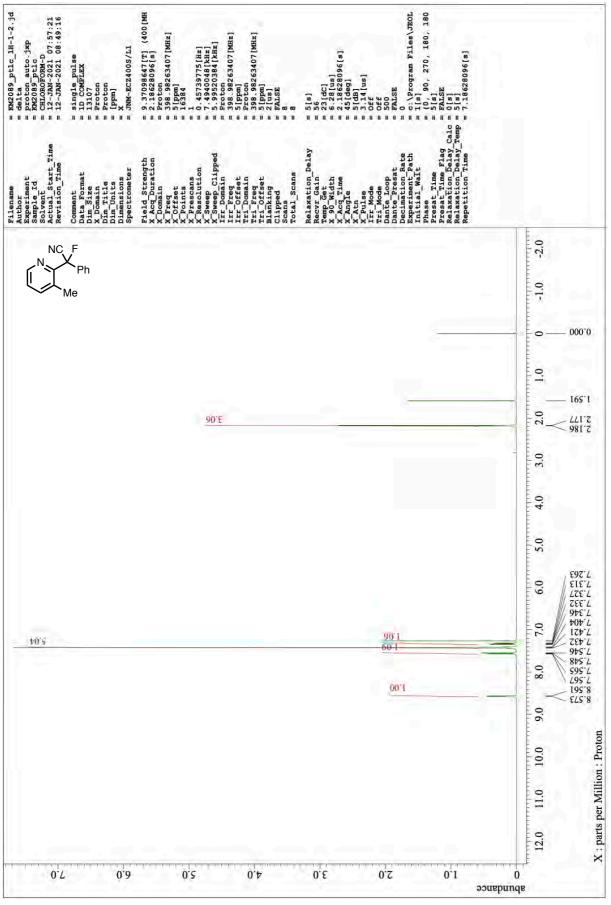

¹⁹F NMR of **2AA** (376 MHz, CDCl₃)

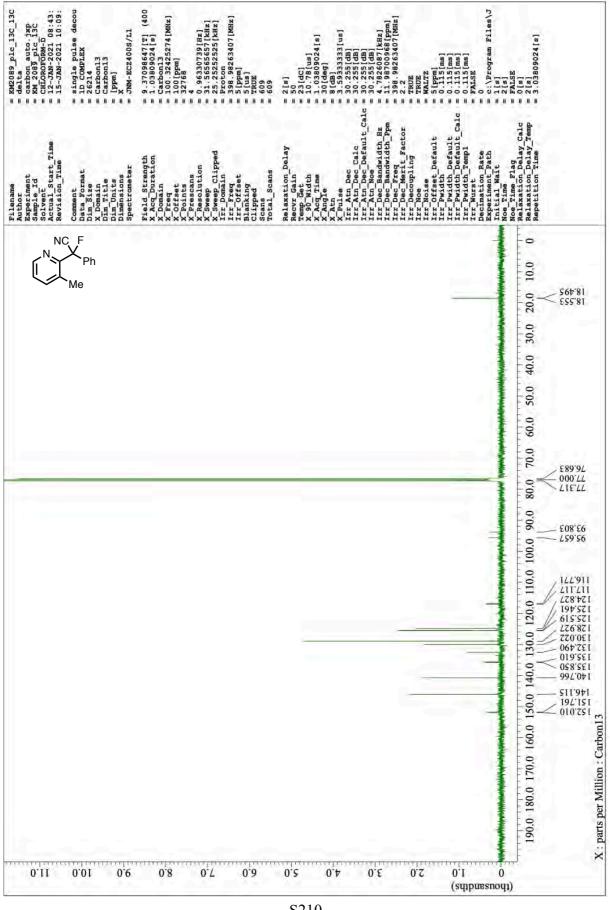

¹H NMR of **2AB** (400 MHz, CDCl₃)


¹³C NMR of **2AB** (101 MHz, CDCl₃)

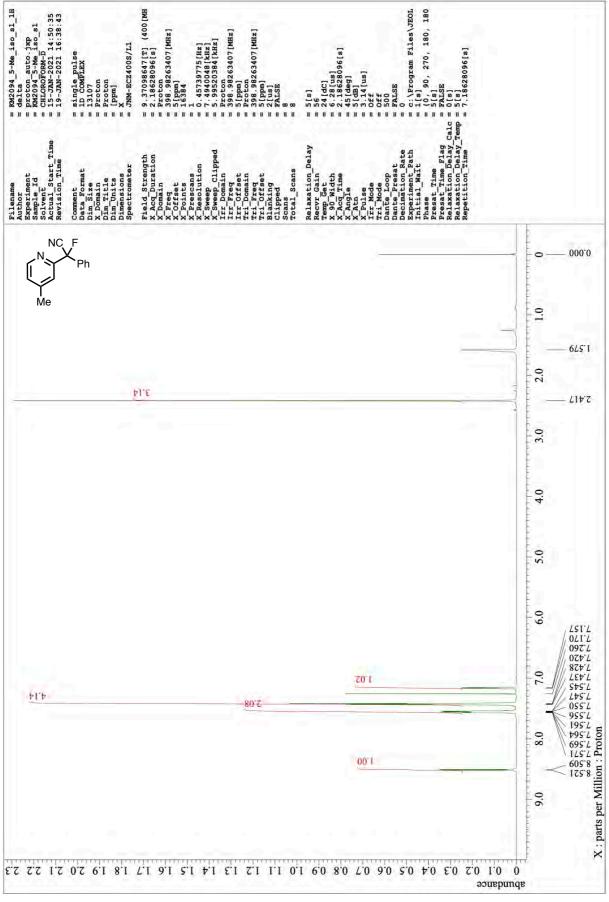

¹⁹F NMR of **2AB** (376 MHz, CDCl₃)

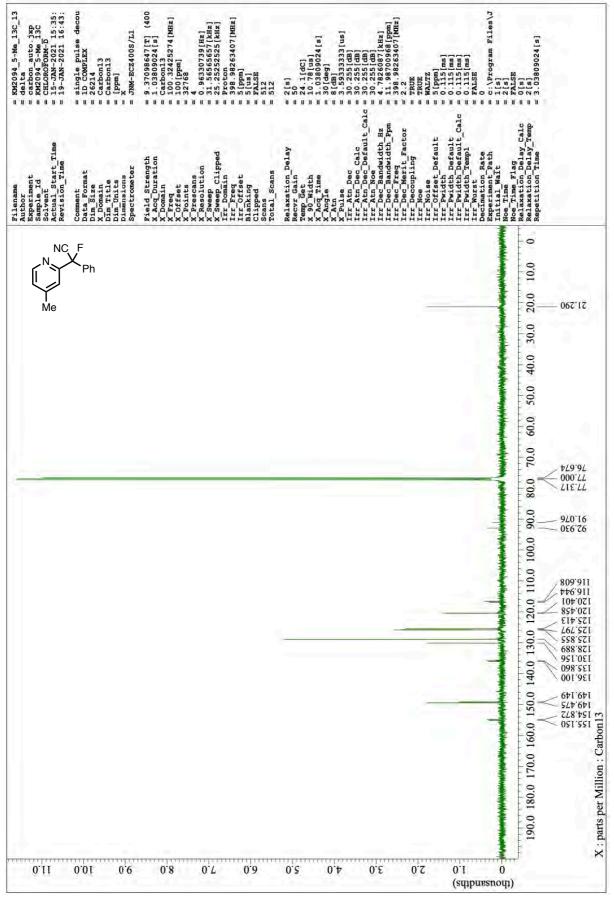

¹H NMR of **2AC** (400 MHz, CDCl₃)


¹³C NMR of **2AC** (101 MHz, CDCl₃)

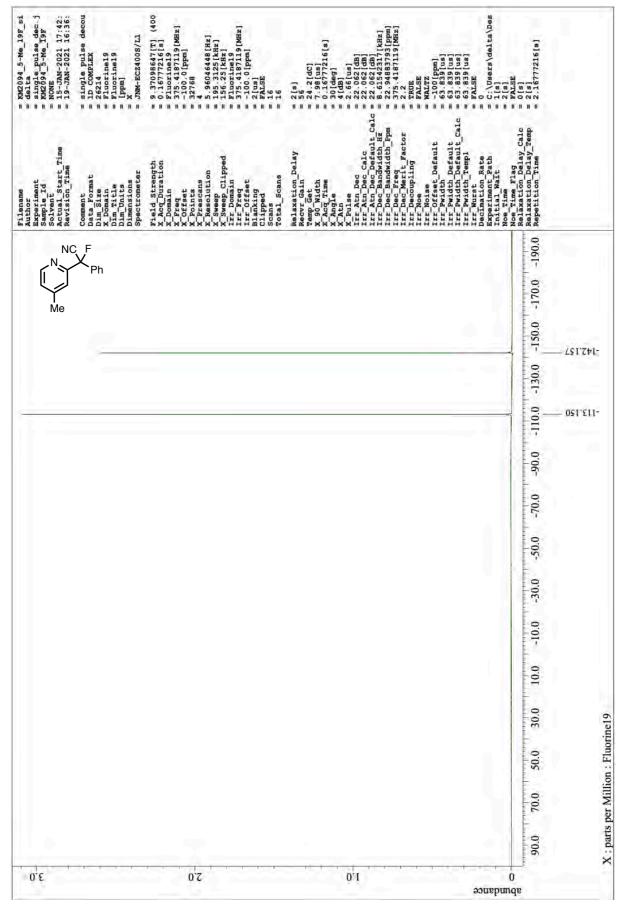

¹⁹F NMR of 2AC (376 MHz, CDCl₃)

¹H NMR of **2AD** (400 MHz, CDCl₃)

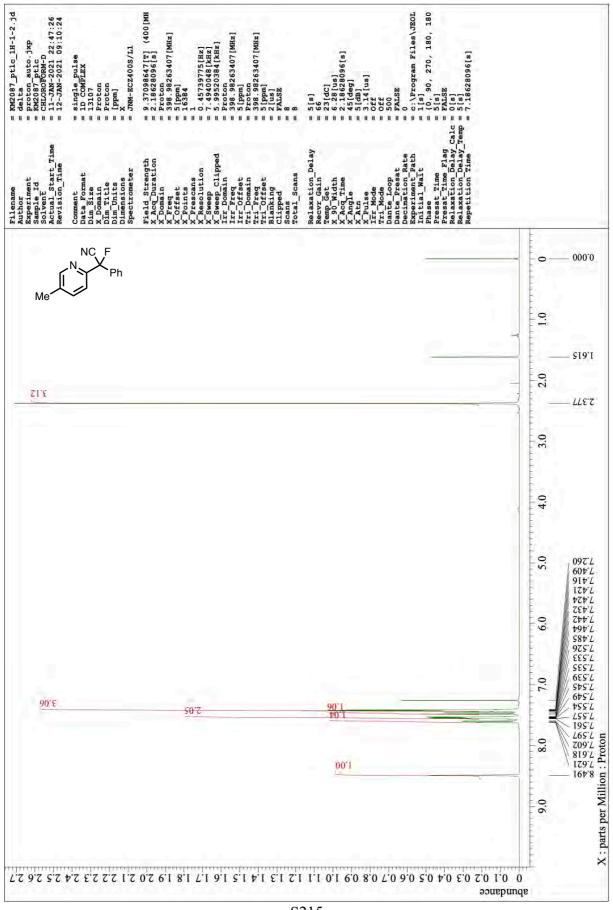

¹³C NMR of **2AD** (101 MHz, CDCl₃)


¹⁹F NMR of **2AD** (376 MHz, CDCl₃)

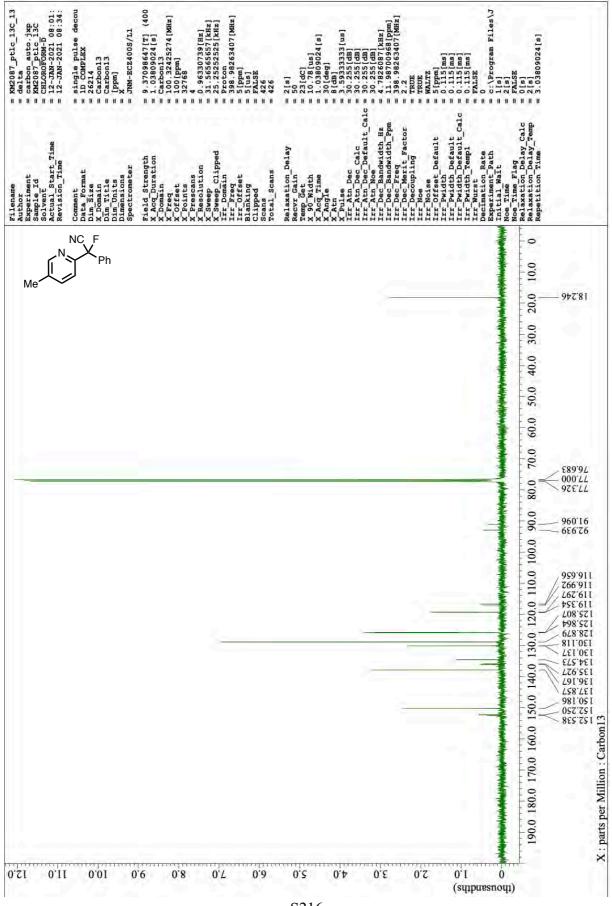
	= 1[a] = 2[a] = FALSE = FALSE = 2[a] = 2[a] = 2.16777216[a]
Awthor Experiment Sample Id Solvent Solvent Actual Start Time Actual Start Time Revision Time Comment Dim Title Dim Title Dec Dec Dandwidth Br Stans	Noe Time Noe Time Noe Time Relaxation Delay Calc Relaxation Delay Temp Repetition Time
	-190.0
Me	0 -170.0
	-130.0
	051'£11-
	-90.0
	-70.0
	-50.0
	-30.0
	-10.0
	10.0
	30.0
	50.0
	90.0 70.0 50.0 30.0
	0.06
0'1 0'3 0'3 0'4 0'2 0'9 0'4 0'2 0'9 0'1 0'8 0'6 1'0	0 punqe


¹H NMR of **2AE** (400 MHz, CDCl₃)

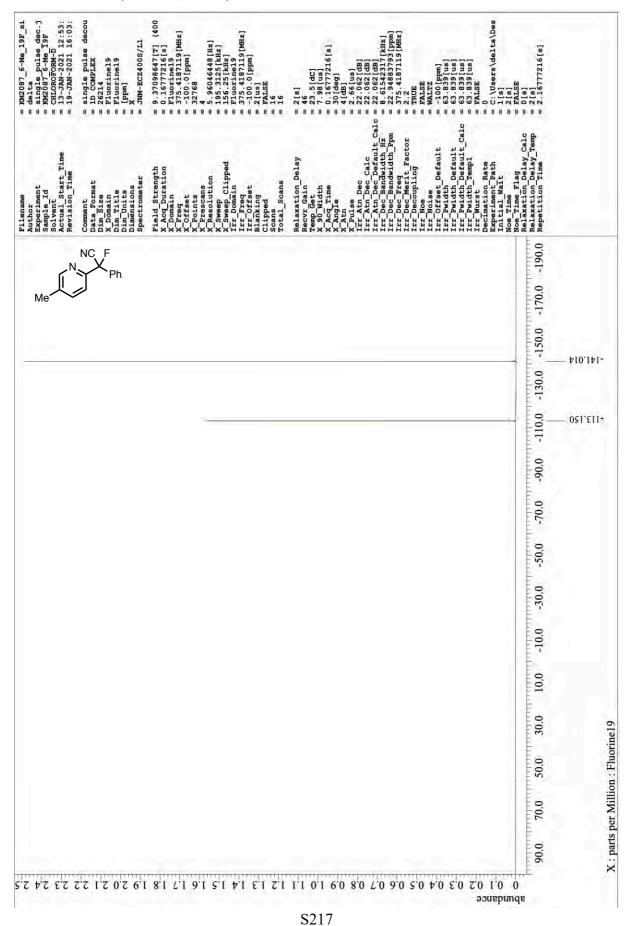
¹³C NMR of **2AE** (101 MHz, CDCl₃)

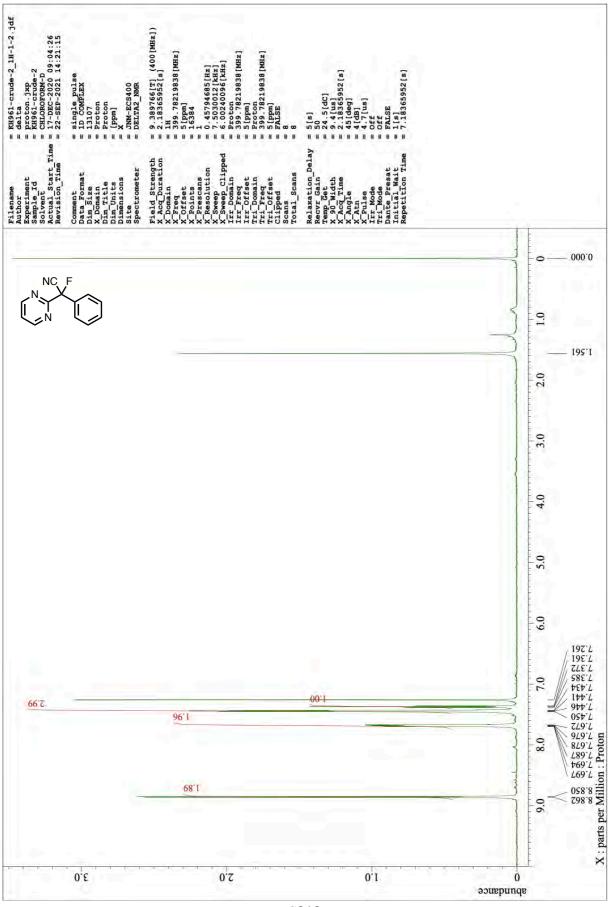


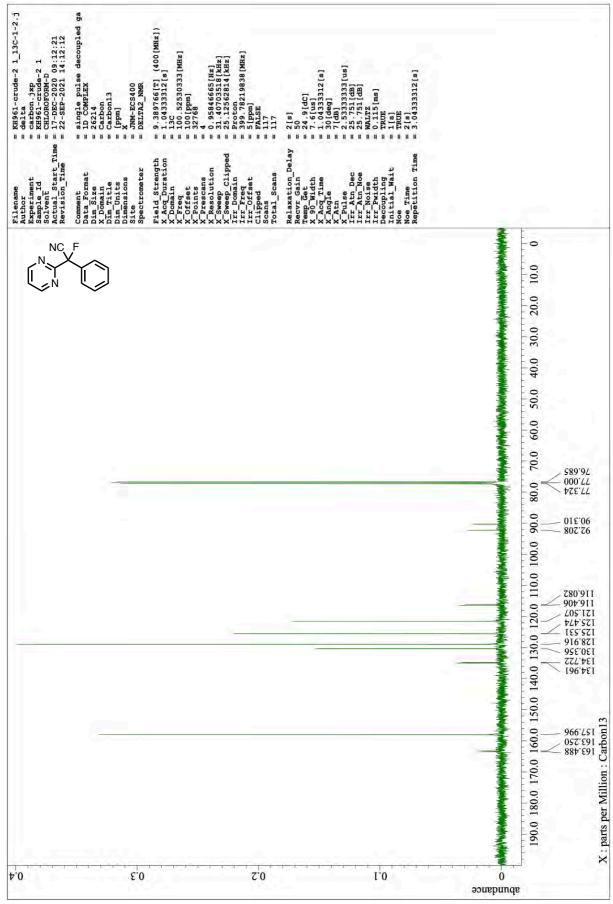
¹⁹F NMR of **2AE** (376 MHz, CDCl₃)



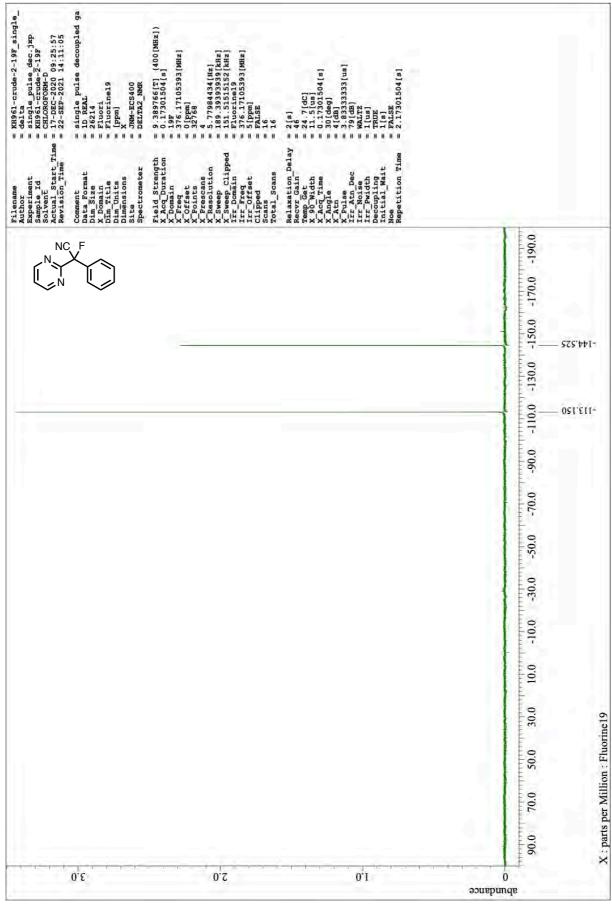
S214

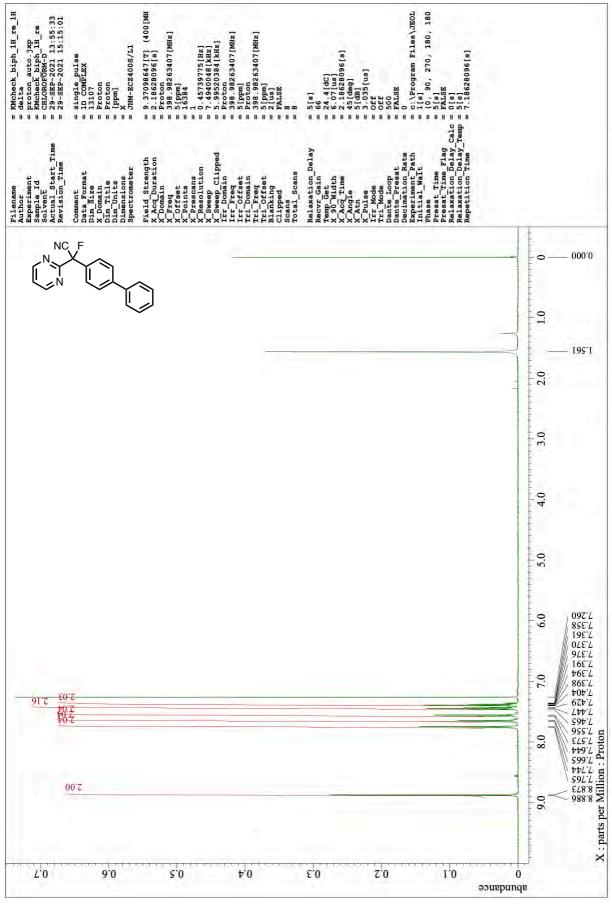

¹H NMR of **2AF** (400 MHz, CDCl₃)


¹³C NMR of **2AF** (101 MHz, CDCl₃)

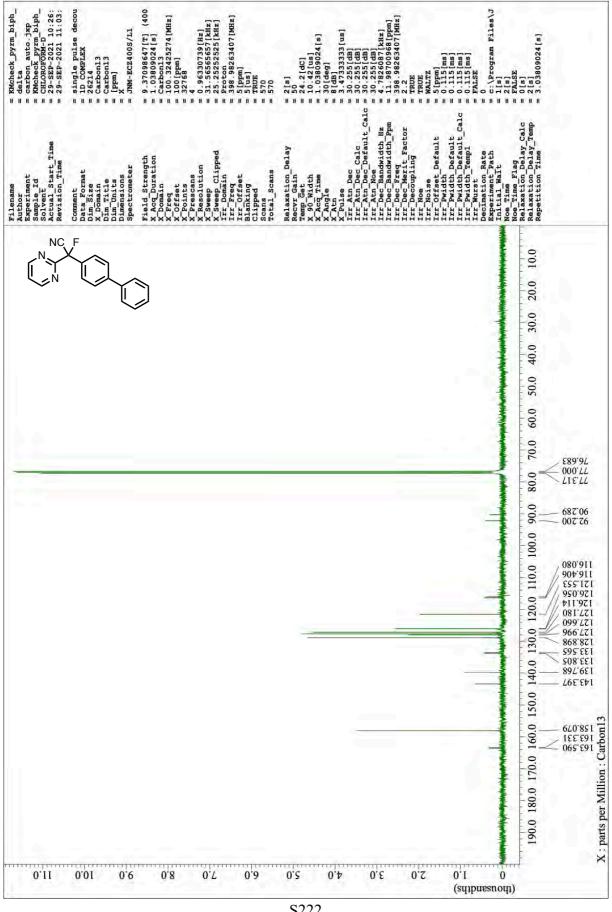


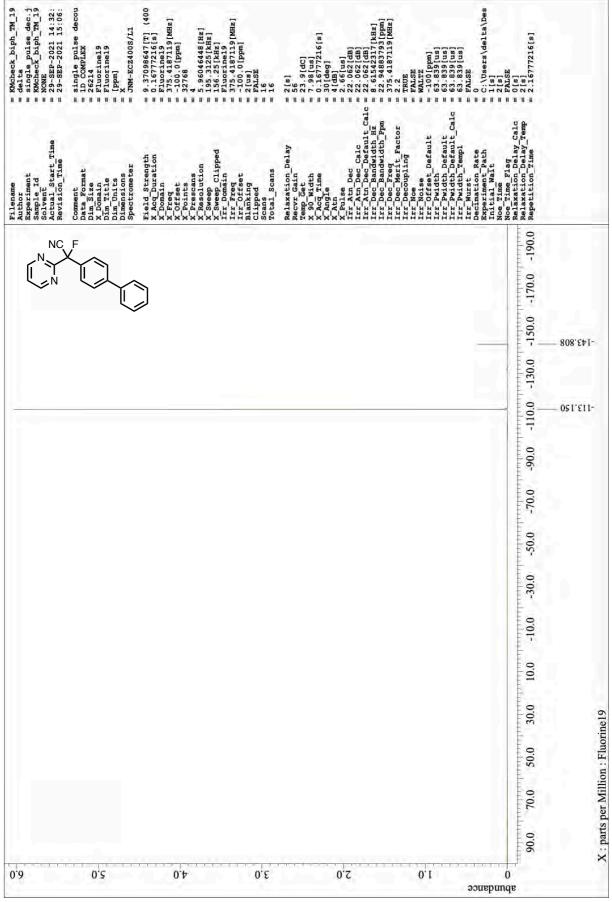
¹⁹F NMR of **2AF** (376 MHz, CDCl₃)


¹H NMR of **2AG** (400 MHz, CDCl₃)



¹³C NMR of 2AG (101 MHz, CDCl₃)


¹⁹F NMR of **2AG** (376 MHz, CDCl₃)


¹H NMR of **2AH** (400 MHz, CDCl₃)

¹³C NMR of **2AH** (101 MHz, CDCl₃)

¹⁹F NMR of **2AH** (376 MHz, CDCl₃)

KMcheck PhBr pyrm re 1H-1 (400 [MHz]) 13:10:43 pyrm re reton 399.78219838 [MHz] 7 [ppm] MLSF 99.78219838 [MHz] oton. 99.78219838[MH≢] ..45794685[Hz] ..5030012[kHz] ..00240096[kHz] 9.389766[T] 2.18365952[s] 3365952[s 29-SEP-2021 ECS400 DELTA2 NMF single . 1 Time tion Delay clipped Strength Duration X Domain Dim Title Dim Units Dimensions Site Spectrometer Lution Scans vision Filenam Comment Data Fo Dim Siz Field : Scans Total Relaxa NC F 1.00 20.4

000.0

109'1

0

1.0

2.0

3.0

4.0

5.0

6.0

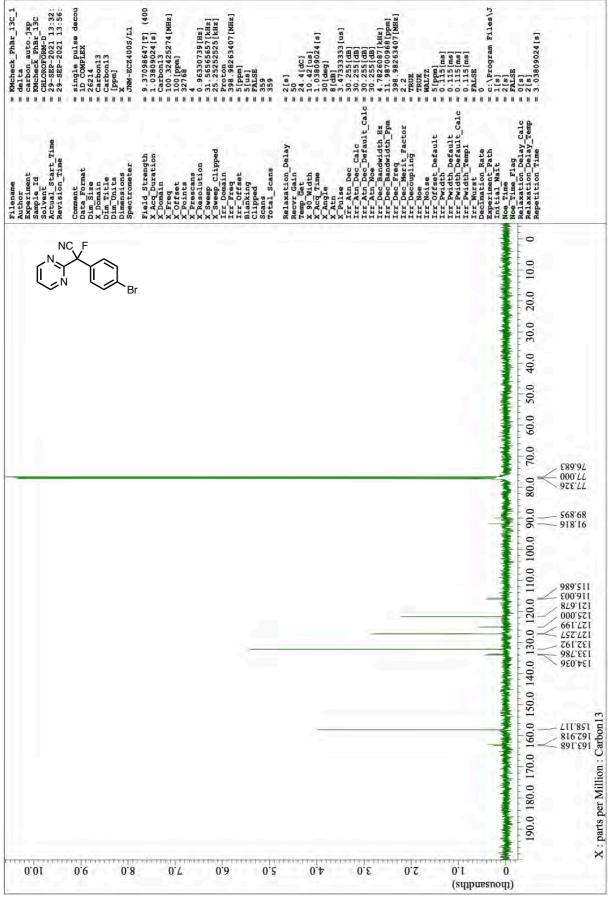
7.0

8.0

0.6

0 1'0

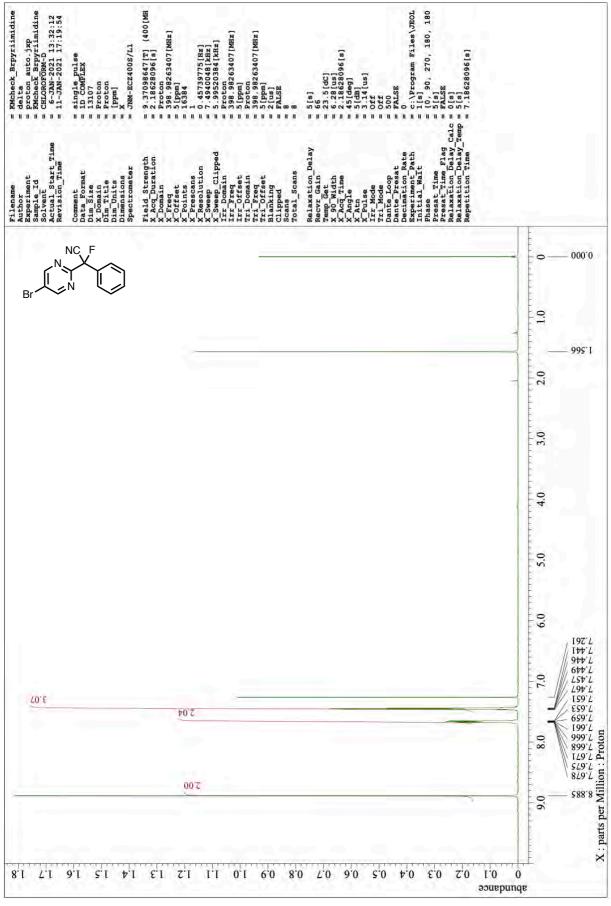
X : parts per Million : Proton

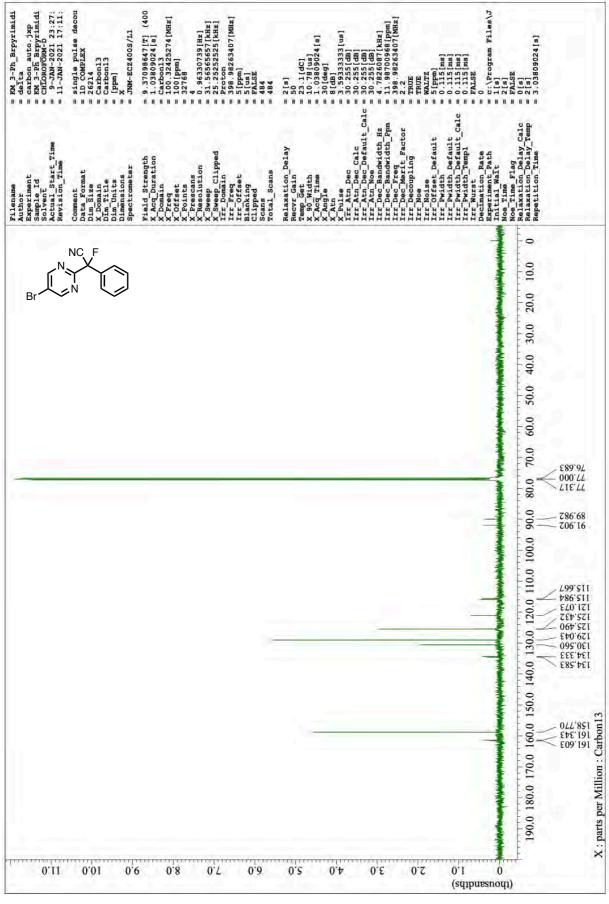

¹H NMR of **2AI** (400 MHz, CDCl₃)

S224

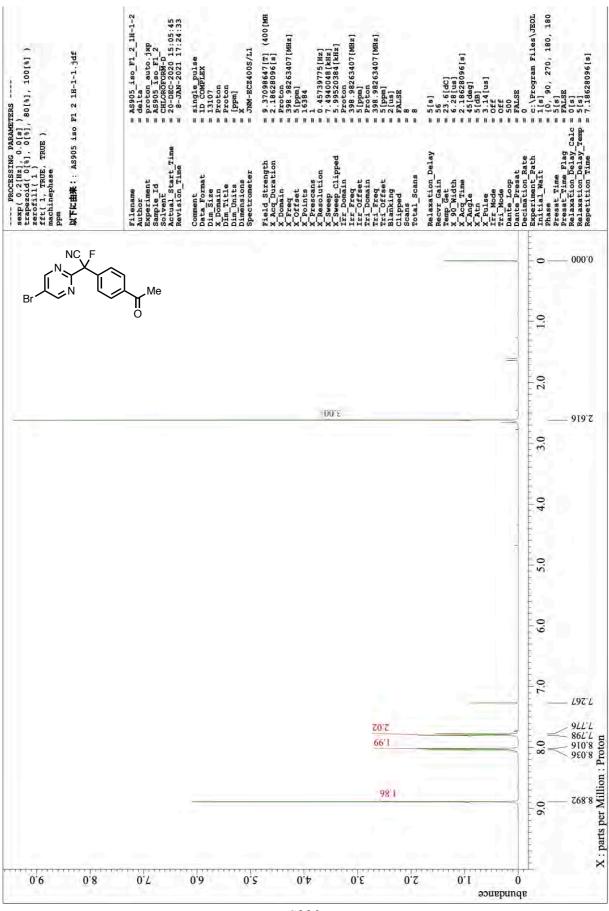

161

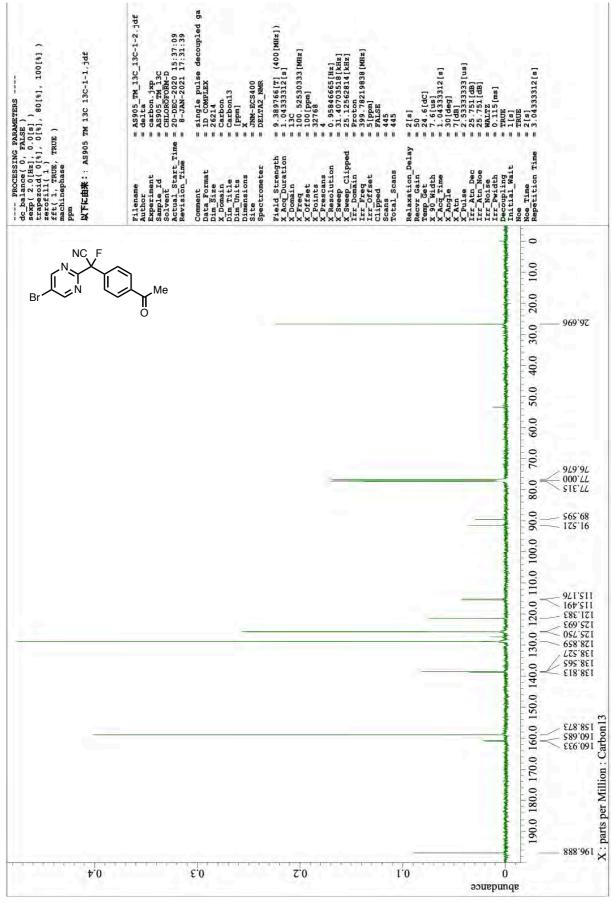
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0


¹³C NMR of 2AI (101 MHz, CDCl₃)

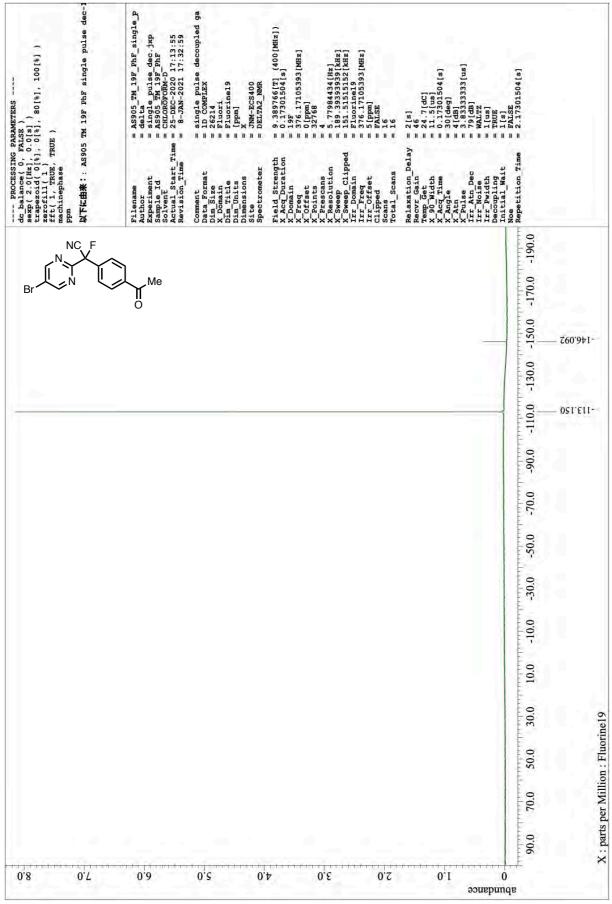

¹⁹F NMR of **2AI** (376 MHz, CDCl₃)

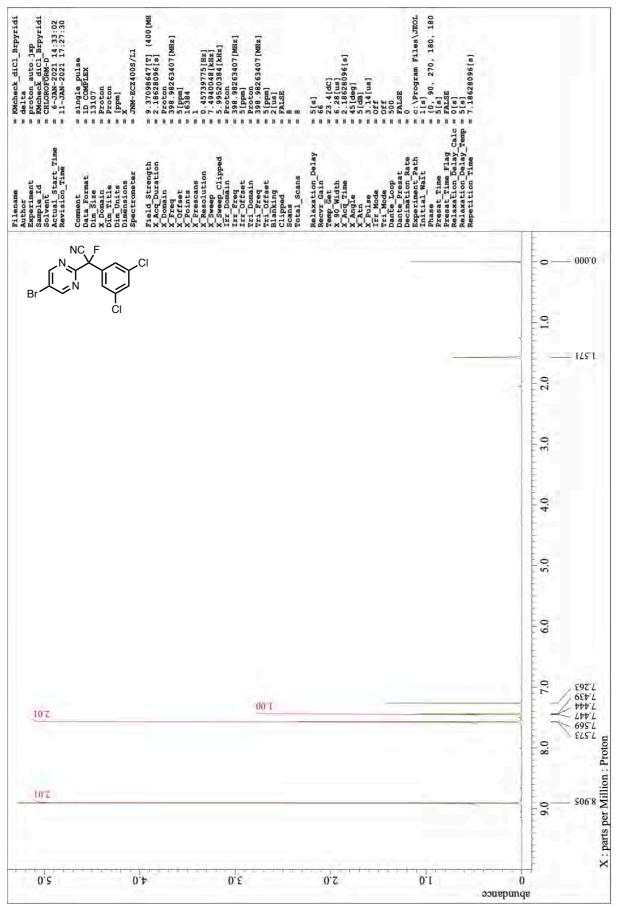
¹H NMR of **2AJ** (400 MHz, CDCl₃)

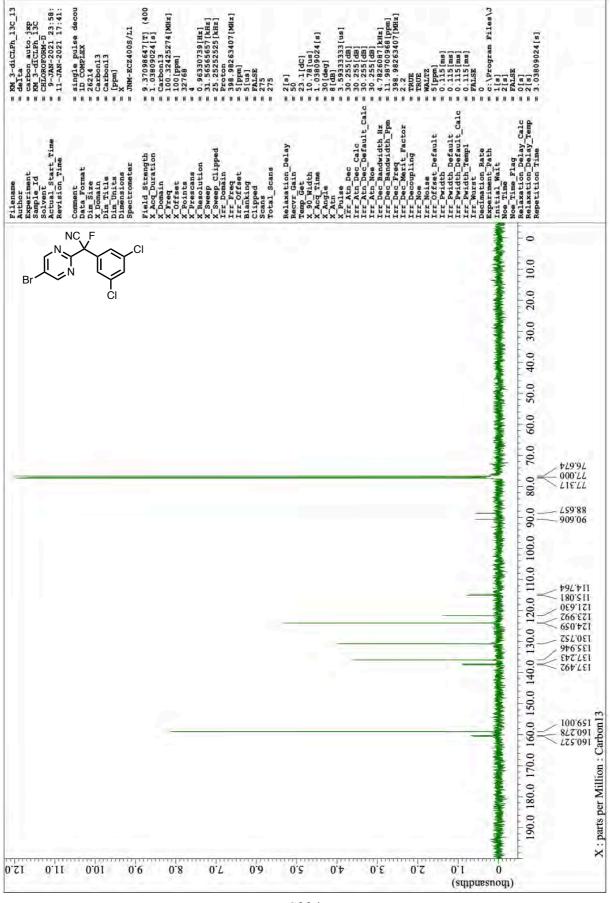

¹³C NMR of **2AJ** (101 MHz, CDCl₃)

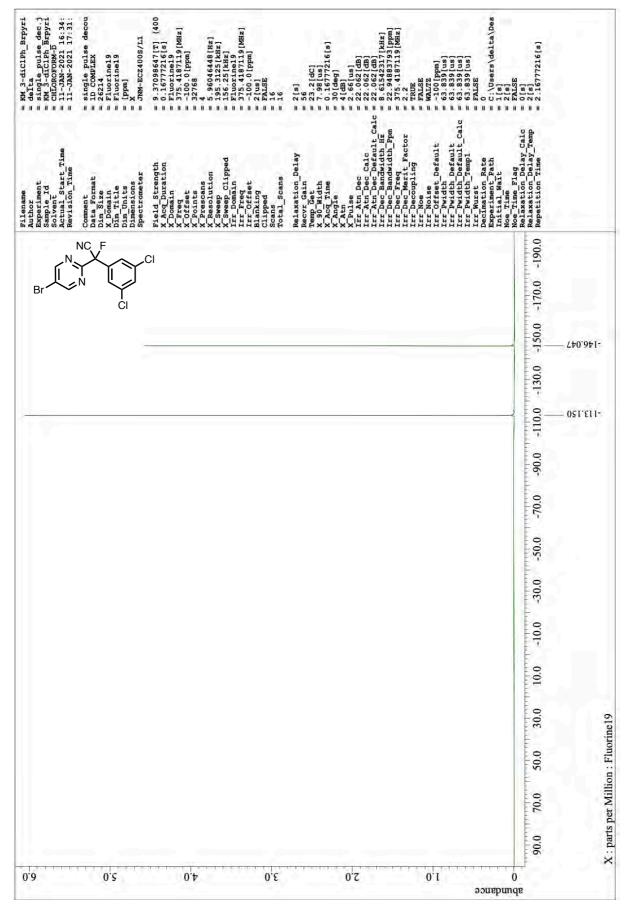

 ^{19}F NMR of **2AJ** (376 MHz, CDCl₃)

							90.0	Virian
							50.0	
							30.0	
							10.0	
							-10.0	
							-30.0	
							-50.0	
							-70.0	
							0.06-	
			_				-110.0	0\$1'£11-
							-130.0	
							-150.0	
	$\widehat{}$						-170.0	
NC							-190.0	
Author Experiment Sample Id Solvent Actual Start Time Revision Time Comment	Data Format Data Format X Domain Dim Title Dimensions Spectrometer	Field Strength X Acq_Duration X Pomain X Offset X Offset X Points	X Prescans X Sweep X Sweep TFT Domain TFT Domain TFT Preq TTT Offeet Blanking Clipped Scans	rotal Scans Recruigation Delay Recruigation Team Cat Tion Cat Tion Cat Angle Xangle	X Pulse X Pulse III Ath Dec Calc III Ath Dec Calc III Dec Bandwidth HT III Dec Bandwidth Ppm III Dec Freq III Dec Freq III Decombing Factor	IIITNOE IIT Offset Default IIT Offset Default IIT Pwidth Default IIT Pwidth Default IIT Pwidth Default Calc IIT Wurst Temp1 Decimation Rate	This are and the second of the	
	= 1D COMPLEX = 26214 = Fluorine19 = Fluorine19 = [Ppm] = JNM-ECZ400S/L1		= 4 = 5 = 56046448 [Hz] = 195.3251 [HHz] = 156.25[[Hz] = 715.25[[Hz] = 715.4187119 = 7105.0[[PPm] = 21 us] = 71.52 = 71.52	= 16 = 2[s] = 26.[dc] = 7.98[us] = 0.16777216[s] = 4[deg] = 4[deg]	2.66(dms] 2.2.062(dms] 2.2.062(dms] alc = 22.062(dms] alc = 22.062(dms] = 8.61542317(kHz] = 22.94883793[ppm] = 27.4187119[MHz] = 7.72 = 7.72		= C:\USEES\GetCa\Les = 1[5] = 2[5] = 2[5] = 0[5] = 2[5] = 2.16777216[5]	

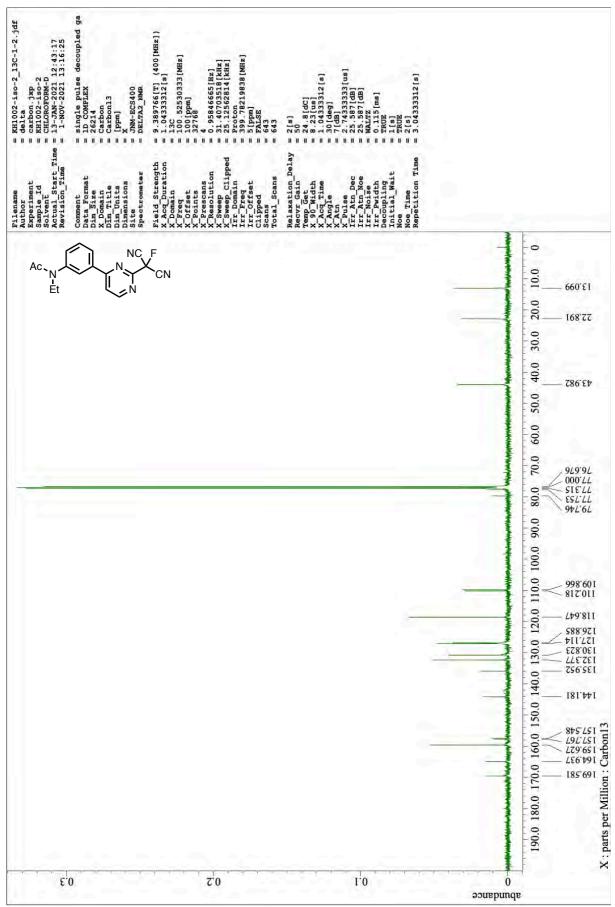

¹H NMR of **2AK** (400 MHz, CDCl₃)


¹³C NMR of **2AK** (101 MHz, CDCl₃)


¹⁹F NMR of **2AK** (376 MHz, CDCl₃)


¹H NMR of **2AL** (400 MHz, CDCl₃)

¹³C NMR of **2AL** (101 MHz, CDCl₃)

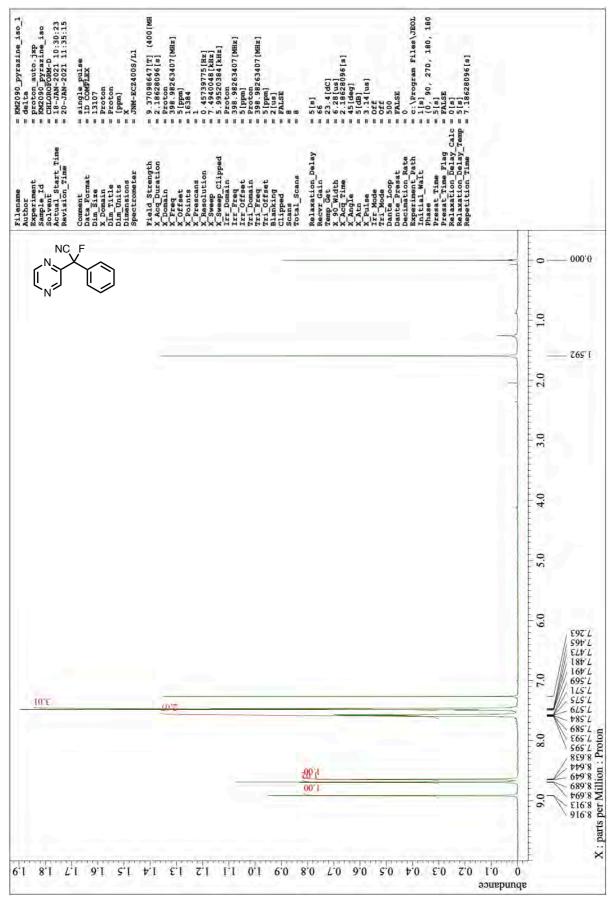


¹⁹F NMR of **2AL** (376 MHz, CDCl₃)

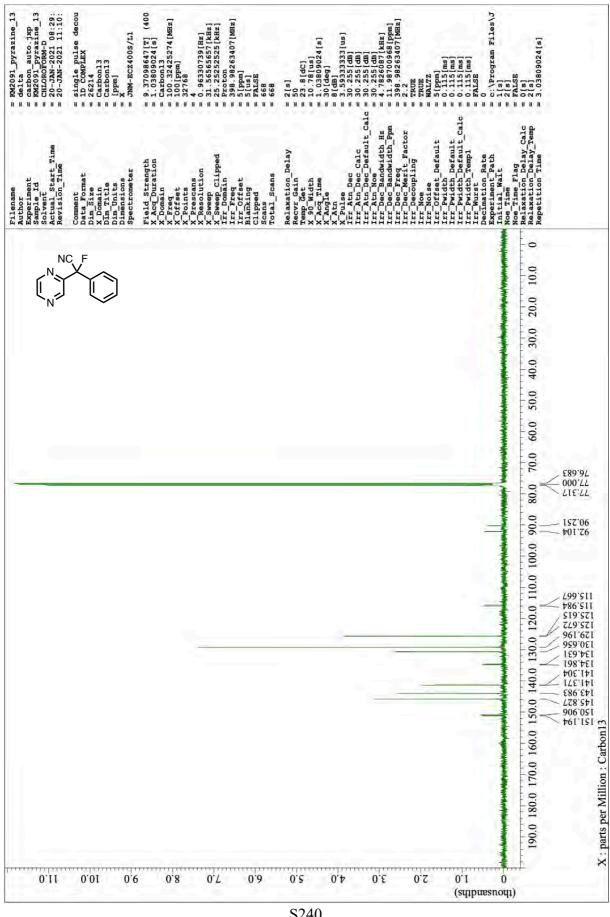
KH1002-iso-2_1H-1-2.jdf delta ({2HM]005) 12:39:52 Proton 5[ppm] Proton Proton 219.78219838[MHz] 5[ppm] FALSE 199.78219838[MHz] 0.45794685[Hz] 7.5030012[kHz] 6.00240096[kHz] [dC] [us] 365952[s] .18365952 [s] NG 9.389766[T] (2.18365952[s] 13-JAN-2021 1-NOV-2021 proton.jxp KH1002-isosingle pul NM-ECS400 DELTA2 NMR [sn] roton [[6384 E P . Experiment Sample Id Solvent Actual Start Time Revision Time Relaxation Delay Recvr Gain Field Strength X Acq Duration X Domain X Fred Clipped Comment Data Format Data Format X Domain Dim Title Dim Units Dimensions Site Spectrometer X Prescans X Resolution X Sweep T Scans Total Scans 50 ain Filename X Offset X Points Freq ITT 15 NC Í 000.0 0 Ac. CN 'N Et ۶Ň 1.0 251'1 121'1 881'1 20.5 3.03 768'1 2.0 3.0 90'2 4.0 5.0 6.0 7.274 7.423 7.423 7.663 7.663 7.0 \$0.1 50'1 X: parts per Million : Proton 597 8.0 00'1 0.6 0 01 02 03 04 02 02 04 02 02 04 03 10 11 11 11 12 13 14 12 19 19 15 15 20 21 25 23 abundance

¹H NMR of **2AM** (400 MHz, CDCl₃)

¹³C NMR of **2AM** (101 MHz, CDCl₃)

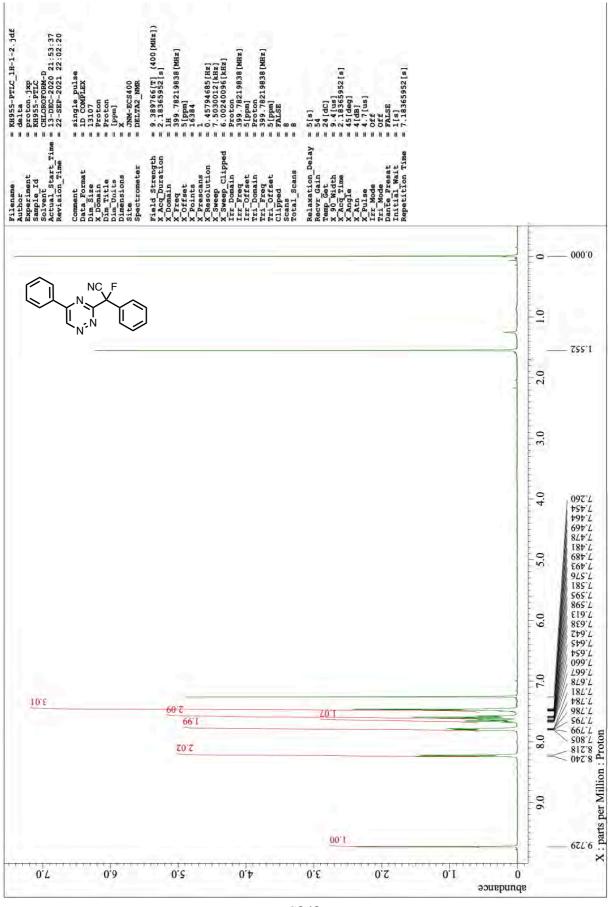

= KH1002-19F_single_pulse_d = delta 94 = 9.389766[T] (400[MHz]) = 0.17301504[s] = 19F = 376.17105393[MHz] = 0[EPm] = 32768 single pulse_dec.jxp KH1002-19F CH1002070R-D = 13-7AN-2021 13:25:30 = 1-NOV-2021 13:20:54 single pulse decoupled 1D REAL 26214 5 77984434 [Hz] 189.3939393 [KHz] 189.3939393 [KHz] 181.51515151 Fluorinal9 376.17105393 [MHz] 75.17105393 [MHz] 71.51 4[db] 4.83333333[us] 79[db] WALTZ 0.17301504[s] 17301504[s] Fluori Fluorine19 = JNM-ECS400 = DELTA2_NMR 4.5[dC] 1.5[us] deg . Actual Start Time Revision Time Relaxation Delay Recvr Gain Clipped Field Strength X Acq Duration X Domain Repetition Time Comment Data Format Dim Size X Domain Dim Title Dim Title Dim Units Site Site Spectrometer solution Irr_Offset Clipped Scans Total_Scans Initial Wait Noe mp Get 90 Width and Time Filename C Points Solvent ILL SW ILL E -150.0 -170.0 -190.0 NC I Ac CN N Et 928'281--130.0 -110.0 051.511-0.06--70.0 -50.0 -30.0 -10.0 10.0 30.0 50.0 70.0 0.06 0.2 0.8 0.7 0.9 0.4 0[.]E 0.2 0'1 Ó

¹⁹F NMR of **2AM** (376 MHz, CDCl₃)

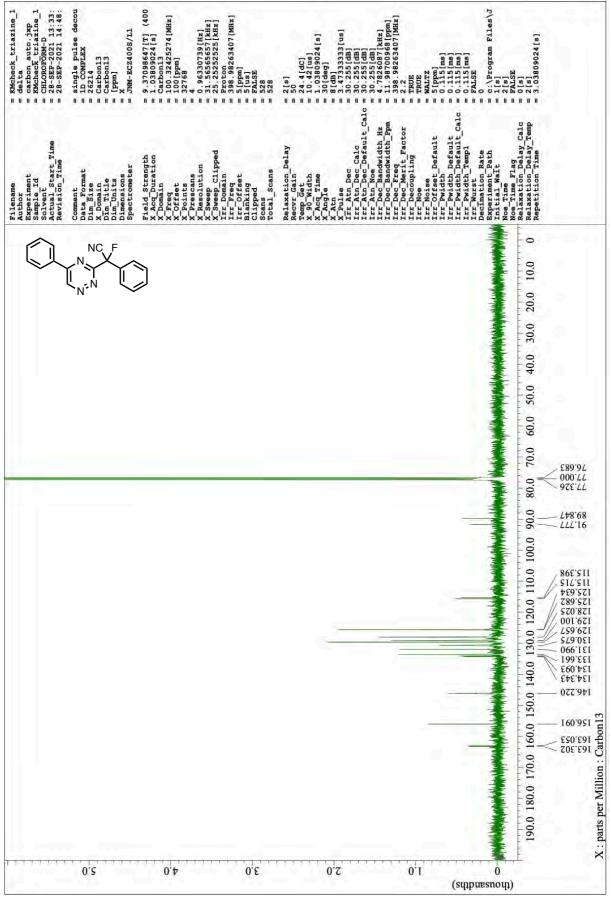

X : parts per Million : Fluorine19

abundance

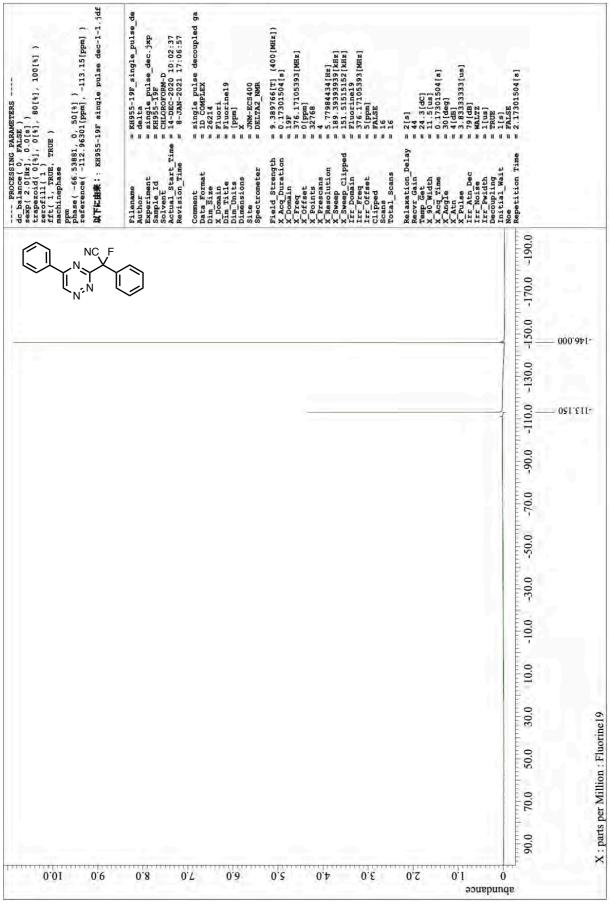
¹H NMR of **2AN** (400 MHz, CDCl₃)


¹³C NMR of **2AN** (101 MHz, CDCl₃)

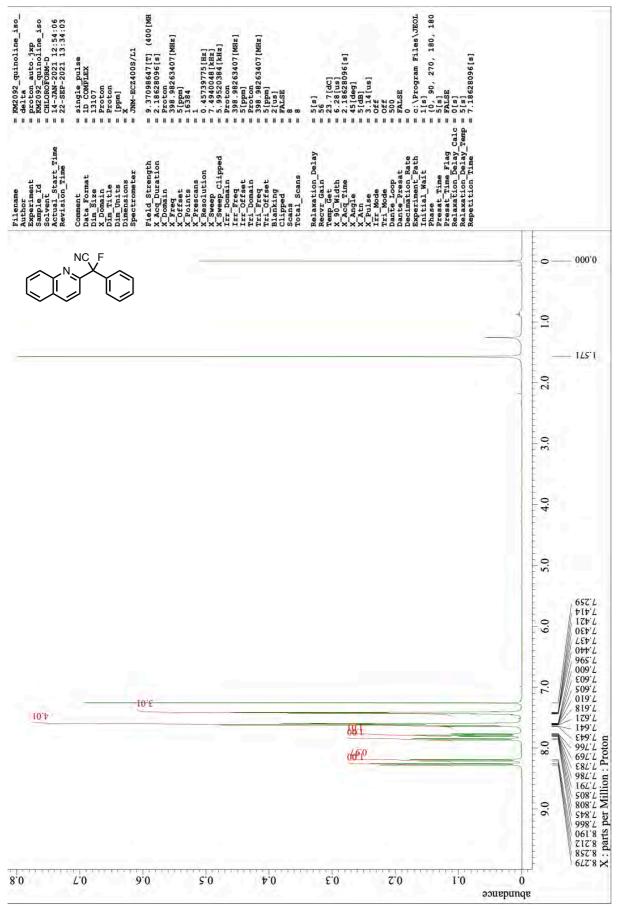
¹⁹F NMR of **2AN** (376 MHz, CDCl₃)

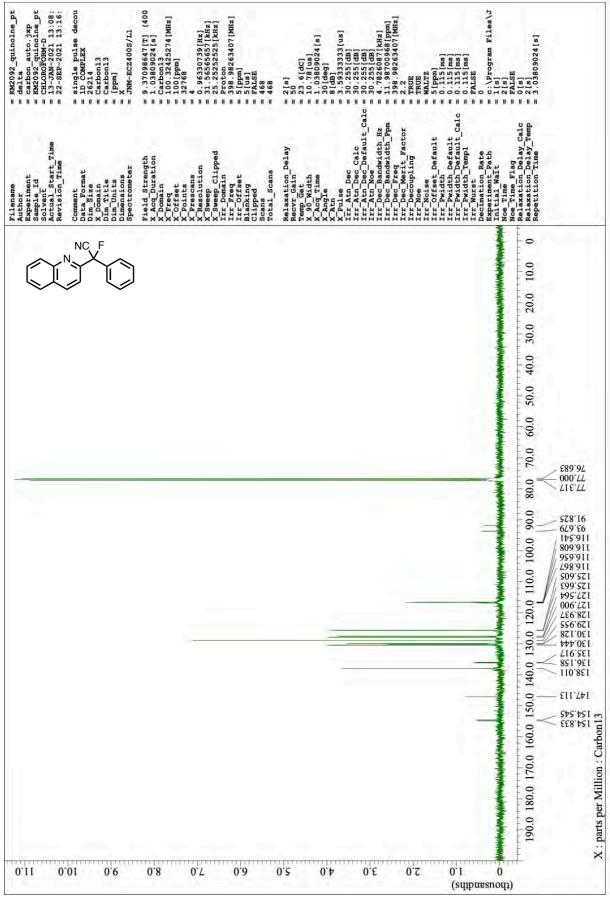

0'	S	3.0 4.0	0.2	0 I 0	p.
					90.0
					70.0
					50.0
					30.0
					10.0
					-10,0
					-30.0
					-50.0
					-70.0
					- 0.06-
			_		
					-130.0
					-1- -120.0
	\bigcirc				-170.0 -1
	F	EXXXXXXXXXXX	A REEXXXXXHHHHHH	HHHHHHHHOMFZZ	-190.0 8 8
Author Experiment Sample Id Solvent Actual Start Time Revision Time	Comment Data Format Dim Size X Domain Dim Title Dim Units Dimensions Spectrometer	Field Strength X Domain X Domain X Portset X Points X Points X Points X Points X Poscans X Poscans X Poscans I T Prescans I T Prescans	roum_course Relaxation Delay Recyr Gain Temp Get X ang Time X Ang Time X Ang Lime X Ang Lime Trr Ath Dec Calc Irr Dec Bandwidth Tr Irr Dec Bandwidth Tpm Irr Dec Bandwidth Tpm Irr Dec Bandwidth Tpm Irr Dec Bandwidth Tpm	Irr Decoupling Irr Decoupling Irr Noise Irr Noise Irr Paidth Default Irr Paidth Default Irr Paidth Templ Irr Wurst Templ Irr Wurst Path Irr Wurst Path Irr Lal Wait Noe Time Play	caic Melay Temp Relaxation Delay Temp Repetition Time _
= deta = single pulse dec.j = RM2090_Pyrazine_19 = CHJOROFORM-D = 21-JAN-2021 15:28: = 21-JAN-2021 15:28:	<pre>= single pulse decou = 1D COMPLEX = 26214 = 26214 = Fluorine19 = Eluorine19 = Lppml = JNN-EC2400S/L1</pre>	= 9.37098647[r] (400 = 0.1677516[5] = 7100167119[MHz] = 375.4187119[MHz] = 375.4187119[MHz] = 20066448[Hz] = 4.96046448[Hz] = 195.3125[KHz] = 195.3125[KHz] = 195.3125[KHz] = 100.0[ppm] = 2[us] = 2[us] = 2[us]			= = 2[s] = 2[s] = 2.16777216[s]
delta single pulse dec.j single pulse dec.j ruceosorm-D chlorosorm-D 21-JAN-2021 10:16: 21-JAN-2021 15:28:	Le puise deco MBLEX tine19 tine19 cine19 SCZ400S/L1	998647[T] (400 47782[5] 4778216[5] 1778216[5] 187119[MHz] 0[[5] 0[[5] 187119[MHz] 1187119[MHz] 187119[MHz] 10[[5] 10[[5] 10[[5] 10] 10[[5] 10] 10[[5] 10] 10]	(dc) (us) 777216[s] 99] 19 22 (dB) 22	TRUE FALSE WALT2 WALT2 6.015pm] 6.839[us] 6.839[us] 6.839[us] 6.839[us] 6.839[us] 6.839[us] 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	177216[s]

S241

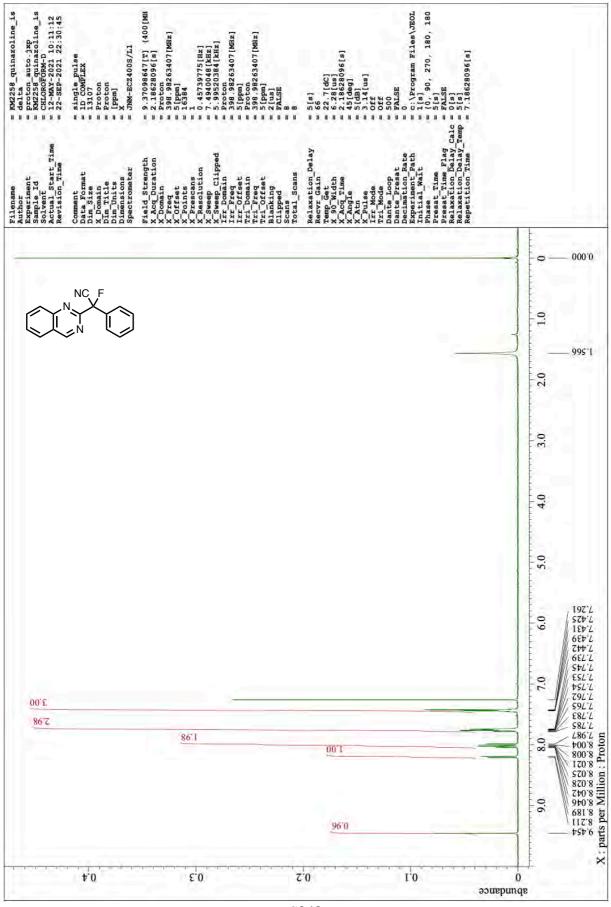


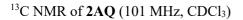
¹H NMR of **2AO** (400 MHz, CDCl₃)

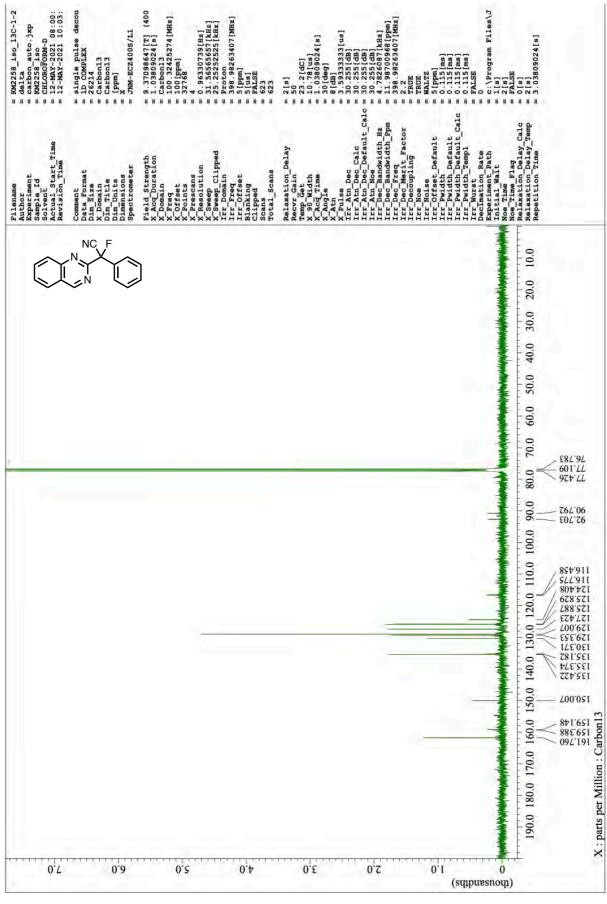

¹³C NMR of **2AO** (101 MHz, CDCl₃)


¹⁹F NMR of **2AO** (376 MHz, CDCl₃)

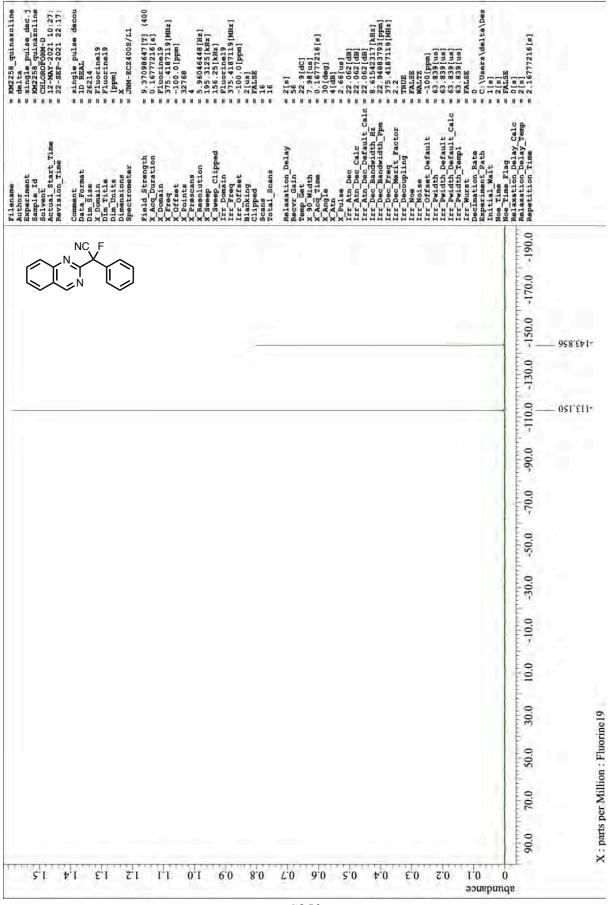
¹H NMR of **2AP** (400 MHz, CDCl₃)

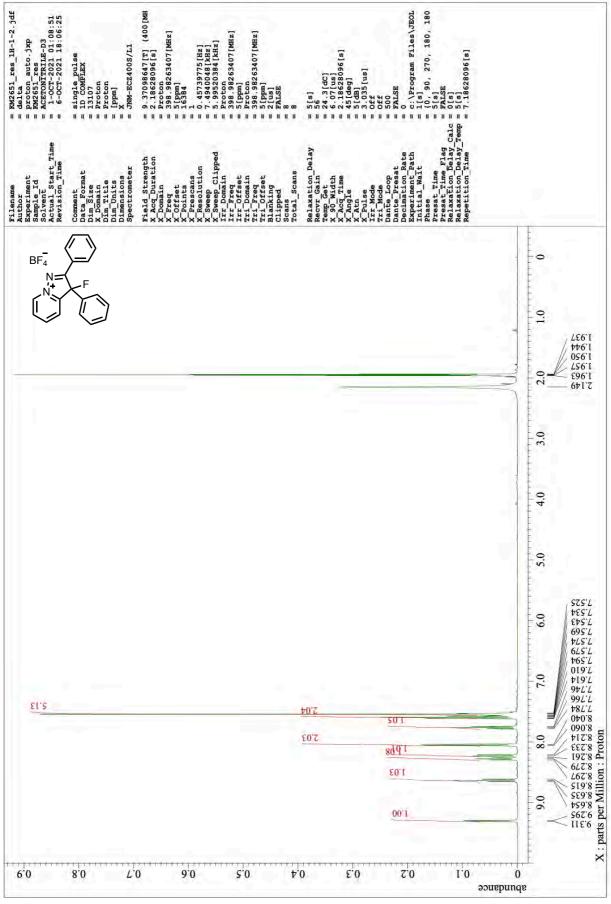

¹³C NMR of **2AP** (101 MHz, CDCl₃)

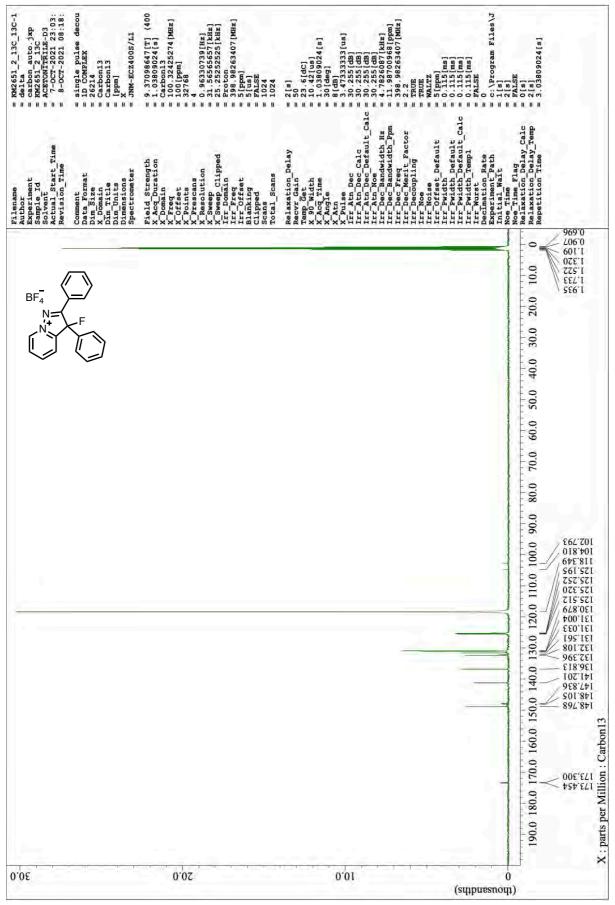


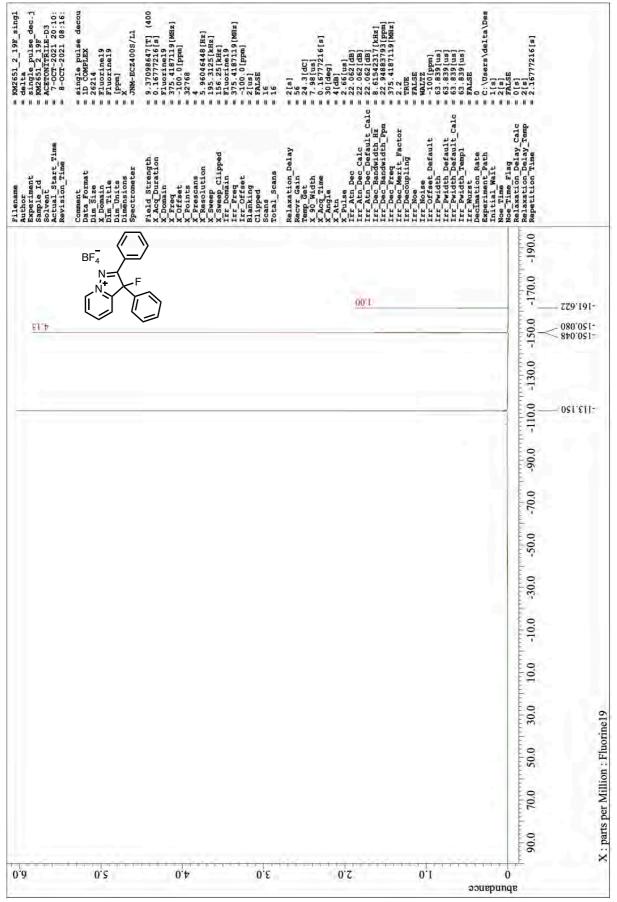

¹⁹F NMR of **2AP** (376 MHz, CDCl₃)

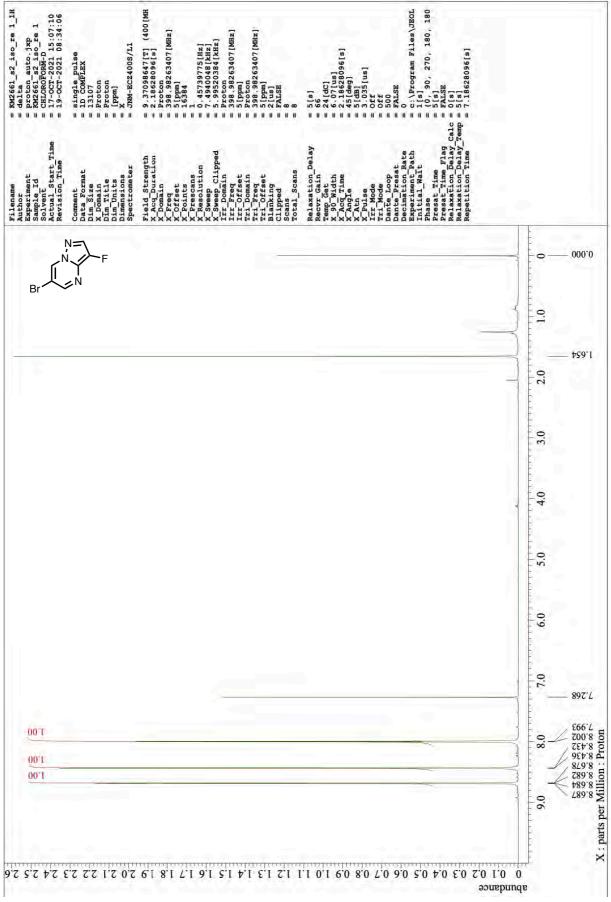
RWZ092_guinoline_1 single puise dec.j single puise dec.i ccHLORF08N-D zchorentel rentrofference rente rentroffe	
Filename Bythor I Soupels Id Soupels Id Soupels Id Soupels Id Counsent Data Formatt Dim Title Dim Title Dec Freq Title Dec Freq Title Dec Fred Dec Title Dec	Relaxation Delay Calc Relaxation Delay Temp Repetition Time
	-190.0
	-170.0
	50.0
	-130.0
S	0.001.511-
	- 0.06-
	-70.0
	-50.0
	-30.0
	-10.0
	10.0
	30.0 e19
	90.0 70.0 50.0 30.0 X : parts per Million : Fluorine19
	70.0 er Millior
	90.0
0 0'1 0'3 0'4 0'2 0'6 0'1 0'8 0'6 1'0 1'1 1'5 1'3 1'4 1'2 nuqsuce	0

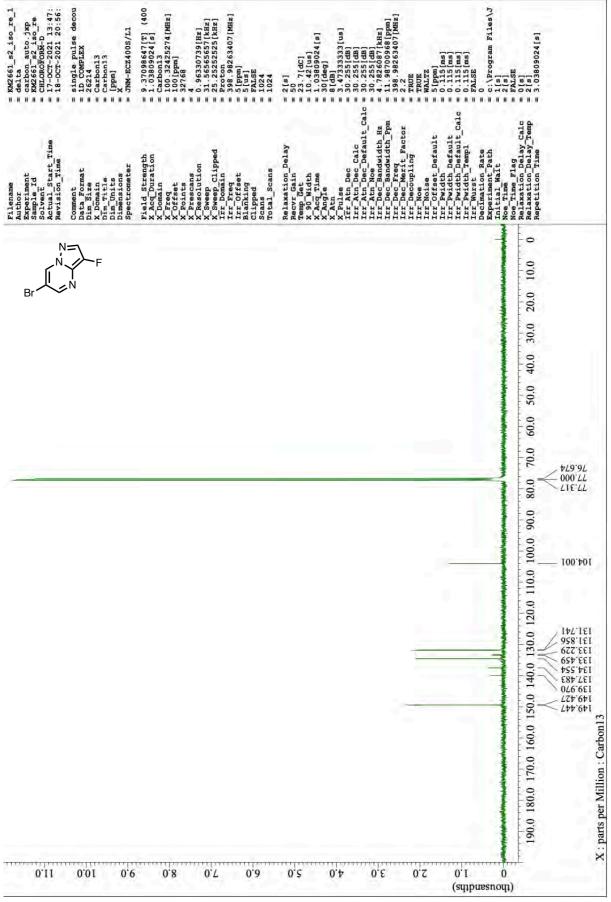

¹H NMR of **2AQ** (400 MHz, CDCl₃)



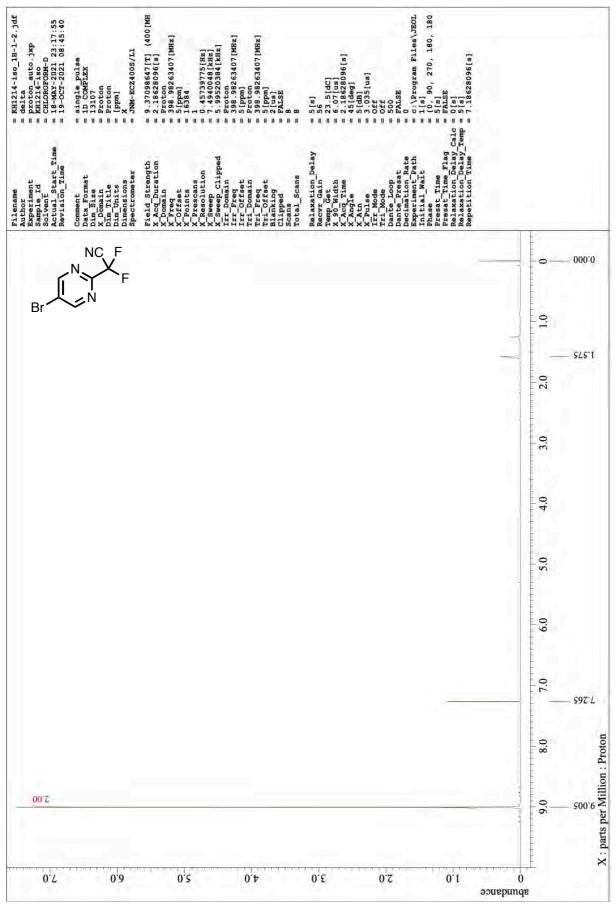

¹⁹F NMR of 2AQ (376 MHz, CDCl₃)

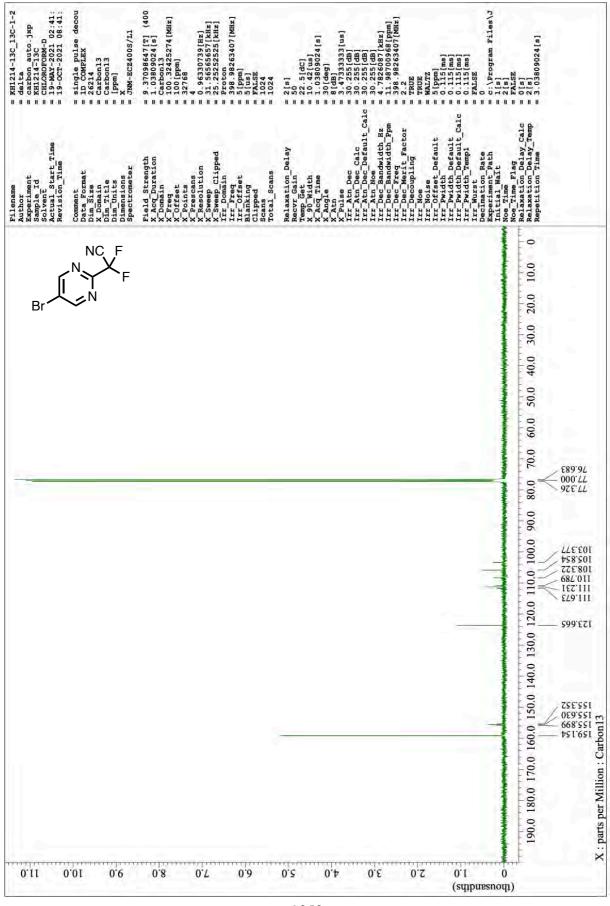

¹H NMR of **6** (400 MHz, acetonitrile- d_3)


¹³C NMR of **6** (101 MHz, acetonitrile- d_3)

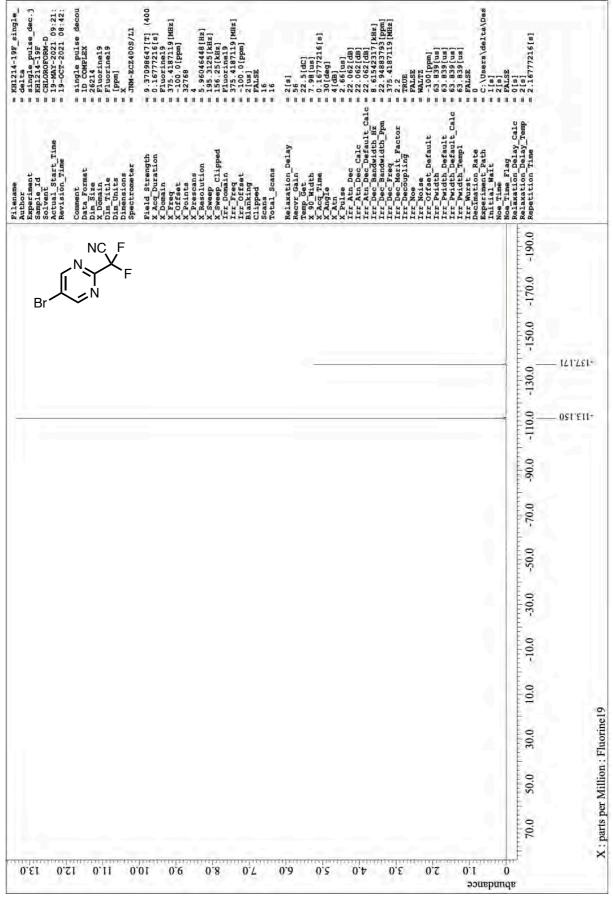

¹⁹F NMR of **6** (376 MHz, acetonitrile- d_3)

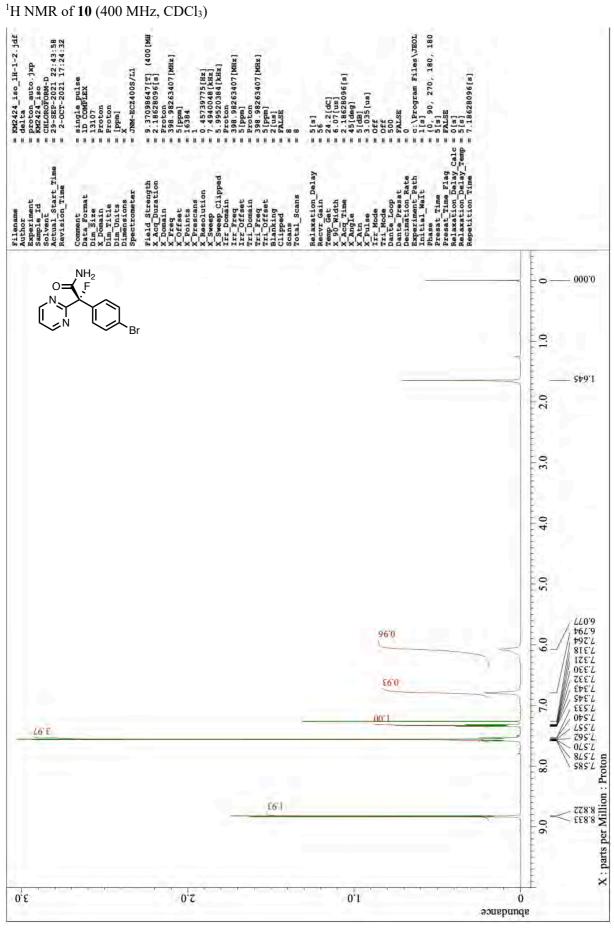
¹H NMR of **8** (400 MHz, CDCl₃)


¹³C NMR of 8 (101 MHz, CDCl₃)

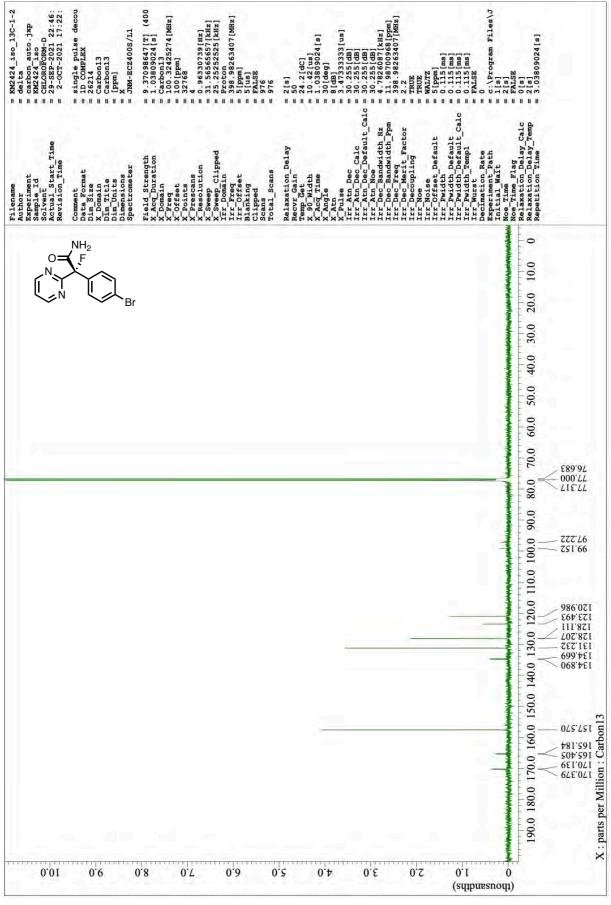

¹⁹F NMR of 8 (376 MHz, CDCl₃)

	30.0
	-50.0 -70.0
	0.00 0.001.£11-
Br	-130.0 -150.0 -170.0
Author Sample rat Sample rat Sample rat Sample ration rite Band Start Time Ravision rite Dim Title Dim Title Dim Title Dim Title Dim Title Dim Title Dim Title Dim Title Dimensions Spectrometer Treeq Treed Tr	0.091-

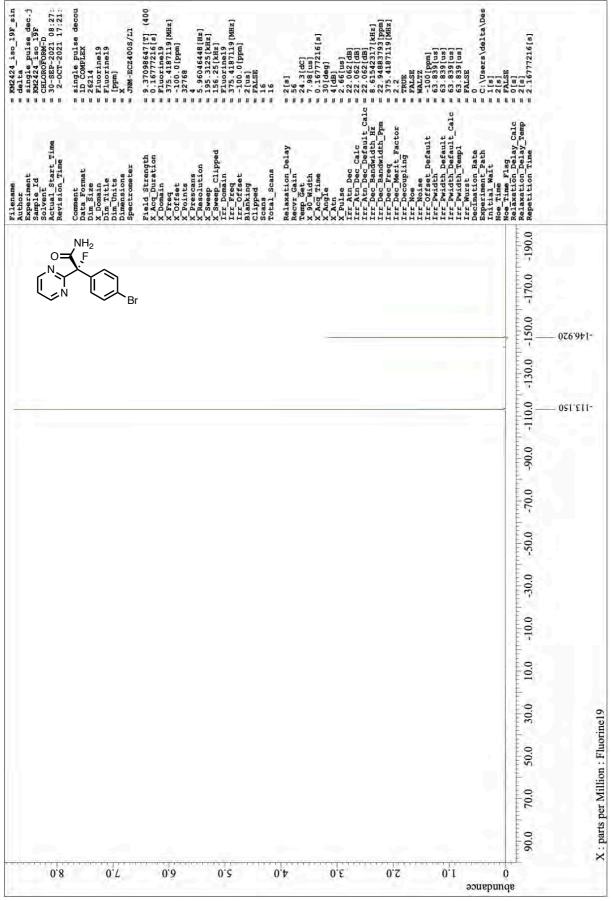

¹H NMR of 9 (400 MHz, CDCl₃)

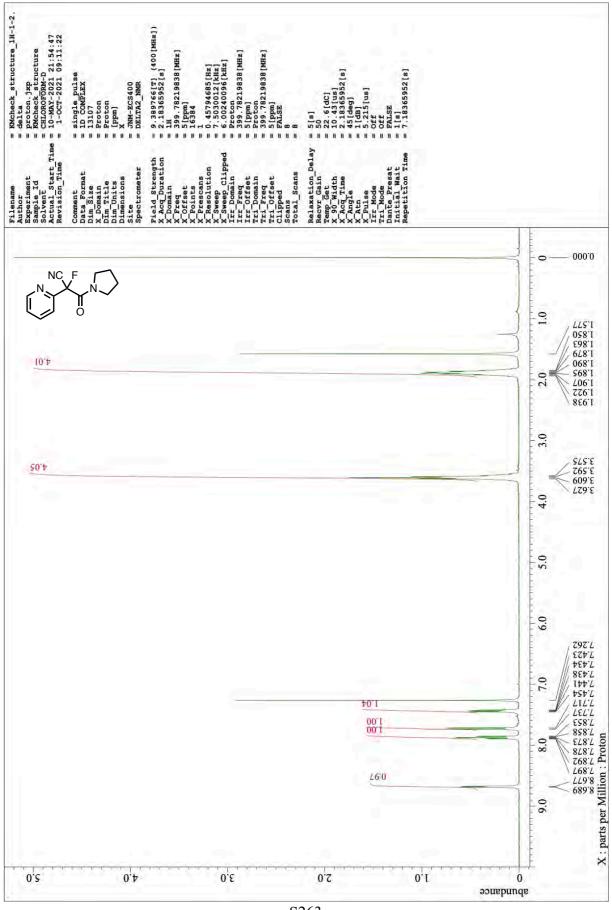


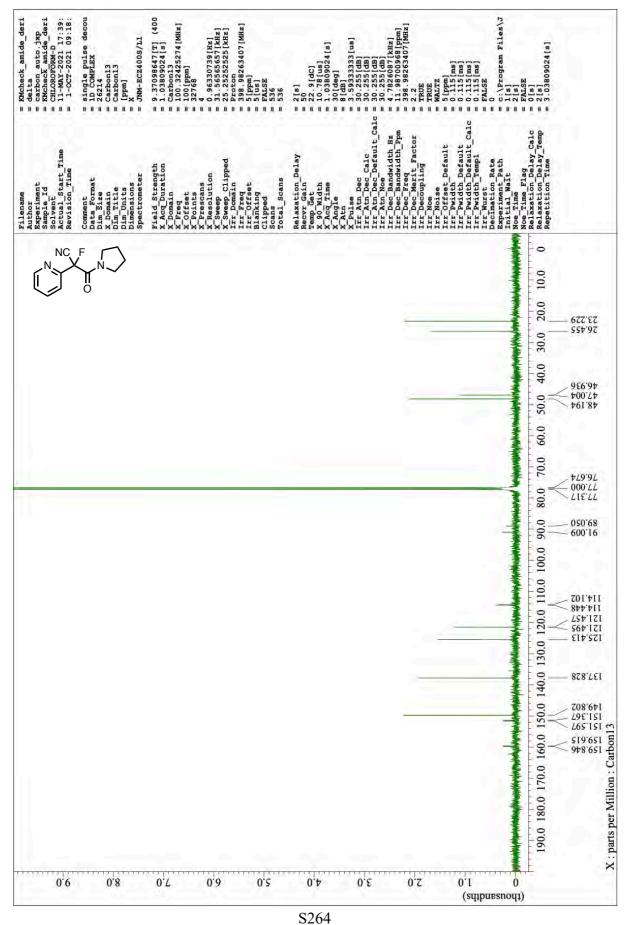
¹³C NMR of **9** (101 MHz, CDCl₃)

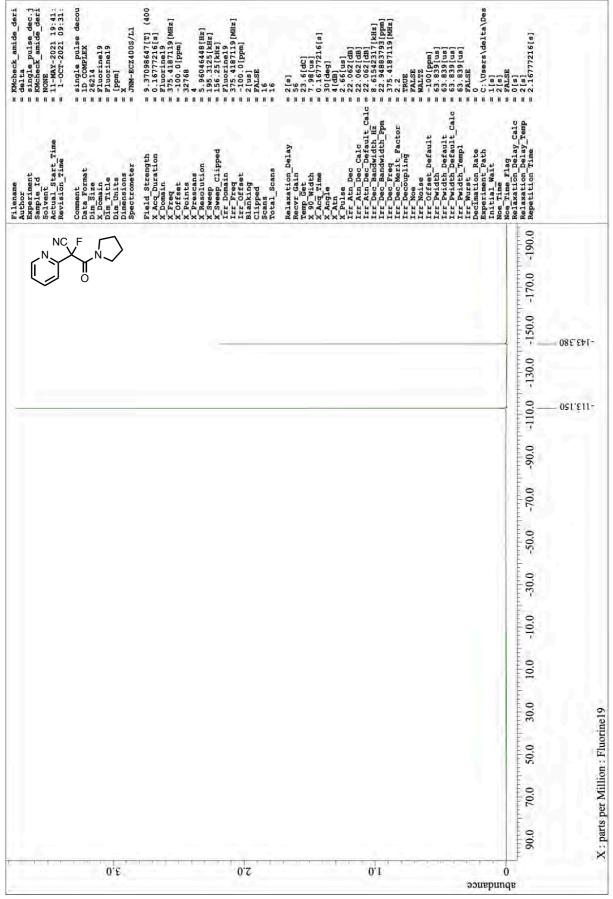


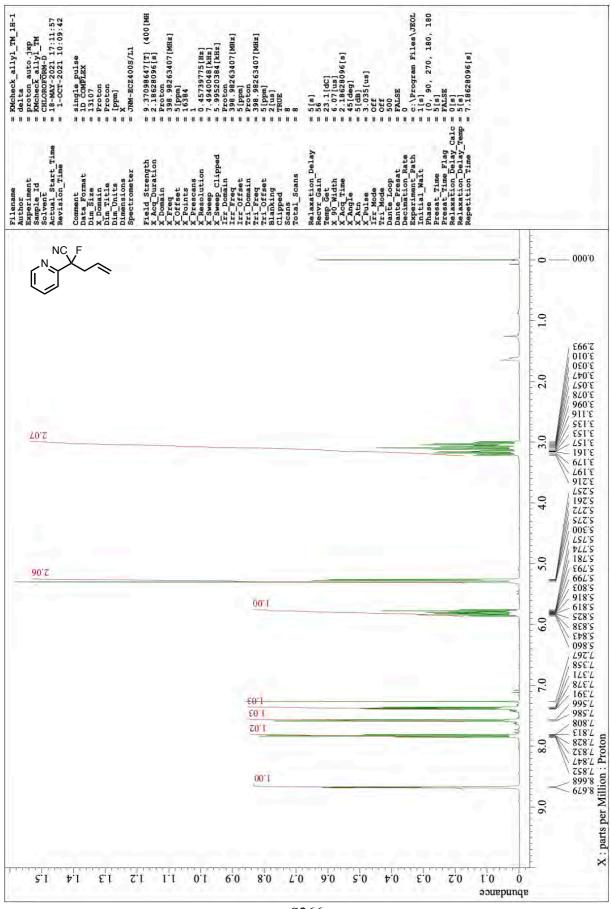
¹⁹F NMR of **9** (376 MHz, CDCl₃)

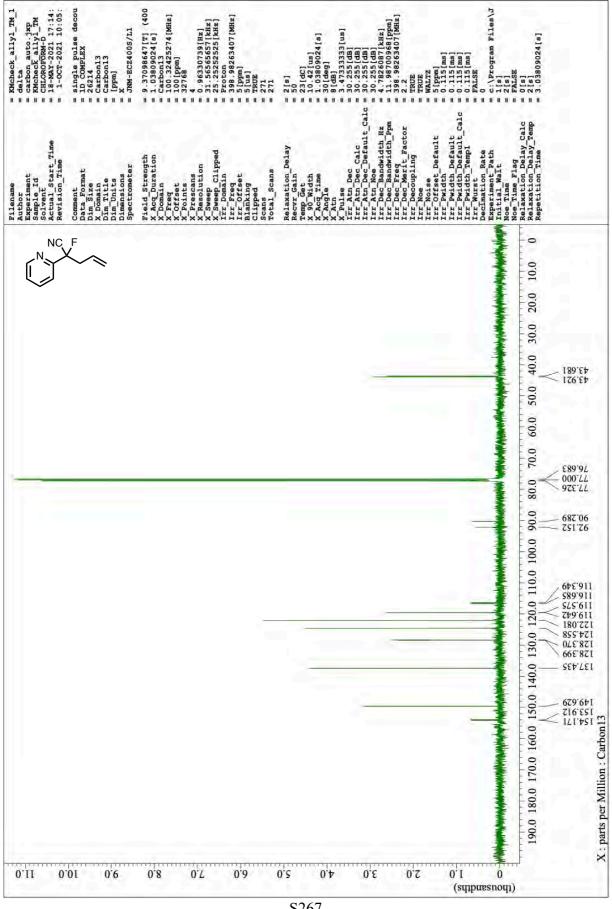


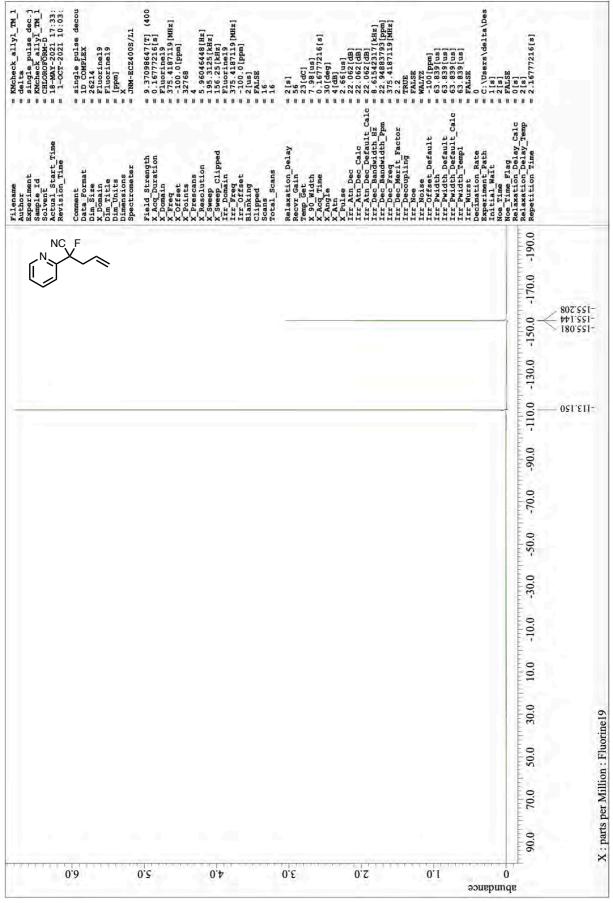

¹³C NMR of **10** (101 MHz, CDCl₃)

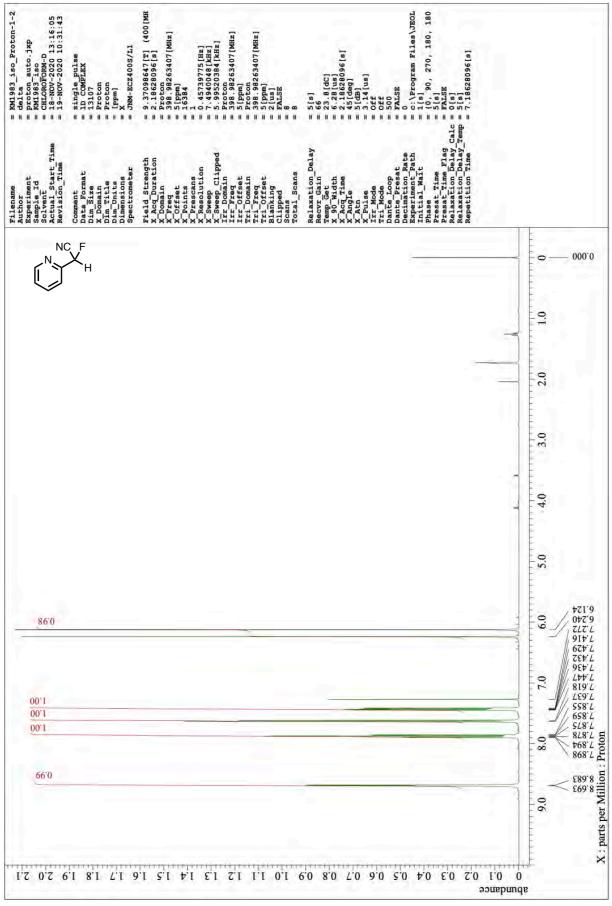

¹⁹F NMR of **10** (376 MHz, CDCl₃)

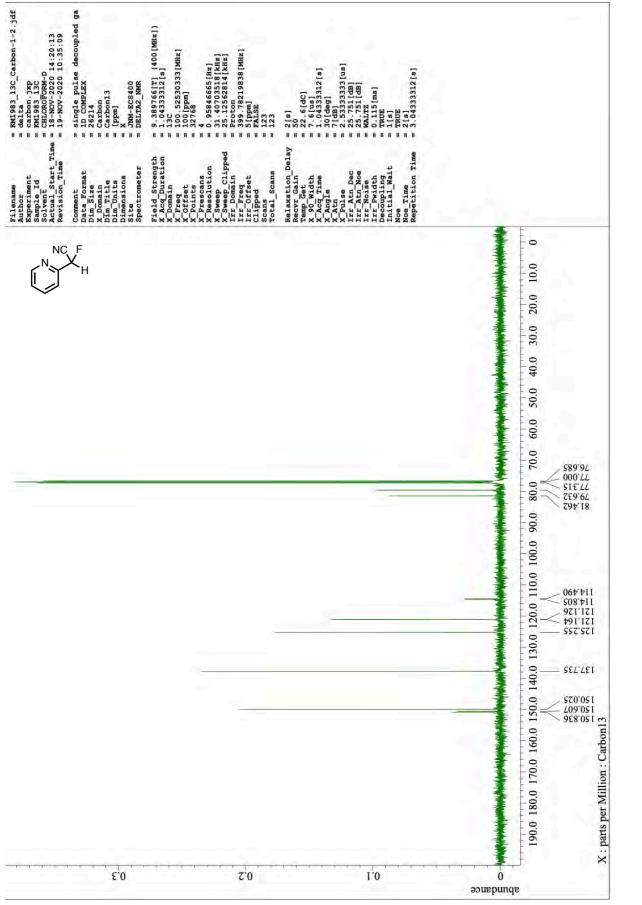

¹H NMR of **11** (400 MHz, CDCl₃)

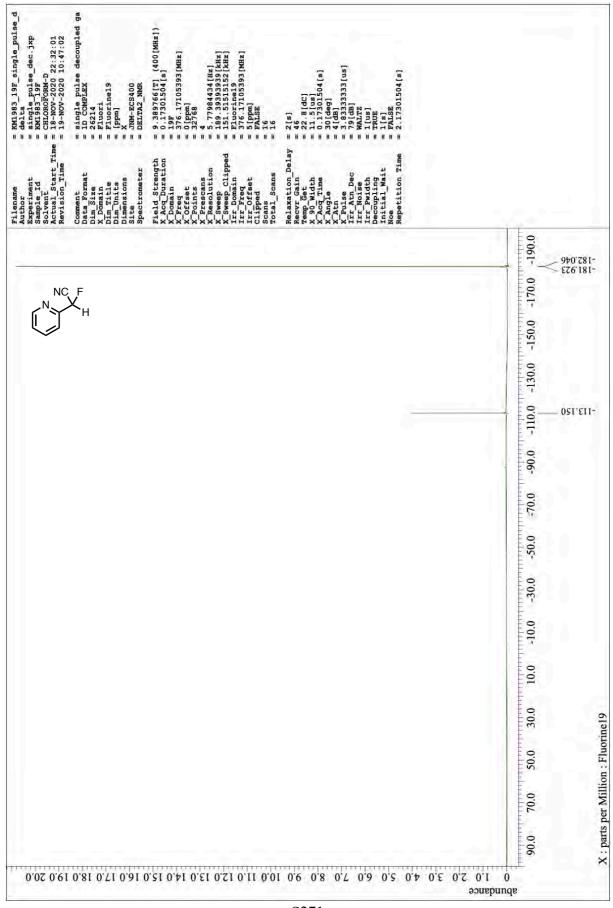

¹³C NMR of **11** (101 MHz, CDCl₃)

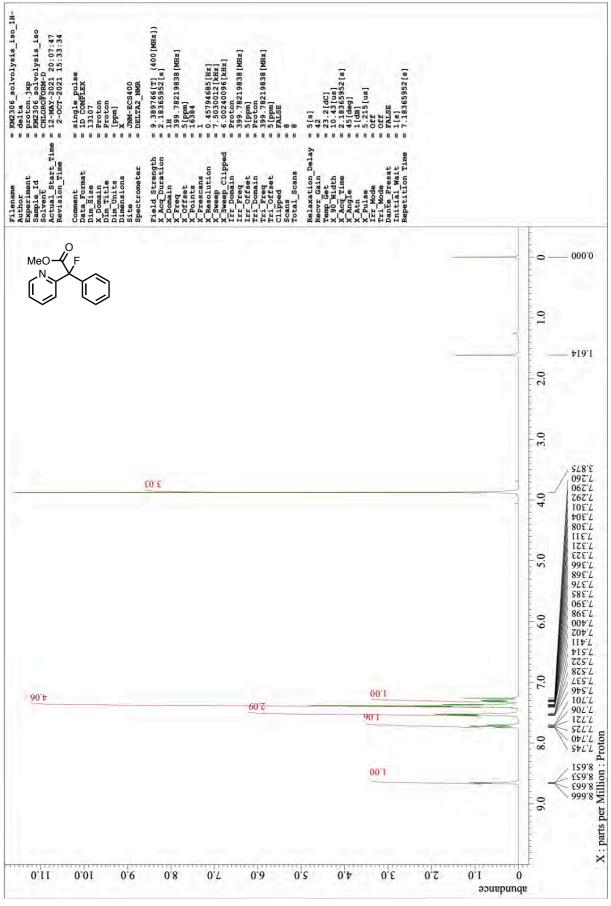

¹⁹F NMR of **11** (376 MHz, CDCl₃)

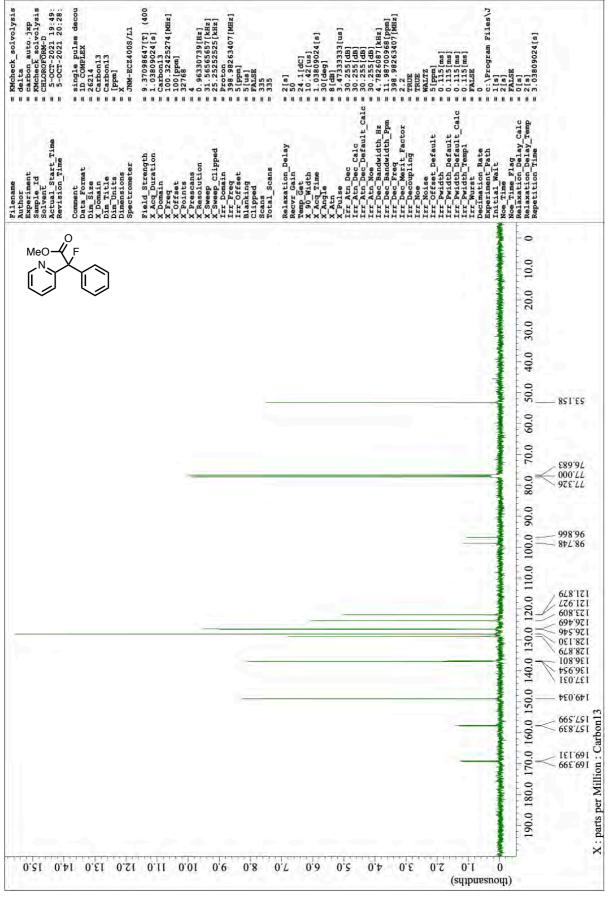

¹H NMR of **12** (400 MHz, CDCl₃)

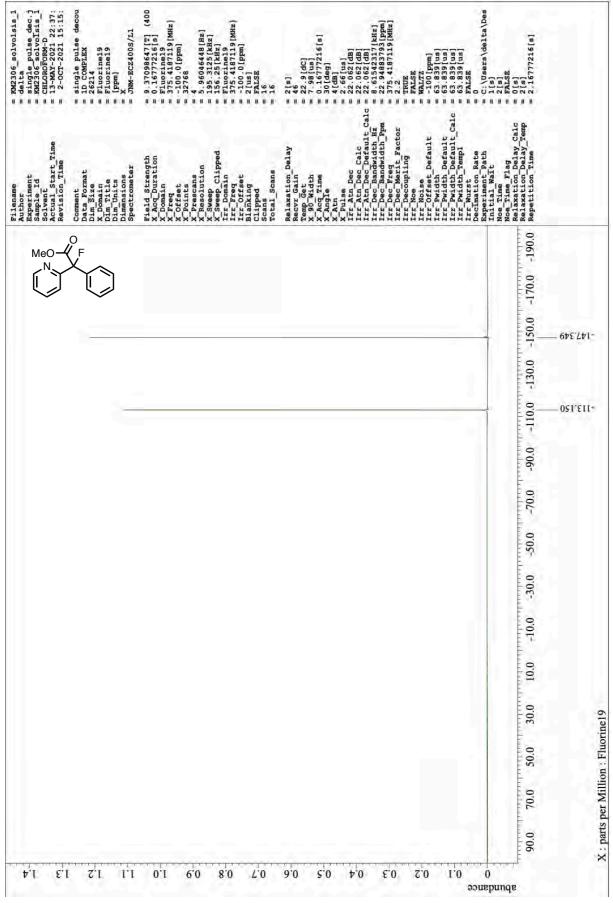

¹³C NMR of **12** (101 MHz, CDCl₃)

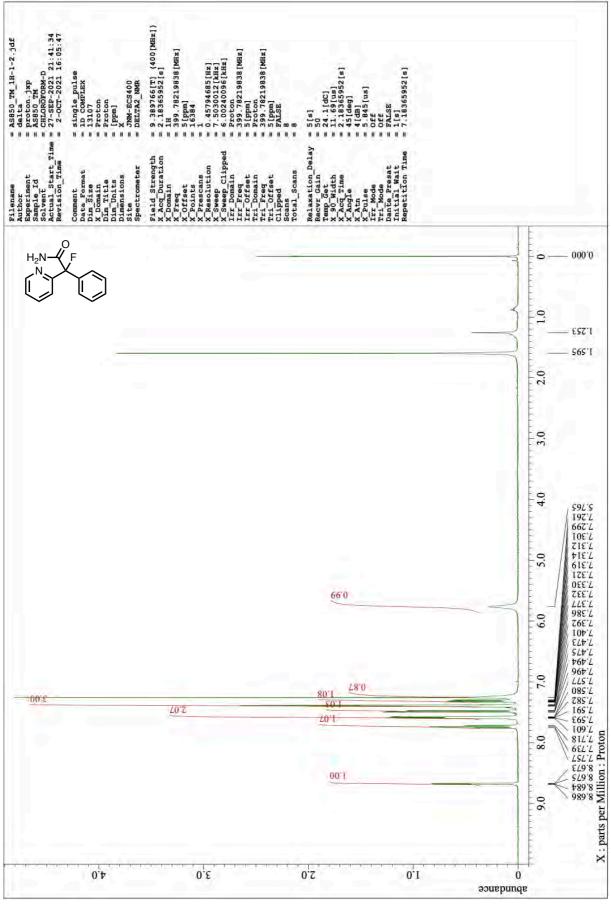

¹⁹F NMR of **12** (376 MHz, CDCl₃)

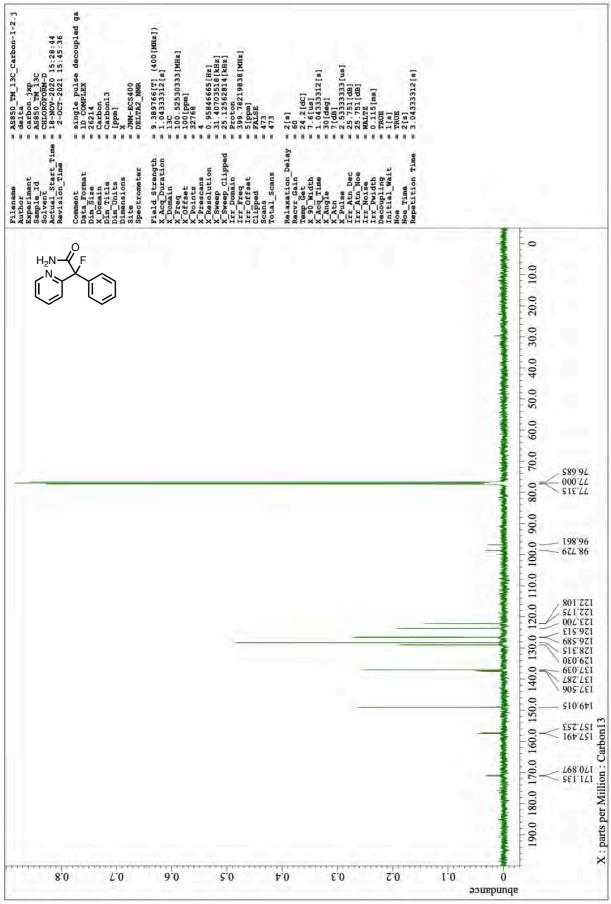

¹H NMR of **13** (400 MHz, CDCl₃)

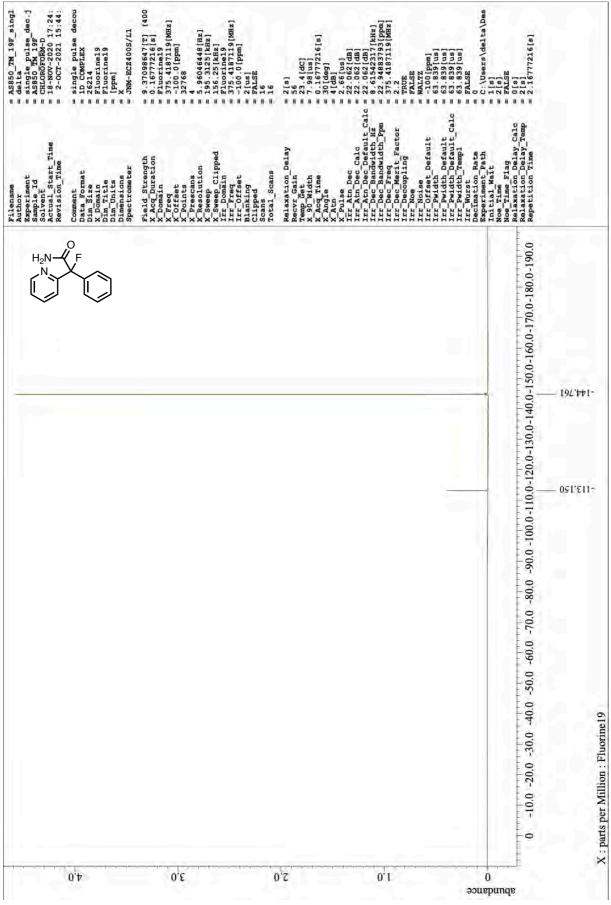

¹³C NMR of **13** (101 MHz, CDCl₃)


¹⁹F NMR of **13** (376 MHz, CDCl₃)

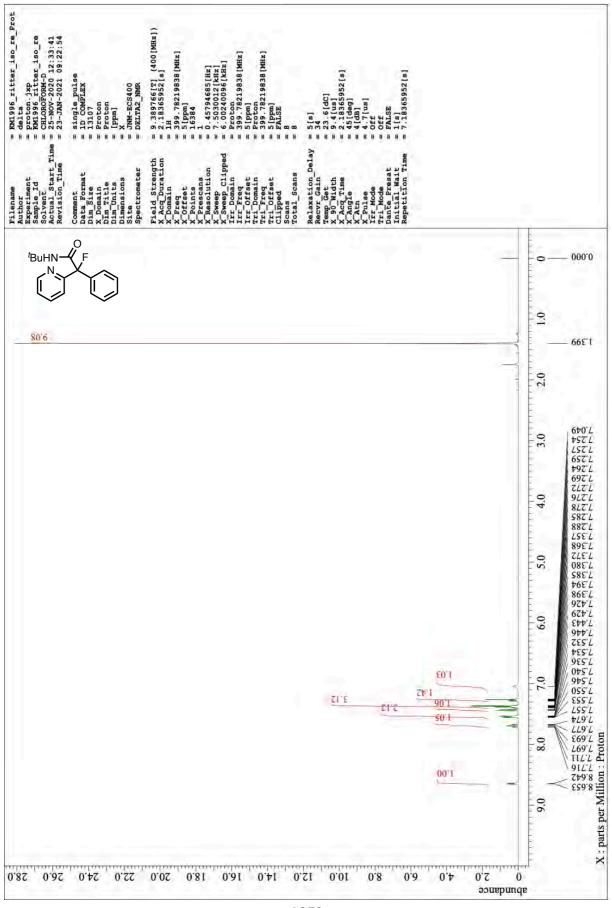

¹H NMR of **14** (400 MHz, CDCl₃)


¹³C NMR of **14** (101 MHz, CDCl₃)

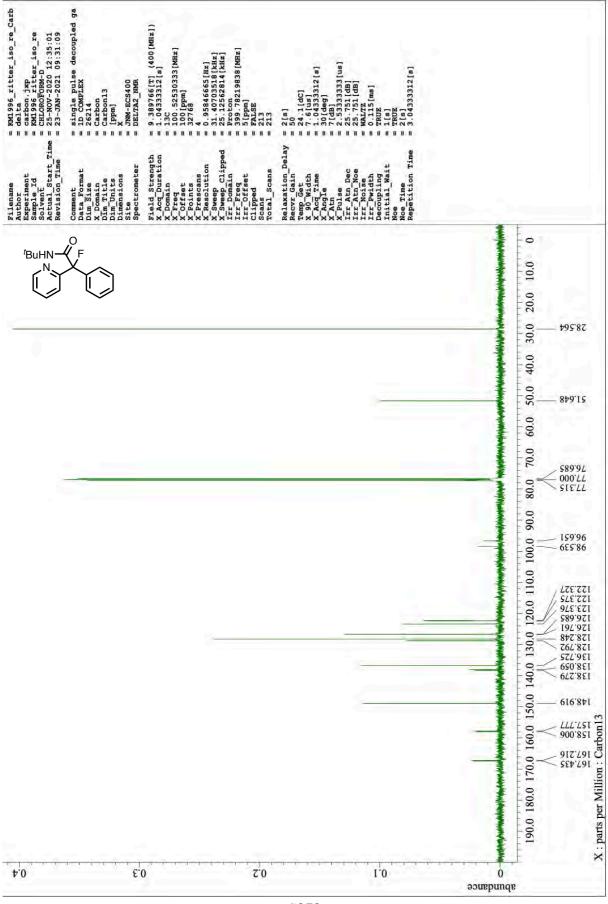

¹⁹F NMR of **14** (376 MHz, CDCl₃)

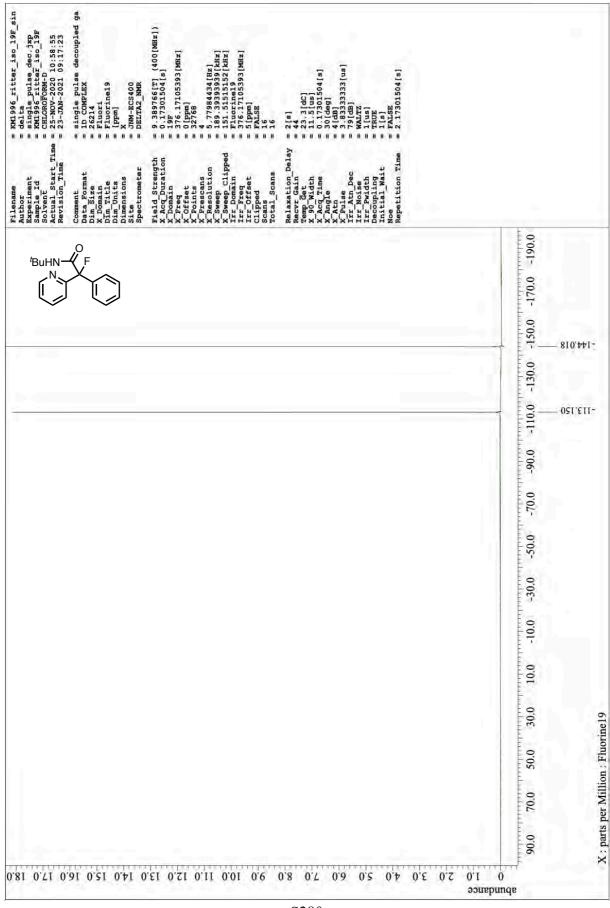

¹H NMR of **15** (400 MHz, CDCl₃)

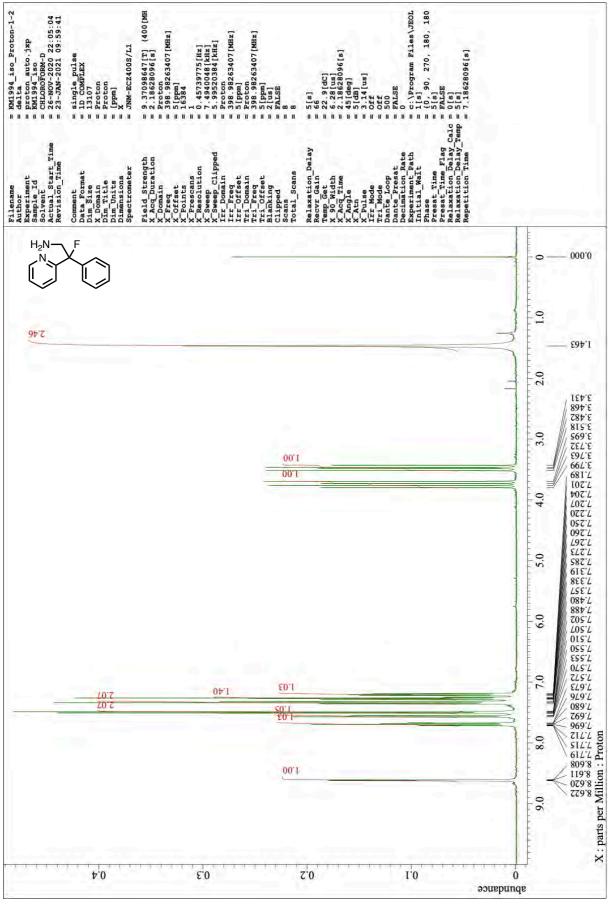
¹³C NMR of **15** (101 MHz, CDCl₃)

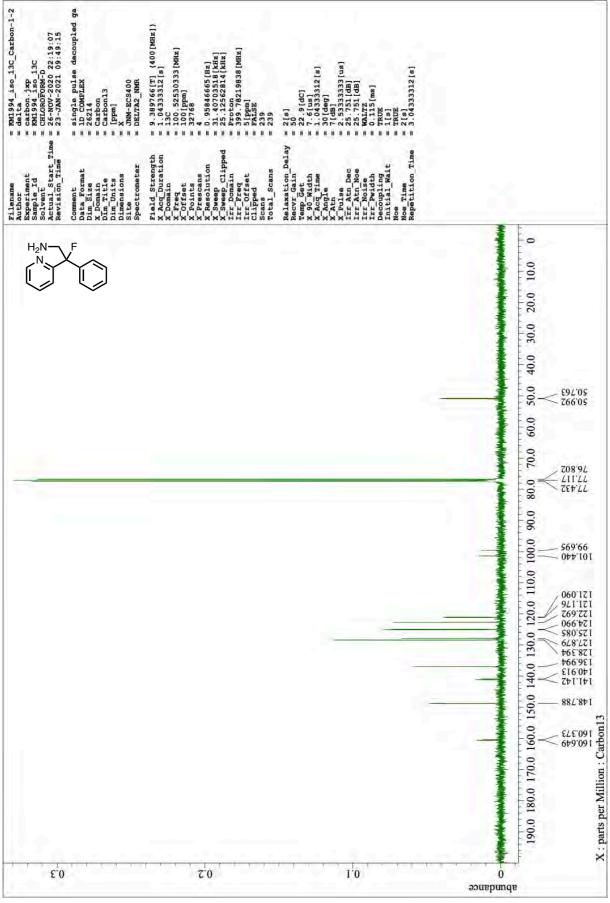


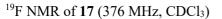
¹⁹F NMR of **15** (376 MHz, CDCl₃)

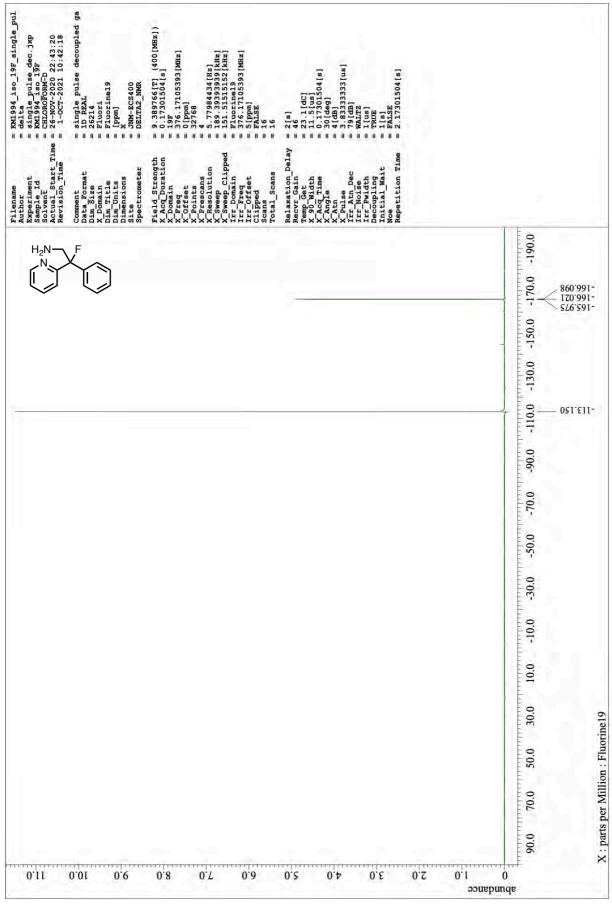



¹H NMR of **16** (400 MHz, CDCl₃)


¹³C NMR of **16** (101 MHz, CDCl₃)


¹⁹F NMR of **16** (376 MHz, CDCl₃)




¹H NMR of **17** (400 MHz, CDCl₃)

¹³C NMR of **17** (101 MHz, CDCl₃)

