
Supplement  figures:  Functional  strain
redundancy  and  persistent  phage
infection in Swiss hard cheese starter
cultures



Figure  1.  The  curated  phage  assembly  with  all  involved  steps:  1)  metaSPAdes  assembly  of
unmapped reads. 2) compare with plasmidSPAdes assembly of unmapped reads 3) demultiplex all
assemblies with cd-hit. 4) Disentangle Streptococcus phages based on contig coverage in bandage
(Wick et al.  2015). 5) Merge the disentangled phages and check continuous mapping. 6) Identify
single nucleotide variations (SNVs) on the curated phage genomes

https://paperpile.com/c/6jyXSC/QfCt


Figure 2. Polishing of the metagenome-assembled-genomes (MAGs). The quality can be illustrated by
the steady decrease of a) misassemblies, b) duplication rate, c) mismatches, d) INDELS, and e) 
pseudogenes over the four Racon-based polishing steps and the four Freebayes-based polishing 
steps.



Figure  3.  The  metagenome-assembled  plasmids.  The  plots  include  gene annotations,  and  are
labelled with plasmid name, size, coverage (relative to bacterial host), and closest blast hit.



Figure 4. pN/pS ratios and number of mutations of all genes of the L. delbrueckii and S. thermophilus
MAGs. The genes related to protocooperation and the peptidases are colored accordingly.

Figure 5. Cheese starter culture propagation diagram with the extent and amount of bottlenecks 
highlighted in red. This figure was created with biorender. 



Figure 6. The analysis of the phenotypic data of the propagation experiment. A) The overall survival
rate of the bacteria after freeze drying. B) The bacterial counts in CFU/ml  of the working stocks for
both species. C) The number of generations per passage over the entire experiment for both species.
D) The final number of generations at the end of the evolution experiment per species.



Figure 7. The acid-based titratable value of the starter culture RMK202 ranging back to 1996. The
titratable acidity is measured after incubation for 18 h at 37°C in milk. The black line is the lowest
minimum accepted value.



Figure 8. The percent of D-lactate to L-lactate measured after 18 h of incubation at 37°C in milk. D-
lactate is produced by L. delbrueckii and L-lactate by S. thermophilus. Measurements were irregularly
conducted between 2003 and 2015. Dates are illustrated on x-axis. 

Figure 9. Plasmid copy number of all detected MAG plasmids in all metagenomic samples. The copy
number is calculated in relationship to the host bacterial abundance. 



Figure  10.  The  fraction  of  variable  sites  (nucleotide  diversity)  in  the  housekeeping  genes of  the
S.thermophilus (top) and L. delbrueckii (bottom) over the 11 metagenomic samples. The coverage on
the individual samples is indicated with the size of the point. (The legend for the samples on the x-axis
are illustrated in Fig. 2A). 



Figure 11. The Tsne clustering of all metagenomic S. thermophilus SNVs. 



Figure 12. The alternative allele frequency of all S. thermophilus SNVs that are explained (97%) and
not explained (3%) by the isolates. The x-axis labels correspond to the sample annotations in figure
2A.



Figure 13. Phylogeny of all RMK202 L. delbrueckii isolates with the L. delbrueckii subsp. lactis type
strain DSM-2007 as outgroup. The phylogeny is based on 1596 core genes.



Figure 14. The accessory genes of S. thermophilus grouped into different COG categories.



Figure  15.  Artemis  collinearity  plot  of  the  representative  genomes  from  all  four  lineage  of  S.
thermophilus. The regions are selected for min 1000bp and min 90% nucleotide identity. The collinear
regions illustrated are colored according to orientation (red=same orientation, blue=reversed).



Figure 16: The experimentally and in silico tested resource utilization of the four lineages of S. 
thermophilus . A) The experimental growth on PM1 Biolog plates illustrating the utilization of 95 
different carbon sources. Only variation on fructose was observed. However fructose does not occur 
in milk. B) The in silico predicted amino acid synthesis ability. No variation was observed between the 
different S. thermophilus lineages. 



Figure 17. CRISPR repeat conservation over all assembled genomes is illustrated in the weblogo. 
(Sterm= S. thermophilus and Ldel= L. delbrueckii)



Figure  18.  Number  of  spacers  per  S.  thermophilus (top)  and  L.  delbrueckii (top)  strains.  Colors
indicate the respective CRISPR array. (L. delbrueckii 24781 does not contain any CRISPR array 4)



Figure 19.  The overall  number of  spacers in  the five  arrays.  The fraction of  unique spacers are
indicated in darker gray.



Figure 20. Number of genomes containing the same spacer. The colors indicate the CRISPR array
the spacer is associated with. 



Figure 21. The relative proximity to the CRISPR leader of all unique CRISPR spacers isolated from
the S. thermophilus genomes.



Figure 22. Percent of mapped raw reads for the different metagenomic samples against the MAGs.
The sample labels on x-axis are chronologically and described in more detail in Fig. 2A. 



Figure 23.  Percent  of  mapped raw reads for the different  metagenomic samples (mean=99.97%,
sd=0.02%). Sample labels on x-axis are chronologically and described in more detail in Fig. 2A.



Figure 24. Similarity network of the two assembled  Streptococcus phage genomes with previously
sequenced phages and viral contigs based on vCONTACT v2.



Figure 25.  This  plot  will  contain the  L. delbrueckii phage network  including the closest  phage hit
Lactobacillus phage JCL1032. 



Figure 26.  Streptococcus phage coverage in all metagenomic samples. The two genomes are very
similar,  especially  in the  lysis  and lysogenic  region,  we thus see similar  read recruitment  by the
different genomes. Note, the lysis & lysogenic region that is shared among the two phage genomes is
recruiting the reads randomly to one or the other genome.



Figure 27. Alternative allele frequencies of the SNVs from the different phages. (The legend for the
samples on the x-axis are illustrated in Fig. 2A).



Figure 28. Four different putative integration sites were identified in the S. thermophilus (x-axis) and
the phage genome (y-axis).  The densities illustrate the number of reads mapping to the different
locations. 



Figure 29. Genomic location on S. thermophilus where the lineage specific mate pair reads that span
bacterial and phage genomes.  



Figure 30. Number of CRISPR spacers that map to the two  Streptococcus  phages present in the
starter culture. The color code for the genomes is illustrated in the legend and corresponds to the
phylogenetic lineage. 



Figure 31. Origin of the CRISPR spacers plot according to the location on the CRISPR array.



Figure 32. The estimated age (measured in generations) of the oldest spacers mapping against the
co-existing phages for all  S. thermophilus genomes. The number of generations was calculated by
including the previously observed 0.024 spacer per generation turnover rate.
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