Supporting Information

Fluorescent polypropylene nanoplastics for studying uptake, biodistribution, and excretion in zebrafish embryos

Wang Sik Lee,¹ Hyunjung Kim,¹ Yugyeong Sim,^{1,2} Taejoon Kang,³ and Jinyoung Jeong^{1,2*} ¹Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea ²Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea ³Bionanotechnology Research Center, Korea Research Institute of Bioscience and

Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

Corresponding author: Jinyoung Jeong (jyjeong@kribb.re.kr)

Experimental section

Quantitative analysis of R-PPNPs in zebrafish embryos (ZFEs)

We employed the fluorescence intensity of RBITC-labeled PPNPs (R-PPNPs) in a quantitative relationship model to determine the amount of R-PPNPs remaining in ZFEs. To do so, ZFEs were treated with 50 ppm R-PPNPs at 72 hpf for 24 h and then washed 3 times with fresh EW and fixed with 4% paraformaldehyde at 96 hpf and 120 hpf. Each ZFE was homogenized, and the fluorescence intensity was measured. The amounts of R-PPNPs in ZFEs were calculated by adjusting the standard curve.

Number	Mass (mg)		- Viold (0/)	A
	In	Out	Yield (%)	Average
1	130	100	76.9%	84.1%
2	130	100	76.9%	
3	260	230	88.5%	
4	1040	980	94.2%	

Table S1. The yield of PPNPs production by NIPS method

Samples	Tc (°C)	T_{m-low} (°C)	T_{m-high} (°C)	ΔH_f (J/g)	X _{DSC} (%)
PP pellets	115.40	147.53	156.52	102.39	49.44
PPNPs	120.87	149.54	156.64	105.31	50.85

Table S2. DSC melting results of PP pellets and PPNPs

Conc. (ppm)		Mortality rate (%)		Deformity rate (%)	
		at 48 hpf	at 96 hpf	at 48 hpf	at 96 hpf
R-PPNPs	0	13.33 ± 5.77	0.00	3.33 ± 5.77	0.00
	50	13.33 ± 5.77	0.00	6.66 ± 5.77	0.00
PPNPs	0	6.66 ± 5.77	0.00	0.00	0.00
	50	0.00	0.00	3.33 ± 5.77	0.00

Table S3. Mortality and deformity of PPNPs and R-PPNPs-treated ZFEs (P > 0.05)

Figure S1. SEM images of PPNPs prepared by NIPS method using distilled water as a non-solvent.

Figure. S2. SEM images of R-PPNPs and its size distribution.

Figure S3. Standard curve for fluorescence intensity of RBITC by concentration.

Figure S4. (a) Hydrodynamic size and (b) Zeta-potential values of PPNPs by different media (DW and EW)

Figure S5. Cross-sectional images of the yolk sac (The point of dash line in top image i, ii) in ZFEs at 48 hpf after R-PPNPs exposure at 24 hpf for 24 h with three different filters such as DIC, DAPI, and Red.

Figure S6. Cross-sectional images of control ZFEs at 48 hpf and 96 hpf with three different filters such as DIC, DAPI, and Red.

Figure S7. Standard curve and amount of R-PPNPs measured by fluorescent microplate reader (Cytation 5, BioTek, USA) under excitation/emission at 540/580 nm.