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1 Supplementary table and figures

Supplementary Table 1: Average wall time within a loop of SOLO. There are three
major steps in each loop: FEM calculation to obtain corresponding objective function values,
DNN training, and optimization which searches for the optimum based on DNN’s prediction. We
give a very rough estimate on our personal computer (CPU: Intel i7-8086K, GPU: NVidia RTX
2080 Super). Italic numbers indicate GPU computing and the others are computed entirely on
CPU. Actual running time is sensitive to hardware environment, software packages, parameter
setting and so forth. Further, FEM calculation is approximately proportional to the number
of additional samples per loop; training time depends on existing training data obtained from
previous loops; optimization depends on the number of function evaluations. Similar to other
SMBO methods, our surrogate model introduces overhead computation. In the compliance and
fluid problems, the overhead is comparable with FEM calculation time, yet it is almost negligible
considering the huge benefit of reducing FEM calculations from 105 ∼ 108 (see the table) to
102 ∼ 104; besides, we chose relatively simple problems and thus each calculation only cost
< 0.5 s for compliance problems and < 6 s for fluid problems; smaller portion of the overhead
is expected for more complicated problems with higher FEM computation time. When the
problem becomes more complicated in the heat example, a larger advantage of our method can
be observed. In the three truss problems, our focus is on the reduction of FEM calculations
rather than computation time since the problems are fast to calculate.

Problem Number of Wall time /s
additional samples FEM Training Optimization (evaluations)

Compliance 5×5 100 40 35 70 (2× 105)
Compliance 11×11 1000 500 150 1000 (4× 106)
Fluid 20×8 (G) 10 35 10 35 (1× 108)
Fluid 20×8 (R) 100 350 20 35 (1× 108)
Fluid 40×16 (G) 10 60 25 140 (2× 108)
Heat 10×10 200 40000 25 200 (4× 108)
Truss 72 10 0.02 20 300 (1× 109)
Truss 432 50 0.05 150 500 (1× 109)
Truss 1008 100 0.15 1500 1500 (2× 109)
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Supplementary Fig. 1: Objective (energy) and prediction error of the compliance
minimization problem with 5×5 variables. a, Dimensionless energy as a function of ntrain.
For SOLO, the solid line denotes the best objective values and the squares denote Ẽ(ρ̂). b,
Energy prediction error of ρ̂.
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Supplementary Fig. 2: Evolution of the solution from SOLO for the compliance
minimization problem with 5×5 variables. Each plot is the best among ntrain accumulated
training data and the corresponding energy Ẽ is marked. There is no obvious change after
hundreds of training samples.
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Supplementary Fig. 3: Evolution of the solution from SOLO for the compliance
minimization problem 11×11 variables. Each plot is the best among ntrain accumulated
training data and the corresponding energy Ẽ is marked. There is no obvious change after ten
thousand training samples.
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Supplementary Fig. 4: Evolution of the solution from SOLO-G for the fluid-structure
optimization problem with 20×8 mesh. Each plot is the best among ntrain samples.
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Supplementary Fig. 5: Repeating SOLO-G for the fluid-structure optimization prob-
lem with 20×8 mesh. All configurations are the same as Fig. 4b except different random seeds.
They obtain the same objective P̃ despite different convergence rate.
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Supplementary Fig. 6: Repeating SOLO-R for the fluid-structure optimization prob-
lem with 20×8 mesh. All configurations are the same as Fig. 4b except different random seeds.
They obtain the same objective P̃ despite different convergence rate.
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Supplementary Fig. 7: Evolution of the solution from SOLO-G for the fluid-structure
optimization problem with 40×16 mesh. Each plot is the best among ntrain samples.
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Supplementary Fig. 8: Perturbation of the optimum from SOLO-G for the fluid-
structure optimization problem with 40×16 mesh. Intuitively the ramp should be smooth,
yet we observe two gaps in the optimum given by SOLO-G. We try filling the gaps. a, The
optimum from SOLO-G. b-i, One or two blocks (gray) are added to fill the gap, with higher P̃ .
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Supplementary Fig. 9: Repeating SOLO-G for the fluid-structure optimization prob-
lem with 40×16 mesh. All configurations are the same as Fig. 5b except that different random
seeds and higher ntrian are used. They all outperform the gradient-based baseline.
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a t̃ = 0.013669 b t̃ = 0.013672 c t̃ = 0.013786

d t̃ = 0.013894 e t̃ = 0.014032 f t̃ = 0.013684

Supplementary Fig. 10: Perturbation of the optimum from SOLO for the heat trans-
fer enhancement problem. a, The optimum from SOLO. b-f, Copper islands are removed;
other copper portions will become thicker to maintain total solid volume. The solution from
SOLO gives lowest time t̃, although some are very close (the difference may even be caused by
numerical noise in FEM computation).

12



2 Theory on convergence
In the main text, we presented a simplified version of convergence (Eq. (3)). In this section, we
give a detailed description of our theoretical result. We first present the main result (Theorem
1). Then, we introduce some preliminary definitions and knowledge used in the proof. In the
end, we approach the proof.

2.1 Formulation and theorem
The unknown object function is denoted as F (ρ), where ρ ∈ RN .We denote the domain of
{ρ | 0 ≤ ρi ≤ 1, 1 ≤ i ≤ N} as K. We suppose the global minimizer ρ∗ = argminρ F (ρ).

We consider the total iteration number to be T . At iteration t(1 ≤ t ≤ T ), the DNN is denoted
as ft(·) and we denote the empirical minimizer of this DNN function to be ρ̂(t), i.e.

ρ̂(t) = argmin
ρ

ft(ρ). (S1)

Besides, we denote our DNN as a D-layer neural network which is formulated as follows:

ft(ρ) = W⊤
Dσ(WD−1σ(...σ(W1ρ))),

where W = {Wk ∈ Rdk−1×dk | k = 1, ..., D}, d0 = N(number of input dimensions), dD = 1, and
σ(v) = [max{v1, 0}, ...,max{vd, 0}]⊤ is the ReLU1 activation function for v ∈ Rd. We further
denote d = max{di} and the function class of such neural networks as Hf .

At time step t, given the empirical optimal point ρ̂(t−1), the additional m training points is
generated through the following process:

ρ(jt) = ρ̂(t−1) + ξ(jt), jt = mt−m+ 1,mt−m+ 2, · · · ,mt.

Here ξ(j) denotes random noise for perturbation. Hence through the iterating process, the sam-
pled points are random variables. At time step t, we denote all the realizations of random training
data points set as Kt = {ρ(i)

∣∣ i = 1, · · · ,mt}.

Now before we proceed, we need to impose some mild assumptions on the problem.

Assumption 1. We suppose that

1) the spectral norm of the matrices in DNNs are uniformly bounded, i.e., there exists BW > 0
s.t. ∥Wk∥2 ≤ BW , ∀k = 1, · · · , D.

2) the target function is bounded, i.e., there exists BF > 0 s.t. ∥F∥∞ ≤ BF .

1) of Assumption 1 is a commonly studied assumption in existing generalization theory literature
on deep neural networks2–4. 2) of Assumption 1 assumes F is bounded, which is standard and
intuitive since F has a physical meaning.

13



Assumption 2. We assume that for any iteration t, ξ(jt) (jt = mt−m+1, · · · ,mt) are i.i.d. (in-
dependent and identically distributed) perturbation noise. The generated training data

{
ρ(jt1 )

}
are independent of

{
ρ(jt2 )

}
if t1 ̸= t2.

The assumption of the i.i.d. properties of noise in Assumption 2 is common in optimization
literature5–8. The difference is that in traditional optimization literature noise refers to the
difference between the true gradient and the stochastic gradient while the noise here denotes
perturbations to generate new samples in each iteration. Note that our Assumption 2 only
needs the i.i.d. property of noise, which is weaker than the standard assumptions for stochastic
gradient methods which require unbiased property and bounded variance6–8. Since our fitting
DNN fts are continuously changing throughout iterations and the empirical minimizers ρ̂(t) are
also alternating, it is reasonable for us to assume that the different groups of generated data
samples are independent for the ease of theoretical analysis in the sequel.

We denote the distribution of samples {ρ(jt)
∣∣ jt = mt−m+ 1,mt−m+ 2, · · · ,mt} as Dt(1 ≤

t ≤ T ), with which we can introduce the following definition.

Definition 1. For a measurable function f , we denote

ED1:T
f(ρ) =

∑T
t=1 Eρ∼Dtf(ρ)

T
, (S2)

where E denotes expectation.

Assumption 3. For any t and ft ∈ Hf ,

∥F − ft∥2∞ = C(t)Eρ∼D1:t(F − ft)
2,

where C(t) is a monotonically decreasing function w.r.t. iteration number t.

Assumption 3 basically describes that the Chebyshev distance of our DNN at time t and F is
bounded by a constant number (w.r.t. t) times the average true loss of (F − ft)

2 till time t. This
assumption is reasonable in that the the average true loss can be seen as a variant of Euclidean
distance between our DNN at time t and F .

Eventually we arrive at our main result.

Theorem 1. Under Assumptions 1, 2 and 3, given iteration number T and any δ > 0, for any
trained DNN fT ∈ Hf with empirical MSE training error ϵ at iteration T , we have that with
probability at least 1− δ over the joint distribution of ρ(1),ρ(2), · · · ,ρ(mT ),(

F (ρ̂(T ))− F (ρ∗)
)2

≤ 4C(T )

 96B2

√
mT

√
d2D log

(
1 + 8BBD

WD
√
mTd

)
+ 12B2

√
2 log 2

δ

mT
+

8

mT
+ ϵ

 ,

where B = max{BF , B
D
W}.
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2.2 Preliminaries
Before showing the complete proof, we introduce some definitions and lemmas.

Lemma 1 (McDiarmid’s Inequality9). Let X1, · · · , Xm ∈ X be a set of m ≥ 1 independent
random variables and assume that there exist c1, · · · , cm > 0 such that h : Xm → R satisfies the
following conditions:

|h(x1, · · · , xi, · · · , xm)− h(x1, · · · , x′
i, · · · , xm)| ≤ ci,

for all i ∈ [m] and any points x1, · · · , xm, x
′
i ∈ X . Here xs are the realizations of Xs. Let h(S)

denote h(X1, · · · , Xm), then, for all s > 0, the following inequality hold:

P {h(S)− E[h(S)] ≥ s} ≤ exp

(
−2s2∑m
i=1 c

2
i

)
, (S3)

P {h(S)− E[h(S)] ≤ −s} ≤ exp

(
−2s2∑m
i=1 c

2
i

)
, (S4)

where P denotes probability and E denotes expectation.

Definition 2 (Covering Number10). Let (V, ∥·∥) be a normed space, and Θ ⊂ V . Vector set
{Vi ∈ V |i = 1, · · · , N} is an ι-covering of Θ if Θ ⊂ ∪N

i=1B(Vi, ι) where B(Vi, ι) denotes the ball
with center Vi and radius ι, equivalently, ∀θ ∈ Θ,∃i such that ∥θ − Vi∥ ≤ ι. The covering number
is defined as :

N (Θ, ∥·∥ , ι) := min {n : ∃ι-covering over Θ of size n} .

Definition 3 (Rademacher Complexity & Empirical Rademacher Complexity10,11). Given a
sample S = {x(1),x(2), · · · ,x(n)} and a set of real-valued function H, the Empirical Rademacher
Complexity is defined as

R̂n(H) = Rn(H|S) :=
1

n
Eσ sup

h∈H

n∑
i=1

σih(x
(i)),

where sup denotes supremum and the expectation is over the Rademacher random variables
(σ1, σ2, · · · , σi, · · · , σn), which are i.i.d. (independent and identically distributed) with P(σi =
1) = P(σi = −1) = 1

2
. The Rademacher Complexity is defined as

Rn(H) := ESRn(H|S) =
1

n
ES,σ sup

h∈H

n∑
i=1

σih(x
(i)),

which is the expectation of the Empirical Rademacher Complexity over sample S.

Lemma 2 (Dudley’s Entropy Integral Bound4). Given a sample S = {x(1),x(2), · · · ,x(n)}, let
H be a real-valued function class taking values in [0, r] for some constant r, and assume that
zero function 0 ∈ H. Then we have

R̂n(H) ≤ inf
α>0

(
4α√
n
+

12

n

∫ r
√
n

α

√
logN (H, ι, ∥·∥∞)dι

)
,
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where inf denotes infimum.

Lemma 3. (Covering number bound using volume ratio4) Let W = {W ∈ Ra×b : ∥W∥2 ≤
λ} be the set of matrices with bounded spectral norm and ι be given. The covering number
N (W , ι, ∥·∥F ) is upper bounded by

N (W , ι, ∥·∥F) ≤

1 + 2 ·
min

{√
a,
√
b
}
λ

ι

ab

.

2.3 Proof
This subsection presents the complete proof of Theorem 1. We first give a proof sketch.

Proof sketch We provide a sketch of proof of Theorem 1 for readers’ convenience. First by
the property of our algorithm and telescoping, we can get

sup
fT∈Hf

(
F
(
ρ̂(T )

)
− F (ρ∗)

)2 ≤ 4 sup
fT∈Hf

∥F − fT∥2∞ . (S5)

(S5) means that when function fT can fit the target function F very well, the universal conver-
gence can be guaranteed. By Assumption 3, we can rewrite (S5) as

sup
fT∈Hf

(
F
(
ρ̂(T )

)
− F (ρ∗)

)2 ≤ 4C(T ) sup
fT∈Hf

∑T
t=1 Eρ∼Dt(F (ρ)− fT (ρ))

2

T
. (S6)

Then we can employ the standard argument of Rademacher Complexity to bound the RHS
of (S6) and then obtain

sup
fT∈Hf

∑T
t=1 Eρ∼Dt(F (ρ)− fT (ρ))

2

T

≤ 2R̂KT
(HM) + 12B2

√
2 log 2

δ

mT
+ sup

fT∈Hf

1

mT

mT∑
i=1

(
F
(
ρ(i)
)
− fT

(
ρ(i)
))

, (S7)

where function class HM = {(fT (ρ)−F (ρ))2 | fT ∈ Hf} and supfT∈Hf

1
mT

∑mT
i=1

(
F
(
ρ(i)
)
− fT

(
ρ(i)
))

can be viewed as the supreme of the training error (ϵ by our assumption, can be arbitrarily small).
Then utilizing Lemma 2, we have

R̂KT
(HM) ≤ 4α√

mT
+

48B2

√
mT

√
logN (HM , α, ∥·∥∞), (S8)

where N denotes the covering number. Then through investigating the Lipschitz property of fT
w.r.t to its parameter set, employing the argument of volume ratio (Lemma 3) and setting α as

1√
mT

, we can bound the covering number by

N
(
HM ,

1√
mT

, ∥·∥∞
)

≤ d2D log
(
1 + 8BDBD

W

√
mTd

)
. (S9)
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Finally combining (S6), (S7), (S8) and (S9), we get the desired universal convergence result.

Before showing the full proof, we introduce an auxiliary lemma here.

Lemma 4. Under Assumptions 2, we have

1) the whole generated data points
{
ρ(i)

∣∣ i = 1, 2, · · · ,mT
}

are mutually independent.
2) for any t,

{
ρ(jt)

∣∣ jt = mt−m+ 1, · · · ,mt
}

are i.i.d..

Lemma 4 is a straightforward result of Assumption 2.

Now we can approach the proof of Theorem 1.

Proof. We first bound term supfT∈Hf
(F (ρ̂(T ))− F (ρ∗))2 by telescoping:

sup
fT∈Hf

(F (ρ̂(T ))− F (ρ∗))2

(i)

≤ sup
fT∈Hf

(F (ρ̂(T ))− fT (ρ̂
(T )) + fT (ρ

∗)− F (ρ∗))2

(ii)

≤ sup
fT∈Hf

2{[F (ρ̂(T ))− fT (ρ̂
(T ))]2 + [fT (ρ

∗)− F (ρ∗)]2}

≤ 4 sup
fT∈Hf

∥F − fT∥2∞

(iii)
= 4C(T ) sup

fT∈Hf

∑T
t=1 Eρ∼Dt(F (ρ)− fT (ρ))

2

T
. (S10)

Here (i) comes from Eq. (S1), (ii) uses the fact that for any real number x and y, we have
(x+ y)2 ≤ 2(x2 + y2). (iii) arises from Assumption 3.

For notational simplicity we further denote

Φ(KT ) = sup
fT∈Hf

[
ED1:T

(F − fT )
2 − ÊKT

(F − fT )
2
]
, (S11)

where ÊKT
(F − fT )

2 = 1
mT

∑mT
i=1(F (ρ(i))− fT (ρ

(i))) corresponds to the empirical MSE loss when
training our neural network.

Suppose K ′
T and KT are two samples which are different only in the k-th point, namely KT =

{ρ(1), ...,ρ(k), ...,ρ(mT )} and K ′
T = {ρ(1), ...,ρ(k)′, ...,ρ(mT )}, we have

|Φ(K ′
T )− Φ(KT )| ≤ sup

fT∈Hf

∣∣∣ÊKT
(F − fT )

2 − ÊK′
T
(F − fT )

2
∣∣∣

= sup
fT∈Hf

∣∣∣∣(F (ρ(k))− fT (ρ
(k)))2

mT
− (F (ρ(k)′)− fT (ρ

(k)′))2

mT

∣∣∣∣
≤ 8B2

mT
,
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then by Mcdiarmid’s Inequality (Eq.(S3) in Lemma 1), we get

P(Φ(KT )− EKT
Φ(KT ) ≥ s) ≤ exp

(
−2s2

mT · (8B2

mT
)2

)

= exp

(
−mTs2

32B4

)
. (S12)

Given any δ > 0, by setting the right hand side of (S12) to be δ
2
, we have with probability at

least 1− δ
2
,

Φ(KT ) ≤ EKT
Φ(KT ) + 4B2

√
2 log 2

δ

mT
. (S13)

Notice that

EKT
Φ(KT ) = EKT

{
sup

fT∈Hf

[
ED1:T

(F − fT )
2 − ÊKT

(F − fT )
2
]}

= EKT

{
sup

fT∈Hf

EK′
T

[
ÊK′

T
(F − fT )

2 − ÊKT
(F − fT )

2
]}

. (S14)

Here the second equality in Eq. (S14) is because:

EK′
T

[
ÊK′

T
(F − fT )

2
]
=

1

mT

mT∑
i=1

EK′
T

[
F
(
ρ(i)
)
− fT (ρ

(i))
]2

(i)
=

1

mT

{
m∑
i=1

Eρ(i)∼D1

[
F (ρ(i))− fT (ρ

(i))
]2

+
2m∑

i=m+1

Eρ(i)∼D2

[
F (ρ(i))− fT (ρ

(i))
]2

+ · · ·

+
mT∑

i=mT−T+1

Eρ(i)∼DT

[
F (ρ(i))− fT (ρ

(i))
]2}

(ii)
=

1

mT

[
mED1(F − fT )

2 +mED2(F − fT )
2 + · · ·+mEDT

(F − fT )
2
]

=ED1:T
(F − fT )

2,

where (i) results from 1) of Lemma 4 and (ii) comes from 2) of Lemma 4.
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Further we have

EKT

{
sup

fT∈Hf

EK′
T

[
ÊK′

T
(F − fT )

2 − ÊKT
(F − fT )

2
]}

(i)

≤EKT ,K′
T

sup
fT∈Hf

[
ÊK′

T
(F − fT )

2 − ÊKT
(F − fT )

2
]

=EKT ,K′
T

sup
fT∈Hf

1

mT

mT∑
i=1

[
(F (ρ(i)′)− fT (ρ

(i)′))2 − (F (ρ(i))− fT (ρ
(i)))2

]
(ii)
=Eσ,KT ,K′

T
sup

fT∈Hf

1

mT

mT∑
i=1

σi

[
(F (ρ(i)′)− fT (ρ

(i)′))2 − (F (ρ(i))− fT (ρ
(i)))2

]
(iii)

≤Eσ,K′
T

sup
fT∈Hf

1

mT

mT∑
i=1

[
σi(F (ρ(i)′)− fT (ρ

(i)′))2
]
+ Eσ,KT

sup
fT∈Hf

1

mT

mT∑
i=1

[
−σi(F (ρ(i))− fT (ρ

(i)))2
]

=2Eσ,KT
sup

fT∈Hf

1

mT

mT∑
i=1

[
σi(F (ρ(i))− fT (ρ

(i)))2
]
, (S15)

where σi are Rademacher variables (Definition 3), which are uniformly distributed independent
random variables taking values in {−1,+1}. Here (i) and (iii) hold due to the sub-additivity of
the supremum function (considering the convexity of supremum function, by Jensen’s Inequality,
we have for any function h, sup

∫
x
h(x) ≤

∫
x
suph(x) holds). (ii) combines the definition of

Rademacher variable σi and the fact that the expectation is taken over both KT and KT ′ .

For notational simplity, given any function fT ∈ Hf , we define the non-negative loss function
M(fT ) : ρ → (fT (ρ)− F (ρ))2 and its function class HM = {M(fT ) : fT ∈ Hf}.

Then combining (S14) and (S15) we obtain

EKT
Φ(KT ) ≤ 2RmT (HM), (S16)

where RmT (HM) = Eσ,KT
supfT∈Hf

1
mT

∑mT
i=1 σi(F (ρ(i))− fT (ρ

(i)))2 is the Rademacher Complex-
ity (Definition 3) of HM .

Now, we define the Empirical Rademacher Complexity of HM as

R̂KT
(HM) := Eσ sup

fT∈Hf

1

mT

mT∑
i=1

σi(F (ρ(i))− fT (ρ
(i)))2.

Again, suppose K ′
T and KT are two samples which are different only in the k-th point, namely
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KT = {ρ(1), ...,ρ(k), ...,ρ(mT )} and K ′
T = {ρ(1), ...,ρ(k)′, ...,ρ(mT )}, we have

|R̂KT
(HM)− R̂K′

T
(HM)|

=

∣∣∣∣∣Eσ sup
fT∈Hf

1

mT

mT∑
i=1

σi(F (ρ(i))− fT (ρ
(i)))2 − Eσ sup

fT∈Hf

1

mT

mT∑
i=1

σi(F (ρ(i)′)− fT (ρ
(i)′))2

∣∣∣∣∣
≤ sup

fT∈Hf

∣∣∣∣(F (ρ(k))− fT (ρ
(k)))2

mT
− (F (ρ(k)′)− fT (ρ

(k)′))2

mT

∣∣∣∣
≤ 8B2

mT
,

then by Mcdiarmid’s Inequality (Eq.(S4) in Lemma 1), we get

P(R̂KT
(HM)−RmT (HM) ≤ −s) ≤ exp

(
−2s2

mT · (8B2

mT
)2

)

= exp

(
−mTs2

32B4

)
. (S17)

Given any δ > 0, by setting the right handside of Eq.(S17) to be δ
2
, we have with probability at

least 1− δ
2
,

RmT (HM) ≤ R̂KT
(HM) + 4B2

√
2 log 2

δ

mT
. (S18)

Now combining (S13), (S16) and (S18), we get with probability at least 1− δ,

Φ(KT ) ≤ 2R̂KT
(HM) + 12B2

√
2 log 2

δ

mT
, (S19)

here we use the fact that (S13) and (S18) hold with probability 1 − δ
2

respectively and that
(1− δ

2
)2 > 1− δ.

It is straightforward that ∥M(fT )∥∞ ≤ 4B2, then Dudley’s Entropy (Lemma 2) gives us

R̂KT
(HM) ≤ 4α√

mT
+

12

mT

∫ 4B2
√
mT

α

√
logN (HM , ι, ∥·∥∞)dι

≤ 4α√
mT

+
48B2

√
mT

√
logN (HM , α, ∥·∥∞), (S20)

where N denotes the covering number. We pick α = 1√
mT

, and combine (S10), (S19) and (S20)
to get

sup
fT∈Hf

(F (ρ̂(T ))− F (ρ∗))2

≤ 4C(T )

 96B2

√
mT

√
logN

(
HM ,

1√
mT

, ∥·∥∞
)
+ 12B2

√
2 log 2

δ

mT
+

8

mT
+ ÊKT

(F − fT )
2

 .

(S21)
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Next we need to compute the covering number N (HM , 1√
mT

, ∥·∥∞). To derive a tight cov-
ering number we investigate the Lispchitz continuity of fT with respect to the weight ma-
trices W1, · · · ,WD. Consider two neural networks fT (ρ) = W⊤

Dσ(WD−1σ(...σ(W1ρ))) and
f ′
T (ρ) = W′⊤

D σ(W′
D−1σ(...σ(W

′
1ρ))) with different sets of weight matrices, we first notice that

∥M(fT )−M(f ′
T )∥∞ = sup

ρ

∣∣(fT (ρ)− F (ρ))2 − (f ′
T (ρ)− F (ρ))2

∣∣
= sup

ρ
|(fT (ρ) + f ′

T (ρ)− 2F (ρ))(fT (ρ)− f ′
T (ρ))|

≤ 4B ∥fT − f ′
T∥∞ .

Next we get the bound based on weight matrices. Specifically, given two different sets of matrices
W1, · · · ,WD and W′

1, · · · ,W′
D, we have

∥fT − f ′
T∥∞

≤
∥∥W⊤

Dσ(WD−1σ(...σ(W1ρ)...))− (W′
D)

⊤σ(W′
D−1σ(...σ(W

′
1ρ)...))

∥∥
2

≤
∥∥W⊤

Dσ(WD−1σ(...σ(W1ρ)...))− (W′
D)

⊤σ(WD−1σ(...σ(W1ρ)...))
∥∥
2

+
∥∥(W′

D)
⊤σ(WD−1σ(...σ(W1ρ)...))− (W′

D)
⊤σ(W′

D−1σ(...σ(W
′
1ρ)...))

∥∥
2

≤∥WD −W′
D∥2 ∥σ(WD−1σ(...σ(W1ρ)...))∥2

+ ∥W′
D∥2

∥∥σ(WD−1σ(...σ(W1ρ)...))− σ(W′
D−1σ(...σ(W

′
1ρ)...))

∥∥
2
.

Note that we have

∥σ(WD−1σ(...σ(W1ρ)...))∥2
(i)

≤∥WD−1σ(...σ(W1ρ)...)∥2

≤ ∥WD−1∥2 ∥σ(...σ(W1ρ)...)∥2
(ii)

≤ BD−1
W ∥ρ∥2

(iii)

≤ BD−1
W ,

where (i) comes from the definition of the ReLU activation, (ii) comes from ∥Wk∥2 ≤ BW and
recursion, and (iii) comes from the boundedness of ρ. Accordingly, we have

∥M(fT )−M(f ′
T )∥∞ ≤ 4B ∥fT (ρ)− f ′

T (ρ)∥∞
≤ 4B(BD−1

W ∥WD −W′
D∥2 + ∥W′

D∥2
∥∥σ(WD−1σ(...))− σ(W′

D−1σ(...))
∥∥
2
)

(i)

≤ 4B(BD−1
W ∥WD −W′

D∥2 +BW

∥∥WD−1σ(...)−W′
D−1σ(...)

∥∥
2
)

(ii)

≤ 4BBD−1
W

D∑
k=1

∥Wk −W′
k∥2 , (S22)

where (i) comes from the fact that ∀A1,A2 ∈ Ra×b, ∥σ(A1)− σ(A2)∥2 ≤ ∥A1 −A2∥2, and (ii)
comes from the recursion. Considering the fact that each M(fT ) corresponds to its parameter
set W1, · · · ,WD, we can then derive the covering number of HM by the Cartesian product of
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the matrix covering of W1, ...,WD:

N (HM , ∥ · ∥∞, ι)
(i)

≤
D∏

k=1

N
(
Wk,

ι

4BBD−1
W D

, ∥ · ∥2
)

(ii)

≤
D∏

k=1

N
(
Wk,

ι

4BBD−1
W D

, ∥ · ∥F
)

(iii)

≤

(
1 +

8BBD
WD

√
d

ι

)d2D

. (S23)

Here (i) utilizes the fact that if ∀k = 1, 2, · · · , D, matrix set{
Vk,jk ∈ Rdk−1×dk

∣∣∣∣ jk = 1, 2, · · · ,N
(
Wk,

ι

4BBD−1
W D

, ∥ · ∥2
)}

is a ι

4BBD−1
W D

−covering of set {Wk | ∥Wk∥2 ≤ BW}, then by (S22) we have function set{
V⊤

D,jD
σ(VD−1,jD−1

σ(...σ(V1,j1ρ)...))

∣∣∣∣ 1 ≤ jk ≤ N
(
Wk,

ι

4BBD−1
W D

, ∥ · ∥2
)
,∀1 ≤ k ≤ D

}
is an ι−covering of HM . (ii) comes from the fact that for any matrix W we have ∥W∥2 ≤ ∥W∥F,
and (iii) employs Lemma 3. Plugging (S23) into (S21), we get

sup
fT∈Hf

(F (ρ̂(T ))− F (ρ∗))2

≤4C(T )

 96B2

√
mT

√
d2D log

(
1 + 8BDBD

W

√
mTd

)
+ 12B2

√
2 log 2

δ

mT
+

8

mT
+ ÊKT

(F − fT )
2

 .

(S24)

Since we consider the empirical MSE training loss to be less than ϵ, i.e.,

ÊKT
(F − fT )

2 ≤ ϵ, (S25)

so by plugging (S25) into (S24), we get the desired result.
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