Supplementary Material

Supplementary Table 1: ICD codes used to classify patients.

Medical Condition	ICD-9 code	ICD-10 code
Type 2 Diabetes	250.x0, 250.x2	E11
Type 1 Diabetes	250.x1, 250.x3	E10, O24.0
Kidney Transplant	V42.0	Z94.0
Chronic Kidney Disease	585.9	N18.9

Supplementary Table 2: Hyperparameters tuned for each MLA model.

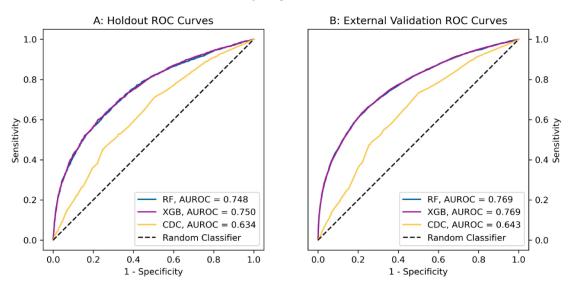
	0	Max_depth = 12, the maximum depth of each tree
	0	$N_{estimators} = 580$, the number of trees in the ensemble
0	0	Criterion (one of Gini or Entropy) = Entropy, the criteria
		used to evaluate utility of splits
	0	Max_features (one of Log2 or Sqrt) = Sqrt, the number of
		features to consider when looking for the best split
Random forest (RF)	0	Class_weight (one of balanced or balanced subsample) =
		balanced, the weight given to the positive and negative
		classes when calculating the training loss
	0	Min_samples_split = 208, the minimum number of
		examples found in a node to be able to split the node
		further

Gradient boosted tree model XGBoost (XGB)	0 0 0 0	Eta = 0.20, learning rate Gamma = 4.44, loss reduction require to split a node in the tree Max_depth = 11, the maximum depth in each tree Lambda = 15.2, the strength of L2-regularization Scale_pos_weight = 21.3, the weight for each positive example when calculating the training loss Min_child_weight = 202.7, the minimum sum of the instance weight for a node to be able to split Use Preprocessing? = True, whether or not to impute and scale the data before input to the model
--	------------------	--

Supplementary Table 3. Demographic information and comorbidities for the hold-out test dataset.

Test Demographics	No CKD	Any Stage CKD	Stage ≥3 CKD	Stage ≥4 CKD
Age				
18-29 уо	121 (2.2%)	19 (0.9%)	7 (0.6%)	140 (1.8%)
30-39 уо	381 (6.9%)	56 (2.6%)	14 (1.1%)	437 (5.7%)
40-49 yo	1,058 (19.1%)	227 (10.7%)	94 (7.5%)	1,285 (16.8%)
50-59 уо	1,687 (30.5%)	478 (22.6%)	236 (18.9%)	2,165 (28.3%)
60-69 yo	1,415 (25.6%)	621 (29.3%)	407 (32.6%)	2,036 (26.6%)
≥70 yo	875 (15.8%)	718 (33.9%)	492 (39.4%)	1,593 (20.8%)
Sex				
Female	3,059 (55.2%)	1,073 (50.6%)	619 (49.5%)	4,132 (54.0%)
Male	2,478 (44.8%)	1,046 (49.4%)	631 (50.5%)	3,524 (46.0%)
Ethnicity				
Caucasian	4,330 (78.2%)	1,714 (80.9%)	1,022 (81.8%)	6,044 (78.9%)
African American	624 (11.3%)	282 (13.3%)	169 (13.5%)	906 (11.8%)
Asian	138 (2.5%)	30 (1.4%)	11 (0.9%)	168 (2.2%)

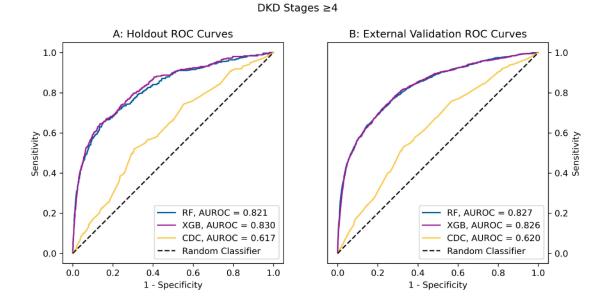
Other/Unknown Race	445 (8.0%)	93 (4.4%)	48 (3.8%)	538 (7.0%)
Comorbidities				
(Presence of) Coronary Artery Bypass Graft	68 (0.5%)	52 (1.0%)	34 (1.2%)	120 (0.7%)
Acute Kidney Injury	44 (0.3%)	41 (0.8%)	30 (1.0%)	85 (0.5%)
Anemia	544 (4.3%)	245 (4.9%)	151 (5.1%)	789 (4.5%)
Arrhythmia	614 (4.8%)	302 (6.0%)	179 (6.1%)	916 (5.2%)
Cancer/Solid Tumor	412 (3.2%)	191 (3.8%)	122 (4.2%)	603 (3.4%)
Cardiovascular Disease (CVD)	713 (5.6%)	392 (7.8%)	249 (8.5%)	1,105 (6.2%)
Congestive Heart Failure (CHF)	200 (1.6%)	129 (2.6%)	91 (3.1%)	329 (1.9%)
Dyslipidemia	2,604 (20.5%)	918 (18.3%)	522 (17.8%)	3,522 (19.9%)
Heart Valve Disease	225 (1.8%)	118 (2.4%)	74 (2.5%)	343 (1.9%)
Hyperglycemia	2,137 (16.8%)	571 (11.4%)	304 (10.4%)	2,708 (15.3%)
Hypertension	2,584 (20.3%)	996 (19.9%)	567 (19.3%)	3,580 (20.2%)
Obesity	1,282 (10.1%)	328 (6.5%)	153 (5.2%)	1,610 (9.1%)
Peripheral Vascular Disease (PVD)	133 (1.0%)	83 (1.7%)	56 (1.9%)	216 (1.2%)
Previous Percutaneous transluminal coronary angioplasty	92 (0.7%)	50 (1.0%)	30 (1.0%)	142 (0.8%)
Prior MI	159 (1.3%)	84 (1.7%)	50 (1.7%)	243 (1.4%)
Proteinuria	43 (0.3%)	30 (0.6%)	18 (0.6%)	73 (0.4%)
Stroke/Transient Ischemic Attack	218 (1.7%)	117 (2.3%)	77 (2.6%)	335 (1.9%)
Type I Diabetes	183 (1.4%)	98 (2.0%)	57 (1.9%)	281 (1.6%)


Supplementary Table 4. Demographic information and comorbidities for the external test dataset.

	External Demographics	No CKD	Any Stage CKD	Stage ≥3 CKD	Stage ≥4 CKD
Age					
	18-29 уо	358 (2.3%)	66 (0.9%)	18 (0.4%)	10 (0.8%)
	30-39 уо	1,122 (7.2%)	236 (3.1%)	99 (2.0%)	34 (2.6%)
	40-49 уо	2,906 (18.7%)	700 (9.3%)	336 (6.7%)	112 (8.4%)

50-59 уо	4,819 (31.0%)	1,683 (22.3%)	972 (19.5%)	271 (20.4%)
60-69 уо	3,669 (23.6%)	2,114 (28.0%)	1,451 (29.1%)	363 (27.3%)
≥70 yo	2,657 (17.1%)	2,743 (36.4%)	2,111 (42.3%)	539 (40.6%)
ex				
Female	8,381 (54.0%)	3,843 (51.0%)	2,578 (51.7%)	672 (50.6%)
Male	7,150 (46.0%)	3,699 (49.0%)	2,409 (48.3%)	657 (49.4%)
thnicity				
Caucasian	12,061 (77.7%)	5,890 (78.1%)	3,921 (78.6%)	956 (71.9%)
African American	2,652 (17.1%)	1,418 (18.8%)	920 (18.4%)	323 (24.3%)
Asian	238 (1.5%)	72 (1.0%)	44 (0.9%)	14 (1.1%)
Other/Unknown Race	580 (3.7%)	162 (2.1%)	102 (2.0%)	36 (2.7%)
omorbidities				
(Presence of) Coronary Artery Bypass Graft	250 (0.8%)	183 (1.2%)	128 (1.2%)	28 (1.1%)
Acute Kidney Injury	141 (0.4%)	128 (0.8%)	86 (0.8%)	16 (0.6%)
Anemia	1,583 (4.8%)	825 (5.3%)	581 (5.6%)	151 (6.1%)
Arrhythmia	1,660 (5.0%)	1,049 (6.7%)	742 (7.2%)	193 (7.8%)
Cancer/Solid Tumor	1,500 (4.5%)	801 (5.1%)	555 (5.4%)	123 (5.0%)
Cardiovascular Disease (CVD)	2,208 (6.6%)	1,510 (9.6%)	1,065 (10.3%)	266 (10.7%)
Congestive Heart Failure (CHF)	513 (1.5%)	515 (3.3%)	388 (3.7%)	133 (5.4%)
Dyslipidemia	6,456 (19.4%)	2,502 (16.0%)	1,548 (15.0%)	330 (13.3%)
Heart Valve Disease	704 (2.1%)	450 (2.9%)	317 (3.1%)	69 (2.8%)
Hyperglycemia	5,306 (16.0%)	1,423 (9.1%)	813 (7.9%)	130 (5.2%)
Hypertension	6,444 (19.4%)	2,885 (18.4%)	1,882 (18.2%)	425 (17.1%)
Obesity	2,942 (8.8%)	930 (5.9%)	541 (5.2%)	105 (4.2%)
Peripheral Vascular Disease (PVD)	396 (1.2%)	334 (2.1%)	246 (2.4%)	73 (2.9%)
Previous Percutaneous transluminal coronary angioplasty	301 (0.9%)	165 (1.1%)	123 (1.2%)	23 (0.9%)
Prior MI	393 (1.2%)	245 (1.6%)	169 (1.6%)	36 (1.5%)
Proteinuria	122 (0.4%)	101 (0.6%)	59 (0.6%)	17 (0.7%)
Stroke/Transient Ischemic Attack	671 (2.0%)	439 (2.8%)	306 (3.0%)	78 (3.1%)

Type I Diabetes 527 (1.6%) 306 (2.0%) 190 (1.8%) 71 (2.9%)
--


Supplementary Figure 1. Area under the receiver operating characteristic curve (AUROC) plots of machine learning (ML) models random forest (RF) and gradient boosted tree (XGB), and Centers for Disease Control and Prevention (CDC) CKD scoring system for a) hold-out dataset and b) external validation dataset for prediction of any-stage DKD in the five years following T2DM diagnosis. A random classifier was used as the baseline

Any Stage DKD

BMJ Open Diab Res Care

Supplementary Figure 2. Area under the receiver operating characteristic curve (AUROC) plots of machine learning (ML) models random forest (RF) and gradient boosted tree (XGB), and Centers for Disease Control and Prevention (CDC) CKD scoring system for a) hold-out dataset and b) external validation dataset for prediction of DKD stages 4-5 in the five years following T2DM diagnosis. A random classifier was used as the baseline.

