
Supplementary Note 1 

Commentary on the use of log-normal regression in deconvolution 

Implicit in any deconvolution technique is a mean model, specifying how cell types’ expression profiles 

add up to create a mixed profile; and a variance model, describing the noise between expected and 

observed expression. Traditional deconvolution techniques use a linear-scale mean model and a linear-

scale variance model. SpatialDecon’s use of log-normal regression retains this linear-scale mean model, 

but it replaces the linear-scale variance model with a log-scale variance model. In the following sections 

provide the rationale for this approach.  

 

Rationale for the linear mean model used by SpatialDecon 

SpatialDecon uses log-normal regression, which can be understood as a hybrid of linear-scale and log-

scale approaches to the data. It models variance on the log-scale, for reasons explained above. But its 

mean model is on the linear scale; that is, it assumes total gene expression from mixed cell types is the 

sum of gene expression from individual cell types. Here, we justify this assumption.  

One of the earliest gene expression deconvolution papers1 ran constrained linear regression on log-

transformed data, assuming the log-scale for both the mean and variance models. Others then argued 

that deconvolution should analyze linear-scale data2, a conclusion the field has widely accepted. Below 

we rephrase the argument for a linear mean model in the nomenclature of this manuscript.  

Say cell type k expresses gene j with mean level Xjk, and unspecified distribution. Then if a sample or 

spatial region contains βk cells of type k, then those cells are expected to have a total of Xjk βk transcripts 

of gene j. If a sample contains multiple cell types, then the expected transcripts of gene j equals 

∑ 𝑋𝑗𝑘β𝑘𝑘 .  

The above argument assumes only that each cell’s expected expression of a gene is independent of the 

other cells in the sample. This assumption is overly simplistic, as cells react to their surroundings, but as 

a reasonable first-order approximation it has served the deconvolution literature since 2012. To our 

knowledge, no work yet has attempted to model interactions between cells while performing 

deconvolution.  

In contrast, a log-scale mean model leads quickly to absurdity. The log-scale mean model assumes 

log(total transcripts of gene j) = log(Xjk βk), or equivalently, total transcripts of j = exp(Xjk βk). This model 

implies that if one T-cell has 10 transcripts of CD3E, then two T-cells will have 100 transcripts, three T-cells 

will have 1000 transcripts, and so on.  

The above argues that a linear mean model accurately describes the number of transcripts present in a 

sample. But for a specific technology, we must consider not just the number of transcripts present, but 

the number of transcripts observed by the technology. Below we argue that this linear mean model of 

transcripts present applies equally well to the number of transcripts observed using spatial gene 

expression platforms.  



Both Visium and GeoMx capture available transcripts with less-than-perfect efficiency. Define α as the 

rate at which transcripts that are present are observed by a platform. Then if the expected transcripts 

present in a sample is ∑ 𝑋𝑗𝑘β𝑘𝑘 , the expected transcripts counted is simply 𝛼∑ 𝑋𝑗𝑘β𝑘𝑘 . For the purposes 

of deconvolution, the α term can be framed as a uniform rescaling of X and therefore ignored.  

The above argument assumes that the probability of a transcript being observed by these technologies 

is independent of the other transcripts present. Since neither technology has been shown to suffer 

substantial signal saturation, and since their sampling methods do not have mechanisms by which one 

gene can interfere with another’s measurement, this assumption is reasonable.  

 

Rationale for the log-scale variance model used by SpatialDecon 

Deconvolution algorithms with linear-scale variance models solve extensions of the optimization 

problem ||y – Xβ||, where y is a sample’s (linear-scale) expression vector, X is the cell profile matrix, β is 

the vector of cell types abundances, and ||*|| is the L2 norm operator. Implicit in this objective function 

are two assumptions: first, that all genes have comparable variance, and second, that error in gene 

expression is unskewed. If some genes were far more variable than the others, they would have more 

extreme residuals and would therefore exert undue influence on the deconvolution fit. And if genes 

were positively skewed, then positive residuals would be more likely, and deserving of less influence, 

than negative residuals of the same magnitude.  

In contrast to classical deconvolution methods, SpatialDecon uses log-normal regression, which 

optimizes ||log(y) – log(Xβ)||. This model is motivated by the claim that linear-scale gene expression 

has extremely unequal variance and a strong tendency to positive skewness, and that log-transformed 

gene expression largely corrects these behaviors. Below, we demonstrate this claim.   

A simple thought experiment provides intuition for the claim of unequal variance. Consider two genes, 

one with an average of 10 transcripts per sample, and one with an average of 10,000 transcripts per 

sample. The 10-transcript gene almost certainly has a standard deviation not much higher than 10: 

because negative expression levels are impossible, only with a distribution of primarily zeroes and an 

occasional very high expression level could it achieve a SD an order of magnitude higher than its mean. 

In contrast, the 10,000-transcript gene almost certainly has a high standard deviation: gene expression is 

controlled by diverse feedback loops, inhibitors and promoters, and it is hard to imagine this complex 

biological system controlling a gene’s expression level at a level of precision like 10,000 +/- 10 counts. A 

more plausible scenario would be that both genes are controlled at +/- 10%. Technical noise in counting 

transcripts also contributes to unequal variance. If a given platform samples transcripts with some fixed 

probability p, then the observed counts have a binomial(n, p) distribution, where n is the number of 

transcripts available. Under this simplistic model, our 10-count gene would have a technical variance of 

10p(1-p), while our 10000-count gene would have a technical variance of 10000p(1-p): 1000-fold higher.  

Supplementary Figure 1 uses data from the TCGA LUAD (lung adenocarcinoma) RNAseq dataset to 

demonstrate gene expression’s skewness and unequal variance on the linear-scale and its relative 

normality and consistent variance on the log-scale. Panel (a) shows the distribution of CD274 (PD-L1), a 



gene with typical skewness. On the linear scale its skewness is 2.8; after log-transformation its skewness 

is 0.1 (the normal distribution has skewness of 0). Panel (b) shows the distribution of the skewness 

statistics from all genes in the transcriptome in TCGA LUAD. On the linear-scale, all but one of the 20243 

genes measured was right-skewed, and 68% have extreme skewness > 2. On the log-scale, the average 

gene has skewness close to 0, and only 0.4% of genes have skewness outside of (-2, 2). Panel (c) 

demonstrates the unequal variance of gene expression, plotting each gene’s SD against its mean. In 

linear-scale data, SD increases proportional to a gene’s mean expression level, and the range of SDs 

spans 9.6∙10-3 to 1.9∙105 (20004870-fold). In log-scale data, low-expression genes are only slightly more 

variable than high-expressors, and the range of SDs is only 16.5-fold. 

Supplementary Figure 2 repeats the analysis of Supplementary Figure 1 using GeoMx data instead of 

TCGA. Again, we find skewness and unequal variance on the linear-scale and relative normality and 

consistent variance on the log-scale. Panel (a) shows the distribution of CD274 (PD-L1), a gene with 

typical skewness. On the linear scale its skewness is 1.2; after log-transformation its skewness is 0.4. 

Panel (b) shows the distribution of the skewness statistics from all genes in the transcriptome in TCGA 

LUAD. On the linear-scale, 1657 of 1700 genes are right-skewed, and 9% have extreme skewness > 2. On 

the log-scale, the average gene has skewness close to 0, and only 0.4% of genes have skewness outside 

of (-2, 2). Panel (c) demonstrates the unequal variance of gene expression, plotting each gene’s SD 

against its mean. In linear-scale data, SD increases proportional to a gene’s mean expression level, and 

the range of SDs spans 0.83 to 997 (1199-fold). In log-scale data, low-expression genes are only slightly 

more variable than high-expressors, and the range of SDs is only 10.5-fold. 

Supplemental Figure 3 turns to healthy tissues. In a GeoMx dataset from a healthy kidney and a GeoMx 

dataset from a healthy pancreas, we compute genes’ mean, standard deviation and skewness under the 

linear and log scales. In both these datasets, we again find that in the linear scale, high-expression genes 

have SDs up 1000-fold higher than low-expression genes, and we find that log-transformation greatly 

condenses the range of genes’ standard deviations. We also see that linear-scale data is highly right-

skewed, while on the log-scale genes’ have skewness much closer to 0.  

Specifically, in kidney, on the linear-scale, the smallest skewness from the 18695 is 21. On the log-scale, 

the average gene has skewness of 0.92, close to 0, and only 13% of genes have skewness outside of (-2, 

2). In linear-scale data, SD increases proportional to a gene’s mean expression level, and the range of 

SDs spans 2.14 to 10807 (5049-fold). In log-scale data, low-expression genes are only slightly more 

variable than high-expressors, and the range of SDs is only 9-fold. 

In pancreas, on the linear-scale, the smallest skewness from the 18695 is 51. On the log-scale, the 

average gene has skewness close of 2.2. In linear-scale data, SD increases proportional to a gene’s mean 

expression level, and the range of SDs spans 0.96 to 17460 (180756-fold). In log-scale data, low-

expression genes are only slightly more variable than high-expressors, and the range of SDs is 100-fold 

(some genes had SDs close to 0). 

We have seen in four datasets that log-transformation gives genes more consistent variance and less 

skewness. This conclusion motivates our use of log-normal regression, which seeks to minimize ||log(y)-

log(Xβ)||. In Figure 2 of the main text, we see this argument borne out: log-normal regression 



outperforms linear methods like NNLS and v-SVR, which both suffer extreme influence from a small 

number of genes. DWLS, a least squares method that attempts to appropriately weight each gene, 

performs on par with log-normal regression, suggesting that the weakness of least-squares 

deconvolution lies in unequal variance and not in skewness.  

Finally, a note on the role of biological and technical error in these considerations: Different genomics 

platforms measure gene expression with different chemistries, making each subject to idiosyncratic 

technical variance in measured gene expression. But in general, biological variability overwhelms 

technical variability; this being the case, we suggest that deconvolution algorithms must focus primarily 

on modelling biological variability, and that variance models designed around technical variability would 

miss the larger picture. To see that biological variability is much larger than technical variability in spatial 

genomics platforms, see reproducibility studies for GeoMx3 and Spatial Transcriptomics4.  
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Supplementary Figure 1: skewness and unequal variance of TCGA gene expression data. All figures are 
generated from the TCGA LUAD dataset. a. Histograms of CD274 (PD-L1) expression on the log and linear 
scale. b. Distribution of skewness statistics calculated for each of 20531 genes across the TCGA LUAD 
samples. Grey: skewness of linear-scale genes. Orange: skewness of log-scale genes. c. Genes’ mean and 
standard deviation, calculated from linear-scale and from log-scale data.  



  

Supplementary Figure 2: skewness and unequal variance of GeoMx gene expression data in cancer. All 
figures are generated from the microenvironment regions of the NSCLC tumor analyzed in Figures 5 and 
6. Tumor regions were excluded due to concerns that the profound differences between tumor and 
microenvironment regions would cloud interpretation of results. a. Histograms of CD274 (PD-L1) 
expression on the log and linear scale. b. Distribution of skewness statistics calculated for each of 1700 
genes. Grey: skewness of linear-scale genes. Orange: skewness of log-scale genes. c. Genes’ mean and 
standard deviation, calculated from linear-scale and from log-scale data.  
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Supplementary Figure 3: skewness and unequal variance of GeoMx gene expression data in healthy 

tissues. GeoMx Whole Transcriptome Atlas data was collected from 39 regions sampled from a healthy 

kidney and 10 regions sampled from a healthy pancreas. a, b. Distribution of skewness statistics 

calculated for each of 18695 genes in kidney and pancreas, respectively. Grey: skewness of linear-scale 

genes. Orange: skewness of log-scale genes. c, d. From kidney and pancreas, respectively: genes’ mean 

and standard deviation, calculated from linear-scale and from log-scale data.  

  



 

 

Supplementary Figure 4: Immune and stroma cell abundance estimates from segments of a NSCLC 
tumor, with and without modelling tumor-specific expression. Horizontal axis: Estimates from 
deconvolution using only stroma cell profiles. Vertical axis: Estimated from deconvolution using both 
stroma cell profiles and 10 tumor cell profiles derived from pure tumor segments.  



 

 

 

Supplementary Figure 5: Consistency of results from small to large regions. In a colorectal tumor, 
microenvironment (PanCK-) regions were profiled with GeoMx Cancer Transcriptome Atlas. Region areas 
ranged from 1119µm2 (equivalent to a spot of diameter 37.7µm) to 145633µm2

 (equivalent to a diameter 
of 430.6µm).  

  



 

 

Supplementary Figure 6: Deconvolution performance using granularly-defined cell types. Expression of 
marker proteins (horizontal axis) against cell abundance estimates from gene expression deconvolution 
(vertical axis). Abundance scores from related cell types, e.g. 9 macrophage subsets, have been added 
together. Each column of panels shows results from a single protein/cell pair; each row shows results 
from a different lung tumor. Tumor segments are shown in blue, microenvironment segments in red.   



 

 

Supplementary Figure 7: Deconvolution results using granularly-defined cell types. Point size 
corresponds to abundance score.  

 

  



 

 

 

 

Supplementary Figure 8: Impact of epsilon on Algorithm 1. Epsilon is the lower threshold used by 
Algorithm 1 to avoid log-transforming zeroes. For a range of epsilons, Algorithm 1 was applied to the 
benchmarking data of Figure 4. For each cell type/protein pair and each tissue, the correlation between 
Algorithm 1’s results and the corresponding marker protein is shown. The default value of epsilon is 
shown with a dashed line. For all tissues and for all cell type/protein pairs, there is no change in accuracy 
for any epsilon up to double the default value, confirming that Algorithm 1 is not sensitive to reasonable 
choices of epsilon.  
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Supplementary Figure 9: Behavior of outlier detection procedure in NSCLC benchmarking data. In the 

benchmarking dataset of Figure 4, the normalized data from 50 genes was multiplied by log-normally 

distributed scaling factors with a log2-scale SD of 3. a. Results of SpatialDecon’s outlier-removal 

mechanism. For each gene, vertical position shows the proportion of regions in which the gene was 

removed as an outlier. Boxplot centers show median values, box limits show 0.25 and 0.75 quantiles, 

whiskers extent to the most extreme point with a distance from the box less than 1.5 times the 

interquartile range of the data. b. Impact of outlier removal on deconvolution performance. In the same 

perturbed dataset, SpatialDecon was run with outlier removal with and without outlier removal. Outlier 

removal was performed under a range of thresholds, calculated on the scale of log2 fold-change 

between observed and fitted values. For each tissue and each cell type / marker protein pair, the 

correlation between SpatialDecon and the marker protein is shown. Removing outliers improves average 

correlation from 0.65 to 0.69 under the default threshold of 3 (paired t-test two-sided p = 0.004). 
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Supplementary Figure 10: Performance of outlier detection in healthy tissues. GeoMx Whole 

Transcriptome Atlas data was collected from 39 regions sampled from a healthy kidney and 10 regions 

sampled from a healthy pancreas. The normalized data from 1000 genes was then multiplied by log-

normally distributed scaling factors to create a perturbed dataset. SpatialDecon was performed on the 

original and the perturbed datasets, first retaining outliers and then removing outliers. “Outlier-

retained” results were compared across the original and perturbed datasets, as were “outlier-removed” 

results. a,b. Results of SpatialDecon’s outlier-removal mechanism in kidney and pancreas, respectively. 

For each gene, vertical position shows the proportion of regions in which the gene was removed as an 

outlier. The genes with added noise were flagged at higher rates. Boxplot centers show median values, 

box limits show 0.25 and 0.75 quantiles, whiskers extent to the most extreme point with a distance from 

the box less than 1.5 times the interquartile range of the data. c,d. From kidney and pancreas 

respectively, correlation between deconvolution results from original and perturbed data. Each point 

shows results for a single gene. Red and black dots show results using and omitting outlier detection. e,f. 

From kidney and pancreas respectively, mean squared error between deconvolution results from original 

and perturbed data.  
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Supplementary Figure 11: Impact of G, the number of inferred tumor clusters, on performance. 

SpatialDecon can use regions identified as pure tumor to infer tumor-specific expression profiles, which 

can then be appended to the SafeTME matrix for improved accuracy. The number of tumor profiles 

inferred is a user-facing argument, “G”. Here, we explore the impact of this argument on deconvolution 

performance. For each tissue in the benchmarking dataset of Figure 4, SpatialDecon was run using a 

range of values of G. Correlation between marker proteins and SpatialDecon results are shown for each 

tissue, cell type, and choice of G. G has little impact on accuracy.  

  



    a       b 

 

 

 

 

 

Supplementary Figure 12: Application of SpatialDecon to Spatial Transcriptomics data. SpatialDecon 

using the SafeTME matrix was applied to Spatial Transcriptomics data from a breast tumor5 (“Tissue G” 

from Andersson et al. 2020). Per our recommendations, a background level of 0.01 counts was specified. 

The 50 regions with the lowest ratios of SafeTME gene counts over total gene counts were designated to 

SpatialDecon as “pure tumor”. a. Cell type abundance estimates from SpatialDecon. b. From Andersson 

et al. (2020): pathologist’s annotations, with yellow encircling inflammatory cells. The pathologist-circled 

inflammatory cell regions contain high SpatialDecon abundance scores for B-cells and T-cells.   

 



 

Supplementary Figure 13: Application of SpatialDecon to Visium data. SpatialDecon using the SafeTME 

matrix was applied to Spatial Transcriptomics data from an ovarian tumor (from 

https://support.10xgenomics.com/spatial-gene-

expression/datasets/1.2.0/Parent_Visium_Human_OvarianCancer). Per our recommendations, a 

background level of 0.01 counts was specified. The 100 regions with the lowest ratios of SafeTME gene 

counts over total gene counts were designated to SpatialDecon as “pure tumor”. This tumor’s immune 

infiltrate is dominated by naïve CD8 T-cells and macrophages, both of which are diffused widely across 

the tumor. In addition, fibroblasts are abundant. These results are consistent with reports on the content 

of the tumor microenvironment in Ovarian cancer6,7,8.  
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