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Supplementary Information 

 

Supplementary Figure 1: Scanning electron microscopy showing A) bacteria alone, B) AgNPs 

interacting with the bacterial cells. 

The silver nanoparticles used in this study were first characterized for their size and stability in the 

bacterial culture medium. The stability of the nanoparticles was assessed through zeta potential 

measurement. A negative value (-13 ± 0.95 mV) indicated better stability of the dispersed 

nanoparticles. The higher stability also indicated that the well dispersed nanoparticles could 

effectively interact with the bacterial cells in the culture and consequently affect their viability 

when used at different concentrations. 
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Supplementary Figure 2: Intracellular folate-time profile in the absence and presence of 

AgNP generated oxidative stress (  indicates control culture;  indicates culture treated with 

25 ppm AgNP). Values are expressed as mean ± S.D., n = 3. 

HPLC analysis of intracellular folate levels in AgNP-treated bacterial culture showed a maximum 

folate concentration at the 6th hour of microbial growth. The specific intracellular folic acid 

concentration was 45.53 ± 0.012 nmol/g-cell in AgNP-treated culture, which was 49% higher 

compared to control. 

  



3 
 

 

Supplementary Figure 3: Variation in viability of HCT 116 cells upon exposure to different 

concentrations of folic acid. Values are expressed as mean ± S.D., n = 3. 

As expected, higher concentrations of folic acid (5-30 μM) resulted in increased viability of cancer 

cells. On the contrary, unexpectedly, lower concentrations (1-0.1 μM) reduced the cell viability. 

The optimal-cytotoxic concentration was around 0.5 μM folic acid, which resulted in decrease of 

viability by 13.89% when compared with the appropriate control. The reduction in cell viability at 

lower concentrations of folic acid was statistically significant and exhibited Hormesis effect 1. 

Hence, this biphasic dose response phenomenon or the Hormesis effect, exhibited by folic acid 

needs to be studied further to establish its modality as an anti-cancer drug. 
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Supplementary Table 1: Statistics of medium constrained genome-scale metabolic models 

 

  

Model contents Statistics 

 Microbe ROS 

microbe 

Colon CRC Healthy Colon-microbe 

(CRC-microbe) 

Total reactions 1279 1313 7832 8439 13589 (14698) 

Metabolic reactions 871 879 4908 5030 5787 (5909) 

Transport reactions 158 167 1891 2117 4201 (4531) 

EX_+ DM_+ sink_ 250 267 1033 1292 3601 (4258) 

Total metabolites 1031 1049 4627 5008 7861 (8627) 
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Supplementary Table 2: E. durans model predictions  

 

  

Findings in agreement with literature 

Reaction Name Comments 

Glycine 

hydroxymethyltransferase, 

reversible 

(E.C.2.1.2.1) 

Glycine, serine, and threonine metabolism was affected upon 

addition of reactive species to the E. durans genome-scale 

metabolic network, thereby affecting the cellular folate pool. 

Methylenetetrahydrofolate 

dehydrogenase (NADP) 

(E.C.1.5.1.5) 

This enzyme-catalyzed reaction generated positive flux in ROS 

expanded E. durans metabolic model. Moreover, this enzyme links 

folate metabolism with NADPH and serine metabolic pathways. 

Novel findings 

Malonyl CoA pyruvate 

carboxytransferase 

(E.C.2.1.3.1) and 2-

Oxobutanoate formate 

lyase 

The association between SCFAs and folic acid metabolism was 

captured for the first time through flux analysis of the ROS 

expanded microbe model.  
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Supplementary Discussion 

The colon-microbe and CRC-microbe integrated models consisted of 13589 and 14698 reactions, 

respectively. As per the modeling analysis, there were a total of 104 bacteria secreted metabolites 

that could be taken up by the host (CRC) cell, of which, 56 metabolites were predominantly 

required for increasing flux through CRC biomass reaction. It was found that any increment in the 

biomass flux was directly proportional to the uptake fluxes (mmol/g-DW/h) of these metabolites. 

These significant metabolites included 20 amino acids, vitamins, and other micro-nutrients, which 

were the participating species in the biomass reaction, and therefore, can explain the increased 

biomass flux values. However, the other 48 metabolites showed no quantitative effects on the net 

biomass flux. The specific interactions among various microbe secreted metabolites, as well as 

their cumulative effects on the flux through biomass reaction were not considered in our modeling 

studies, which could possibly justify the reason why no significant quantitative change was 

observed in the biomass flux. 

To understand the metabolic differences between models, flux span ratios were calculated, where 

FSr is defined as the difference between maximum and minimum flux. 

𝐹𝑆𝑟 = 𝑎𝑏𝑠(𝑚𝑖𝑛𝐹𝑙𝑢𝑥 − 𝑚𝑎𝑥𝐹𝑙𝑢𝑥)𝑟𝑥𝑛_𝐴(1) /𝑎𝑏𝑠(𝑚𝑖𝑛𝐹𝑙𝑢𝑥 − 𝑚𝑎𝑥𝐹𝑙𝑢𝑥)𝑟𝑥𝑛_𝐴(2) (1) 

Here, rxn_A(1) represents reaction named A in model 1 (colon or colon-microbe) and 

rxn_A(2) represents reaction named A in model 2 (CRC or CRC-microbe). 

Based on the FSr values (0.8>FSr>2), the following pathways were found to be affected: 
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1. Purine metabolism: 

 

Supplementary Figure 4: Altered purine metabolism in CRC cells, compared to the healthy 

colon model, wherein, the enzyme catalyzed reactions (highlighted in red), showed increased 

fluxes in the CRC model. 

The CRC model highlighted increased flux through various enzymes participating in purine 

synthesis and catabolism. Reactions catalyzed by the enzymes like Purine-Nucleoside 

Phosphorylase (Guanosine)-PUNP, Glutamine Phosphoribosyldiphosphate Amidotransferase 

(GLUPRT), Phosphoribosylglycinamide Formyltransferase (AIRC), Phosphoribosylglycinamide 

Formyltransferase (GARFT), Adenylosucccinate Lyase (ADSL), 

Phosphoribosylaminoimidazolecarboxamide Formyltransferase (AICRT) and IMP 

Cyclohydrolase (IMPC) carried increased flux in the CRC metabolic model, compared to the 

healthy colon model. In the de novo purine synthesis pathway, PUNP phosphorylates guanosine 

to synthesize guanine, and GLUPRT, AIRC, GARFT, ADSL and IMPC catalyze further steps 2. 



8 
 

2. Pyrimidine metabolism: 

 

Supplementary Figure 5: Altered de novo pyrimidine synthesis pathways in CRC-microbe 

integrated model, wherein, the enzyme catalyzed reactions (highlighted in red), showed 

increased fluxes in the CRC-microbe integrated model. 

Certain important reactions catalyzed by dihydroorotate dehydrogenase (DHORDH,’DHORD9’), 

aspartate carbamoyltransferase (ASPCT, 'ASPCTr’), orotate phosphoribosyltransferase (‘ORPT’) 

and dihydroorotase (‘DHORTS’) showed increased flux in host-microbe model. ASPCT is known 

to catalyze the second step of de novo pyrimidine synthesis, i.e., formation the carbamoyl aspartate 

from aspartate and carbamoyl phosphate. Modeling analysis showed increased activity of this 

enzyme (implying increased production of carbamoyl phosphate) in the CRC tissue samples. The 

subsequent reactions in the de novo pyrimidine synthesis pathway also showed increased flux. 

Both ASPCT and DHORTS are part of the CAD protein, and the gene coding the latter is highly 
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expressed in many tumors. DHORDH is required for the formation of the pyrimidine ring 2. It is 

the only enzyme that can catalyze the conversion of dihydroorotate to orotate, therefore, it is of 

utmost importance for synthesizing uridine monophosphate (UMP) and the inhibition of this 

enzyme causes suppression of the de novo pathway.  

Moreover, the DHORDH catalyzed reaction is coupled ubiquinone reduction to generate ubiquinol 

3 and is linked to the electron transport chain (ETC). This finding has been supported in the in-

silico results as well, where ubiquinone synthesis reaction showed increased flux. Interestingly, 

multiple types of cancers, such as AML, have increased DHODH activity 4. But the same has not 

been reported in CRC samples yet. The CRC-microbe model also showed an increased flux 

through deoxy-uridine phosphorylase (DURIPP), required to catalyze uracil synthesis. Elevated 

levels of uracil and thymidine are toxic to the cells, causing replication associated errors. 
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Supplementary Figure 6: Association between the major metabolic pathways showing 

heightened flux activity (arrows in red) in the CRC-microbe integrated model. 

3. Fatty acid metabolism: 

Cancer pathogenesis involves increased expression of genes encoding monoacylglycerol lipase, 

an enzyme of lipid metabolic pathway that releases free FA from lipid stores 5. The rate controlling 
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step in FAO is the import of fatty acid into the mitochondria catalyzed by tissue-specific isoforms 

of Carnitine O-Palmitoyltransferase (CPT). Enhanced activity of CPT increases FAO and ATP 

production and protects cells from glucose deprivation or hypoxia induced cytotoxicity 6. Acyl-

CoA dehydrogenases (ACADs) catalyzes the first and rate-determining step of peroxisomal beta-

oxidation of fatty acids 7, whereas ECH catalyzes the second step of the mitochondrial FAO. Enoyl 

Coenzyme A Hydratase (ECH) metabolizes fatty acids to generate acetyl CoA and ATP by 

hydrolyzing the double bond between the second and third carbons on 2-trans/cis-enoyl-CoA 8. 

The role of ECHS1 has been implicated in breast, prostate, colon, and liver cancer, as per the 

literature 9. In addition, the role of ECH has been identified in signal transduction, where it acts as 

a novel interacting protein of signal transducer and activator of transcription 3 (STAT3) 10. Acetyl 

CoA acyltransferase catalyzes the final step of FAO, wherein, acetyl CoA is released and the CoA 

ester of a fatty acid two carbons shorter is formed 11. The acetyl CoA is then consumed as substrate 

in the energy pathways. Upon analysis of the CRC-microbe and CRC models, these enzyme 

catalyzed reactions associated with fatty acid oxidation showed increased fluxes, thus capturing 

the significance of fatty acid oxidation in cancer in these metabolic models.  

4. Amino acid metabolism: 

Valine (Val), leucine (Leu) and isoleucine (Ile) are the branched-chain aliphatic amino acids 

(BCAAs), and their degradation products include acetyl Co A, which is an important substrate for 

fatty acid synthesis 12. Besides their role as respiratory substrates, these amino acids also play a 

structural and signaling role 13. The CRC-microbe integrated metabolic model showed an increase 

in fluxes for various enzyme catalyzed reactions associated with BCAAs degradation, thereby 

supporting increased BCAAs catabolism in cancer cell. 

5. Energy metabolism: 
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L-Alanine:2-Oxoglutarate Aminotransferase (also known as Alanine aminotransferase, ALT) is 

an important enzyme, which catalyzes the formation of pyruvate and glutamate by transferring an 

amino group from alanine to alpha-ketoglutarate in alanine cycle 14. Pyruvate is a critical 

metabolite, which participates in variety of metabolic pathways like glucose, amino acids, and 

lipid metabolism 15. Glutamate serves as a precursor metabolite in glutamine formation. Glutamine 

again being a key metabolite, is a 1-carbon (1-C) donor in nucleic acid and amino acid synthesis. 

The increased activity of ALT, in terms of metabolic flux was captured in CRC-microbe model. 

6. Steroid metabolism: 

Recent studies have emphasized the importance of sex hormones (specifically estrogen) in breast 

cancer pathogenesis 16. Increased serum levels of estradiol (E2), the active form of estrogen, has 

been reported in colon cancer 17. In the CRC-microbe model, steroid sulfatase (STS) and 

Hydroxysteroid (17-Beta) Dehydrogenase 4 (17βHSDs) showed increased flux values. STS 

catalyzes the hydrolysis of steroid sulfates (estrone sulfate, ES1) to their unconjugated, 

biologically active forms 18. 17β-HSD1 then reduces the estrogen (E1) obtained through the 

activity of STS into estradiol 19. The genes coding both these enzymes showed overexpression in 

many breast tumors 20. 

7. Squalene synthesis: 

Mevalonate pathway, which is responsible for isoprenoid and cholesterol synthesis, is of major 

significance in cancer metabolism 21. The intermittent metabolic reactions in the pathway have 

often been targeted in cancer therapeutics 22. For instance, isopentenyl diphosphate isomerase (IDI, 

‘IPDDI’) is one of the important enzymes catalyzing the conversion of isopentenyl pyrophosphate 

(IPP) to dimethylallyl pyrophosphate (DMAPP) in the mevalonate-isoprenoid biosynthetic (MIB) 

pathway. The metabolic models (both CRC and CRC-microbe) used in our study also highlighted 
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the increased activity of this enzyme, which is in consensus with the literature findings. Moreover, 

previous experimental studies in human prostate cancer and CRC have reported that IDI can serve 

as an important drug target to induce cell death signaling 23,24.  

8. Hexosamine biosynthetic pathway (HBP): 

Hexosamine Biosynthetic Pathway (HBP) operates to produce UDP-N-Acetylglucosamine (UDP-

GlcNAc), an important substrate required in protein glycosylation 25. Aberrant glycosylation is yet 

another feature expressed in cancer cells 26. CRC metabolic model used in our study, was able to 

capture the alterations of certain enzymes catalyzing amino sugar metabolism in HBP. N-

Acetylglucosamine Kinase ('ACGAMK') catalyzed phosphorylation reaction, which generates 

UDP-GlcNAc from N-Acetylglucosamine 27 showed increase in flux in the CRC model. Moreover, 

enzyme catalyzed reactions catalyzed by UDP-N-Acetyl-D-Glucosamine 2-Epimerase 

(Hydrolysis) and UDP-N-Acetylglucosamine 4-Epimerase, which are involved in sialic acid 

synthesis, also showed increased flux. Sialic acid is of major relevance in pathways involving 

cellular adhesion, cellular communication and signal transduction, and its deficiency has been 

linked to cancer and inflammatory disease 28. 

9. Eicosanoid metabolism: 

Eicosanoids (a class of bioactive lipids) are known to play a prominent role in carcinogenesis and 

metastatic processes 29. Arachidonic acid is metabolized to generate eicosanoids through 

cyclooxygenase, lipoxygenase and P450 epoxygenase pathways 29. Arachidonate 5-Lipoxygenase 

(ALOX 5) catalyzes the deoxygenation of arachidonic acid to initiate the synthesis of leukotrienes 

and is an important therapeutic target for various inflammatory diseases, including cancer 30. For 

instance, the expression of ALOX 5 is reported to be upregulated in colon cancer cells 31. An 

increased flux was observed through ALOX 5 reaction in CRC-microbe integrated model. 
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In addition to the predictions in line with literature-based information, the FSr analysis of models 

also had a few contradictory findings. These findings are discussed below: 

1. Rewired fatty acid biosynthetic pathway: 

In general, the fatty acid synthesis pathways showed increased fluxes in CRC and CRC-microbe 

metabolic models, thereby supporting increased cancer growth. However, the CRC-microbe 

model, when compared with the colon-microbe metabolism, showed reduced flux (decrease by 

50%) in certain reactions involved in fatty acid synthesis, like, palmitoyl Coenzyme A hydrolase 

(EC:3.1.2.2) catalyzed reaction.  This reduction in flux could be attributed to metabolic re-wiring 

to compensate for the other metabolic pathways that have been significantly upregulated in the 

metabolic models. 

2. Altered TCA metabolism: 

The TCA cycle comprises of many enzyme-catalyzed reactions, succinate dehydrogenase (SDH) 

being one of them. SDH catalyzes oxidation of succinate to generate fumarate. Also known as 

complex II, SDH is important in TCA cycle and electron transport chain. The inactivation of SDH 

results in succinate accumulation, thereby promoting tumorigenesis 32. However, this SDH 

catalyzed reaction showed increased flux values in the CRC-microbe and CRC models.   

3. Reduced flux through Prostaglandin I2 Synthase (PTGIS) in colon cancer: 

Prostanoids (prostaglandins, prostacyclin etc.) are a class of eicosanoids associated with the 

initiation and metastases of various cancer types like lung, breast, and endometrial cancers, as well 

as inhibition of melanoma 33. Of the various types of prostaglandins (PGE2, PGD2, TXA2), PGI2 

(also known as prostacyclin) has shown anti-metastatic properties in some studies surrounding 

murine tumorigenesis models 29. However, the role of PTGIS in colorectal cancer is controversial, 

as some studies have stated that in case of chemical induced colon cancer in mice (with genetically 
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deleted PGIS), an increase in aberrant crypt formation was observed at early stages of 

carcinogenesis 34. On the contrary, PTGIS upregulation has been implicated in colorectal cancer 

growth by preventing apoptosis 35. Furthermore, recent studies have reported overexpression of 

PTGIS in cases of colon metastatic tumors in liver 36. But the modeling results in cases of CRC 

and CRC-microbe integrated models have reported decreased flux through the PTGIS reaction. 

Moreover, to uncover potent novel therapeutic metabolites with anticancer potential, shadow price 

analysis was used as a computational tool. Shadow price analysis can be used to capture any flux 

inconsistencies that are induced in a metabolic objective function (such as the maximization of 

biomass function), upon an increase or decrease in the fluxes associated with the metabolites 

participating in the individual reaction 37. Hence, the shadow prices can mathematically analyze 

the sensitivity of the objective function of a linear program upon perturbation of individual 

constraints.  

Shadow prices were analyzed for the biomass objective function (‘biomass_reaction’). Metabolites 

from myo-inositol and inositol metabolism and their corresponding derivatives (i.e., 34 in total) 

resulted in positive shadow prices. Any changes in concentrations of these metabolites predicted 

by the shadow price analysis can deregulate the flux through the maximized biomass objective 

function. In other words, a positive shadow price of a metabolite indicates that biomass yield (flux) 

tends to decrease upon introducing any more concentration of that metabolite in the system. As far 

as the CRC model predictions are concerned, literature studies have emphasized on the anticancer 

potential of inositol and myo-inositol, wherein, inositol phosphates displayed inhibitory effects on 

cancer cells by causing cell cycle arrest at G1 phase of DNA synthesis 38.    
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Similarly, shadow price analysis was carried out for the healthy colon model to examine any 

overlap in the metabolites between CRC and healthy colon. For the colon model, 19 metabolites 

displayed positive shadow prices. Interestingly, most of them were lysine and lysine-derived 

metabolites, and there were no overlapping metabolites (like inositol or myo-inositol and their 

derivatives) between CRC and healthy colon model, with respect to shadow price analysis.  

Since there were no overlapping metabolites between CRC and healthy colon model, inositol and 

its derivatives can be beneficial in treating/killing cancer cells, without posing any effects on 

healthy colon cells, as the growth (biomass) of healthy colon cells is independent of the changing 

concentrations of inositol and its derivatives. Thus, this analysis ensured the credibility of the 

metabolic models by highlighting the metabolites possessing anticancer activity. 

Another important analysis performed on the CRC and colon models was flux enrichment analysis 

(FEA) to determine if the subset of enriched reactions (affected in colon v/s CRC) from different 

subsystems were contributing to the model structure in a statistically significant manner. The 

reactions (with FSr values in defined range, Figure 6a) belonging to different pathways like fatty 

acid oxidation and synthesis, amino acid metabolism, purine synthesis, folate, and sphingolipid 

metabolism were subjected to this analysis. The results predicted that the enriched reaction sets 

from both CRC and colon models were a part of a particular subsystem in a statistically significant 

manner. Supplementary Figure 7 tabulates the enriched reaction set information and their 

corresponding P-values: 

  



17 
 

Supplementary Figure 7: Flux enrichment analysis for statistical analysis of colon and CRC 

models 

 

Since diet plays a crucial role in the initiation and progression of CRC, the model exchanges were 

constrained as per the Western diet (high protein, high fat content) and high fiber diet components 

39. The composition and uptake rates of these two diets’ components have been tabulated in 

Supplementary Tables 3 and 4.  

In order to monitor the cancer cell growth upon exposure to the Western and high fiber diets, the 

flux through CRC biomass reaction was computed in each case. On comparing the growth (flux) 

with DMEM constrained model, there was no change observed in the biomass flux (0.0223 

mmol/g-DW/h) under the test dietary regime. Furthermore, to assess any significant changes in the 

overall metabolism of the model when constrained to these two diets, FVA was carried out for 

CRC. There too, no significant changes in the minimum/maximum flux values were captured in 

the sensitive reactions as identified by the FSr analysis for DMEM constrained models. Thus, CRC 

metabolism was not influenced by the change in diets as such. 
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Supplementary Table 3: The exchanges present in CRC and the respective lower bounds for 

constraining the model as per Western diet. 

 

  

Substrate Exchanges Lower Bounds Substrate Exchanges Lower Bounds

'EX_glc_D[e]' -0.14899 'EX_amet[e]' -1

'EX_gal[e]' -0.14899 'EX_amp[e]' -1

'EX_man[e]' -0.14899 'EX_btn[e]' -1

'EX_fuc_L[e]' -0.14899 'EX_cgly[e]' -1

'EX_glcn[e]' -0.14899 'EX_chol[e]' -1

'EX_arab_L[e]' -0.17878 'EX_cit[e]' -1

'EX_drib[e]' -0.17878 'EX_csn[e]' -1

'EX_rib_D[e]' -0.17878 'EX_cytd[e]' -1

'EX_xyl_D[e]' -0.17878 'EX_dad_2[e]' -1

'EX_oxa[e]' -0.44696 'EX_dcyt[e]' -1

'EX_lcts[e]' -0.074493 'EX_dgsn[e]' -1

'EX_malt[e]' -0.074493 'EX_etoh[e]' -1

'EX_tre[e]' -0.074493 'EX_fald[e]' -1

'EX_strch1[e]' -0.25734 'EX_fe2[e]' -1

'EX_arachd[e]' -3.33E-03 'EX_fe3[e]' -1

'EX_chsterol[e]' -0.004958 'EX_fol[e]' -1

'EX_glyc[e]' -1.7997 'EX_for[e]' -1

'EX_hdca[e]' -0.39637 'EX_fum[e]' -1

'EX_hdcea[e]' -0.036517 'EX_gam[e]' -1

'EX_lnlnca[e]' -0.017565 'EX_glyc3p[e]' -1

'EX_lnlncg[e]' -0.017565 'EX_gsn[e]' -1

'EX_ocdca[e]' -0.16928 'EX_gthox[e]' -1

'EX_ocdcea[e]' -0.68144 'EX_gthrd[e]' -1

'EX_octa[e]' -0.012943 'EX_gua[e]' -1

'EX_ttdca[e]' -0.068676 'EX_h[e]' -1

'EX_ala_L[e]' -1 'EX_hom_L[e]' -1

'EX_cys_L[e]' -1 'EX_hxan[e]' -1

'EX_ser_L[e]' -1 'EX_ins[e]' -1

'EX_arg_L[e]' -0.15 'EX_k[e]' -1

'EX_his_L[e]' -0.15 'EX_lac_L[e]' -1

'EX_ile_L[e]' -0.15 'EX_mal_L[e]' -1

'EX_leu_L[e]' -0.15 'EX_mqn7[e]' -1

'EX_lys_L[e]' -0.15 'EX_mqn8[e]' -1

'EX_asn_L[e]' -0.225 'EX_na1[e]' -1

'EX_asp_L[e]' -0.225 'EX_ncam[e]' -1

'EX_thr_L[e]' -0.225 'EX_no2[e]' -1

'EX_glu_L[e]' -0.18 'EX_orn[e]' -1

'EX_met_L[e]' -0.18 'EX_pheme[e]' -1

'EX_gln_L[e]' -0.18 'EX_pi[e]' -1

'EX_pro_L[e]' -0.18 'EX_pnto_R[e]' -1

'EX_val_L[e]' -0.18 'EX_ptrc[e]' -1

'EX_phe_L[e]' -1 'EX_pydam[e]' -1

'EX_tyr_L[e]' -1 'EX_pydx[e]' -1

'EX_gly[e]' -0.45 'EX_pydx5p[e]' -1

'EX_trp_L[e]' -0.08182 'EX_pydxn[e]' -1

'EX_2obut[e]' -1 'EX_ribflv[e]' -1

'EX_ac[e]' -1 'EX_so4[e]' -1

'EX_acald[e]' -1 'EX_spmd[e]' -1

'EX_acgam[e]' -1 'EX_thm[e]' -1

'EX_acmana[e]' -1 'EX_thymd[e]' -1

'EX_acnam[e]' -1 'EX_ura[e]' -1

'EX_ade[e]' -1 'EX_uri[e]' -1

'EX_adn[e]' -1 'EX_xan[e]' -1

'EX_akg[e]' -1 'EX_meoh[e]' -10

'EX_ala_D[e]' -1 'EX_h2o[e]' -10
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Supplementary Table 4: The exchanges present in CRC and the respective lower bounds for 

constraining the model as per high fiber diet. 

 

 

Substrate Exchanges Lower Bounds Substrate Exchanges Lower Bounds

EX_glc_D[e] -0.03947 EX_retinol[e] -1

EX_gal[e] -0.03947 EX_thf[e] -1

EX_man[e] -0.03947 EX_2obut[e] -1

EX_fuc_L[e] -0.03947 EX_ac[e] -1

EX_glcn[e] -0.03947 EX_acgam[e] -1

EX_arab_L[e] -0.04737 EX_acmana[e] -1

EX_drib[e] -0.04737 EX_acnam[e] -1

EX_rib_D[e] -0.04737 EX_ade[e] -1

EX_xyl_D[e] -0.04737 EX_adn[e] -1

EX_oxa[e] -0.11842 EX_ala_D[e] -1

EX_lcts[e] -0.01974 EX_amp[e] -1

EX_malt[e] -0.01974 EX_btn[e] -1

EX_tre[e] -0.01974 EX_cgly[e] -1

EX_strch1[e] -0.06818 EX_chol[e] -1

EX_arachd[e] -0.001664 EX_cit[e] -1

EX_chsterol[e] -0.002479 EX_csn[e] -1

EX_glyc[e] -0.89983 EX_dad_2[e] -1

EX_hdca[e] -0.19819 EX_dcyt[e] -1

EX_hdcea[e] -0.018258 EX_dgsn[e] -1

EX_lnlnca[e] -0.008783 EX_fald[e] -1

EX_lnlncg[e] -0.008783 EX_fe2[e] -1

EX_ocdca[e] -0.084641 EX_fe3[e] -1

EX_ocdcea[e] -0.34072 EX_fol[e] -1

EX_octa[e] -0.006471 EX_for[e] -1

EX_ttdca[e] -0.034338 EX_fum[e] -1

EX_ala_L[e] -1 EX_gam[e] -1

EX_cys_L[e] -1 EX_glyc3p[e] -1

EX_ser_L[e] -1 EX_gthox[e] -1

EX_arg_L[e] -0.15 EX_gthrd[e] -1

EX_his_L[e] -0.15 EX_gua[e] -1

EX_ile_L[e] -0.15 EX_h[e] -1

EX_leu_L[e] -0.15 EX_hxan[e] -1

EX_lys_L[e] -0.15 EX_k[e] -1

EX_asn_L[e] -0.225 EX_mqn7[e] -1

EX_asp_L[e] -0.225 EX_mqn8[e] -1

EX_thr_L[e] -0.225 EX_na1[e] -1

EX_glu_L[e] -0.18 EX_ncam[e] -1

EX_met_L[e] -0.18 EX_no2[e] -1

EX_gln_L[e] -0.18 EX_no2[e] -1

EX_pro_L[e] -0.18 EX_orn[e] -1

EX_val_L[e] -0.18 EX_pheme[e] -1

EX_phe_L[e] -1 EX_pi[e] -1

EX_tyr_L[e] -1 EX_pnto_R[e] -1

EX_gly[e] -0.45 EX_ptrc[e] -1

EX_trp_L[e] -0.08182 EX_pydam[e] -1

EX_5aop[e] -1 EX_pydx[e] -1

EX_acald[e] -1 EX_pydx5p[e] -1

EX_akg[e] -1 EX_pydxn[e] -1

EX_amet[e] -1 EX_ribflv[e] -1

EX_anth[e] -1 EX_so4[e] -1

EX_avite1[e] -1 EX_spmd[e] -1

EX_cytd[e] -1 EX_thm[e] -1

EX_etoh[e] -1 EX_thymd[e] -1

EX_glyleu[e] -2 EX_ura[e] -1

EX_gsn[e] -1 EX_uri[e] -1

EX_hom_L[e] -1 EX_xan[e] -1

EX_ins[e] -1 EX_meoh[e] -10

EX_lac_L[e] -1 EX_h2o[e] -10

EX_mal_L[e] -1
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Supplementary Data 

Supplementary Data 1 

Excel sheet 1-A: MRS medium composition 

Excel sheets 1-B: MRS medium constrained E. durans metabolic model 

Excel sheets 1-C: MRS medium constrained ROS expanded E. durans metabolic model 

 

Supplementary Data 2 

Excel sheet 2-A: DMEM composition 

Excel sheets 2-B: DMEM constrained healthy colon metabolic model 

Excel sheets 2-C: DMEM constrained healthy colon metabolic model (with sink reactions) 

Excel sheets 2-D: DMEM constrained CRC metabolic model 

 

Supplementary Data 3 

Excel sheets 3-A: Colon-E. durans integrated metabolic model 

Excel sheets 3-B: CRC-E. durans integrated metabolic model 
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Supplementary Note 

%% Codes used %% 

%% Flux Variability Analysis for a model %% 

[minFlux,maxFlux]=fluxVariability(model,0); 

%% minNorm analysis of ROS-E.durans model %% 

model = changeObjective (model, 'RXN1'); 

% RXN1 is the reaction with FSr in the range: 0.8>FSr>2 % 

% RXN: 'DHFOR2', 'DHFR', 'FTHFL', 'MTHFC', 'GLYCL', 'r0792'  % 

FBA=optimizeCbModel (model, 'max', 'one'); 

% Access FVA.v to see the relevant affected reactions % 

%% Shadow price analysis for a model %% 

% Please refer to Supplementary Discussion, section 1D) % 

model=changeObjective(model,'biomass_reaction'); %for CRC model 

FBA=optimizeCbModel(model,'max'); 

% Access FVA.y to see the Shadow Prices of Metabolites 
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