1	Protocol
2	This trial protocol has been provided by the authors to give readers additional
3	information about their work.
4	Protocol for: Rosen et al. Randomized Controlled Trial Comparing Biologic
5	versus Synthetic Mesh for the Single Stage Repair of Contaminated Ventral
6	Hernias.
7	Submitted to JAMA Surgery.
8	
9 10 11 12 13 14 15 16	
18 19 20 21 22 23 24 25 26 27 28 29	

- 32
- This supplement contains the following items:1. Original protocol, final protocol with amendments and summary of changes.2. Original statistical analysis plan (protocol description), final statistical analysis
 - plan, summary of changes

36		
37		
38		
39	Executive Summary	4-6
40	Table of Contents	7-9
41	Original Protocol	10-50
42	Summary of changes to the protocol approved by the ethics committee	51-52
43	Final statistical analysis plan (with modifications)	53-58

45 46	Executive Summary of Protocol
40 47	
48	Study Synopsis
49	
50	Title: Multicenter, prospective randomized trial comparing biologic versus synthetic
51	mesh for the repair of contaminated ventral hernias
52	
53	Investigational Product
54	Soft Mesh, Bard Davol
)) 56	Strattice Mesh, Lifecell
30 57	Protocol Number
57 58	
50 50	IDE# G120130
5) 60	IDE# 0120100
61	Study Design
67	Multicenter parallel group randomized controlled trial
6 <u>2</u>	Walloomer, paraner group, randomized controlled that
6 <u>5</u>	Number of Sites
65	Up to 5 academic medical centers with specialized abdominal wall
66	reconstruction units
67	
68	Number of Subjects
69	253 contaminated ventral hernias
70	
71	Study Population
72	Male and female patients at least 21 years of age presenting with a clean-
73	contaminated or contaminated ventral hernia for planned single stage repair
74	
75	Study Treatment
76	Medium weight polypropylene mesh or non-crosslinked porcine dermis
77	mesh placed in the retromuscular position during complex abdominal wall
78	reconstruction
79	
80	Study Objective
81	To determine the safety and efficacy of synthetic mesh as compared to
82	biologic mesh for the single staged repairs of contaminated ventral hernias
83	
84	Study Endpoints
85	Primary Outcome
86	1. Efficacy- Incidence of hernia recurrence at 2 years following
87	hernia repair.
88	Safety-Incidence of surgical site occurrence requiring a
89	procedural intervention (SSOPI) throughout the study period.
90	Secondary Outcome

91	1.	Incidence of postoperative adverse events at 30 days
92		postoperatively measured by overall adverse event rate, Clavien
93	_	Dindo Grades I-V, and Comprehensive Complications Index
94	2.	Hernia related quality of life at baseline, 1m, 6m, 12m, and 24 m
95		as measured by HerQles abdominal wall function score
96	3.	Overall quality of life at baseline, 1m, 6m,12m, and 24 m as
97		measured by EQ5D summary score and VAS score
98	4.	Cost of abdominal wall reconstruction of contaminated defects
99		as measured by direct cost, 30 day costs and prosthetic cost.
100	Clinic Visits	
101	Rasolino	surgical admission 30 days 6 months 12 months and 24
102	monthe	Surgical admission, 30 days, 0 months, 12 months, and 24
103	montins	
105	Study Criteria	
106	Inclusion	Criteria
107	1.	age >21
108	2.	hernia defects >9 cm ²
109	3.	contaminated wound class (CDC II or III)
110	4.	elective single-staged repair
111	5.	intraoperative achievement of fascial closure
112	6.	willing candidates to receive either polypropylene or a biologic
113		prosthesis.
114		
115	Exclusion	n Criteria
116	1.	CDC wound class I or IV
117	2.	BMI >45 kg/m ²
118	3.	chronic immunosuppression (>10 mg of prednisone/day)
119	4.	collagen vascular disorder
120	5.	severe malnutrition (albumin <2.0 g/dL)
121	6.	ascites refractory to medical management
122	7.	end stage renal disease (on hemodialysis)
123	8.	liver disease (hepatitis B and C or total bilirubin >3.0 mg/dL)
124	9.	smoking within1 month of surgery
125	10	pregnancy
126	11	undergoing minimally invasive repair
127	12	active mesh infection. Mesh infection is defined as synthetic
128		mesh that is not incorporated, exposed, or has chronic draining
129		sinus with pus around the material.
130		

	Screening Visit	Pre-Definitive Closure	Day of Definitive Closure	Fo	llow Up
	< 15 days prior	to Definitive	-	1 Weeks	
	<u>Clos</u>	ure		+ WEEKS	
Inclusion/Exclusion	x	x			
Informed Consent	X	x			
Medical History	X				
Physical Exam	X		x		
CBC	X				
Comp Metabolic panel	X				
Albumin	X				
prealbumin	X				
HbA1`C	X				
Urinalysis	X				
CT-Abdomen Pelvis	X				
Pre-op Standard of care	Х	x	X		
Randomization			x		
Placement of Study Mesh/Investigator Fee			x		
Assessment of Repair Failure or Hernia Recurrence				X	
QOL Assessment	x			Х	
Adverse Event Assessment	x			X	

133 134	Table of Contents
135	1. Objectives
136	a. Primary
137	b. Secondary
138	2. Background and Rationale
139	3. Experimental Plan
140	a. Study Design
141	b. Number of Centers
142	c. Number of Subjects
143	d. Estimated Study Duration
144	4. Subject Eligibility
145	a. Inclusion Criteria
146	b. Exclusion Criteria
147	5. Subject Enrollment
148	a. Subject Registration
149	b. Randomization and Treatment Assignment
150	c. Screen Failures
151	6. Treatment Procedures
152	a. Surgical Procedure
153	b. Mesh Properties
154	7. Study Procedures
155	a. Assessments
156	b. Follow up
157	c. Endpoint Determination
158	i. Definition of Endpoints

159	ii. Data Collection
160	8. Removal of subjects
161	a. Lost to follow up
162	9. Adverse Event Reporting
163	a. Definitions
164	i. Adverse Events
165	ii. Serious Adverse Events
166	b. Reporting Procedures for All Adverse Events
167	c. Serious Adverse Event Reporting Procedures
168	10. Statistical Considerations
169	a. Study Design
170	b. Study Endpoints, and Covariates
171	i. Primary Endpoint
172	ii. Secondary Endpoint
173	c. Sample Size Considerations
174	d. Planned Methods of Analysis
175	i. General Approach/Considerations
176	ii. Analysis of Key Study Endpoints
177	e. Study Oversight
178	i. Data Safety Monitoring Board (DSMB)
179	11. Investigational Product
180	a. Synthetic mesh
181	b. Biologic mesh
182	12. Regulatory Obligations
183	a. Informed Consent
184	b. Subject Confidentiality

- **13. Administrative and Legal Obligations**
- 186a. Protocol Amendments
- 187 b. Study Documentation and Storage
- 188c. Study Monitoring and Data Collection
- **14. References**
- **15. Appendix**

192 1. Objectives

193 The primary objective of this study is to determine the safety and efficacy of synthetic

194 versus biologic mesh in the repair of clean contaminated and contaminated ventral

195 hernias.

196 The specific aims of the proposal are:

- 197 1. To demonstrate that a single-stage repair of clean-contaminated (Class 2) or
- 198 contaminated (Class 3) ventral hernias using a macroporous light-weight
- 199 polypropylene synthetic mesh will result in superior clinical outcomes compared
- 200 to a biologic mesh.
- 201 a. Task 1- Demonstrate that repairs of clean-contaminated and 202 contaminated ventral hernias performed with macroporous light-weight 203 polypropylene mesh will result in fewer recurrent hernias and fewer 204 surgical site occurrences requiring procedural intervention at 24 205 postoperative months compared to repairs of clean-contaminated and 206 contaminated ventral hernias performed with biologic mesh.
- 207 b. Task 2- Compare postoperative pain, and demonstrate greater change in 208 preoperative to postoperative quality of life (QOL) at 1 month, 6 months, 209 12 months, and 24 months following clean-contaminated or contaminated 210 ventral hernia repair with a macroporous light-weight polypropylene mesh 211 versus a biologic prosthesis.
- 212 2. To demonstrate that a macroporous light-weight polypropylene mesh is the more 213 cost-effective strategy than a biologic prosthetic in clean-contaminated and
- 214 contaminated abdominal wall reconstruction.
- 215 a. Task 1-Estimate direct and indirect economic costs associated with clean-216 contaminated or contaminated ventral hernia repair using either 217
 - polypropylene mesh or biologic mesh from a limited societal perspective.

218	b. Task 2 – Perform health utility valuation in patients undergoing repair of
219	clean-contaminated or contaminated ventral hernias using either
220	polypropylene mesh or biologic mesh.
221	c. Task 3 – Calculate and compare incremental cost-effectiveness ratios for
222	patients undergoing repair of clean-contaminated or contaminated ventral
223	hernias using polypropylene mesh versus biologic mesh.
224	
225	2. Background and Rationale
226	
227	Ventral hernia (VH) is a frequent sequela of abdominal surgery, occurring after
228	up to 10-20% of laparotomy incisions.[1, 2] This results in almost 250,000 annual ventral
229	hernia repairs in the United States, making it one of the most common procedures
230	performed by general surgeons.[3] The annual health care expenditures associated with
231	hernia repairs now exceeds \$5 billion US dollars. [4] Since prosthetic mesh has been
232	shown to reduce recurrence rates by over 50%, most surgeons agree that some form of
233	prosthetic reinforcement should be added to all but the smallest ventral hernia repairs.[5]
234	Traditionally, this has involved a permanent prosthetic material in clean cases (without
235	bacterial contamination) at relatively low cost (approximately \$150 for a 900cm ² mesh).
236	The management of more complex hernias where infection or contamination is present
237	is not well defined. These patients are often severely disabled by the chronic infectious
238	nidus and suffer a very poor quality of life until reconstruction of their abdominal wall
239	anatomy and resolution of the infection. Historically, this has involved a two-stage
240	approach for hernias where simultaneous gastrointestinal, biliary, and/or genitourinary
241	procedures were performed or if there was an active infection of a prosthetic material.
242	The first stage involved removing the infectious or contaminated source and performing

a temporary closure of the abdominal wall with an absorbable material. This approach of
so-called "planned hernia" would almost uniformly require another major operation.

245 Approximately 6 months to one year later, the abdominal wall is repaired with a 246 permanent synthetic material in a clean setting. This approach avoids placing the 247 synthetic mesh in the field of contamination but is associated with significant morbidity 248 as it requires two operations and potential long-term disability during the recovery 249 period. Recognizing the limitations of this two-stage approach, new biologic materials 250 have been designed to offer a single-stage approach for infected and contaminated 251 abdominal wall reconstruction. These materials are derived from various sources 252 including human or porcine dermis, bovine pericardium, or intestinal submucosa. They 253 are processed in such a way as to render an acelluar collagen-rich graft that reportedly 254 acts as a cellular scaffold to allow native tissue in-growth and regeneration of tissue. 255 They are marketed as resistant to infection and therefore as a suitable hernia repair 256 material for clean-contaminated and contaminated abdominal wall defects. However, these products are very expensive with a 400cm² porcine dermal graft costing over 257 258 \$10,000, and currently represent the most rapidly growing market in hernia repair, with 259 estimates of almost \$500 million dollars in annual revenue by the year 2013.[6] Despite 260 the rapid acceptance of these materials, there is little preclinical or clinical evidence to 261 support their claims of regeneration, or that they provide a durable repair to the 262 abdominal wall in the setting of a clean-contaminated (Class 2) or a contaminated (Class 263 3) surgical procedure.

In our experience, the single-stage repair of contaminated abdominal wall defects with these biologic grafts has resulted in a 40%-80% recurrence rate with long term follow up.[7, 8] Given these disappointing results, other investigators have evaluated the role of synthetic mesh in the repair of contaminated abdominal wall defects in small, retrospective non-randomized trials.[9-11] Importantly, several recent modifications to

269 polypropylene mesh have yielded potential options for repairing contaminated defects. These modifications include reducing mesh weight, increasing mesh porosity, and 270 271 utilizing monofilament unwoven material that resists bacterial colonization in animal 272 studies.[12, 13] In fact, our lab has recently evaluated 9 commercially-available 273 prosthetic materials and has found that certain meshes can clear bacterial contamination 274 similar to biologic grafts in a rat hernia model. These materials have been used for years 275 in clean repairs of large complex abdominal wall defects with significantly lower 276 recurrence rates (<5%) than a biologic mesh.[14] Beyond doubt, a non-biased 277 prospective randomized trial is long overdue to compare the safety and efficacy of a 278 biologic graft versus a macroporous light-weight polypropylene synthetic material for the 279 repair of complex ventral hernias. This study will compare the safety, efficacy, and cost-280 effectiveness of a permanent synthetic mesh versus a biologic prosthesis for the open 281 repair of ventral hernias in the setting of clean-contaminated (Class 2) or contaminated 282 (Class 3) surgical procedures.

283 This study will have a major impact on the field of hernia surgery, as the study 284 findings will provide an objective guide to mesh selection, optimize surgical approaches 285 for complex ventral hernia repair, and ultimately significantly improve patient outcomes. 286 The lack of data as to the ideal mesh selection for complex ventral hernia repair has 287 resulted in physicians relying on anecdotal experience, industry marketing, and personal 288 bias. Presently, hundreds of thousands of patients are affected by this condition and 289 would significantly benefit from clear practice guidelines regarding the best approach 290 and the most appropriate prosthetic selection for repairing these complex ventral 291 hernias. In order to address this important need, the overall safety, efficacy, and cost-292 effectiveness of a biologic prosthetic as compared to a synthetic material for the open 293 repair of complex defects should be subjected to a prospective randomized clinical trial.

- 294 We hypothesize that reinforcement of single-stage open repairs of complex
- 295 abdominal wall defects with a macroporous light-weight polypropylene synthetic mesh

296 will result in significantly lower rates of hernia recurrence (HR) and surgical site

- 297 occurrences requiring procedural intervention (SSOPI) at 24 postoperative months, and
- greater cost-effectiveness compared to reinforcement with a biologic mesh. <u>We further</u>
- 299 <u>hypothesize that reinforcement with macroporous light-weight polypropylene synthetic</u>
- 300 mesh will be associated with a significantly greater change in preoperative to
- 301 postoperative patient-reported quality of life (QOL) compared to reinforcement with
- 302 <u>biologic mesh for clean-contaminated or contaminated ventral hernias.</u>
- 303
- **304 3. Experimental Plan**
- **a. Study Design**

306 We propose a multi-center parallel group, prospective randomized controlled trial 307 comparing 253 patients with clean-contaminated (Class 2) or contaminated (Class 3) 308 abdominal wall ventral hernias undergoing single-stage open repair. Patients will be 309 recruited from surgical clinics at one of 5 major abdominal wall reconstruction units. 310 After completing all screening and baseline procedures subjects will be randomized in a 311 1:1 fashion to receive either Soft Mesh[™] by CR Bard[™], a macroporous monofilament 312 polypropylene permanent mesh, or Strattice[™] mesh by LifeCell[™], a non-crosslinked 313 porcine dermal biologic graft, for the single-stage open reconstruction of clean-314 contaminated and contaminated abdominal wall defects. The primary outcome 315 variables will be the absence of surgical site occurrence requiring procedural 316 intervention and the absence of a hernia recurrence from the time of surgery up to 24 317 months of postoperative follow-up.

318

b. Number of Centers

319	Patient recruitment and surgical procedures will be performed at one of 5
320	academic medical centers with dedicated abdominal wall reconstruction units. Patients
321	will be recruited directly from the respective medical center's surgery clinics.
322	c. Number of Subjects
323	A total of 253 subjects will be randomized 1:1 to receive either a synthetic or
324	biologic mesh for the single stage treatment of a contaminated ventral hernia.
325 326	d. Study Duration
327	It is estimated that this trial will take 2-4 years to accrue all the surgical patients
328	and another 2 years to complete long term follow up.
329	4. Subject Eligibility
330	Investigators will maintain a screening log that includes all patients that were
331	consented for the trial and reasons for ineligibility or refusal to participate.
332	a. Inclusion Criteria
333	Patients will be included in this study if they are 21 years of age or older (including
334	women of childbearing age), undergoing a planned single-stage open reconstruction of a
335	contaminated (CDC wound class 2 or 3) (Appendix 3) abdominal wall defect (including
336	concomitant procedures: creation of a stoma, bowel resection, panniculectomy,
337	removing uninfected mesh, and gastrointestinal, genitourinary, or gynecologic
338	procedure) under general anesthesia, can achieve midline fascial closure, and have a
339	parastomal hernia or midline defect at least 9 cm ² .
340	b. Exclusion Criteria
341	Patients will be excluded from the study if they meet any of the following criteria:
342	are undergoing a laparoscopic or robotic repair of the abdominal wall defect, have a
343	CDC class 1 or 4 wound (see CDC guidelines below), have a defect that the surgeon
344	cannot achieve primary fascial apposition and requires a bridge of mesh, body mass

345 index (BMI) >45 kg/m², chronic immunosuppression including medically-induced with 346 >10 mg of prednisone/day, collagen vascular disorder, severe malnourishment (albumin 347 <2.0 g/dl), ascites refractory to medical management, end stage renal disease 348 (indwelling hemodialysis or peritoneal dialysis), pre-existing liver disease (hepatitis B or 349 C or total bilirubin >3.0 mg/dl), smoking history within 1 month of surgery, current 350 pregnancy, require removal of a prior surgical mesh during a planned ventral hernia 351 repair due to active mesh infection (as defined by a synthetic mesh that is not 352 incorporated into the tissue, is extracorporeally exposed, or has a chronic draining sinus 353 with clear fluid around the material; but not including synthetic mesh that is incorporated 354 into the abdominal wall and not infected), are unable to undergo successful retro-rectus 355 preperitoneal mesh placement, if they object to the implantation of porcine products, or if 356 they are participating in other clinical trials.

357 **5. S**

Subject Enrollment

Patients will participate if they have a clean contaminated or contaminated wound and can undergo a single staged ventral hernia repair. If patients are deemed eligible, they will be consented and randomized to receive either a synthetic or biologic mesh at the time of ventral hernia repair. Subjects, or their legally acceptable representatives, must personally sign and date the consent form before the commencement of any screening procedure.

364

a. Subject Registration

365
i. After completion of informed consent, (Appendix 6) each subject will
be registered into a RedCap database. All entries will be performed
at one of the 5 sites performing the procedures. Subsequent follow
up data will be completed by entering into local electronic medical
record and completing appropriate clinical report forms, adverse

370			event forms and any other outcomes required. In addition, the
371			subject's initials, OR date and site location will be entered.
372			ii. The computer-generated randomization code will be generated for
373			each subject. The first two digits will assign the site number, and the
374			subsequent numbers will be the unique patient identifier.
375		b.	Randomization and Treatment Assignment
376			i. Eligible patients will be randomized 1:1 in the operating room to
377			undergo open retromuscular incisional hernia repair with either
378			biologic or synthetic mesh after closure of the posterior sheath and
379			just prior to mesh deployment. Randomization will be stratified by
380			medical center, and CDC wound class (clean-contaminated or
381			contaminated) and occurred through a central concealed
382			randomization scheme housed in RedCap by using a random
383			number of blocks with a 1:1 ratio of assigning patients to each arm.
384			The investigator will be blinded to patient randomization assignment
385			until the point of intra-operative device placement whereas patients
386			will remain blinded to patient randomization until the conclusion of
387			the study period.
388		c.	Screen Failures
389			i. Registered subjects who are ineligible for the study based on
390			screening assessments will be considered screen failures and
391			registered as such with the reason for failure.
392	6.	Trea	atment Procedures
393		a.	Surgical Procedure
394			Patients undergoing open ventral hernia repair for clean-contaminated and
395			contaminated abdominal wall hernias meeting inclusion criteria will be

396 randomized to receive a synthetic mesh or a biologic mesh. Randomization 397 will be carried out using computer-generated randomization blocks at the 398 time of enrollment. Stratified randomized will be used with the strata 399 formulated by medical center then by clean-contaminated or contaminated surgical site class. The Investigator will be blinded to patient randomization 400 401 assignment until the point of intra-operative device use following final CDC 402 wound classification, whereas patients will remain blinded to patient 403 randomization until the conclusion of the study period. Patients randomized 404 to synthetic mesh will receive Soft Mesh™ (CR Bard™, Murray Hill, NJ), and 405 those patients randomized to biologic mesh will receive Strattice™ 406 (LifeCell[™], Branchburg NJ). The use of biologic and synthetic meshes in 407 clean-contaminated and contaminated fields is considered experimental; 408 however, the selection of these prosthetics was based on a careful review of 409 the multiple animal models, preclinical data, and our own clinical experience 410 with each of these materials placed in both clean and contaminated 411 abdominal wall reconstructions.[15-21] 412 413 Mesh Properties b. a. Soft Mesh^M is a medium-weight (44 g/m²) monofilament macroporous 414 415 polypropylene synthetic mesh. It does not have an anti-adhesive barrier 416 and must be place in an extraperitoneal position. Our lab has evaluated 417 this material in a chronic rat infection model and has shown clearance 418 rates of bacterial contamination comparable to biologic grafts (Figure 1). 419 This prosthetic has become our material of choice for routine abdominal 420 wall reconstruction and ventral hernia repairs, given its chemical and structural properties. In addition, we have also utilized Soft Mesh™ in the 421

422 retrorectus position in several cases of elective bowel surgery, 423 parastomal hernia repair, and inadvertent enterotomies with excellent 424 results including no mesh infections and no long-term hernia recurrences. 425 Other authors have reported excellent outcomes with polypropylene-426 based synthetic material placed in the extraperitoneal position.[14] 427 Interestingly, reports of placing several forms of polypropylene-based 428 meshes with anti-adhesive barrier coatings into the peritoneal cavity for 429 elective hernia repair with concomitant bowel surgery has shown very 430 high rates of mesh sepsis and subsequent mesh excision.[22] Mesh 431 placed in the intraperitoneal position comes in contact with the viscera 432 and therefore requires some form of an anti-adhesive barrier. We noted 433 that these anti-adhesive barriers prevent bacterial clearance in an 434 experimental study (Figure 1). Based on our findings, it is likely that both 435 the specific type of synthetic mesh and the compartment of the abdominal 436 wall in which it is placed will have significant effects on bacterial 437 clearance and success when placed in a clean-contaminated or 438 contaminated field. Potential extraperitoneal compartments for mesh 439 deployment include the onlay (placed above the fascia in the 440 subcutaneous space) or a retro-rectus (below the muscles but above the 441 peritoneum) position. The onlay position can result in early mesh 442 exposure if wound infection or breakdown occurs and has been shown in 443 other prospective randomized trials to result in a high rate of mesh 444 infections.[23] Alternatively, the retro-rectus repair with synthetic mesh 445 reinforcement has been demonstrated by multiple authors as a durable 446 repair with very low rates of mesh infection and hernia recurrence.[14, 24] 447 For these reasons, we feel it is particularly important to design this

448 experiment to use an unprotected macroporous medium-weight 449 polypropylene mesh placed in the retro-rectus position. 450 The Strattice[™] biologic mesh is derived from porcine dermis and b. 451 processed to remove the cells but maximally preserve the dermal matrix. 452 The processing avoids the use of collagen cross linking agents in a 453 reported effort to minimize immunogenic response, improve 454 biocompatibility, and ultimately promote rapid revascularization and tissue 455 regeneration.[25] Multiple biologic grafts have been developed to repair 456 contaminated abdominal wall defects, however little comparative data 457 exists to definitively guide selection of these grafts. Our lab has 458 performed several preclinical evaluations of these materials and has 459 chosen Strattice[™] based on our findings. Strattice[™] mesh showed 460 excellent biocompatibility from an immunologic perspective when 461 compared to other human and porcine derived biologic products.[26] This 462 selection should limit the potential for immunologic responses to the 463 biologic material confounding our results. We also evaluated the ability of 464 various biologic grafts to clear bacterial contamination in a chronic 465 infection rodent model.[27] Strattice[™] mesh had the highest rates of 466 bacterial clearance when compared to other porcine derived materials. 467 Interestingly, it appears that based on our findings, Soft Mesh[™] and 468 Strattice[™] result in similar rates of bacterial clearance, which is the 469 primary driving force of our renewed interest in evaluating the usage of 470 these inexpensive synthetic meshes in clean-contaminated and 471 contaminated fields.

- 472 **7.** Study Procedures
- a. Assessment

474 All patients will undergo our standard pre-operative evaluation and data 475 entered into the case report forms (Appendix 7). Briefly, it will include a 476 complete set of laboratory studies including complete blood count, 477 comprehensive metabolic panel, albumin, prealbumin, HbA1C (for diabetic 478 patients), and urinalysis. Pregnancy test will be performed for those patients 479 of child bearing potential. Photos may be taken of the anterior abdominal 480 wall. An abdominal pelvic CT scan will be obtained preoperatively in all 481 patients based on our standard approach, (abdominal pelvic CT scan within 482 the past twelve months is sufficient) and any issues postoperatively 483 (including suspected recurrence) will be evaluated with a CT scan or other 484 radiologic imaging as clinically indicated. Preoperative demographics and 485 clinical data including sex, race, age, body mass index (BMI), location of the 486 hernia, length and width of the hernia defect, wound classification (per CDC 487 guidelines, table 1), smoking status (active within 3 month of surgery), 488 medical history, surgical history of prior abdominal surgical procedures and 489 prior ventral/incisional hernia repairs will be documented. Intraoperative 490 details will include patient ASA score, patient temperature, use of epidural 491 catheters, size of fascial defect (measured as maximal width and length), 492 fascial layers released (external oblique, posterior rectus sheath, or 493 transversus abdominis muscle), adhesions, concomitant procedures, wound 494 characterization, mesh type, mesh placement, operative time, estimated 495 blood loss, blood transfusion requirement, perioperative antibiotic 496 administration (including type, dose, frequency, and times of initiation and 497 discontinuation), and intraoperative fluid administration. Postoperatively, 498 patients will be evaluated for signs and symptoms of complications along 499 with presence or absence of surgical site infections (SSIs) per CDC

500 definitions as categorized below, presence or absence of surgical site 501 occurrences (SSOs) and any procedural interventions required to treat these 502 SSOs, presence or absence of hernia recurrence and any reoperations, 503 length of hospital stay, discharge date, time to return of bowel function and 504 any readmission. Wound erythema treated with antibiotics will be considered 505 a wound cellulitis. Wounds that are opened and cultured will be 506 appropriately categorized as postoperative SSIs based on CDC definitions 507 (Appendix 4). Type, dose, frequency, and duration of antibiotics will be 508 recorded. Patients will also fill out HerQLes (Appendix 1) and EQ-5D 509 (Appendix 2) quality of life tools preoperatively and during each post-510 operative visit, at 4 weeks (± 2 weeks), 6 months (±,2 months), 12 months (± 511 <u>3 months</u>), and 24 months (\pm 4 months). There is substantial evidence that 512 the majority of hernia recurrences occur within the first 24 months after 513 repair.[5, 28, 29]

514 Preoperative antibiotic usage will be standardized (as per SCIP protocol) as 515 follows. All patients will receive a second generation cephalosporin within 60 minutes 516 prior to the surgical incisions. Patients with a prior history of penicillin allergy or MRSA 517 wound/mesh infections will instead receive a preoperative dose of intravenous 518 vancomycin. The exact drug, along with the dose, frequency, and time administered will 519 be recorded. All antibiotics will be discontinued after 24 hours of surgery unless 520 otherwise indicated. Prolonged antibiotic usage will be clearly documented as to 521 indication, type, dose, frequency, and duration.

522 The surgical approach to repairing these defects will be standardized, as 523 previously described. All patients will receive a chlorhexidine skin preparation, an 524 iodine-impregnated skin barrier, and all stoma sites will be over sewn at the muco-525 cutaneous junction to limit bacterial contamination prior to skin preparation. If patients 526 have an allergy to chlorhexidine, then Duraprep™ will be utilized. For any patient who 527 has an allergy to iodine, then a Steri-Drape may be used as a skin barrier. Hair will be 528 removed at the time of surgery with electric clippers. The midline fascia will be opened 529 and complete adhesiolysis performed to free up the entire abdominal wall. All 530 concomitant procedures will be performed prior to beginning the abdominal wall 531 reconstructive phase and documented. Intraoperative concomitant procedures will be 532 allowed unless they change the wound classification to a class 4. Acceptable 533 concomitant procedures include: the creation of a stoma, bowel resection, 534 gastrointestinal surgery, genitourinary surgery, gynecological surgery, panniculectomy, 535 and removing uninfected mesh. The abdominal wall is reconstructed by initially incising 536 the posterior rectus sheath just lateral to the linea alba. The release is performed at 537 least 5 centimeters above and below the fascial defect. The posterior rectus sheath is 538 then separated off the rectus muscle to the linea semilunaris. If additional release is 539 necessary to achieve fascial closure, the transversus abdominis muscle or the external 540 oblique muscle may be released at the discretion of the surgeon and documented. The 541 posterior components are then reapproximated to exclude the abdominal viscera from 542 the mesh. If the mesh cannot be placed in the retro-rectus or preperitoneal position, 543 then the patient will be excluded from the study. Unless contraindicated due to drug 544 allergies, a pulse lavage antibiotic irrigation using a 3 liter bag with Gentamycin (240 545 mg), Ancef (3gm), and Bacitracin (50,000 units) will be applied to the posterior rectus 546 sheath and subcutaneous tissues after the components are reapproximated and prior to 547 mesh placement. If there is a drug allergy, then pulse lavage irrigation with sterile saline 548 only will be applied. Final wound classification will occur just prior to mesh placement 549 per CDC criteria. Surgical wounds will be classified based on CDC criteria and only 550 Class 2 and 3 wounds will be included in this study:

551

552 Class 2: Clean-Contaminated

553 Operative wounds in which the respiratory, alimentary, genital*, or urinary tract

are entered under controlled conditions, and without unusual contamination.

- 555 Specifically, operations involving the biliary tract, appendix, vagina, and
- 556 oropharynx are included in this category, provided no evidence of infection or major
- 557 break in technique is encountered.
- 558 *Includes female and male reproductive tracts
- 559

560 Class 3- Contaminated

561 A surgical field with any of the following: open, fresh, accidental wounds;

562 operations with major breaks in sterile technique or gross spillage from the

563 gastrointestinal tract; and incisions in which acute, nonpurulent inflammation is

564 encountered.

565

566 Following wound classification, the allocation of the patient to either the biologic mesh 567 cohort or the permanent synthetic mesh cohort will be revealed to the operating surgeon, 568 according to the previously-described computer-generated block randomization scheme 569 stratified by wound classification and medical center. The corresponding prosthetic 570 material will then be placed with at least 5 cm of fascial coverage on all sides of the 571 defect. The mesh will be fixated with trans-abdominal #1 Maxon or PDS sutures at 5-10 572 cm intervals. Number of sutures to secure the mesh will be documented. All patients 573 will have closed suction drains placed above the mesh and below the fascial closure. 574 These drains will be removed postoperatively when the collected fluid is < 30 cc/day for 575 48 hours and documented. The fascia will be closed with a running or interrupted 576 Maxon or PDS #1 suture. The skin will be closed loosely with staples. Dry sterile

577	dressings will be placed at the conclusion of the procedure and will be removed on
578	postoperative day 2. No further dressings will be applied to the wound.
579	
580	b. Follow up Phase
581	Patients will be evaluated in the surgeon's clinic at prespecified post-operative
582	time points. Patients will receive a clinical exam, CRFs completed, patient
583	reported outcomes will be completed and radiologic imaging will be performed if
584	a recurrence is suspected. These time points will occur at 1 (<u>+</u> 15 days), 6 (<u>+</u> 2
585	months), 12 (\pm 2 months), and 24 (\pm 4 months) months after surgery or
586	additionally if complications occurred.
587	c. Definition of Endpoints
588	Postoperative complications will be defined and recorded on the CRF's based on CDC
589	standardized terms and definitions for Surgical Site Infections as follow: [30, 31]-See
590	appendix 4.
591	
592	Superficial Incisional Surgical Site infection (SSI)
593	A superficial incisional SSI must meet the following criteria:
594	Infection occurs within 30 days after the operative procedure AND involves only skin and
595	subcutaneous tissue of the incision AND patient has at least ONE of the following:
596	a. purulent drainage from the superficial incision.
597	b. organisms isolated from an aseptically-obtained culture of fluid or tissue from
598	the superficial incision.
599	c. superficial incision that is deliberately opened by a surgeon and is culture-
600	positive or not cultured AND the patient has at least one of the following signs or
601	symptoms: pain or tenderness, localized swelling, redness, or heat. A culture-negative
602	finding does not meet this criterion.

603 d. diagnosis of superficial incisional SSI by the surgeon or attending physician.

604

605 NOTE:

a. Do NOT report stitch abscess (minimal inflammation and discharge confined to
 suture penetration site) as an infection.

b. Do NOT report a localized stab wound or pin site infection. Instead, report
these as skin or soft tissue infections, depending on their depth.

610 c. "Cellulitis" by itself does NOT meet criteria for superficial incisional SSI

611 d. If infection involves or extends into the fascial and muscle layers report as a

612 deep incisional SSI.

613

614 **Deep Incisional SSI**

615 A **deep incisional SSI** must meet the following criteria:

616 Infection occurs within 30 or 90 days after the operative procedure AND the infection

617 involves deep soft tissues (e.g., fascial and muscle layers) of the incision AND patient

618 has at least ONE of the following:

a. purulent drainage from the deep incision but not from the organ/space

620 component of the surgical site

b. a deep incision spontaneously dehisces or is deliberately opened by a surgeon
AND is culture-positive or not cultured AND the patient has at least one of the following
signs or symptoms: fever (>38°C), or localized pain, or tenderness. A culture-negative
finding does not meet this criterion.

625 c. an abscess or other evidence of infection involving the deep incision is found on

626 direct examination, during invasive procedure, or by histopathologic examination or

627 imaging test.

d. diagnosis of a deep incisional SSI by a surgeon or attending physician.

629	
630	NOTE:
631	a. Classify an infection that involves both superficial and deep incision sites as a
632	deep incisional SSI.
633	b. Classify infection that involves superficial incisional, deep incisional, and
634	organ/space sites as deep incisional SSI. This is considered a complication of
635	the incision.
636	
637	
638	Organ/Space SSI
639	An organ/space SSI must meet the following criteria:
640	Infection occurs within 30 or 90 days after the operative procedure AND infection
641	involves any part of the body, excluding the skin incision, fascia, or muscle layers that is
642	opened or manipulated during the operative procedure AND the patient has at least
643	ONE of the following:
644	a. purulent drainage from a drain that is placed into the organ/space
645	b. organisms isolated from an aseptically obtained culture of fluid or tissue in the
646	organ/space
647	c. an abscess or other evidence of infection involving the organ/space that is
648	found on direct examination, during invasive procedure, or by histopathologic
649	examination or imaging test.
650	d. diagnosis of an organ/space SSI by a surgeon or attending physician and meets
651	at least one criterion for a specific organ/space infection site listed in NHSN.
652	All study co-investigators agree to follow these CDC definitions of SSIs for study
653	subjects enrolled in this trial to maximize objectivity of this study measure.
654	

655 Surgical Site Occurrence

A surgical site occurrence (SSO) will be defined as a complication or adverse event occurring at the surgical site, including but not limited to, superficial, deep incisional, and organ/space surgical site infections. Consensus definitions and treatment plans for common SSOs following open complex ventral hernia repair were developed *a priori* by the co-investigators for the purposes of this study protocol (Appendix 6). All study co-investigators agree to follow these consensus definitions and treatment plans for study subjects enrolled in this trial to maximize objectivity of this outcome measure.

663

664 Surgical Site Occurrences Requiring Procedural Intervention

A surgical site occurrence requiring procedural intervention (SSOPI) will be defined as a complication or adverse event occurring at a surgical site that is managed or treated with an invasive procedure. Consensus definitions and treatment plans for common SSOs following open complex ventral hernia repair were developed *a priori* by the co-investigators for the purposes of this study protocol (Appendix 5). All study coinvestigators agree to follow these consensus definitions and treatment plans for study subjects enrolled in this trial to maximize objectivity of this study measure.

672

673 Ventral Hernia Recurrence

A ventral hernia recurrence (HR) will be defined as any fascial defect of the anterior abdominal wall located within 7 cm of the index ventral hernia repair site detected by physical exam or abdominal computed tomography (CT) examination. These defects will be categorized as to whether they occur at the midline or parastomal hernia site, or both. Alternatively, for patients that are not amenable to come to the hospital for an in-person visit, recurrence will be assessed using a validated patientreported outcome tool denominated the Ventral Hernia Recurrence Inventory

681 (VHRI)(Appendix 1).[32] The VHRI is a short 3-question survey that can be applied in 682 person or through a telephone contact, and was shown to have higher sensitivity and 683 specificity to diagnose hernia recurrence than physical examination. Also, it was shown 684 to have the ability to rule out hernia recurrence when patients answer "no" to its 685 questions. Patients that respond yes to any question in the hernia recurrence inventory 686 will be encouraged to present for a clinical and radiographic evaluation. Any patient that 687 reports a bulge and does not have further follow up will be considered to have a 688 recurrence. All radiographic imaging will be reviewed by 3 blinded investigators and 689 consensus (2 of 3) will be considered for confirmation of the repair integrity.

690

8. Removal of Subjects

A subject has the right to withdraw from the study at any time, for any reason, without prejudice to his or her future medical care by the physician or at the institution. Any subject who withdraws consent to participation in the study will immediately be removed

694 from further treatment and/or study observation on the date of request. The investigator

has the right to withdraw a subject from the study if any of the following occurs:

• Refusal by the subject to continue observations

• Decision by the investigator that termination is in the subject's best medical interest
• Loss to follow-up

699 Should a subject (or legally acceptable representative) request or decide to withdraw

from the study, all efforts will be made to complete and report the observations as

thoroughly as possible up to the date of withdrawal. All information should be reported

- on the applicable case report forms. A complete final evaluation and assessments
- should be made at the time of the subject's withdrawal. The End of Study case report

form will be completed with an explanation for the withdrawal. If the withdrawal of a

- subject is due to an adverse event, follow-up visits should be scheduled until the
- adverse event has resolved or stabilized. Unless consent has been withdrawn, follow-up

707	data on deaths an	d hospitalizations will be collected until study termination. However,
708	unless specifically	requested by the patient, the patient will be followed for the primary
709	endpoint until end	of study.
710	a. Lost t	o follow up
711	A patie	ent will be considered lost to follow up after at least 6 attempts at
712	contact via	telephone, email and mailing of the patient reported outcomes forms
713	with a 10 d	ollar incentive.
714		
715	9. Adverse Ev	vent Reporting
716	a. Definit	tions
717	i.	Adverse Events
718		An adverse event is an undesirable medical occurrence (sign,
719		symptom, or diagnosis) that occurs in a subject after the initiation of
720		the study, whether or not considered to be device related. Elective
721		hospitalizations for pre-existing conditions (ie, any systemic illness
722		or elective surgery) are not adverse events. Abnormal laboratory
723		values should not be reported as adverse events; however, any
724		clinical consequences of such abnormal values should be reported
725		as adverse events.
726	ii.	Serious Adverse Events
727		A serious adverse event is defined by regulatory agencies as one
728		that suggests a significant hazard or side effect, regardless of the
729		investigator's or sponsor's opinion on its relationship to
730		investigational product. This includes, but may not be limited to, any
731		event that (at any dose):
732		• is fatal

733	 is life-threatening (places the subject at immediate risk of death)
734	 requires in-patient hospitalization or prolongation of existing
735	hospitalization
736	 is a persistent or significant disability/incapacity
737	 is a congenital anomaly/birth defect
738	A hospitalization meeting the regulatory requirement for "serious"
739	criteria is any in-patient hospital admission that includes a minimum
740	of an overnight stay in a health care facility.
741	
742	Any event that does not exactly meet this definition yet which, in the
743	investigator's opinion, represents a significant hazard, can be
744	assigned the "other significant hazard" regulatory reporting serious
745	criteria.
746	
747	Additionally, important medical events that may not be immediately
748	life-threatening or result in death or hospitalization but which may
749	jeopardize a subject or require intervention to prevent one of the
750	outcomes listed above, or result in urgent investigation, may be
751	considered serious.
752	
753	b. Reporting Procedures for All Adverse Events
754	All adverse events occurring after randomization observed
755	by the investigator or reported by the subject (whether or not
756	attributed to investigational product), will be reported on the case
757	report form. Medically significant adverse events considered related
758	to the investigational product by the investigator or the sponsor will

759	be followed until resolved or considered stable. The following
760	attributes must be assigned by the investigator: description; dates of
761	onset and resolution and action taken. The investigator may be
762	asked to provide follow-up information.
763	
764	All adverse events, serious or not, that result in a subject's
765	permanent withdrawal from the study must be reported in the CRF.
766	The End-of-Study case report form will be completed, giving details
767	of the withdrawal and, if needed, the General Comments case
768	report form will also be completed.
769	
770	All deaths occurring on study must be reported and cause of death
771	should be investigated. This includes deaths until the termination of
772	the study or a maximum of 48 months since enrollment of the
773	subject, whichever is earlier.
774	
775	It will be left to an investigator's clinical judgment as to whether or
776	not an adverse event is of sufficient severity to require a subject's
777	removal from treatment.
778	
779	
780	c. Serious Adverse Event Reporting Procedures
781	All serious adverse events must be reported in the CRF within 1
782	working day of discovery or notification of the event. Initial serious
783	adverse event information and all amendments or additions must be
784	recorded on a Serious Adverse Event Report form.

785	
786	10. Statistical Considerations
787	a. Study Design
788	i. Randomized controlled, parallel, single blinded multi-center trial
789	b. Study Endpoints
790	i. Primary Endpoints
791	1. Efficacy- hernia recurrence rate at 2 years' time point.
792	2. Safety-Rate of Surgical site occurrence requiring a procedural
793	intervention (SSOPI) throughout the study period.
794	ii. Secondary Endpoints
795	1. Adverse Events
796	a. Overall Rates
797	b. Clavien Dindo Grades I-V
798	c. Comprehensive Complications Index
799	2. Hernia Related Quality of Life- HERQLES, Change from
800	baseline
801	3. Overall Quality of Life-EQ5D, Change from baseline
802	4. Cost
803	c. Sample Size Considerations
804	i. We are investigating two primary outcomes: surgical site occurrences
805	requiring procedural intervention (SSOPI) and hernia recurrence (HR).
806	Surgical site occurrences requiring procedural intervention (SSOPI) is a
807	repeated binary outcome measurement. Hernia recurrence (HR) is a single
808	binary outcome measurement. In a multi-institutional retrospective review of
809	clean-contaminated and contaminated ventral hernia repair, hernia recurrence
810	rates were 29.21% versus 7%, and surgical site occurrences requiring

811	procedural intervention were 39.02% versus 9.01% for the biological mesh
812	and permanent synthetic mesh cohorts, respectively. Based on review of
813	these multi-institutional data, an estimated 253 patients will be enrolled in the
814	proposed trial. Assuming a maximum 20% loss to follow-up, 202 patients will
815	remain in the study sample for a 1:1 randomized allocation to each treatment
816	arm (101 subjects per cohort). At the two-tailed overall (two hypotheses) type
817	I error rate of 0.05, the study will have 92% power to detect a significant
818	difference in the rates of hernia recurrence (29.21% vs. 7%, and a 100%
819	power to detect a significant difference in surgical site occurrences requiring
820	surgical intervention for the primary hypothesis (39.02% vs. 9.01%; with four
821	repeated measurements and autoregressive correlation of rho=0.5) With 4
822	centers each performing approximately 1 eligible procedures per week, there
823	will be 192 total procedures performed per year, from which it would be
824	feasible to achieve the total enrollment goal of 253 subjects within 2 years.
825	d. Planned Methods of Analysis
826	i. General Approach
827	Continuous data will be described using median values with
828	interquartile ranges (IQR) and comparisons made using Wilcoxon's
829	rank sum test. Categorical data will be described using counts and
830	proportions with comparisons performed using Pearson's chi square
831	or Fisher's exact test.
832	ii. Analysis of Key Study Endpoints
833	1. Primary Endpoint
834	a. Specific Aim 1 - To demonstrate that a single-stage
835	repair of clean-contaminated (Class 2) or
836	contaminated (Class 3) ventral hernias using a

837	macroporous light-weight polypropylene synthetic
838	mesh will result in superior clinical outcomes
839	compared to a biologic mesh.

840 b. Primary Analyses of Primary Outcomes: The 841 primary outcomes are rates of surgical site 842 occurrences requiring procedural intervention (SSOPI) 843 and hernia recurrence (HR) assessed postoperatively 844 at 1 month, 6 months, 12 months, and 24 months. For 845 SSOPI with 4 repeated binary measurements, a 846 generalized mixed model analysis with repeated 847 measures will be performed to determine if a 848 significant difference exists between the biologic mesh 849 and the permanent synthetic mesh cohorts in the rate 850 of SSOPI. For HR, which is a single binary outcome, 851 simple chi-square tests will be used for unadjusted 852 analyses and a logistic regression model will be used 853 for adjusted analyses. As this is a randomized trial, 854 differences in baseline demographic and clinical 855 characteristics between the biologic mesh cohort and 856 the permanent synthetic mesh cohort are expected to 857 occur at random. Any significant differences found 858 among the demographic or preoperative clinical 859 characteristics between the two treatment groups will 860 be controlled for in the final analysis to limit potential 861 confounding of results.

862

c. Secondary Analyses of Primary Outcomes:

863	These primary outcomes will also be assessed
864	as a time-to-hernia-recurrence. In these analyses, the
865	time-to-recurrence in the synthetic mesh group will be
866	compared to the time-to-recurrence in the biologic
867	mesh group using a two-sided log-rank test. The null
868	hypothesis is that the time-to-recurrence is the same
869	between the two groups (H0: Hazard Ratio = 1), and
870	the alternative hypothesis is that the time-to-
871	recurrence is significantly greater for the permanent
872	synthetic mesh cohort compared to the biologic mesh
873	cohort (H1: Hazard Ratio not= 1). Since this is a
874	randomized clinical trial, observed differences in other
875	covariates between the two study groups are
876	assumed to arise by chance. Therefore, the simple
877	unadjusted analysis is sufficient to answer the
878	research question, assuming adequate power (see
879	above). However, since the association between
880	other covariates and time-to-recurrence may be of
881	interest and because group imbalances may occur
882	due to chance, it is of interest to consider further
883	analyses that adjust for covariates in the relationship
884	of time-to-recurrence and mesh type. To that end, the
885	following multivariable models are pre-specified: 1)
886	Demographics: age, race, gender, and mesh type;
887	and 2) Known linkages to hernia recurrence: BMI,
888	history of smoking, size of defect, number of previous

889	hernia repairs, and mesh type. These models will be
890	fit with Cox proportional hazards models. If other
891	covariates are found to be highly imbalanced between
892	groups or found to be associated with time-to-
893	recurrence, they can also be included in multivariable
894	models; however, this type of post-hoc model
895	selection is to be considered inferior to the pre-
896	specified models and is speculative in nature. A
897	similar analysis will ensue for the time-to-a-healed-
898	wound outcome. The null hypothesis is that the time-
899	to-a-healed-wound is the same between the two
900	groups (H0: Hazard Ratio = 1), and the alternative
901	hypothesis is that the time-to-a-healed-wound is
902	significantly greater for the permanent synthetic mesh
903	cohort compared to the biologic mesh cohort (H1:
904	Hazard Ratio not= 1).
905	2. Secondary Endpoint
906	The secondary outcomes are pain and quality of life
907	(QOL). The assessment of the association between these
908	outcomes and mesh type will parallel what was described above
909	for the primary outcome. The differences are as follows. First,
910	the primary analysis will utilize an ANCOVA model adjusting for
911	baseline pain (QOL) and correlations among repeated
912	measurements. The null hypothesis is that the pain (QOL) is the
913	same, on average, between the synthetic and biologic mesh
914	groups (H0: Beta-mesh-type = 0). The alternative hypothesis is

915 that the pain (QOL) is different, on average, between the two groups (H1: Beta-mesh-type not= 0). Second, the multivariable 916 917 modeling will utilize multiple linear regressions. A mixed model 918 analysis with repeated measures will be performed to determine 919 if a significant difference exists between the biologic mesh and 920 the permanent synthetic mesh cohorts in the mean change in 921 score from the preoperative assessment to the postoperative 922 assessments at 1 month, 6 months, 12 months, and 24 months 923 for the EQ-5D and HerQLes quality of life instruments. The null 924 hypothesis is that there is no significant difference between the 925 biologic mesh and the permanent synthetic mesh cohorts in the 926 mean change in score from the preoperative to the postoperative 927 assessments at any of the time points for either the EQ-5D or the 928 HerQLes quality of life instruments. The alternate hypothesis is 929 that there is a significantly greater change in EQ-5D and 930 HerQLes scores from the preoperative assessment to the 931 postoperative assessment at each of the time points for the 932 permanent synthetic mesh cohort compared to the biologic mesh 933 cohort

934In these data analyses, we will explore the possibility of935medical center effect and treatment by medical center interaction.936In particular, in the regression analyses, we will use indicator937variables for medical center effect and indicator variable*treatment938for possible treatment by medical center interaction. If treatment939by medical center interaction is significant, then it is more

940appropriate that the treatment effects are summarized by medical941center.

942Cost analysis: Demonstrate that a macroporous medium-943weight polypropylene mesh is the more cost-effective strategy944than a biologic prosthetic in clean-contaminated and contaminated945abdominal wall reconstruction.

946 The first task to address this specific aim will be to 947 estimate direct and indirect economic costs associated with clean-948 contaminated and contaminated open ventral hernia repair. A 949 micro-costing approach will be used assuming a limited societal 950 perspective. Costs associated with the preoperative, operative, 951 and postoperative phases of care will be considered as it pertains 952 to the management of the ventral hernia. In most cases, one to 953 two preoperative clinic visits will be necessary. Final operative 954 costs will be based on each patient's actual inpatient encounter 955 cost obtained from the participating institutions. Postoperative 956 costs will account for routine outpatient visits, costs incurred for 957 complications, and time lost from work due to ventral hernia 958 management. All costs will be reported in U.S. dollars, adjusted 959 for the years in which the data were obtained. Should institutional 960 data not be available for a particular cost, the best available 961 evidence from currently published analyses will be used. The 962 second task for this specific aim is to perform health utility 963 valuation in patients undergoing open repairs of clean-964 contaminated and contaminated ventral hernias. Patients will be 965 administered the EQ-5D and the HerQLes instruments at one

966	preoperative visit and postoperatively at scheduled visits at 4
967	weeks (\pm 2 weeks), 6 months (\pm 2 month), and 12 months (\pm 3
968	months), and 24 months (\pm 4 months). HerQLes and EQ-5D
969	valuations will be converted to health utility estimates based on
970	published norms from the Agency for Healthcare Research and
971	Quality (AHRQ). Quality-adjusted life years (QALYs) will be
972	calculated based on these health utilities obtained in the
973	postoperative phase. For a given strategy (light-weight
974	macroporous polypropylene mesh or biologic mesh), it is
975	anticipated that health utility variation will be affected more than
976	survival. As such, calculations of QALYs will assume that all
977	patients survive during the 24 month follow-up period, but differ in
978	their health utility valuation.
979	Cost-Effectiveness Evaluation
980	Once costs and QALYs have been calculated for each
981	strategy, a decision analysis model will be constructed
982	incorporating these values and the associated outcomes and
983	complications that are thought to have an impact on which
984	strategy is the better choice for patients. One-way and two-way
985	sensitivity analyses will be performed to help determine the
986	degree to which each variable impacts the decision to choose
987	either a light-weight macroporous polypropylene mesh or biologic
988	mesh for repair of clean-contaminated or contaminated ventral
989	hernias. If appropriate, a multi-way probabilistic sensitivity
990	analysis will be performed incorporating the uncertainty
991	associated with known values for certain variables. Costs,

992		effectiveness (as measured by QALYs), cost-effectiveness ratios,
993		and incremental cost-effectiveness ratios will be calculated to help
994		determine the best strategy for mesh selection based on the
995		results from this study and published data.
996		
997	e.	Study Oversight
998		i. Data Safety and Monitoring Board (DSMB)
999		The DSMB is an independent, multidisciplinary group comprised of
1000		surgical and statistical representatives. Safety data (adverse events,
1001		deep SSI rates, mesh infections, reoperations, and hernia recurrence
1002		rates) will be analysed by an independent statistician and will be
1003		reviewed on a 50 patient enrolment interval.
1004		The DSMB will be empowered to recommend early termination of the
1005		study if there is evidence of harm or benefit based on all measures
1006		reviewed.
1007		The complete monitoring plan can be found in Appendix 8.
1008		
1009	11. Inve	stigational Product
1010	a.	Strattice Mesh
1011	b.	Bard Soft Mesh
1012		Compliance
1013		i. Mesh products will be stored and handled in compliance with
1014		standard of care processes at the local institution.
1015		ii. Patients randomized to each mesh shall undergo repair with the
1016		assigned mesh. Any patient not receiving the allotted mesh will be
1017		registered and considered a protocol violation.

1018 **12. Regulatory Obligations**

1019

a. Informed Consent (see appendix 6)

1020 For each subject, written informed consent will be obtained prior to 1021 any protocol-related activities. As part of this procedure, the principal 1022 investigator, surgeon co-investigator, or one of the approved study 1023 coordinators must explain orally and in writing the nature, duration, and 1024 purpose of the study in such a manner that the subject is aware of the 1025 potential risks, inconveniences, or adverse effects that may occur. The 1026 subjects will be informed that they may withdraw from the study at any time. 1027 Subjects will receive all information that is required by federal regulations.

1028 After a potential study patient is identified, the investigator or the 1029 study coordinator listed in this protocol as a person who will obtain consent 1030 will be responsible for instituting the informed consent process in a face-to-1031 face manner. Before starting any study procedures, the investigator will 1032 discuss the proposed research study in detail with the potential subject 1033 during the office visit to discuss treatment options. The subject will be 1034 allowed ample time to read and review the informed consent document, and 1035 ask questions. The informed consent document will be reviewed with the 1036 subject in depth by the participating investigator or designated member of 1037 the research team to ensure that the potential participant has a good understanding of the study protocol; what is required of the study 1038 1039 participants; the potential risks and benefits of study participation; and his or 1040 her rights as a study participant. The investigators will be available by 1041 phone or office visit to answer any questions that the participant may have. 1042 After consideration, the subject may return if necessary for another visit with 1043the investigator to discuss the study, ask questions, and sign the informed1044consent document to participate in this study.

After the subject has read and reviewed the informed consent document and has agreed to participate, he/she will be asked to sign and date the document. The study member obtaining consent will also sign and date the form, and documentation of the informed consent process will be included in the research file (i.e., the person who obtained consent, where and when consent was obtained, and who was present during the process).

1051 A copy of the consent form will be given to the subject.

1052 PROVISIONS FOR SUBJECTS FROM VULNERABLE POPULATIONS

1053The population to be studied includes adults 21 years of age or over, so1054children are therefore excluded. Decisionally-impaired and cognitively-1055impaired persons will not be approached to participate in this study as we are1056seeking subjects who have the capacity to understand and actively consent1057to the procedure independently. Pregnant women will be excluded from1058participating in this study.

1059 Staff and employees of the participating sites (Cleveland Clinic, 1060 Greenville Health Systems Vanderbilt University Medical Center, and 1061 Washington University) are considered vulnerable populations. Staff and 1062 employees of any of the participating sites may be eligible to participate in 1063 this study. Since subjects may or may not benefit from this study, we do not 1064 want to exclude this population. If an employee is a potential candidate for 1065 this study, the subject will be informed during the consent process that his/her 1066 participation or refusal to will in no way influence grades, employment, or 1067 subsequent recommendations. Every effort will be made to prevent coercion 1068 during this initial process and throughout study participation. According to

1069 IRB policy, students and house staff cannot be asked to participate in
1070 research conducted while under the direct supervision of the investigator, so
1071 those subjects will not be enrolled.

1072 In those instances where potential participants cannot read the consent 1073 form because they do not speak English, we will work with the IRB to develop 1074 a language-appropriate consent form. In addition, a gualified translator will 1075 be present to assist with obtaining the informed consent of the participant. 1076 In addition, in the unusual situation where a subject cannot read a 1077 consent form due to illiteracy or blindness, a member of the research study 1078 staff will read and explain the consent form to the participant or to the 1079 participant's legally-authorized representative. A witness, who will sign and

date the consent form, must also be present during this oral presentation.

1081

1080

b. Subject Confidentiality

1082 Anonymity and confidentiality of subjects participating in this study 1083 will be maintained. The only potential identifiers on any study documents 1084 submitted to the sponsor or designee will be subject study numbers. 1085 dates of birth, and dates of procedures. Every effort will be made to 1086 maintain the confidentiality of documents that identify the subject by name 1087 (e.g., signed informed consent documents, clinic charts), except to the 1088 extent necessary to allow monitoring by the Center for Clinical Research 1089 at Cleveland Clinic, internal monitoring by any of the participating sites, 1090 or auditing by the FDA or other regulatory authorities. Should the name 1091 and/or address of a subject participating in this trial be on a document 1092 submitted to the FDA or other regulatory authority (e.g., laboratory 1093 report), the name and/or address will be completely blocked out and 1094 replaced with the subject study number.

1095Additionally, patient charts and clinical records will be requested1096and reviewed so that protocol adherence and source documentation can1097be verified. There is a possibility that the Institutional Review Boards of1098any of the participating sites, the Food and Drug Administration, and1099possibly foreign regulatory agencies may review the de-identified study1100records.

1101 All information collected, such as name or medical record number, 1102 will be stored utilizing a customized Research Electronic Data Capture 1103 (REDCap®) database program for multi-institutional data collection. This 1104 is in a secure network/firewall protected electronic database to which only 1105 the investigator and the designated members of the study team will have 1106 access using an individual assigned login and password. Only approved 1107 study members listed on the IRB protocol will have access to the 1108 separately-stored master list. User rights will be assigned such that the 1109 designated research coordinator at each site may only enter and review 1110 data from that site. Only the Principal Investigator, Lead Research 1111 Coordinators, and Biostatisticians will be granted access to retrieve 1112 patient data from all sites for routine data quality assessments and data 1113 analyses. All electronic records pertaining to the clinical study will be 1114 password-protected, and only approved study members listed on the IRB 1115 protocol will have password access.

1116Any information about the subject collected on paper, as well as1117the subject enrollment log linking the subjects to their identifiers, will be1118kept under lock and key in the Department of Surgery at the1119corresponding participating site.

1120 **13. Administrative and Legal Obligations**

 See Appendix 8 See Appendix 8 b. Alternatives to Participation The subjects are under no obligation to participate in this study. The subjects may decide not to have mesh used for their hernia repairs. The PI or surgeon co-investigator at each site will discuss all available options. Those subjects not willing to participate in this study may be considered for the alternative treatment of primary defect closure/hernia repair with or without a similar biologic or synthetic product. 	1121	a. Study Monitoring
11231124 b. Alternatives to Participation 1125The subjects are under no obligation to participate in this study.1126The subjects may decide not to have mesh used for their hernia repairs.1127The PI or surgeon co-investigator at each site will discuss all available1128options. Those subjects not willing to participate in this study may be1129considered for the alternative treatment of primary defect closure/hernia1131repair with or without a similar biologic or synthetic product.11311132113311341135113611361137113811391140114111411142	1122	See Appendix 8
1124b. Alternatives to Participation1125The subjects are under no obligation to participate in this study.1126The subjects may decide not to have mesh used for their hernia repairs.1127The PI or surgeon co-investigator at each site will discuss all available1128options. Those subjects not willing to participate in this study may be1129considered for the alternative treatment of primary defect closure/hernia1130repair with or without a similar biologic or synthetic product.113111321133113411361137113811391140114111411142	1123	
1125The subjects are under no obligation to participate in this study.1126The subjects may decide not to have mesh used for their hernia repairs.1127The PI or surgeon co-investigator at each site will discuss all available1128options. Those subjects not willing to participate in this study may be1129considered for the alternative treatment of primary defect closure/hernia1130repair with or without a similar biologic or synthetic product.1131113211331134113511361139114011411142	1124	b. Alternatives to Participation
1126The subjects may decide not to have mesh used for their hernia repairs.1127The PI or surgeon co-investigator at each site will discuss all available1128options. Those subjects not willing to participate in this study may be1129considered for the alternative treatment of primary defect closure/hernia1130repair with or without a similar biologic or synthetic product.1131113211331134113511361139114011411142	1125	The subjects are under no obligation to participate in this study.
1127The PI or surgeon co-investigator at each site will discuss all available1128options. Those subjects not willing to participate in this study may be1129considered for the alternative treatment of primary defect closure/hernia1130repair with or without a similar biologic or synthetic product.1131113211331134113511361139114011411142	1126	The subjects may decide not to have mesh used for their hernia repairs.
1128options. Those subjects not willing to participate in this study may be1129considered for the alternative treatment of primary defect closure/hernia1130repair with or without a similar biologic or synthetic product.113111321133113411351136113811391140114111411142	1127	The PI or surgeon co-investigator at each site will discuss all available
1129considered for the alternative treatment of primary defect closure/hernia1130repair with or without a similar biologic or synthetic product.11311132113211331133113411351136113711381139114011411142	1128	options. Those subjects not willing to participate in this study may be
1130 repair with or without a similar biologic or synthetic product. 1131 1132 1133 1133 1134 1135 1135 1136 1137 1138 1139 1140 1140 1141 1142 1142	1129	considered for the alternative treatment of primary defect closure/hernia
 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 	1130	repair with or without a similar biologic or synthetic product.
 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 	1131	
 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 	1132	
1134 1135 1136 1137 1138 1139 1140 1141 1142	1133	
1135 1136 1137 1138 1139 1140 1141 1142	1134	
1136 1137 1138 1139 1140 1141 1142	1135	
1137 1138 1139 1140 1141 1142	1136	
1138 1139 1140 1141 1142	1137	
1139 1140 1141 1142	1138	
1140 1141 1142	1139	
1141 1142	1140	
1142	1141	
	1142	
1143	1143	

1144 14. References:

1145

1146 1. Mudge, M. and L.E. Hughes, Incisional hernia: a 10 year prospective study of 1147 incidence and attitudes. Br J Surg, 1985. 72(1): p. 70-1. 1148 2. Regnard, J.F., et al., Ventral incisional hernias: incidence, date of recurrence, 1149 localization and risk factors. Ital J Surg Sci, 1988. 18(3): p. 259-65. 1150 3. DeFrances, C.J., et al., 2006 National Hospital Discharge Survey. Natl Health Stat Report, 2008(5): p. 1-20. 1151 1152 Poulose, B.K., et al., Epidemiology and cost of ventral hernia repair: making the 4. 1153 case for hernia research. Hernia, 2011. 1154 Luijendijk, R.W., et al., A comparison of suture repair with mesh repair for 5. incisional hernia. N Engl J Med, 2000. 343(6): p. 392-8. 1155 1156 6. Harth, K.C. and M.J. Rosen, Major complications associated with xenograft 1157 biologic mesh implantation in abdominal wall reconstruction. Surg Innov, 2009. 16(4): p. 324-9. 1158 1159 7. Blatnik, J., J. Jin, and M. Rosen, Abdominal hernia repair with bridging acellular 1160 dermal matrix--an expensive hernia sac. Am J Surg, 2008. 196(1): p. 47-50. 1161 8. Jin, J., et al., Use of acellular dermal matrix for complicated ventral hernia repair: 1162 does technique affect outcomes? J Am Coll Surg, 2007. 205(5): p. 654-60. Kelly, M.E. and S.W. Behrman, The safety and efficacy of prosthetic hernia repair 1163 9. 1164 in clean-contaminated and contaminated wounds. Am Surg, 2002. 68(6): p. 524-8; discussion 528-9. 1165 1166 10. Campanelli, G., et al., Intestinal resection and multiple abdominal hernia mesh 1167 repair: is the combination safe and feasible? Chir Ital, 2004. 56(6): p. 839-42. 1168 11. Birolini, C., et al., Elective colonic operation and prosthetic repair of incisional 1169 hernia: does contamination contraindicate abdominal wall prosthesis use? J Am Coll Surg, 2000. 191(4): p. 366-72. 1170 Engelsman, A.F., et al., In vivo evaluation of bacterial infection involving 1171 12. 1172 morphologically different surgical meshes. Ann Surg, 2010. 251(1): p. 133-7. 1173 13. Engelsman, A.F., et al., Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg, 2008. 95(8): p. 1051-9. 1174 1175 14. Igbal, C.W., et al., Long-term outcome of 254 complex incisional hernia repairs 1176 using the modified Rives-Stoppa technique. World J Surg, 2007. 31(12): p. 2398-1177 404. 1178 15. Bellows, C.F., A. Alder, and W.S. Helton, Abdominal wall reconstruction using 1179 biological tissue grafts: present status and future opportunities. Expert Rev Med 1180 Devices, 2006. 3(5): p. 657-75. 1181 Celik, A., et al., The shrinking rates of different meshes placed intraperitoneally: a 16. 1182 long-term comparison of the TiMesh, VYPRO II, Sepramesh, and DynaMesh. Surg Laparosc Endosc Percutan Tech, 2009. 19(4): p. e130-4. 1183 1184 17. Gaertner, W.B., M.E. Bonsack, and J.P. Delaney, Visceral adhesions to hernia 1185 prostheses. Hernia, 2010. 14(4): p. 375-81. Hiles, M., R.D. Record Ritchie, and A.M. Altizer, Are biologic grafts effective for 1186 18. 1187 hernia repair?: a systematic review of the literature. Surg Innov, 2009. 16(1): p. 1188 26-37. 1189 19. Rosen, M.J., Biologic mesh for abdominal wall reconstruction: a critical appraisal. 1190 Am Surg, 2010. 76(1): p. 1-6.

1191	20.	Rosen, M.J., et al., A novel approach for the simultaneous repair of large midline
1192		incisional and parastomal hernias with biological mesh and retrorectus
1193		reconstruction. Am J Surg, 2010. 199 (3): p. 416-20; discussion 420-1.
1194	21.	van 't Riet, M., et al., Prevention of adhesion to prosthetic mesh: comparison of
1195		different barriers using an incisional hernia model. Ann Surg, 2003. 237(1): p.
1196		123-8.
1197	22.	Herbert, G.S., T.J. Tausch, and P.L. Carter, Prophylactic mesh to prevent
1198		incisional hernia: a note of caution. Am J Surg, 2009. 197 (5): p. 595-8;
1199		discussion 598.
1200	23.	Itani, K.M., et al., Comparison of laparoscopic and open repair with mesh for the
1201		treatment of ventral incisional hernia: a randomized trial. Arch Surg, 2010.
1202		145 (4): p. 322-8; discussion 328.
1203	24.	Stoppa, R., [Hernia surgery 1996]. J Chir (Paris), 1996. 133(6): p. 244-6.
1204	25.	Orenstein, S.B., et al., Activation of human mononuclear cells by porcine biologic
1205		meshes in vitro. Hernia, 2010. 14(4): p. 401-7.
1206	26.	Orenstein, S.B., et al., Human monocyte activation by biologic and biodegradable
1207		meshes in vitro. Surg Endosc, 2010. 24(4): p. 805-11.
1208	27.	Harth, K.C., et al., Bacterial clearance of biologic grafts used in hernia repair: an
1209		experimental study. Surg Endosc, 2011. 25(7): p. 2224-9.
1210	28.	Burger, J.W., et al., Long-term follow-up of a randomized controlled trial of suture
1211		versus mesh repair of incisional hernia. Ann Surg, 2004. 240(4): p. 578-83;
1212		discussion 583-5.
1213	29.	Pollock, A.V. and M. Evans, Early prediction of late incisional hernias. Br J Surg,
1214		1989. 76 (9): p. 953-4.
1215	30.	Garner, J.S., et al., CDC definitions for nosocomial infections, 1988. Am J Infect
1216		Control, 1988. 16 (3): p. 128-40.
1217	31.	Mangram, A.J., et al., Guideline for prevention of surgical site infection, 1999.
1218		Hospital Infection Control Practices Advisory Committee. Infect Control Hosp
1219		Epidemiol, 1999. 20 (4): p. 250-78; quiz 279-80.
1220	32.	Baucom, R.B., et al., Patient reported outcomes after incisional hernia repair-
1221		establishing the ventral hernia recurrence inventory. Am J Surg, 2016. 212(1): p.
1222		81-8.
1223		
1224		
1225		
1226		

- 1228 Figure 1:
- 1229 A rodent model of incisional hernia and chronic infection after exposure to 10'4 colony
- 1230 forming units of MRSA. Bacterial clearance as measured by total resolution of bacterial

1231 growth. Strattice versus Soft Mesh p=0.32.

1234

1232

- 1235
- 1236 Appendix 1: HerQLes and VHRI Questionnaire
- 1237 Appendix 2: EQ-5D Quality of Life Tool
- 1238 Appendix 3: CDC Wound Classification
- 1239 Appendix 4: CDC Definitions for Surgical Site Infections
- 1240 Appendix 5: Definitions and Treatment Plans for Surgical Site Occurrences
- 1241 Appendix 6: Informed Consent
- 1242 Appendix 7: Complete Case Report Forms
- 1243 Appendix 8: Study Monitoring Plan

1	24	4
- 1		

1245	Sumn	nary of Significant Protocol Changes
1246	1.	PI, Michael Rosen left University Hospitals of Cleveland and joined Cleveland
1247		Clinic Foundation during the trial
1248		a. All patients at UH were attempted to be contacted and reconsented to
1249		follow up with Dr. Rosen at CCF.
1250		b. History of clinicaltrials.gov transfers
1251		i. Original NCT01746316
1252		1. Initial release: 11/5/2012
1253		2. Published 12/7/2012
1254		ii. Transferred to CCF new NCT0245176
1255		1. Changed 5/8/2014
1256	2.	5/19/15- Recurrences were further classified by Midline, Parastomal only, or both
1257		(midline and parastomal component)
1258	3.	4/23/19-Ventral hernia recurrence inventory questions were added to long term
1259		follow up assessments.
1260	4.	9/24/19- As a last effort in the final phase of this study we gained IRB approval to
1261		mail study questions with a \$10 bill and a SASE to patients who have not
1262		completed the 2 year follow-up questions. We will thank them for their
1263		participation in the study along with asking them to complete the questions and
1264		return to us in the SASE. We have left messages with the patients who have
1265		working voice-mails, asking them to return the call to either make an
1266		appointment, set up a virtual visit or answer the questions over the phone.
1267		Unfortunately, some of the patients do not have an answering machine or a
1268		current telephone number listed in EPIC.
1200		

1270	Final Statistical Analysis Plan	
1271	Any changes to original statistical plan are highlighted in yellow f	or
1272	reference.	
1273	1. Baseline Description of Variables	
1274	Continuous data were described using median values with interquartile	e ranges
1275	(IQR) and comparisons made using Wilcoxon's rank sum test. Catego	rical data
1276	were described using counts and proportions with comparisons perform	ned using
1277	Pearson's chi square or Fisher's exact test.	
1278	Tables of summary statistics will be produced by randomized group for	r a number
1279	of baseline variables. The number of missing observations will also be	e reported.
1280	2. Outcomes	
1281		
1282	2.1 Primary outcomes	
1283	The primary outcomes are rates of surgical site occurrences requir	ing
1284	procedural intervention (SSOPI) and hernia recurrence (HR) asses	sed
1285	postoperatively at 1 month, 6 months, 12 months, and 24 months.	
1286		
1287	2.2 Secondary outcomes	
1288	The secondary outcomes are quality of life (QOL), which includes	/AS,
1289	EQ5D and HerQles scores. They'll be measured at baseline, 30 da	iys, 6
1290	months, 12 months and 24 months.	
1291	Direct costs, 30 day costs, and prosthetic material costs associated	d with
1292	clean-contaminated and contaminated open ventral hernia repair w	vill also be
1293	explored.	
1294		

3. Handling of missing values

1296		When analyzing using the ITT population, model based multiple imputation
1297		method will be used to impute missing data at baseline, under the assumption
1298		that the missing data has pattern of missing at random. Since the outcomes are
1299		repeated measured, the follow up missing will not be imputed but taken care of
1300		by mixed effect model.
1301		
1302	4.	Statistical method
1303		
1304		4.1 Statistical procedures for primary outcomes
1305		Primary analysis
1306		For SSOPI with 4 repeated binary measurements, a generalized mixed model
1307		analysis with repeated measures will be performed to determine if a
1308		significant difference exists between the biologic mesh and the permanent
1309		synthetic mesh cohorts in the rate of SSOPI.
1310		For Hernia Recurrence, which is a single binary outcome, simple chi-square
1311		tests will be used for unadjusted analyses and a logistic regression model will
1312		be used for adjusted analyses. As this is a randomized trial, differences in
1313		baseline demographic and clinical characteristics between the biologic mesh
1314		cohort and the permanent synthetic mesh cohort are expected to occur at
1315		random. Any significant differences found among the demographic or
1316		preoperative clinical characteristics between the two treatment groups will be
1317		controlled for in the final analysis to limit potential confounding of results.
1318		Prespecified Covariates:
1319		Demographics: age, race, gender, study center, and mesh type

- 1320Known linkages to hernia recurrence: BMI, history of smoking, size of1321defect (hernia width), number of previous hernia repairs, and mesh1322type.
- 1323 Post Hoc Additional Covariates:
- 1324Given Baseline differences in mesh width and length between the1325two groups, additional covariates were added to the model. Mesh1326Width was included.
- 1327

1328 Secondary analysis

1329 These primary outcomes will also be assessed as time-to-hernia-recurrence, 1330 respectively. In these analyses, the time-to-recurrence in the synthetic mesh 1331 group will be compared to the time-to-recurrence in the biologic mesh group 1332 using a two-sided log-rank test. The null hypothesis is that the time-to-1333 recurrence is the same between the two groups (H0: Hazard Ratio = 1), and 1334 the alternative hypothesis is that the time-to-recurrence is significantly greater 1335 for the permanent synthetic mesh cohort compared to the biologic mesh 1336 cohort (H1: Hazard Ratio not= 1). Since this is a randomized clinical trial, 1337 observed differences in other covariates between the two study groups are 1338 assumed to arise by chance. Therefore, the simple unadjusted analysis is 1339 sufficient to answer the research question, assuming adequate power (see 1340 above). However, since the association between other covariates and time-1341 to-recurrence may be of interest and because group imbalances may occur 1342 due to chance, it is of interest to consider further analyses that adjust for 1343 covariates in the relationship of time-to-recurrence and mesh type. To that 1344 end, the following multivariable models are pre-specified: 1) Demographics: 1345 age, race, gender, and study center; and 2) Known linkages to hernia

- 1346recurrence: BMI, history of smoking, size of defect (Hernia width), number of1347previous hernia repairs, and mesh type. These models will be fit with Cox1348proportional hazards models. The assumption of proportional hazard will be1349tested. When the proportional hazard assumption is violated, time dependent1350variables will be introduced to the model.
- 1351
- 1352Post Hoc Additional Covariates:
- 1353 Given Baseline differences in mesh width and length between the two

1354 groups, additional covariates were added to the model. Mesh Width was1355 included

1356

4.2 Statistical procedures for secondary outcomes

1358 The secondary outcomes are quality of life (QOL) and Cost. The assessment 1359 of the association between these outcomes and mesh type will parallel what 1360 was described above for the primary outcome. The differences are as 1361 follows. First, the primary analysis will utilize an ANCOVA model adjusting 1362 for baseline pain (QOL) and correlations among repeated measurements. 1363 The null hypothesis is that the pain (QOL) is the same, on average, between 1364 the synthetic and biologic mesh groups (H0: Beta-mesh-type = 0). The 1365 alternative hypothesis is that the pain (QOL) is different, on average, between 1366 the two groups (H1: Beta-mesh-type not= 0). Second, the multivariable 1367 modeling will utilize linear regression models. A mixed model analysis with 1368 repeated measures will be performed to determine if a significant difference 1369 exists between the biologic mesh and the permanent synthetic mesh cohorts 1370 in the mean change in score from the preoperative assessment to the 1371 postoperative assessments at 1 month, 6 months, 12 months, and 24 months

1372 for the EQ-5D and HerQLes quality of life instruments. The null hypothesis is that there is no significant difference between the biologic mesh and the 1373 1374 permanent synthetic mesh cohorts in the mean change in score from the 1375 preoperative to the postoperative assessments at any of the time points for 1376 either the EQ-5D or the HerQLes quality of life instruments. The alternate 1377 hypothesis is that there is a significantly greater change in EQ-5D and 1378 HerQLes scores from the preoperative assessment to the postoperative 1379 assessment at each of the time points for the permanent synthetic mesh 1380 cohort compared to the biologic mesh cohort

1381 To determine direct economic costs associated with clean-1382 contaminated and contaminated open ventral hernia repair. Costs associated 1383 with the operative, and postoperative phases of care up to 30 days will be 1384 considered as it pertains to the management of the ventral hernia. Final 1385 operative costs will be based on each patient's actual inpatient encounter 1386 direct cost obtained from the participating institutions. Prosthetic mesh costs 1387 will also be extracted. Postoperative costs will account for routine outpatient 1388 visits, costs incurred for complications, up to 30 days due ventral hernia 1389 management. All costs will be reported in U.S. dollars.

- 1390Adverse events
- Adverse events are reported throughout the trial and tabulations of all
- reported adverse events will be provided, subdivided by treatment group.
- 1393 Adverse events will be compared by 3 measures:
- 1394 1. Overall adverse event rates
- 1395 2. Clavien Dindo Grades I-V
- 1396 3. Comprehensive Complications Index (Score 1-100)
- 1397

1398 Handling of missing data

1399 Very little data is anticipated in the baseline demographics and operative details.

1400

- 1401 We anticipate up to a 20% lost to follow up for the primary analysis of 24 months hernia
- 1402 recurrence and SSOPI rates. Patients who died or were not available for follow up will
- 1403 be excluded from that time point analysis.

1404