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Editorial decision letter with reviewers’ comments, first round of review 

Dear Dr. Samee, 
 
I’m enclosing the comments that reviewers made on your paper, which I hope you will find useful and 
constructive. As you'll see, they express interest in the study, but they also have a number of criticisms 
and suggestions. Based on these comments, it seems premature to proceed with the paper in its current 
form; however, if it's possible to address the concerns raised with additional experiments and/or analysis, 
we’d be interested in considering a revised version of the manuscript.  

As a matter of principle, I usually only invite a revision when I’m reasonably certain that the authors' work 
will align with the reviewers’ concerns and produce a publishable manuscript.  In the case of this 
manuscript, the reviewers and I have make-or-break concerns regarding: 

1. Proper contextualization with respect to previously published work. 
2. Benchmarking to provide fair comparison to competing techniques. 

Additionally, to move forward at Cell Systems, there needs to be a clearer demonstration of utility of the 
approach (generalizability to other datasets, biological insights not possible with competing techniques). 
I’d also like to be explicitly clear about an almost philosophical stance that we take at Cell Systems… 
  
We believe that understanding how approaches fail is fundamentally interesting: it provides critical insight 
into understanding how they work. We also believe that all approaches do fail and that it's unreasonable, 
even misleading, to expect otherwise. Accordingly, when papers are transparent and forthright about the 
limitations and crucial contingencies of their approaches, we consider that to be a great strength, not a 
weakness. Please keep this in mind when addressing the reviewer comments. 
  
  
As you address these concerns, it's important that you and I stay on the same page.  I'm always happy to 
talk, either over email or by phone, if you’d like feedback about whether your efforts are moving the 
manuscript in a productive direction. Do note that we generally consider papers through only one major 
round of revision, so the revised manuscript would be either accepted or rejected based on the next 
round of comments we receive from the reviewers.  If you have any questions or concerns, please let me 
know.  More technical information and advice about resubmission can be found below my 
signature.  Please read it carefully, as it can save substantial time and effort later.  
  
I look forward to seeing your revised manuscript. 
 
All the best, 
 
Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 



 

 
 
 

 

 
  
  
Reviewers' comments: 
 
Reviewer #1: Introduction 
 
! The authors state that: 
"However, current ST tools profile the transcriptional expression of only about half as many genes as 
scRNA-seq (1,000-10,000 compared to 20,000) (Vieth et al. 2019; Stuart and Satija 2019), an issue that 
can make it problematic to identify cell-types in ST datasets." 
 
A statement which we would argue is partially incorrect, since several of the in situ capture-based 
methods like Slide-seq v{1,2} and Visium (as well as the first generation Spatial Transcriptomics platform, 
the predecessor to Visium) capture the near full-transcriptome (in theory all poly-adenylated transcripts). 
As the authors accurately point out, these in situ capture-based methods indeed operate at a pseudo-bulk 
level, but that does not change the fact that they profile the same population of genes as most scRNA-
seq methods. 
 
! In the context of in situ capture-based methods the authors state that these: 
"[..] collect "pseudo-bulk" transcriptome spatially-resolved groups of cells and it becomes challenging to 
investigate the above questions using these datasets." 
 
While true that answering questions with respect to cell type distribution across the tissue is not as 
straightforward as with technologies providing single-cell or sub-cellular resolution, there are several tools 
that perform so called "spatial-decomposition" using single cell data as a reference, for example: 
○ stereoscope : https://www.nature.com/articles/s42003-020-01247-y 
○ RCTD : https://www.nature.com/articles/s41587-021-00830-w 
○ Tangram : https://www.biorxiv.org/content/10.1101/2020.08.29.272831v1 
○ Cell2location :https://www.biorxiv.org/content/10.1101/2020.11.15.378125v1 
○ SPOTlight : https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkab043/6129341 
 
To give an appropriate background to the context, we would be fit to at least acknowledge these methods 
and that computational solutions (of course with certain drawbacks) exist. 
 
! Speaking of the seqFISH+ data's consistency, the authors report that: 
"as a field of view (FOV) (Fig. 1C). The data were highly concordant between sample (Pearson 
correlation of 0.95) [..]" 
 
To us it's not fully clear how this Pearson correlation was computed? Is it an average correlation value for 
the pairwise correlation between all six sections? If so, it would be appropriate to report the standard 
deviation for the 15 pairs. Also, was the data from each section collapsed to represent a form of "bulk" 



 

 
 
 

sample? Could the authors please elaborate a bit on this. 
 
! The authors state that the seqFISH+ dataset profiles 33% of marker genes characterizing the different 
MOB cell-types, Looking at Supplementary Note 1 and Supplementary Table 1, it seems as if this number 
is calculated from a single data set (Tepe et al., 2018). While we fully agree that this high lights that 
marker genes are often lacking in some types of ST data, this is also highly dependent on the reference 
single cell data set. For example, would the number (33%) be the same had the single cell data from the 
site mousebrain.org been used instead? We would recommend the authors to revise their statement to be 
less strong (now saying that 33% marker genes in MOB are missing), to rather say that 33% of the genes 
in the particular data set was missing. 
 
! In the last part of the introduction the authors write: 
"To our knowledge, this is the first such systematic attempt to delineate the principles of brain architecture 
and intercellular communication by harnessing the unique features of the ST and scRNA-seq 
technologies." 
 
We would like to make the authors aware of the following publications: 
 
○ "Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography" 
(https://www.nature.com/articles/s42003-020-01247-y). See Figure 2B for an example of how single cell 
and spatial transcriptomics data was used to chart the brain structure. 
○ "Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse 
brain with Tangram" (https://www.biorxiv.org/content/10.1101/2020.08.29.272831v1.full.pdf). see Figures 
1-5 for examples of how ow single cell and spatial transcriptomics are used to delineate the brain 
architecture. 
○ "Robust decomposition of cell type mixtures in spatial transcriptomics" 
(https://www.nature.com/articles/s41587-021-00830-w. See Figure 4-6 for examples of how ow single cell 
and spatial transcriptomics are integrated to survey the brain structure and cell composition, 
○ "Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component 
Analysis" (https://www.sciencedirect.com/science/article/pii/S2211124719311325?via%3Dihub), see 
Figure 4 for an example of how cell-cell interactions in the mouse brain are surveyed in the spatial data 
using 
Perhaps the authors should be slightly less strong in their claims of novelty. 
 
Results 
 
! The authors cite Kelley 1960 for the backpropagation algorithm, while true that Kelley presented some 
of the fundamental concepts used in the algorithm, we believe that the formulation and application of the 
backpropagation algorithm in neural networks most often is attributed to Rumelhart, Hinton and Williams 
(see: https://www.nature.com/articles/323533a0). Also, since the authors use Tensorflow for their 
implementation, it might be apt to cite the automatic differentiation scheme that the suite employs. 
! The authors state that they used a ten-fold cross-validation scheme to make sure their model is 
accurate and generalizable, something we fully support and commend the authors for. However, in their 
description of the cross-validation setup (Supplementary Note 1): 



 

 
 
 

 
"In order to test the generalizability of STANN on unseen data, we performed a 10-fold cross validation. 
On each fold, the data is split into 90% training and 10% testing." 
 
To us, this does not sound like a k-fold cross validation setup. The idea with the k-fold cross validation is 
to first split up the data into k-folds, and then train the model i on the (k-1) partitions that remain when the 
i:th fold is held out (to be used as test data). If, as the authors describe, random resampling is done at 
every iteration - there's a risk that similar test/train combinations of train/test partitions occur at each 
round.[1] 
 
[1]: https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation 
! In the main text the authors report the following accuracy numbers for training and test data: 
"The optimal STANN model showed an average accuracy of 99.55 ± 0.05 % on training data and 95.24% 
± 0.31% on separately held-out test data." 
 
While in Supplementary Note 1, they state that: 
"On each fold, the data is split into 90% training and 10% testing. Over the 10 folds, the model showed an 
average accuracy of 99.413 ± 0.059% on the training data and 95.150% ± 0.325% on the separately held-
out test data" 
 
While the numbers are similar, maybe the authors want to adjust these pairs of values to make sure that 
they agree. 
 
! Request: we would like to see how well STANN generalizes to prediction between different single cell 
datasets. To elaborate, while similar in their superficial form the expression data collected from seqFISH+ 
and scRNA-seq both host different biases. Thus the data sets still represent different modalities, see [1] 
for a discussion about platform effects. Hence, we believe that the task of predicting cell type identity in a 
"held out" partition of the same single cell data set as the model is trained on is significantly easier than to 
predict the cell type of a seqFISH+ cell using single cell data. 
 
It is admittedly hard to know exactly what biases that are inherent to each method and to correctly 
capture these in synthetic data, one way to see how the model handles technical artifacts and batch 
effects would be to train it using single cell data from one publication and then predict the cell types in a 
single cell data set from a different publication (using the same subsampling strategy as before). Since 
the model itself, the dense fully connected neural network hasn't been tailored as to specifically work with 
only mouse brain data, the authors could choose any tissue where two such data sets exist. We are also 
keen on seeing this analysis, as neural networks have a tendency to overfit the data, while the same does 
not quite apply other methods used in the benchmarking (e.g., Seurat). 
 
We are requesting this, as much of the model's validity relies on showing good performance on 
synthetic/semi-synthetic data where the ground truth is known, hence why a lot of rigour should be put 
into this analysis in order to establish confidence in the secondary results presented using the cell type 
calling as input. 
 



 

 
 
 

[1]: https://www.nature.com/articles/s41587-021-00830-w 
! Could the authors perhaps, e.g., as Supplementary Notes, provide more details on how the 
benchmarking analyses were performed. As of now we could not find this in the manuscript nor at the 
referenced github repository, without this information it's hard to evaluate whether a fair comparison has 
been made or not. 
! Request: Continuing with the benchmarking, we would encourage the authors to include Tangram 
(https://github.com/broadinstitute/Tangram) in their comparison. The method shares many of its 
objectives with STANN and while not yet published, we believe it's likely that it will be once this 
manuscript reaches publication. 
! Our final question regarding the benchmarking, which relates to the first, is if the same gene selection 
process (sPCA) and normalization process was applied to the data before analysis with Seurat and 
scPred? If not it's hard to say whether it's actually the data curation that is the crucial step in the authors' 
method or if it's the neural network that gives the increase in performance. To us it's important to 
disentangle what part of a method that actually provides improved performance, and initialization as well 
as normalization strategies are important aspects of this, see [1]. 
 
[1]: https://www.nature.com/articles/s41587-020-00809-z 
! The authors state that six FOVs of seqFISH+ data were used, however when we look in Supplementary 
Table 4 there are 21 pairs and in total 7 FOV's listed (0-6). Is this a different data set, or a typo? 
! Regarding the FOV independence analysis: First, the authors could be more clear with the fact that the 
chi2-tests are conducted on a pairwise basis. Second, instead of computing both p and q relative 
entropies, why don't the authors simply use the symmetric Jensen-Shannon divergence metric.[1] 
 
[1]: https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence 
! Personally, we think that the application of multivariate kernels to assess cell type co-localization 
patterns is an elegant solution to the problem of working with point-pattern data (single cells). We also 
have one question, which is whether these density estimates potentially could be confounded by the 
general cell density? To further explain, could it be that there is an overlap in spatial location between two 
cell types that would imply a co-localization event, but that this is actually driven by the fact that certain 
regions are more populous than others and tend to host more cells. Perhaps, one could decompose the 
density estimates into two parts, one representing the general cell density and one the type specific 
density and then look at the correlation values between the later components? We are posing this as a 
question, as we are not sure of the answer, and welcome the authors insights. 
! It would be interesting to see the same density estimate plots for the receptor and ligand pairs as for the 
cell type co-localization, this information could all be included in a single plot (e.g., by adding the receptor 
and ligand densities in different colors to a gray plot like that in 5C). 
! We believe that the authors use the processed seqFISH+ data (where each transcript has been 
assigned to a cell), but seqFISH+ data also holds information on the exact position of every transcript. It 
would, as a complement to the above suggested density plots, be interesting to include an image of how 
the transcripts of ligands and receptors are located in neighboring cells, at least for some of the 
highlighted pairs; similar to what is done in Figure 4d in [1]. 
 
[1]: https://www.nature.com/articles/s41586-019-1049-y 
! The authors' strategy to correct for false positives of long-range communications is clever, and seems 



 

 
 
 

like a good approach. Perhaps they could generate synthetic spatial data to show that : (i) their interaction 
analysis works, and (ii) that the false positives are indeed caught. The large variation in receptor-ligand 
usage is interesting, but also something that I believe requires more validation to make sure it's not just a 
technical artifact from the computational methods used. 
! Request: Since the dense fully connected network does not host any design elements specific to 
seqFISH+ data, we don't see an issue with applying the method to other spatial transcriptomics methods 
like MERFISH or ISS. To show that this strategy is robust we would encourage the authors to test it on 
more data sets from other platforms. 
Discussion 
! We would encourage the authors to discuss what aspects of their approach brings novel insights that 
existing methods like Tangram [1] and SVCA [2] cannot already provide. It would also be of interest to 
include a commentary on computational run-time in the benchmarking analysis, the authors are using a 
fairly small network but their approach also requires that several pre-processing steps are executed and 
they employ a form of cross validation, which I assume increases the run-time quite significantly. 
 
The accuracy of the results is of course of highest importance, but run-time is an important aspect when it 
comes to a method's usefulness. Extremely computationally expensive methods are not always an option 
for smaller labs and also less attractive to include in a workflow that will be updated across several 
iterations. 
 
[1]: https://www.biorxiv.org/content/10.1101/2020.08.29.272831v1 
[2]: https://www.sciencedirect.com/science/article/pii/S2211124719311325?via%3Dihub 
 
Methods 
 
! In the section Cell type annotation in scRNA-seq data, the authors write: 
 
! "[..} we first ranked genes based on the variance-to-mean ratio of their expression values and selected 
4000 top highly variable genes." 
 
This sounds similar to the procedure that scanpy tends to employ, and the suite is listed as being used for 
data normalization. We assume that the data normalization was performed before the annotation, and 
hence that the variable gene selection is also done in the scanpy suite, presumably using the 
"scanpy.pp.highly_variable_genes" function, if so we think it's apt the the authors state this in the text, as 
this function implements some correction and do not immediately just compute the variance-to-mean 
ratio. 
! From the sentence "We implemented a multi-layer perceptron model and searched for its optimal 
architecture (using random initializations in terms of the number of hidden layers, the number of nodes in 
hidden layers, and the activation functions) using the TensorFlow framework." , it doesn't sound like the 
authors used a structured grid search approach (which is fine), but rather just sampled configurations 
randomly - what would be informative is to state from what sets of possible values these values were 
sampled, i.e., which were to possible activation functions, ranges of possible node sizes, and range of 
learning rates. Also, importantly, how many different evaluations were made, i.e. were 10 or 1000 models 
evaluated? 



 

 
 
 

 
 
 
Reviewer #2: The manuscript present STANN, a computational solution - based on neural networks - able 
to predict cell type localization within a high-resolution spatial transcriptome map by the integration of 
single cell RNA-sequencing data. 
 
Major comments 
 
The manuscript focus on the integration of single-cell RNA sequencing data with either seqFISH+, or 
HSDT; both approaches providing spatial transcriptome readouts at a cellular resolution (or nearly). This 
being said, the authors argue that "current ST tools profile the transcriptional expression of only about half 
as many genes as scRNA-seq (1,000-10,000 compared to 20,000)" (page 3), or such statement might 
require to be nuanced. In fact, while the seqFISH+ strategy is bound to a total of 10 thousand interrogated 
genes due to methodological reasons; other ST approaches, including HSDT, depend on the sequencing 
depth in use for enhancing the interrogated number of genes; which in addition is also true for single-cell 
RNA sequencing assays. 
 
Similarly, in page 6, the authors state that "scRNA-seq profiles the complete transcriptome"; completely 
forgetting that scRNA-seq assays follow a similar strategy than several ST assays; i.e. the capture of 
messenger RNA via a polyT sequence; followed by reverse transcription and a major step of material 
amplification prior NGS, which is systematically responsible for a bias on the interrogated transcripts. 
Furthermore, the sequencing coverage is strongly responsible for determining the "completeness" of the 
assessed transcriptome. 
 
A last argument that might require to be discussed by the authors is the potential bias on scRNA-seq 
issued from the enzymatic cell dissociation process, which has been previously described as being a 
source of artifactual transcriptional response (van den Brink et al., 2017), but also due to the potential 
over-digestion of a fraction of the cells composing the tissue. 
 
On the ground of these points, the relevance of STANN for integrating scRNA-seq and ST might require 
its validation in the context of "low resolution" ST data (e.g. Visium generated data, or even those issued 
from the first generation of DNA arrays described by the team of Dr. Lundeberg), which as consequence 
might provide higher sequencing depth levels per interrogated spatial region. While STANN has been 
compared in this article with tools like SEURAT or SCPRED, other tools like Stereoscope, SPOTlight or 
сell2location were recently shown to be applied for integrating "low resolution" ST maps with single-cell 
RNA-seq data. 
 
Minor comments: 
 
- Figure 3 might gain on significance if the authors could include the cell-type composition detected on 
seqFISH+ without the use of STANN. In fact, while the authors stated that only 30% of the known cell 
type markers are retrieved within such data, the SeqFISH+ article display a certain number of cell types, 
which might require to be compared with the STANN effort to evaluate the gain on using STANN over the 



 

 
 
 

strategy used in the SeqFISH+ article for such cell-type classification. 
 
- The authors explored the relevance of spatially variable gene regulatory networks implicated on defining 
a given cell-type and their role on their corresponding intercellular communication. Globally speaking this 
concept is of major interest, thus counting with strategies to reveal such spatial GRNs are more than 
welcome. This being said, this manuscript might gain on relevance if the authors could reveal the major 
gene co-regulatory network per cell types retrieved on each of the FOVs and their commonalities issued 
of their inter-cellular communication. 
 
  
 
 
 

Authors’ response to the reviewers’ first round comments  
Attached. 
 
 
 

Editorial decision letter with reviewers’ comments, second round of review 

Dear Dr. Samee, 
  
I'm very pleased to let you know that the reviews of your revised manuscript are back, the peer-review 
process is complete, and only a few minor, editorially-guided changes are needed to move forward 
towards publication.  

In addition to the final comments from the reviewers, I’ve made some suggestions about your manuscript 
within the “Editorial Notes” section, below. Please consider my editorial suggestions carefully, ask any 
questions of me that you need, make all warranted changes, and then upload your final files into Editorial 
Manager.  We hope to receive your files within 5 business days, but we recognize that the COVID-
19 pandemic may challenge and limit what you can do.  Please email me directly if this timing is a 
problem or you're facing extenuating circumstances.  

I'm looking forward to going through these last steps with you.  Although we ask that our editorially-guided 
changes be your primary focus for the moment, you may wish to consult our FAQ (final formatting checks 
tab) to make the final steps to publication go more smoothly.  More technical information can be found 
below my signature, and please let me know if you have any questions.  
  
All the best, 
 



 

 
 
 

Ernesto Andrianantoandro, Ph.D. 
Scientific Editor, Cell Systems 

 

  
Editorial Notes 

 
Title:  

The current title is too long (when revising, please make sure it is 150 characters or less). 

The title does not capture the conceptual advance of the paper. I suspect it could be more effective.  The 
method you developed is not mentioned at all - integration of scRNA and Spatial Transcriptomics data, 
machine learning, cell type assignment should be mentioned in some form. I appreciate the motivation to 
include the downstream analyses enabled by STANN, but this draws focus away from the original 
contributions you provide in the paper. To capture the possible applications enabled by STANN, you 
might include, e.g.  “…delineates brain tissue substructures” in the second half of the revised title. 

As you re-consider your title, note that an effective title is easily found on Pubmed and Google. A trick for 
thinking about titles is this: ask yourself, "How would I structure a Pubmed search to find this paper?"  Put 
that search together and see whether it comes up is good "sister literature" for this work.  If it does, 
feature the search terms in your title.  You also may wish to consider that PubMed is sensitive to small 
differences in search terms.  For example, “NF-kappaB” returned ~84k hits as of March, 2018, whereas 
“NFkappaB” only returned ~8200.  Please ensure that your title contains the most effective version of the 
search terms you feature.   

  

Abstract:   

Please write out what STANN stands for in full when you first use it. 

The Abstract reads nicely, but is unfortunately too long. Please condense to 150 words or less. 

Manuscript Text:   

Please restructure your Introduction to place the biological context at the beginning, previous approaches 
and their limitations in the middle, and your rationale for how to overcome these as well as an overview of 
your study design at the end. There needs to be a clearer logical progression from what was done before, 
to what motivates your current paper, to how you plan to achieve your goals. 



 

 
 
 

There is too much summary and interpretation of results in the Introduction – please replace this with an 
overview of the study design. 

We do not allow supplemental text. Please incorporate Supplementary Note 1 into the main text in the 
Results section. The benchmarking is quite important and deserves to be placed in the main text. 

Also:  

• House style disallows editorializing within the text (e.g. strikingly, surprisingly, importantly, etc.), 
especially the Results section.  These terms are a distraction and they aren't needed—your 
excellent observations are certainly impactful enough to stand on their own.  Please remove 
these words and others like them.  “Notably” is suitably neutral to use once or twice if absolutely 
necessary. 

• We don’t allow “priority claims” (e.g. new, novel, etc.).  For a discussion of why, read: 
http://crosstalk.cell.com/blog/getting-priorities-right-with-novelty-claims, 
http://crosstalk.cell.com/blog/novel-insights-into-priority-claims.  

• Please only use the word "significantly" in the statistical sense. 

  

Figures and Legends:   

• Please ensure that all figures included in your point-by-point response to the reviewers' 
comments are present within the final version of the paper, either within the main text or within 
the Supplemental Information. 

• Please go over the final versions of the figures and legends with the following in mind: 
o When data visualization tools are used (e.g. UMAP, tSNE), please ensure that the 

dataset being visualized is named in the figure legend and, when applicable, its 
accession number is included. 

o When color scales are used, please define them, noting units or indicating "arbitrary 
units," and specify whether the scale is linear or log.  

o Ensure that every time you have used a graph, you have defined "n's" specifically and 
listed statistical tests within your Figure Legend.   

  

STAR Methods:    

Please format the methods section according to the  STAR Methods guidelines. An additional note from 
Cell Systems: If you are using GitHub, please follow the instructions here to archive a “version of 
record” of your GitHub repo at Zenodo, then report the resulting DOI.  Additionally, please note 
that the Cell Systems strongly recommends that you also include an explicit reference to any 



 

 
 
 

scripts you may have used throughout your analysis or to generate your figures within section 2 
of the resource availability statement. 

Thank you! 

 
 
 
Reviewer comments: 
 
Reviewer #2: The authors have satisfactorily addressed reviewer comments and made necessary 
changes. 

 



RESPONSES TO COMMENTS FROM REVIEWER #1 
 
We sincerely thank Reviewer #1 for their generous and helpful comments to improve our 
manuscript. We hope our revisions, as discussed in our point-by-point responses below, have 
adequately addressed Reviewer #1’s comments and concerns.  
 
Reviewer #1: Introduction 
 
● The authors state that: 
"However, current ST tools profile the transcriptional expression of only about half as many 
genes as scRNA-seq (1,000-10,000 compared to 20,000) (Vieth et al. 2019; Stuart and Satija 
2019), an issue that can make it problematic to identify cell-types in ST datasets." 
 
A statement which we would argue is partially incorrect, since several of the in situ capture-
based methods like Slide-seq v{1,2} and Visium (as well as the first generation Spatial 
Transcriptomics platform, the predecessor to Visium) capture the near full-transcriptome (in 
theory all poly-adenylated transcripts). As the authors accurately point out, these in situ capture-
based methods indeed operate at a pseudo-bulk level, but that does not change the fact that 
they profile the same population of genes as most scRNA-seq methods. 
 
We thank the reviewer for suggesting this clarification. In the Introduction of our revised 
manuscript, we have now clarified the distinction between single-cell resolution ST (sc-ST, such 
as seqFISH+) and spot-based ST (spot-ST, such as Visium and Slide-seq) that can profile the 
same set of genes as most scRNA-seq methods but in a pseudo-bulk fashion in spots 
organized in a regular grid. The relevant text now reads as follows. 
 
“Current ST technologies fall into two broad categories, and importantly, neither category 
profiles the transcriptome of single-cells. The spot-based ST technologies (spot-ST) use spots 
(or beads) organized in a regular grid where each spot captures the transcriptome of a variable 
number of cells (Liao et al. 2020; Stuart and Satija 2019). The commercially available Visium 
technology, for example, captures 5 to 10 cells (on average) per spot. Because of this “pseudo-
bulk” nature of the spot-ST technologies, it becomes challenging to use these datasets to 
investigate the above questions that require locating single-cells in situ. In particular, although 
recent methods have used spot-ST data to compute the relative proportion of different cell-types 
in each spot (Cable et al. 2021; Elosua-Bayes et al. 2021; Andersson et al. 2020; Biancalani et 
al. 2021; Kleshchevnikov et al. 2020), since the number of cells in each spot is variable and is 
difficult to determine, the estimated cell-type composition of a given tissue region that comprises 
multiple spots is not as accurate as could be derived from single-cell resolution spatial data. For 
the same reason, it is challenging to compute the colocalization of cell-types or their intercellular 
communications from spot-ST data. One practical solution is to first make a binary presence-
absence call in the spots for each cell-type using a predefined threshold on the cell-type’s 
proportion per spot. On the one hand, it is unclear how to define this threshold and whether one 
should use a cell-type-specific threshold; on the other hand, the conclusions from such 

Response to Reviewers



binarized analyses would arguably be sub-optimal than those that a single-cell resolution ST 
data could offer.  
 
In contrast to the spot-ST technologies, the single-cell ST (sc-ST) technologies record the 
location of single-cells. Such datasets are, in principle, more well-suited to locate the individual 
cell-types in situ and study their colocalization and intercellular communication with other cell-
types. However, because of their technological design, current sc-ST technologies profile the 
transcriptional expression of only about half as many genes as commonly profiled by scRNA-
seq and spot-ST (1,000-10,000 compared to 20,000) (Vieth et al. 2019; Stuart and Satija 2019), 
an issue that can make it problematic to identify cell-types in the sc-ST datasets. In particular, 
when the marker genes of different cell-types are absent in an sc-ST dataset, it is challenging to 
assign correct types to the cells in that dataset (Dumitrascu et al. 2021). Errors in cell-type 
assignment, in turn, may lead to inaccurate biological conclusions from an sc-ST data analysis.” 
 
● In the context of in situ capture-based methods the authors state that these: 
"[..] collect "pseudo-bulk" transcriptome spatially-resolved groups of cells and it becomes 
challenging to investigate the above questions using these datasets." 
 
While true that answering questions with respect to cell type distribution across the tissue is not 
as straightforward as with technologies providing single-cell or sub-cellular resolution, there are 
several tools that perform so called "spatial-decomposition" using single cell data as a 
reference, for example: 
○ stereoscope : https://www.nature.com/articles/s42003-020-01247-y 
○ RCTD : https://www.nature.com/articles/s41587-021-00830-w 
○ Tangram : https://www.biorxiv.org/content/10.1101/2020.08.29.272831v1 
○ Cell2location :https://www.biorxiv.org/content/10.1101/2020.11.15.378125v1 
○ SPOTlight : https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkab043/6129341 
 
To give an appropriate background to the context, we would be fit to at least acknowledge these 
methods and that computational solutions (of course with certain drawbacks) exist.  
 
We thank the reviewer for this excellent suggestion to discuss the appropriate context of our 
work. As we mentioned in the above response, we have now clarified the distinction between 
single-cell resolution ST (sc-ST, such as seqFISH+) and spot-based ST (spot-ST, such as 
Visium and Slide-seq), and have acknowledged how some recent tools have used spot-ST data 
to detect a cell-type’s presence in a spot and the cell-type composition of individual spots. We 
have also discussed why sc-ST is better suited to answer the questions we posed here and how 
the STANN model, the downstream analyses, and our benchmarking offer important insights 
toward delineating the principles of brain architecture and intercellular communication and for 
developing the necessary computational tools in this realm.  
 
● Speaking of the seqFISH+ data's consistency, the authors report that: 
"as a field of view (FOV) (Fig. 1C). The data were highly concordant between sample (Pearson 
correlation of 0.95) [..]" 



 
To us it's not fully clear how this Pearson correlation was computed? Is it an average correlation 
value for the pairwise correlation between all six sections? If so, it would be appropriate to 
report the standard deviation for the 15 pairs. Also, was the data from each section collapsed to 
represent a form of "bulk" sample? Could the authors please elaborate a bit on this. 
 
We apologize for creating this confusion. Eng et al. made this comment based on their pilot 
study of NIH/3T3 fibroblast cells (Eng et al., Nature 2019, PMID: 30911168) to demonstrate the 
efficacy of seqFISH+. We have now made this point clear in the Introduction section. The 
relevant text reads as follows. 
 
“seqFISH+ profiles the transcriptional expression from single cells while retaining their spatial 
information, making it suitable for investigating the types of questions motivated above. Eng et 
al. also found their pilot seqFISH+ data to be highly reproducible; the data were concordant 
between two replicates (Pearson correlation of 0.95) (Eng et al. 2019)  and they further 
validated the data with three other bulk and single-cell datasets from RNA-seq, smFISH (single-
molecule FISH), and SPOT (RNA sequential probing of targets) (Pearson correlation values > 
0.80) (Eng et al. 2019).” 
 
● The authors state that the seqFISH+ dataset profiles 33% of marker genes characterizing the 
different MOB cell-types, Looking at Supplementary Note 1 and Supplementary Table 1, it 
seems as if this number is calculated from a single data set (Tepe et al., 2018). While we fully 
agree that this high lights that marker genes are often lacking in some types of ST data, this is 
also highly dependent on the reference single cell data set. For example, would the number 
(33%) be the same had the single cell data from the site mousebrain.org been used instead? 
We would recommend the authors to revise their statement to be less strong (now saying that 
33% marker genes in MOB are missing), to rather say that 33% of the genes in the particular 
data set was missing. 
 
We thank the reviewer for this suggestion. We repeated the analysis using mousebrain.org 
scRNA-seq data and found that 53% of the marker genes of this dataset are profiled in 
seqFISH+. We added this list in Supplementary Table S1. We note that, this increase in the 
number of marker genes (from 33% in Tepe et al. data to 53% in mousebrain.org data) is mainly 
because the mousebrain.org data features fewer clusters, i.e., cell-types (15 vs. 6). 
Furthermore, 53% is still a relatively small fraction. Therefore, as the reviewer suggested, we 
have now revised our statement to reflect the fact that these numbers (33% or 53%) depend on 
the specific dataset and the number of cell-types being analyzed.  
 
● In the last part of the introduction the authors write: 
"To our knowledge, this is the first such systematic attempt to delineate the principles of brain 
architecture and intercellular communication by harnessing the unique features of the ST and 
scRNA-seq technologies." 
 
We would like to make the authors aware of the following publications: 



 
○ "Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography" 
(https://www.nature.com/articles/s42003-020-01247-y). See Figure 2B for an example of how 
single cell and spatial transcriptomics data was used to chart the brain structure. 
○ "Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the 
mouse brain with Tangram" 
(https://www.biorxiv.org/content/10.1101/2020.08.29.272831v1.full.pdf). see Figures 1-5 for 
examples of how ow single cell and spatial transcriptomics are used to delineate the brain 
architecture. 
○ "Robust decomposition of cell type mixtures in spatial transcriptomics" 
(https://www.nature.com/articles/s41587-021-00830-w. See Figure 4-6 for examples of how ow 
single cell and spatial transcriptomics are integrated to survey the brain structure and cell 
composition, 
○ "Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component 
Analysis" (https://www.sciencedirect.com/science/article/pii/S2211124719311325?via%3Dihub), 
see Figure 4 for an example of how cell-cell interactions in the mouse brain are surveyed in the 
spatial data using 
Perhaps the authors should be slightly less strong in their claims of novelty.  
 
We thank the reviewer for this excellent suggestion to properly contextualize our work. We have 
now discussed how the manuscripts mentioned above have used spot-ST data to detect a cell-
type’s presence in a spot and the cell-type composition of individual spots, but how the nature of 
spot-ST data fundamentally limits the types of investigations we can do using these datasets. 
As suggested by the reviewer, we also report additional benchmarking of STANN that not only 
showed STANN’s efficacy but also suggested that methods for integrating spot-ST and scRNA-
seq data are likely to produce suboptimal results if applied to integrate sc-ST and scRNA-seq 
data (Supplementary Note 1, Discussion). Therefore, we now summarize our contribution as 
providing important insights into brain architecture and intercellular communication principles 
and for developing the necessary computational tools for similar investigations. The relevant 
text reads as follows. 
  
“The STANN model and the downstream analyses featured in this work are motivated by a 
critical need for using sc-ST data to delineate the consistent and the variable aspects of the 
architecture and intercellular communication mechanisms at a single-cell resolution in complex 
tissue regions, such as MOB, beyond their conventional layer-based architectural description. 
Previous studies in this realm have used spot-ST data and described brain architecture in terms 
of different cell-types’ presence and their proportions in individual spots (Andersson et al. 2020; 
Cable et al. 2021; Biancalani et al. 2021). However, as we discussed above, since the number 
of cells in each spot is variable and is difficult to determine, the estimated cell-type composition 
of a given tissue region that comprises multiple spots is not as accurate as could be derived 
from single-cell resolution spatial data. For the same reason, spot-ST data is not particularly 
suitable for computing colocalization of cell-types or their intercellular communications at single-
cell resolution. Given that sc-ST data are better suited to answer these questions, we developed 
STANN to tackle the computational challenges associated with sc-ST data and studied MOB 



architecture. Besides featuring new approaches to quantify the colocalization of cell-types and 
study the variation in intercellular communication, we also benchmarked STANN against 
alternative models. STANN outperformed the alternative methods in this benchmarking. The 
analyses also suggested that methods for integrating spot-ST and scRNA-seq data are likely to 
produce suboptimal results if applied to integrate sc-ST and scRNA-seq data (Supplementary 
Note 1, Discussion). Altogether, our work offers important insights into brain architecture and 
intercellular communication principles and for developing the necessary computational tools for 
similar investigations.” 
 
Results 
 
● The authors cite Kelley 1960 for the backpropagation algorithm, while true that Kelley 
presented some of the fundamental concepts used in the algorithm, we believe that the 
formulation and application of the backpropagation algorithm in neural networks most often is 
attributed to Rumelhart, Hinton and Williams (see: https://www.nature.com/articles/323533a0). 
Also, since the authors use Tensorflow for their implementation, it might be apt to cite the 
automatic differentiation scheme that the suite employs. 
 
We thank the reviewer for this excellent suggestion. In the revised version, we have referenced 
Rumelhart et al.’s work on the backpropagation algorithm (Rumelhart et al., Nature, 1986). We 
also cited the TensorFlow library back-end for backpropagation using automatic differentiation 
(Abadi et al., Proc. of OSDI, 2016). 
 
● The authors state that they used a ten-fold cross-validation scheme to make sure their model 
is accurate and generalizable, something we fully support and commend the authors for. 
However, in their description of the cross-validation setup (Supplementary Note 1): 
 
"In order to test the generalizability of STANN on unseen data, we performed a 10-fold cross 
validation. On each fold, the data is split into 90% training and 10% testing." 
 
To us, this does not sound like a k-fold cross validation setup. The idea with the k-fold cross 
validation is to first split up the data into k-folds, and then train the model i on the (k-1) partitions 
that remain when the i:th fold is held out (to be used as test data). If, as the authors describe, 
random resampling is done at every iteration - there's a risk that similar test/train combinations 
of train/test partitions occur at each round.[1] 
 
[1]: https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation 
 
We apologize for this misleading description of our cross-validation scheme. We indeed 
followed the 10-fold cross validation scheme that the reviewer pointed out, where we first split 
the data into 10 folds (each containing about 10% of the data) and at the i-th iteration, we hold 
out the i-th fold as our test data. Specifically, we used the stratified 10-fold cross validation 
scheme from scikit-learn so that the folds preserve the percentage of samples for each class 



(cell-type). We have now revised the text to avoid confusion. 
 
● In the main text the authors report the following accuracy numbers for training and test data: 
"The optimal STANN model showed an average accuracy of 99.55 ± 0.05 % on training data 
and 95.24% ± 0.31% on separately held-out test data." 
 
While in Supplementary Note 1, they state that: 
"On each fold, the data is split into 90% training and 10% testing. Over the 10 folds, the model 
showed an average accuracy of 99.413 ± 0.059% on the training data and 95.150% ± 0.325% 
on the separately held-out test data" 
 
While the numbers are similar, maybe the authors want to adjust these pairs of values to make 
sure that they agree. 
 
We sincerely thank the reviewer for their careful reading of the manuscript and apologize for this 
mismatch. The two sets of results came from two different runs of the model. In the revised 
version of our manuscript, we report the same run’s output consistently throughout the text. 
 
● Request: we would like to see how well STANN generalizes to prediction between different 
single cell datasets. To elaborate, while similar in their superficial form the expression data 
collected from seqFISH+ and scRNA-seq both host different biases. Thus the data sets still 
represent different modalities, see [1] for a discussion about platform effects. Hence, we believe 
that the task of predicting cell type identity in a "held out" partition of the same single cell data 
set as the model is trained on is significantly easier than to predict the cell type of a seqFISH+ 
cell using single cell data. 
 
It is admittedly hard to know exactly what biases that are inherent to each method and to 
correctly capture these in synthetic data, one way to see how the model handles technical 
artifacts and batch effects would be to train it using single cell data from one publication and 
then predict the cell types in a single cell data set from a different publication (using the same 
subsampling strategy as before). Since the model itself, the dense fully connected neural 
network hasn't been tailored as to specifically work with only mouse brain data, the authors 
could choose any tissue where two such data sets exist. We are also keen on seeing this 
analysis, as neural networks have a tendency to overfit the data, while the same does not quite 
apply other methods used in the benchmarking (e.g., Seurat). 
 
We are requesting this, as much of the model's validity relies on showing good performance on 
synthetic/semi-synthetic data where the ground truth is known, hence why a lot of rigour should 
be put into this analysis in order to establish confidence in the secondary results presented 
using the cell type calling as input. 
 
[1]: https://www.nature.com/articles/s41587-021-00830-w 
 
We thank the reviewer for this excellent suggestion.   



 
As the reviewer suggested, we collected two independent lung scRNA-seq samples from the 
Tabula Sapiens Consortium. We separately processed the datasets following standard 
approaches, namely scale-factor transformation and log-transformation, and used cell-type 
annotation provided by the Tabula Sapiens Consortium. For the STANN pipeline, we then 
quantile normalized the datasets and applied STANN to learn cell-type mapping from one 
sample and predicting the cell-types of the cells in the second sample. STANN provided an 
accuracy of 96.66%, compared to Seurat’s 85.33%, scPred’s 78.37%, and Tangram’s 41.85%. 
We report these results in Supplementary Note 1, our revised supplementary text elaborating on 
the benchmarking analyses (we discussed more in our response to the next comment).  
 
Furthermore, following the reviewer’s suggestion in another comment, we applied STANN on 
MERFISH data. This provided us with another check of STANN’s efficacy for learning cell-types 
from scRNA-seq data and making predictions on MERFISH data. STANN’s accuracy of 87.62% 
in this case outperformed Seurat’s 82.52%, scPred’s 52.08%, and Tangram’s 41.86%.   
 
We again thank the reviewer for this suggestion and hope the above analyses address the 
reviewer’s concern.  
 
● Could the authors perhaps, e.g., as Supplementary Notes, provide more details on how the 
benchmarking analyses were performed. As of now we could not find this in the manuscript nor 
at the referenced github repository, without this information it's hard to evaluate whether a fair 
comparison has been made or not. 
 
We again thank the reviewer for this helpful suggestion. We have now provided the details of 
our benchmarking in Supplementary Note 1. Briefly, we have benchmarked STANN against 
Seurat, scPred, and Tangram using the following three datasets and the procedure of each 
method published in their corresponding tutorial or manuscript. 

1. Tepe et al.’s mouse olfactory bulb scRNA-seq data (Tepe et al., Cell Reports, 2018), 
2. Two independent samples of Tabula Sapiens lung scRNA-seq data, and  
3. MERFISH (Moffitt et al., Science, 2018) data. 

 
● Request: Continuing with the benchmarking, we would encourage the authors to include 
Tangram (https://github.com/broadinstitute/Tangram) in their comparison. The method shares 
many of its objectives with STANN and while not yet published, we believe it's likely that it will 
be once this manuscript reaches publication. 
 
We thank the reviewer for this suggestion. As we noted above and discussed in detail in 
Supplementary Note 1, we have added Tangram to our benchmarking. Tangram did not perform 
better than scPred, Seurat, and STANN in our benchmarking.  
 
We wish to share some thoughts here, although the following requires testing Tangram in more 
settings, and we think Tangram authors will optimize the method as the manuscript goes 



through the peer-review process. We think the above performance results are not entirely 
unexpected from Tangram, which is developed as a more general method for transferring 
annotations from a source scRNA-seq dataset (S) to a target ST dataset (G). To this end, 
Tangram learns a mapping matrix, M, by maximizing the similarity of gene expression 
distribution and cell-densities between MTS and G. When the annotations to be transferred are 
cell-types from a source scRNA-seq data, Tangram’s formulation essentially reduces to 
deconvolving the data, as the original manuscript mentions, “This corresponds to probabilistic 
mapping and can be interpreted as the mixture of cell types which best explain the in situ gene 
expression.” Thus, Tangram can be directly applied on spot-ST data, which indeed requires 
computing the relative proportion of different cell-types in each spot. In the case of sc-ST data, 
since deconvolution is not necessary, Tangram needs to use specific assumptions in their 
formulation. In particular, for density at each sc-ST location, Tangram uses a uniform prior on 
the cell-types and we think, for sc-ST data, then the model becomes more complicated than 
necessary to optimize the correlation of gene expression distribution between MTS and G. We 
think that Seurat’s CCA (canonical correlation analysis) could achieve the same goal in a more 
straight-forward manner. We anticipate this could be the same case for other similarly complex 
models (e.g., cell2location) that were developed for more generally deconvolving spot-ST data, 
but for sc-ST data, needs to make specific assumptions and essentially optimizes a linear 
correlation structure. Importantly, in their preprint versions, neither Tangram nor cell2location 
compared itself against Seurat for any sc-ST data. In fact, neither of the two methods showed 
an application for transferring cell-type labels from scRNA-seq data to sc-ST data; for example, 
Tangram’s application to MERFISH dataset was to increase gene throughput (predict the 
expression of more genes than profiled by MERFISH). We think as those manuscripts go 
through the peer-review process, the authors will add more insights on their applicability to sc-
ST data for transferring cell-type labels.  
 
Overall, our benchmarking suggested that methods for integrating spot-ST with scRNA-seq 
might be sub-optimal for integrating sc-ST with scRNA-seq, and one should use methods like 
STANN that were specifically developed for sc-ST data. To know the cell-types in a spatial 
dataset, although both sc-ST and spot-ST require integration with scRNA-seq, the methods 
require solving two different computational problems. In the case of sc-ST, a tool like STANN 
needs to find a mapping to cell-types from a fewer number of genes, even from genes that were 
not used in the first place to define the cell-types in the scRNA-seq data. In the case of spot-ST, 
since each spot contains a variable number of cells, the problem is to deconvolve the data into 
relative proportions of different cell-types. Since sc-ST data do not require deconvolution, when 
applied to sc-ST datasets, the algorithms developed for spot-ST data essentially optimize linear 
correlations of gene expression between the given sc-ST and scRNA-seq datasets. However, 
as our benchmarkings suggest, explicitly learning a non-linear high dimensional mapping 
function, as STANN does, is potentially more useful than that for sc-ST data.   
 
● Our final question regarding the benchmarking, which relates to the first, is if the same gene 
selection process (sPCA) and normalization process was applied to the data before analysis 
with Seurat and scPred? If not it's hard to say whether it's actually the data curation that is the 
crucial step in the authors' method or if it's the neural network that gives the increase in 



performance. To us it's important to disentangle what part of a method that actually provides 
improved performance, and initialization as well as normalization strategies are important 
aspects of this, see [1].  
[1]: https://www.nature.com/articles/s41587-020-00809-z 
 
We thank the reviewer for this interesting question about which step in STANN’s pipeline 
potentially provides the most improvement in performance. We have now added this point in our 
Discussion section and share our thoughts below. 
 
We note that, to map cell-types in an sc-ST dataset through integrating it with an scRNA-seq 
dataset, we need a function that computes the type of each sc-ST cell given its shared genes 
with the scRNA-seq dataset. Since deep neural networks are effective in learning high-
dimensional and non-linear functions in data-driven fashion, we anticipate that the neural 
network component of our approach is key to its higher accuracy. However, STANN’s class-
imbalance aware loss function was also critical, especially given the high imbalance of cell 
counts in different cell-types of scRNA-seq datasets. In our exploratory runs, the supervised 
PCA (sPCA) consistently helped improve STANN’s cross-validation accuracy by up to 5%, but 
without the class-imbalance aware loss function, our cross-validation accuracies would often 
drop by 10% to 15%.    
 
On the point of preprocessing, all methods (Seurat, scPred, and Tangram) apply the common 
preprocessing steps, such as scale factor normalization and log transformation. As we discuss 
below, Seurat and scPred employs their own additional preprocessing, which presumably were 
optimized for their overall pipeline, and in our benchmarking, we retained the same steps as the 
original pipelines.   
 
scPred normalizes the two input datasets using Harmony (Korsunsky et al., Nature Methods, 
2019) to align them in a low-dimensional space. The Harmony algorithm takes a PCA 
embedding of the cells and their batch assignments, and returns a batch corrected embedding. 
Once normalized using Harmony, scPred performs a PCA based feature selection and then 
uses a support vector machine (SVM) classifier to assign types to the cells.  
 
Seurat uses canonical correlation analysis (CCA) to integrate the two input datasets according 
to their shared correlation structure (Stuart and Satija, Nature Reviews Genetics, 2019). This is 
more akin to an unsupervised clustering approach with its own correlation-based strategy for 
feature selection. Tangram maximizes the cosine similarity between the predicted and the 
expected gene expression values. Thus, unlike scPred, Seurat and Tangram do not require an 
explicit normalization to make the two input datasets’ gene expression distributions comparable.   
 
Overall, we posit that the deep neural network and the class-imbalance aware loss function are 
the two most critical drivers of STANN’s improved performance. However, as the reviewer 
pointed, the initial steps for making the two data distributions comparable are likely to impact 
any algorithm’s accuracy. In our exploratory analyses and benchmarking runs, STANN’s 



pipeline did not require a sophisticated method like Harmony; the quantile normalization 
approach was sufficient. As we are learning from our other projects, Harmony has its strengths 
and weaknesses, and we think it is more appropriate to recommend that future works to 
integrate sc-ST with scRNA-seq should perform careful exploratory analyses to select the initial 
normalization approach from the available options such as quantile normalization, Harmony, or 
any similar tools.  
 
● The authors state that six FOVs of seqFISH+ data were used, however when we look in 
Supplementary Table 4 there are 21 pairs and in total 7 FOV's listed (0-6). Is this a different 
data set, or a typo? 
 
There are seven FOVs in this seqFISH+ data. We have now checked and corrected the 
numbers throughout our manuscript. We apologize for this typo and thank the reviewer for their 
careful read. 
 
● Regarding the FOV independence analysis: First, the authors could be more clear with the 
fact that the chi2-tests are conducted on a pairwise basis. Second, instead of computing both p 
and q relative entropies, why don't the authors simply use the symmetric Jensen-Shannon 
divergence metric.[1] 
[1]: https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence 
 
We thank the reviewer for these great suggestions. We now clarified that the chi-squared tests 
were conducted across all pairwise comparisons of FOVs. We also agree that Jensen-Shannon 
divergence could be a more direct metric to report this pairwise comparison and now reported 
Jensen-Shannon divergence in Supplementary Table S4. The arithmetic and harmonic means 
of the KL divergence values and the Jensen-Shannon divergence all agree with the chi-squared 
tests. 
 
● Personally, we think that the application of multivariate kernels to assess cell type co-
localization patterns is an elegant solution to the problem of working with point-pattern data 
(single cells). We also have one question, which is whether these density estimates potentially 
could be confounded by the general cell density? To further explain, could it be that there is an 
overlap in spatial location between two cell types that would imply a co-localization event, but 
that this is actually driven by the fact that certain regions are more populous than others and 
tend to host more cells. Perhaps, one could decompose the density estimates into two parts, 
one representing the general cell density and one the type specific density and then look at the 
correlation values between the later components? We are posing this as a question, as we are 
not sure of the answer, and welcome the authors insights. 
 
We thank the reviewer for this excellent question and finding the approach useful. To make this 
approach broadly applicable, it will be important to consider the point of non-uniform cell-
densities. We wish to note that, in our inspection of Eng et al.’s seqFISH+ data, cell densities 
were not specifically high in any particular part of an olfactory bulb FOV (Fig. 4 and Extended 
Data Figure 10 of Eng et al., Nature, 2019). 



 
We think partial correlation coefficient (CC) could handle the scenario of non-uniform cell 
densities. In particular, we would first take the KDE considering all cell-types in the FOV; i.e., we 
would compute the KDE of the data C = {(x_i, y_i, Z)} where (x_i, y_i) is the spatial coordinate of 
the i-th datapoint and Z is a binary variable indicating if there is a cell of any type at (x_i, y_i). 
Then, instead of taking the Pearson CC of the KDEs of two cell-types A and B, we could take 
the partial Pearson CC of the KDEs of A and B given the KDE of C. Using available statistical 
packages (Kim S, Commun Stat Appl Methods, 2015), we could also compute a p-value of the 
partial CC. 
 
● It would be interesting to see the same density estimate plots for the receptor and ligand pairs 
as for the cell type co-localization, this information could all be included in a single plot (e.g., by 
adding the receptor and ligand densities in different colors to a gray plot like that in 5C). 
 
We have now shown these density plots separately in Supplemental Figure S6. We note that, 
since not all cells of a given type express the receptor/ligand of interest, the density plot of 
receptor/ligand expressing cells and that of all cells may not have their highest densities in the 
same region and overlaying the two density plots complicates the visualization. Hence, we show 
the density plots separately. 
 
● We believe that the authors use the processed seqFISH+ data (where each transcript has 
been assigned to a cell), but seqFISH+ data also holds information on the exact position of 
every transcript. It would, as a complement to the above suggested density plots, be interesting 
to include an image of how the transcripts of ligands and receptors are located in neighboring 
cells, at least for some of the highlighted pairs; similar to what is done in Figure 4d in [1]. 
 
[1]: https://www.nature.com/articles/s41586-019-1049-y 
 
We again thank the reviewer for an interesting suggestion. Unfortunately, we found that the 
processed seqFISH+ data does not include transcript locations for olfactory bulb cells.  
 
Since it would be complicated to make a mechanistic conclusion from this analysis, we 
assumed this was not a high-priority suggestion from the reviewer. Thus, we focused more on 
incorporating the other prioritized suggestions of the reviewers and did not delay the revision for 
collecting and processing the raw data for this analysis. We sincerely hope the reviewer will 
favorably consider this point. 
 
● The authors' strategy to correct for false positives of long-range communications is clever, and 
seems like a good approach. Perhaps they could generate synthetic spatial data to show that : 
(i) their interaction analysis works, and (ii) that the false positives are indeed caught. The large 
variation in receptor-ligand usage is interesting, but also something that I believe requires more 
validation to make sure it's not just a technical artifact from the computational methods used. 
 



We thank the reviewer for this suggestion. We have now simulated spatial 
colocalization/separation patterns and checked if the number of long-range communications 
marked as false-positives by our approach increases or decreases as we introduce more spatial 
colocalization or separation, respectively. 
 
We note that we can represent the spatial colocalization/separation pattern in an FOV using a 
graph where nodes represent cell-types and edges represent pairs of colocalized cell-types. 
The absence of an edge between two nodes represents a spatial separation of the 
corresponding cell-types. 
 
Thus, we first compute seven graphs representing the spatial colocalization/separation patterns 
of cell-types in the seven FOVs of this seqFISH+ data. We then create 100 synthetic patterns of 
spatial colocalization/separation for the seven FOVs as follows. For 50 patterns, we increased 
spatial separation by randomly removing k edges from the seven graphs, where we sampled k 
uniformly from the range [10, 50% of the total number of edges in the seven graphs]. Similarly, 
50 times we increased spatial colocalization by randomly adding k new edges to the seven 
graphs, again sampling k uniformly from the range [10, 50% of the number of node-pairs that 
did not have an edge in the original seven graphs].  
 
For each of the 100 spatial colocalization/separation patterns generated above, we repeat our 
analysis and record the fraction of intercellular communications between spatially separate cell-
types (i.e., long-range communications) that our approach marks as false-positives and filters 
out. This analysis showed that the number of false-positives marked by our approach increases 
or decreases as we simulate more spatial colocalization or separation, respectively, as we show 
in the following plot. Negative values in the X-axis denote removal of edges. 
 

 
   
● Request: Since the dense fully connected network does not host any design elements specific 
to seqFISH+ data, we don't see an issue with applying the method to other spatial 



transcriptomics methods like MERFISH or ISS. To show that this strategy is robust we would 
encourage the authors to test it on more data sets from other platforms. 
 
We thank the reviewer for this suggestion. We have now included MERFISH in our 
benchmarking. STANN’s accuracy of 87.62% in this case outperformed Seurat’s 82.52%, 
scPred’s 52.08%, and Tangram’s 41.86%. We reported the details in Supplementary Note 1. 
 
Discussion 
 
● We would encourage the authors to discuss what aspects of their approach brings novel 
insights that existing methods like Tangram [1] and SVCA [2] cannot already provide. It would 
also be of interest to include a commentary on computational run-time in the benchmarking 
analysis, the authors are using a fairly small network but their approach also requires that 
several pre-processing steps are executed and they employ a form of cross validation, which I 
assume increases the run-time quite significantly. 
 
The accuracy of the results is of course of highest importance, but run-time is an important 
aspect when it comes to a method's usefulness. Extremely computationally expensive methods 
are not always an option for smaller labs and also less attractive to include in a workflow that 
will be updated across several iterations. 
[1]: https://www.biorxiv.org/content/10.1101/2020.08.29.272831v1 
[2]: https://www.sciencedirect.com/science/article/pii/S2211124719311325?via%3Dihub 
 
We thank the reviewer for this suggestion. For SVCA, we have now noted the following in the 
section titled “Widespread spatial variation in intercellular communication mechanisms give rise 
to spatially localized gene regulatory networks”. The relevant text reads as follows. 
 
“This concept of spatially localized GRNs has been noted in the literature (Yang, Fang, and 
Shen 2019) and aligns with previous observations on spatial variation of gene expression 
because of intercellular communication (Arnol et al. 2019). However, to our knowledge, the 
existence and role of spatially localized GRNs of different cell-types in mediating their 
intercellular communications have never been discussed.”  
 
In other words, while SVCA showed spatial variation in gene expression because of intercellular 
communication, the analysis did not take the different cell-types into account. The SVCA 
manuscript also mentions this as one of their motivating points: “In contrast to previous 
methods, our model directly uses the spatial coordinates and the gene expression profile of 
each cell as input, thereby avoiding the need to define discrete cell types ...” 
 
For Tangram and other relevant works, we have now discussed the following in our Discussion 
section.  
 



“As we have noted in the Introduction, our aim was to fill in a critical gap in this realm since 
previous studies have described brain architecture using spot-ST data in terms of the proportion 
of different cell-types in the spots (Andersson et al. 2020; Cable et al. 2021; Biancalani et al. 
2021). However, since the number of cells in each spot of spot-ST data is difficult to determine 
and variable between spots, one cannot comment on a tissue region’s cell-type composition, 
colocalization of cell-types or their intercellular communications from spot-ST data as accurately 
as one could from sc-ST data. For those analyses, one practical solution is to first make a 
binary presence-absence call in the spots for each cell-type using a predefined threshold on the 
cell-type’s proportion per spot. On one hand, it is not clear how to define this threshold and 
whether one should use a cell-type specific threshold, on the other hand, the conclusions from 
such binarized analyses would arguably be sub-optimal than those that an sc-ST data could 
offer. That is why, we posited that sc-ST data are better suited to reveal the consistent and the 
variable aspects of the architecture and intercellular communication mechanisms in MOB 
beyond its layer-based architectural description, and developed STANN to tackle the associated 
computational challenges.” 
 
We hope the above revisions address the reviewer’s suggestion. 
 
We have now included a discussion on the runtime in Supplementary Note 1. We report the 
following.  
 
“All benchmarking runs were conducted in a server equipped with 80x Intel(R) Xeon(R) Gold 
6148 CPU @ 2.40GHz processors and with 256GB of DDR4 memory. From the benchmarked 
methods, we found that STANN had similar runtime as Seurat and scPred and significantly 
lower memory usage than the three other benchmarked methods. Seurat and Tangram had the 
highest peak memory usage. STANN and Tangram were run on a single processor, Seurat and 
scPred were run on 10 processors to leverage functions that supported multithreading. 
Training a model with ~10K cells and ~150 genes (MERFISH benchmarking) and predicting on 
~90K cells and ~150 genes took both STANN and Seurat runtime took < 20min, scPred and 
Tangram > 1hr. Training a model with ~10K cells and ~10K genes (Tabula Sapiens and MOB 
runs) and predicting in ~10K cells and ~10K genes took STANN, Seurat and scPred < 1hr and > 
1hr for Tangram.” 
 
Methods 
 
● In the section Cell type annotation in scRNA-seq data, the authors write: 
"[..} we first ranked genes based on the variance-to-mean ratio of their expression values and 
selected 4000 top highly variable genes." 
This sounds similar to the procedure that scanpy tends to employ, and the suite is listed as 
being used for data normalization. We assume that the data normalization was performed 
before the annotation, and hence that the variable gene selection is also done in the scanpy 
suite, presumably using the "scanpy.pp.highly_variable_genes" function, if so we think it's apt 
the the authors state this in the text, as this function implements some correction and do not 



immediately just compute the variance-to-mean ratio. 
 
We thank the reviewer for this suggestion. We indeed performed the highly variable gene 
selection using “scanpy.pp.highly_variable_genes” and clarified this on the manuscript. The 
relevant text reads as follows. 
 
“Following the common steps for cell-type annotation in scRNA-seq data (Zheng et al. 2017; 
Butler et al. 2018), we ran Scanpy’s highly_variable_genes function (v1.5.0) and selected the 
top 4000 genes based on the variance-to-mean ratio of their expression values.” 
 
● From the sentence "We implemented a multi-layer perceptron model and searched for its 
optimal architecture (using random initializations in terms of the number of hidden layers, the 
number of nodes in hidden layers, and the activation functions) using the TensorFlow 
framework." , it doesn't sound like the authors used a structured grid search approach (which is 
fine), but rather just sampled configurations randomly - what would be informative is to state 
from what sets of possible values these values were sampled, i.e., which were to possible 
activation functions, ranges of possible node sizes, and range of learning rates. Also, 
importantly, how many different evaluations were made, i.e. were 10 or 1000 models evaluated? 
 
We apologize for our unclear description. In the Methods section of our revised manuscript, we 
have now elaborated on our hyperparameter search. The relevant text reads as follows. 
 
“We implemented hyperparameter optimization using KerasTuner (O’Malley et al. 2019). 
Specifically, we used the hyperband algorithm (L. Li et al. 2018) which performsdoes a 
computationally efficient random search through adaptive resource allocation and early 
stopping. We evaluated 2000 random models with varying the following parameters within the 
shown ranges or sets. 

Dense layers neurons: Min: 10, Max: 500 
Activation functions: Relu, Sigmoid and Tanh 
Learning rates: Min: 1e-4, Max: 1e-2, and  
Optimizers: Adam, SGD, and RMSprop.” 

  



RESPONSES TO COMMENTS FROM REVIEWER #2 
 
Reviewer #2: The manuscript present STANN, a computational solution - based on neural 
networks - able to predict cell type localization within a high-resolution spatial transcriptome 
map by the integration of single cell RNA-sequencing data. 
 
We thank Reviewer #2 for their careful reading of our manuscript and thoughtful comments. We 
hope our responses and revisions, as discussed below, have adequately addressed their 
comments and concerns. 
 
Major comments 
 
The manuscript focus on the integration of single-cell RNA sequencing data with either 
seqFISH+, or HSDT; both approaches providing spatial transcriptome readouts at a cellular 
resolution (or nearly). This being said, the authors argue that "current ST tools profile the 
transcriptional expression of only about half as many genes as scRNA-seq (1,000-10,000 
compared to 20,000)" (page 3), or such statement might require to be nuanced. In fact, while 
the seqFISH+ strategy is bound to a total of 10 thousand interrogated genes due to 
methodological reasons; other ST approaches, including HSDT, depend on the sequencing 
depth in use for enhancing the interrogated number of genes; which in addition is also true for 
single-cell RNA sequencing assays. 
 
We thank the reviewer for this suggestion. In the Introduction of this revised manuscript, we 
have elaborated on the distinction between spot-based ST (spot-ST) and single-cell resolution 
ST (sc-ST). We hope this elaboration captures the nuances that the reviewer noted above. We 
have also discussed how the nature of spot-ST data fundamentally limits the types of 
investigations we can do using these datasets. The relevant text reads as follows. 
 
“Current ST technologies fall into two broad categories, and importantly, neither category 
profiles the transcriptome of single-cells. The spot-based ST technologies (spot-ST) use spots 
(or beads) organized in a regular grid where each spot captures the transcriptome of a variable 
number of cells (Liao et al. 2020; Stuart and Satija 2019). The commercially available Visium 
technology, for example, captures 5 to 10 cells (on average) per spot. Because of this “pseudo-
bulk” nature of the spot-ST technologies, it becomes challenging to use these datasets to 
investigate the above questions that require locating single-cells in situ. In particular, although 
recent methods have used spot-ST data to compute the relative proportion of different cell-types 
in each spot (Cable et al. 2021; Elosua-Bayes et al. 2021; Andersson et al. 2020; Biancalani et 
al. 2021; Kleshchevnikov et al. 2020), since the number of cells in each spot is variable and is 
difficult to determine, the estimated cell-type composition of a given tissue region that comprises 
multiple spots is not as accurate as could be derived from single-cell resolution spatial data. For 
the same reason, it is challenging to compute the colocalization of cell-types or their intercellular 
communications from spot-ST data. One practical solution is to first make a binary presence-
absence call in the spots for each cell-type using a predefined threshold on the cell-type’s 



proportion per spot. On the one hand, it is unclear how to define this threshold and whether one 
should use a cell-type-specific threshold; on the other hand, the conclusions from such 
binarized analyses would arguably be sub-optimal than those that a single-cell resolution ST 
data could offer. 
 
In contrast to the spot-ST technologies, the single-cell ST (sc-ST) technologies record the 
location of single-cells. Such datasets are, in principle, more well-suited to locate the individual 
cell-types in situ and study their colocalization and intercellular communication with other cell-
types. However, because of their technological design, current sc-ST technologies profile the 
transcriptional expression of only about half as many genes as commonly profiled by scRNA-
seq and spot-ST (1,000-10,000 compared to 20,000) (Vieth et al. 2019; Stuart and Satija 2019), 
an issue that can make it problematic to identify cell-types in the sc-ST datasets. In particular, 
when the marker genes of different cell-types are absent in an sc-ST dataset, it is challenging to 
assign correct types to the cells in that dataset (Dumitrascu et al. 2021). Errors in cell-type 
assignment, in turn, may lead to inaccurate biological conclusions from an sc-ST data analysis.” 
 
Similarly, in page 6, the authors state that "scRNA-seq profiles the complete transcriptome"; 
completely forgetting that scRNA-seq assays follow a similar strategy than several ST assays; 
i.e. the capture of messenger RNA via a polyT sequence; followed by reverse transcription and 
a major step of material amplification prior NGS, which is systematically responsible for a bias 
on the interrogated transcripts. Furthermore, the sequencing coverage is strongly responsible 
for determining the "completeness" of the assessed transcriptome. 
 
We again thank the reviewer for these suggestions. We have now removed the wording of 
“complete” transcriptome. We rather noted that under the current standard practices, both the 
spot-ST and scRNA-seq technologies have been shown to profile ~20000 genes.  
 
A last argument that might require to be discussed by the authors is the potential bias on 
scRNA-seq issued from the enzymatic cell dissociation process, which has been previously 
described as being a source of artifactual transcriptional response (van den Brink et al., 2017), 
but also due to the potential over-digestion of a fraction of the cells composing the tissue. 
 
On the ground of these points, the relevance of STANN for integrating scRNA-seq and ST might 
require its validation in the context of "low resolution" ST data (e.g. Visium generated data, or 
even those issued from the first generation of DNA arrays described by the team of Dr. 
Lundeberg), which as consequence might provide higher sequencing depth levels per 
interrogated spatial region. While STANN has been compared in this article with tools like 
SEURAT or SCPRED, other tools like Stereoscope, SPOTlight or сell2location were recently 
shown to be applied for integrating "low resolution" ST maps with single-cell RNA-seq data. 
 
We apologize for any confusion, but STANN has been developed for single-cell resolution ST 
(sc-ST) data. Although both sc-ST and spot-based ST (spot-ST; referred above as “low 



resolution” ST by the reviewer) data require integration with scRNA-seq, the integration 
methods require solving two different computational problems.  
 
In the case of sc-ST, a tool like STANN needs to find a mapping to cell-types from a fewer 
number of genes, even from genes that were not used in the first place to define the cell-types. 
In the case of spot-ST, since the number of cells in each location (“spots” or “beads”) is variable 
and is difficult to determine, the problem is to deconvolve the data into relative proportions of 
different cell-types. This is beyond the scope of the tools developed for sc-ST data. However, as 
the reviewer has pointed, we agree that the study would benefit from more benchmarking of 
STANN. We believe that, from the same reasoning Reviewer #1 has suggested us to apply 
STANN on other sc-ST data (such as MERFISH) and to add another state-of-the-art tool called 
Tangram to compare against STANN on seqFISH+ data. We have performed both analyses 
and reported the results in Supplementary Note 1. We also believe that, because of this 
fundamental difference between the two computational problems, Reviewer #1 did not suggest 
us to apply STANN on low-resolution spot-ST data. But again, we sincerely thank the reviewer 
for suggesting us to perform additional benchmarking. As we show in Supplementary Note 1 
and discuss in the Discussion section, these new analyses not only showed STANN’s efficacy 
but also suggested that methods for integrating spot-ST and scRNA-seq data are likely to 
produce suboptimal results if applied to integrate sc-ST and scRNA-seq data.   
 
Minor comments 
 
- Figure 3 might gain on significance if the authors could include the cell-type composition 
detected on seqFISH+ without the use of STANN. In fact, while the authors stated that only 30% 
of the known cell type markers are retrieved within such data, the SeqFISH+ article display a 
certain number of cell types, which might require to be compared with the STANN effort to 
evaluate the gain on using STANN over the strategy used in the SeqFISH+ article for such cell-
type classification. 
 
We respectfully note that this comparison could be misleading. Although the seqFISH+ article 
(Eng et al., Nature, 2019) studied mouse olfactory bulb, they used the mouse cortical cell 
scRNA-seq data from Tasic et al. (Nature Neuroscience, 2016) as their reference. Besides the 
fact that this data was collected from a different brain section, the data had fewer than 1,800 
cells raising concerns about the accuracy of cluster assignment. However, our data set, from 
Tepe et al. (Cell Reports, 2018), was specifically from olfactory bulb and had ~10K cells. 
Furthermore, Eng et al. did not benchmark their support-vector machine (SVM) based algorithm 
for cell-type prediction. We wish to note that, scPred is another SVM-based approach (but more 
sophisticated than Eng et al.’s algorithm) and did not show superior performance in our 
benchmarking. Overall, considering there are issues with both the reference scRNA-seq data 
and the approach of SeqFISH+, we are afraid that it might not be appropriate to perform a 
comparison taking seqFISH+’s cell-type labeling as ground truth. 
 
However, we completely agree with the reviewer about the need for benchmarking STANN. 
Thus, in the revision, we have benchmarked STANN and other competing methods using the 



Tabula Sapiens scRNA-seq data, where the methods were trained on one scRNA-seq sample 
and used to predict the type of cells in a held-out sample. From Tabula Sapiens, we took the 
ground truth information of cell-types in this separately held-out sample and scored the models 
for their predictive accuracy. STANN outperformed the competing methods, suggesting the 
model’s generalizability. We hope these additional analyses alleviate the reviewer’s concern. 
 
- The authors explored the relevance of spatially variable gene regulatory networks implicated 
on defining a given cell-type and their role on their corresponding intercellular communication. 
Globally speaking this concept is of major interest, thus counting with strategies to reveal such 
spatial GRNs are more than welcome. This being said, this manuscript might gain on relevance 
if the authors could reveal the major gene co-regulatory network per cell types retrieved on each 
of the FOVs and their commonalities issued of their inter-cellular communication. 
 
We thank the reviewer for this excellent suggestion. In our revised manuscript and 
Supplementary Figure S8, we have now discussed the idea of the major gene regulatory 
networks (GRNs) per cell-type. The relevant text reads as follows. 
 
“The above analyses not only revealed spatially variable GRNs regulating receptors and ligands 
and how variation in receptor-ligand usage could refine cell-subtypes, it also enabled us to 
identify the spatially consistent up-stream regulators of cell-type specific marker genes (Fig. S8). 
Consistent with the literature, we found that certain upstream regulators are key for overall cell-
type specific functionality. For example, we found Rorb is an upstream regulator of astrocytes’ 
marker genes across all FOVs. This is consistent with previous studies reporting a major role for 
Rorb in astrocyte maturation (Clarke et al. 2021). Similarly, we found that Sox10 regulates the 
olfactory ensheathing cell marker genes, as was previously reported (Barraud et al. 2013); and 
Larp1 regulates the markers of neuronal granule cells -- Larp1 has been associated previously 
with neuronal proliferation and differentiation (Gower-Winter et al. 2013).” 
 
We hope the reviewer finds our new analysis and the discussion useful. 


