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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Dear Authors 

The manuscript titled "Deep learning unveils non-linear climate-glacier interactions through the 21st-

century deglaciation of the French Alps" is exciting. The manuscript is an excellent contribution 

towards 

Glaciology/climatology. 

 

I have some comments to improve the quality of the manuscript. 

 

1. Page 12, Line 206: Authors refer to models from previous publications; however, it will be 

significant if authors can provide information on model architecture, training information, parameter 

optimization, etc. 

 

2. Have authors tried Shallow learning or machine learning models? Authors should add information 

about recent shallow neural networks/ML/DL applied in glaciology. 

 

3. The word Deep Learning seems to be overused; instead, the model name should be given because 

Deep Learning itself is an extensive area comprising LSTM, CNN, hybrid models, etc. 

 

4. The methodology section is not providing the core of models, which is a weaker part of this 

manuscript. 

 

5. Page 14, Line 393: What is how-water drilling? 

 

6. Page 16 Line 467-472: "A linear regression model....ice volume in 2015." How can a linear model 

provide reliable estimates for such a non-linear behavior of glacier ice volume forecasting? Have the 

authors tried the sensitivity analysis of this regression? 

 

The manuscript requires some brief yet essential information on the model characteristics, as 

discussed in earlier comments. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

General comments 

 

This manuscript uses a previously-established deep learning approach of simulating glacier change 

(mass balance and ice dynamics). I am not an expert in deep learning or machine learning, but I see 

that the method is already published in Bolibar et al., 2020, so hopefully has already been assessed by 

experts. Here, the deep learning method is applied to simulating glacier change in the French Alps 

through the 21st century. These future projections using the deep learning method are then compared 

to results from a linear machine learning model to better understand non-linear components of the 

glacier-climate system. This component of the paper- investigating the impact of linear versus non-

linear models on glacier mass balance, is interesting and an important contribution to glaciology. As 

the authors note, the majority of future glacier projections currently use temperature index models, so 

better-understanding weaknesses or biases in these models is important. The paper is well written, 

especially the introduction, and nicely ties in the big picture/larger importance of this work in the main 

text and especially in the Supplementary Information text. 

 

In the paper, linear mass balance models are associated with temperature-index models (e.g. ling 



28). However, the linear mass balance model that is compared with the deep learning approach is 

another machine learning model (LASSO). A few suggestions around this point include: 1) It should be 

clear that the results are being compared with a machine learning approach and not a traditional 

temperature-index model. 2) I would have liked to see the results of the deep learning approach also 

compared with the temperature-index model, which most glaciologists use and or would understand. 

Right now, results are compared with results of GloGEMflow, but with the only analysis being Fig S5. 

3) I also wish there was a brief description of the LASSO model in this paper when it is first 

introduced, right now the authors reference a previous paper. 

 

A main finding of the paper is that deep learning captures important nonlinearities in the 

glacier/climate system. The authors nicely investigate this concept and present the results. It is 

interesting that the impact of the different approaches on cumulative mass balance is very minor (Fig 

4j). I think it needs to be clear that while the deep learning approach does improve the simulation of 

extreme positive and negative mass balances, the results here don’t show a huge difference on 

cumulative mass balance. A discussion point could be added that centers around the most appropriate 

problems to apply a deep learning approach (when capturing extreme extreme glacier mass balance 

years is important) versus when a traditional temperature-index model is sufficient (when capturing 

cumulative glacier mass balance is the goal, at least suggested by these results). 

 

I would have liked more discussion on the description and significance of Figure 4. This is the main 

Figure showing the importance of the deep learning approach to capturing nonlinearities, which I think 

is the biggest contribution of this paper. 

 

 

Specific comments 

 

L62 - “strongest glacier retreat” not clear what strongest means, fastest? 

 

Fig 1 - Why not have Figures S1 & S2 here? The supplementary figures are useful in showing all 3 RCP 

scenarios, which would be nice to include in the main text. 

 

L159 - not clear what the correlations are for, modeled vs measured glaciological mass balance? 

Modeled vs measured PDDs and snowfall (from what climate data)? 

 

Fig 3 - Would also be interesting to see climate anomalies as a %. For example, -1200 or +1200 

CPDD anomalies seem like huge differences from normal. The extreme values are where the two 

models diverge, is there a way to show how often anomalies fall in those extreme values. 

 

Figure 4c,f,i - does the deep learning model never result in positive mass balance? Figures a,d,g show 

there are years with positive mass balance. Why are the PDFs all negative? 

 

L297 - ‘remarkable’ is a bit opinionated, is there a better word? 

 

 

Lauren Vargo 

Research Fellow 

Antarctic Research Centre 

Victoria University of Wellington 

 

 

 

Reviewer #3: 

Remarks to the Author: 

This paper applies a data science method of modeling glacier mass adjustment to climate in the 



French Alps for the coming century when they drive the model with an ensemble of multiple future 

models under three emission scenarios (RCP 2.6, 4.5, 8.5). The extent and nature of the predicted 

glacier mass balance (MB) response is alarming: by end of this century, fully 75 to 88% of the glacier 

volume will be lost, and what remains will be dramatically altered landscapes. It is really intriguing to 

see the disappearance of mean surface area, emphasizing loss of the smaller and lower glaciers. It is 

also eye-opening to see that cumulative MB differences were mitigated by a complete loss of half the 

glaciers by mid-century. The unique contribution the authors claim is in the methodology: that this 

deep learning approach improves upon linear mass balance modeling. 

 

The authors champion their neural network (deep learning) method as being an important new 

contribution for the scientific community, for which they provide a more complete cross-validation in a 

prior paper using the same dataset. They demonstrate that deep learning does give "superior 

nonlinear explained variance," making models more accurate because both climate and glacier 

systems are known to react non-linearly to forcing. This is especially important as glaciers and climate 

deviate more extremely from mean conditions that appear most often in calibration. In this paper, 

they focus on the results of running model with 29 different climate members. They also provide a test 

of this relative mass balance response to linear vs nonlinear idea by comparing linear regression 

model to non-linear deep learning (artificial neural network) model of MB. They use the same 

predictors that are both topographic and climatological. They show that for more extreme values, the 

non-linear model makes a profound difference. However, the problem here is that for most of the 21st 

century, there is very little difference in the models; linear and nonlinear MB simulations are nearly 

identical. 

 

In assessing the merit and impact of this work, one wonders about the appropriateness of this 

national focus on just a small subset of glaciers in France only. Are these new insights of sufficient 

scope? What new insights do we gain about the future of Alps? And what about other regions where 

the authors suggest such a modeling approach would be more important? Does this method improve 

what would be predicted by a more temperature dependent index method that the authors categorize 

under the generalized 'linear' methods? Furthermore, what are the actual physical process insights 

elucidated by this approach? As a data-driven method, it is not solving fundamental equations of 

dynamics. 

 

I'm persuaded that this is a novel method applied to glacier change studies, but I lack adequate 

knowledge to give thorough technical review of the deep learning. I think that a more compelling case 

could be made to justify this data-analytical method by showing how it better captures physical 

processes, or allows for specific new predictive capacity for water management in the future. 

 

I think more discussion about the specific 'non-linearities' and their implications would help. The non-

linear deep learning is not obvious to the non-expert. As written, the authors show how mass balance 

responds non-linearly to some specific variables in Fig 3, but don't explain why in terms of physical 

processes. It is insufficient to claim that climate and glacier systems are known to be nonlinear 

(L149). What does it mean to treat PDD in a non-linear way? Are there feedbacks or sensitivities of 

mass balance to specific variables that are characterized by nonlinear models? If so, how? 

Furthermore, are they really that big of a deal when it seems that we won't see much difference for 50 

more years, and by then there will be so much less ice anyway that it is perhaps "much ado about 

nothing"? As written, the paper suggests that uncertainties "might be even greater than we previously 

thought" for future climate scenarios, but does not hypothesize why or where. The authors claim that 

their work is very similar to the linear models, and only diverge in extremes. They speculate that the 

impacts could be more pronounced in complex regions. However, this is hard to grasp, since the 

method is effectively as good as the data. 

 

It is interesting to see how initial ice thickness is the main source of uncertainties of glacier 

simulations. Only 4 of the glaciers have such data. Is there a need to get more of these 

measurements? 



 

Some line edits: 

L23: The abstract mentions 75 and 88% glacier volume loss by end of century. Loss from what point, 

the 2021 currently existing volume? Explain/clarify. 

L50: delete the 'in order' before to 

L53: type of model 

L103-106: The description of the future snowfall rates on glaciers not being effected is not clear as 

written. Maybe articulating more clearly about elevation dependent ratio of solid to liquid precipitation 

would make this more evident. 

L137: would be better worded as, "…Little Ice Age that are strongly out of balance with the current 

climate." 

L138: change wording; our projections describe the almost COMPLETE disappearance 

L140: instead of store, I recommend "retain" 

L141: large should be "larger" and give a dimension to match the Fig S4 (>2 km2) 

L187: rely should be "relies" 

L228 : change are to "comprise" 

L242: typo? Not sure what is Fig. "4Sb" 

L246: also, 5Se 

L268-270: this seems a stretch beyond the data to speculate that heterogeneous topography and 

"climatic char's" are likely to go thru higher variety of climate extremes. On what basis? 

L274: sentence ends incompletely. 

L275-278: awkward word choice/prose: "in a first term" and "in a second term." Do the authors intend 

this as an idiom like, "on one hand," or is it referring to an actual quantitative measure of uncertainty 

term? Please clarify. 

L354: should be combined effects 

 

Fig. 2: (a) confusing shading below the 2015 mean elevation; makes it seem like topography rather 

than median elevation. 

In c - e panels, lines all have end points; is that when respective glaciers disappear? Should be 

mentioned/clarified. 

Also, there appear to be random pixelated yrs of positive MB in (c). Why? 

Caption to Fig. 2 (c) has a spurious "A" 

 

Fig. 4: the RCP 8.5 graphs are strange. Annual nonlinear difs starts in postitive values. How? 

And the cumulative nonlinear difference goes positive. Is that right? Explain. 

 

Table S1: climate 'members' to force glacier evolution model 



Bolibar et al. responses to editor and reviewer’s comments

Author responses are given in italic after each of the editor and reviewer’s comments.

Editor

Thank you again for submitting your manuscript "Deep learning unveils nonlinear
climate-glacier interactions through the 21st century deglaciation of the French Alps" to
Nature Communications. We have now received reports from 3 reviewers and, after careful
consideration, we have decided to invite a major revision of the manuscript.

As you will see from the reports copied below, the reviewers raise important concerns. We
find that these concerns limit the strength of the study, and therefore we ask you to address
them with additional work. Without substantial revisions, we will be unlikely to send the paper
back to review. In particular, reviewers note instances where additional analyses would
support the robustness and broad applicability of the methods and conclusions. Reviewer #1
highlights where more detail on the model and sensitivity analysis is needed. We also agree
with reviewers #2 and #3 that a comparison to temperature-index models in addition to the
comparison with the linear machine learning model is necessarily to reinforce the broad
applicability of the proposed method. Please also take care to address the physical
processes underpinning the noted non-linearities (Reviewer #3). While the regionality of the
study's scope does not preclude publication, we would also like to see more
discussion, and if feasible analysis, of how the proposed model would apply to other glacial
regions, echoing Reviewer #3's comments.

If you feel that you are able to comprehensively address the reviewers’ concerns, please
provide a point-by-point response to these comments along with your revision. Please show
all changes in the manuscript text file with track changes or colour highlighting. If you are
unable to address specific reviewer requests or find any points invalid, please explain why in
the point-by-point response.

We would like to thank the editor and reviewers for their insightful and particularly
constructive comments. Following their suggestions, we have performed a vast
revision of the manuscript, updating the main story line, running new simulations,
adding new plots and completely rewriting the Discussion and important parts of the
Results sections. We believe these changes add more depth to the findings of the
study, giving more insights on the potential physical processes involved in the
nonlinear climate-glacier interactions, and expose why these findings matter for other
glacierized regions. We have performed a whole new set of experiments in order to
show that these nonlinear mass balance effects are very relevant for ice caps, further
developing the initial arguments and providing a more complete picture of the role of
nonlinearities for global glacier models. Moreover, following a lengthy literature
review, we argue that the nonlinear response to future warming by our nonlinear
model can be explained by the lesser role of shortwave radiation in the glacier
surface energy budget in warmer future climate scenarios. Models with linear
relationships between PDDs and melt are known to be over-sensitive to temperature



changes. We demonstrate that both the linear Lasso MB model and the
temperature-index model from GloGEMflow follow this behaviour, and we point out
the need to improve MB models for ice and snow projections under climate change,
particularly for flatter glaciers and ice caps. New parameterizations are needed to
accomodate the reduction in degree-day factors (i.e. melt sensitivity) to air
temperature expected in the future. We believe these new findings are relevant to a
wide audience, ranging from glacier and ice sheet modellers to snow and mountain
hydrologists. Following these new interesting findings, we have decided to slightly
shift the focus of the paper towards the nonlinear climate-glacier interactions instead
of the French Alps results. This has resulted in some changes in the title and the
abstract, while keeping the first sections of the Results on the French Alps
unchanged.

Reviewers

Reviewer #1 (Remarks to the Author):

Dear Authors

The manuscript titled "Deep learning unveils non-linear climate-glacier interactions through
the 21st-century deglaciation of the French Alps" is exciting. The manuscript is an excellent
contribution towards Glaciology/climatology.

I have some comments to improve the quality of the manuscript.

1. Page 12, Line 206: Authors refer to models from previous publications; however, it will be
significant if authors can provide information on model architecture, training information,
parameter optimization, etc.

We have added additional details on the architecture and hyperamaters of the
chosen neural network in the methods section following the comments by the
reviewer. We now cover the neural network architecture, optimization algorithm,
parameter initialization, regularization techniques, activation functions and batch
normalization.

2. Have authors tried Shallow learning or machine learning models? Authors should add
information about recent shallow neural networks/ML/DL applied in glaciology.

Depends on what we understand by Shallow learning. If you refer to feeding the
model with predefined features instead of letting the model find them by itself, in our
case we performed a sensitivity analysis to choose the most relevant climate and
topographical predictors for glacier mass balance. Alternatively, if you refer to the
depth of the model architecture, yes, shallow neural networks have been tested. The
chosen (deep) architecture is the smallest possible architecture that delivers the best
possible performance for the training dataset in cross-validation. Additionally, in
Bolibar et al. (2020) a thorough comparison with the Lasso was performed, showing



major gains when switching to a more complex nonlinear statistical model like a deep
neural network.

A new paragraph has been added in the introduction providing additional context in
the state of the art of neural networks for regression problems in glaciology. A more
thorough review of previous papers applying machine learning to glaciology can also
be found in Bolibar et al. (2020).

3. The word Deep Learning seems to be overused; instead, the model name should be given
because Deep Learning itself is an extensive area comprising LSTM, CNN, hybrid models,
etc.

Technically, the model is a Deep Feed-forward Multilayer Perceptron, but this is not
the way it is often mentioned in the literature, so we preferred to use the shorter term
Deep Learning. We have specified the exact model type in the Methods section, and
we have kept the shorter term Deep learning in the main text in order to be more
concise.

4. The methodology section is not providing the core of models, which is a weaker part of
this manuscript.

We have added a new paragraph with more details on the neural network
architecture (as required by remark #1). It provides an overview of the model design,
but we have a full publication dedicated to explaining the model details (Bolibar et al.,
2020). For the more avid reader interested in these details, we believe it is better to
point towards that paper in order to avoid duplicating too much information between
these two publications.

5. Page 14, Line 393: What is how-water drilling?

That is indeed a typo. It has been corrected to “hot-water drilling”.

6. Page 16 Line 467-472: "A linear regression model....ice volume in 2015." How can a linear
model provide reliable estimates for such a non-linear behavior of glacier ice volume
forecasting? Have the authors tried the sensitivity analysis of this regression?

Linear models can approximate nonlinear behaviours, but they will just perform
worse than a suitable nonlinear model. A sensitivity analysis of this linear regression
is presented in detail in Bolibar et al. (2020), and is summarized in Fig. 5 of that
paper. Additionally, we also performed an error analysis of that model, which is
available in the supplementary materials of that paper, and which is summarized in
Fig. S1 of the same.

The manuscript requires some brief yet essential information on the model characteristics,
as discussed in earlier comments.



Through our previous replies to the reviewer’s comments we have addressed this
aspect. We have extended the explanations on the model details in the Methods
section, in order to provide the necessary background to the reader. For all the rest of
the details we have a fully dedicated publication (Bolibar et al., 2020) dedicated to
the methods.

Reviewer #2 (Remarks to the Author):

General comments

This manuscript uses a previously-established deep learning approach of simulating glacier
change (mass balance and ice dynamics). I am not an expert in deep learning or machine
learning, but I see that the method is already published in Bolibar et al., 2020, so hopefully
has already been assessed by experts. Here, the deep learning method is applied to
simulating glacier change in the French Alps through the 21st century. These future
projections using the deep learning method are then compared to results from a linear
machine learning model to better understand non-linear components of the glacier-climate
system. This component of the paper- investigating the impact of linear versus non-linear
models on glacier mass balance, is interesting and an important contribution to glaciology.
As the authors note, the majority of future glacier projections currently use temperature index
models, so better-understanding weaknesses or biases in these models is important. The
paper is well written, especially the introduction, and nicely ties in the big picture/larger
importance of this work in the main text and especially in the Supplementary Information
text.

In the paper, linear mass balance models are associated with temperature-index models
(e.g. ling 28). However, the linear mass balance model that is compared with the deep
learning approach is another machine learning model (LASSO). A few suggestions around
this point include: 1) It should be clear that the results are being compared with a machine
learning approach and not a traditional temperature-index model. 2) I would have liked to
see the results of the deep learning approach also compared with the temperature-index
model, which most glaciologists use and or would understand. Right now, results are
compared with results of GloGEMflow, but with the only analysis being Fig S5. 3) I also wish
there was a brief description of the LASSO model in this paper when it is first introduced,
right now the authors reference a previous paper.

We are grateful for this feedback. These different comments have helped us to
further investigate the analysis presented in this paper, reaching more mature and
meaningful conclusions. We respond to the different remarks by the reviewer
individually, covering the changes made to address them:

(1): In the results section we have performed separate analyses for the Lasso mass
balance model and GloGEMflow’s temperature-index model. These are placed in
separate paragraphs, with the main analysis being performed with the linear machine
learning model. The main reason for this is because ALPGM allows switching mass



balance models, thus perfectly isolating the effects of mass balance nonlinearities.
After presenting these results, we present the same analysis between ALPGM’s
deep learning model and GloGEMflow’s temperature-index model. Despite not
having the figures presented in the main text, the simulations and analysis are
exactly the same as the ones between the Lasso and the deep learning model (Fig.
S5 vs. S6). The main goal of that section in the main text is to show that even for a
more complex temperature-index model with several melt factors (e.g. for snow, firn
and ice) as the one used in GloGEMflow (in comparison to some global model using
one melt factor and monthly temperature), the behaviours are similar to those from a
linear statistical model. Therefore, the goal of that section is to highlight the
similarities between our findings with machine learning models and
temperature-index models. From that point, in the discussion, we sometimes refer to
these models as “linear models”, in order to differentiate them from the nonlinear
deep learning model. However, we often refer to them as “models with linear
relationships between PDDs and melt, and precipitation and accumulation”. Indeed,
one might argue that a temperature-index model with two melt factors is not exactly
linear. In order to avoid this sort of ambiguity, we have now added additional
explanations regarding this aspect throughout the text. We argue that the behaviours
of these temperature-index models with two melt factors can also be extrapolated to
what we observe with our linear statistical model, despite not being exactly linear. We
demonstrate that in fact our linear Lasso MB model is equivalent to an even more
complex temperature-index model, as it has the equivalent to 13 degree-day factors
instead of the three found in GloGEMflow’s temperature-index model. As we argue in
the new Discussion section, the linear vs. nonlinear MB responses do not arise from
the number of degree-day factors, but from their linearity (being a simple scalar
parameter for the Lasso and temperature-index) and their nonlinearity (the response
of melt and glacier-wide MB to changes in air temperature and snowfall varies
nonlinearly as air temperature and snowfall increase or decrease in the future).

(2): As mentioned in the previous paragraph, the analyses between the deep learning
model and GloGEMflow’s temperature-index model are made in exactly the same
way as the one between the two machine learning models (Fig. S5 vs S6). In the
Results section from the main text, we focus on showing how similar the behaviours
from both models are through figures S5 and S6. Moreover, Fig. S10 (previously S8)
also compares the mean glacier altitude between both models, and Table S2 gives
many details on the different characteristics of ALPGM and GloGEMflow. In order to
extend this analysis, we have now added a new figure (Fig. S7) comparing the
glacier ice volume evolution. The results follow the same conclusions drawn from
comparing Fig. S5 and S6, and give additional support to the Results section.

(3): We have added an explanation of the Lasso in the methods section, following the
extended explanations of deep learning model requested by Reviewer #1.

A main finding of the paper is that deep learning captures important nonlinearities in the
glacier/climate system. The authors nicely investigate this concept and present the results. It
is interesting that the impact of the different approaches on cumulative mass balance is very
minor (Fig 4j). I think it needs to be clear that while the deep learning approach does
improve the simulation of extreme positive and negative mass balances, the results here



don’t show a huge difference on cumulative mass balance. A discussion point could be
added that centers around the most appropriate problems to apply a deep learning approach
(when capturing extreme extreme glacier mass balance years is important) versus when a
traditional temperature-index model is sufficient (when capturing cumulative glacier mass
balance is the goal, at least suggested by these results).

This is one of the aspects that has been completely rewritten in the manuscript, also
to consider some comments of Reviewer #3. We have further investigated the role of
the mass balance nonlinearities by performing additional synthetic experiments to
approximate the behaviour of ice cap type glaciers (e.g. no topographical
adjustment). For that, we keep the glacier geometries constant (and so their centroid
and therefore the altitude where the climate data are quantified) to compute their
mass balance. This virtually eliminates the positive topographical feedback from
mountain glaciers retreating to higher elevations, thus producing more extreme
negative mass balance rates throughout the 21st century. We showcase that for such
glaciers the mass balance nonlinearities play a much more important role. This is all
the more interesting as ice caps happen to store a large percentage of all ice present
outside the two main ice sheets (Greenland and Antarctica) and that their future
evolution is of paramount interest for sea level rise. Alternatively, we also argue that
for glaciers with a strong topographical feedback (lying on steep slopes), and
therefore with a rather short response time, linear mass balance models (e.g.
temperature-index) are adequate tools. Such glaciers can adjust their geometry to
the current climate, thus avoiding the extreme warming by the end of the century. Fig.
4 has been redesigned to explain this, and a new figure (Fig. 5) has been included to
better explain the relationship between glacier geometry and nonlinear
climate-glacier interactions. Moreover, following the comments by Reviewer #3, we
have performed a thorough investigation on the potential physical processes behind
the captured nonlinear MB responses. Therefore, we argue that these findings are
particularly important for flatter glaciers and ice caps, and that they should be
addressed with nonlinear degree-day factors (via new parameterizations) or by using
more complex surface energy balance models (which are currently too complex and
need large amounts of meteorological data at high spatial resolution as input to be
used at large geographical scales).

I would have liked more discussion on the description and significance of Figure 4. This is
the main Figure showing the importance of the deep learning approach to capturing
nonlinearities, which I think is the biggest contribution of this paper.

As we have explained in the previous paragraph, this aspect has been completely
rewritten and now there is a much more in depth analysis in the Discussion section.
Fig. 4 has also been redesigned and a new figure 5 has been added.

Specific comments

L62 - “strongest glacier retreat” not clear what strongest means, fastest?

We have updated the sentence to “... fastest glacier retreat …” as suggested.



Fig 1 - Why not have Figures S1 & S2 here? The supplementary figures are useful in
showing all 3 RCP scenarios, which would be nice to include in the main text.

The main reason we chose to keep Figures S1 and S2 in the supplementary
materials is the fact that they are based on only nine climate scenarios. Fig. 1 is
instead based on 29 climate scenarios, providing a much more robust and significant
signal. Moreover, the main message of the paper regarding the future evolution of
French Alpine glaciers can perfectly be conveyed without having to show those nine
climate scenarios, thus keeping the message and the main text leaner and easier to
read.

L159 - not clear what the correlations are for, modeled vs measured glaciological mass
balance? Modeled vs measured PDDs and snowfall (from what climate data)?

Indeed, it was not too clear what the correlations were based on. They are actually
based on cross-validation, with respect to observations used to train the models. The
fact that this comes from cross-validation is now specified in the text, and a citation
has also been added for context.

Fig 3 - Would also be interesting to see climate anomalies as a %. For example, -1200 or
+1200 CPDD anomalies seem like huge differences from normal. The extreme values are
where the two models diverge, is there a way to show how often anomalies fall in those
extreme values.

This is a good point. It is hard to establish a reference value to compute the
anomalies as %, as there are many different glaciers and climate scenarios involved.
In order to represent where anomalies fall in those extreme values, we have
computed the mean value and the standard deviation of all maximum and minimum
climate extremes for the three represented mass balance forcings in Fig. 3. These
have been computed for all 29 projected climate scenarios, and give additional
context on where the majority of the climate extremes will occur through the 21st
century in the French Alps. We have added this information in Fig. 3, which helps to
better constrain the influence of each forcing in the 21st century MB projections.

Figure 4c,f,i - does the deep learning model never result in positive mass balance? Figures
a,d,g show there are years with positive mass balance. Why are the PDFs all negative?

The PDF is based on the averaged signal of all glaciers in the French Alps and from
all climate scenarios for a given RCP (13 for RCP 4.5 and 8.5, 3 for RCP 2.6). The
deep learning mass balance model does simulate positive MB rates, but when the
simulations of multiple glaciers and climate scenarios are averaged, the extreme
(positive and negative values) are "smoothed", giving a signal representative of the
average conditions. Since the MB signal depends on glacier location/topography and
on climate scenarios, performing this sort of averaging with such large amounts of
data helps capturing a clearer and less noisy signal from these comparisons. The
spread is so large among climate scenarios that looking at the signal(s) without



averaging makes it very hard to discern trends. We have updated the legend of Fig. 4
in order to clarify how the PDFs are computed.

L297 - ‘remarkable’ is a bit opinionated, is there a better word?

This has been updated to “relevant”.

Lauren Vargo

Research Fellow

Antarctic Research Centre

Victoria University of Wellington

Reviewer #3 (Remarks to the Author):

This paper applies a data science method of modeling glacier mass adjustment to climate in
the French Alps for the coming century when they drive the model with an ensemble of
multiple future models under three emission scenarios (RCP 2.6, 4.5, 8.5). The extent and
nature of the predicted glacier mass balance (MB) response is alarming: by end of this
century, fully 75 to 88% of the glacier volume will be lost, and what remains will be
dramatically altered landscapes. It is really intriguing to see the disappearance of mean
surface area, emphasizing loss of the smaller and lower glaciers. It is also eye-opening to
see that cumulative MB differences were mitigated by a complete loss of half the glaciers by
mid-century. The unique contribution the authors claim is in the methodology: that this deep
learning approach improves upon linear mass balance modeling.

The authors champion their neural network (deep learning) method as being an important
new contribution for the scientific community, for which they provide a more complete
cross-validation in a prior paper using the same dataset. They demonstrate that deep
learning does give "superior nonlinear explained variance," making models more accurate
because both climate and glacier systems are known to react non-linearly to forcing. This is
especially important as glaciers and climate deviate more extremely from mean conditions
that appear most often in calibration. In this paper, they focus on the results of running model
with 29 different climate members. They also provide a test of this relative mass balance
response to linear vs nonlinear idea by comparing linear regression model to non-linear
deep learning (artificial neural network) model of MB. They use the same predictors that are
both topographic and climatological. They show that for more extreme values, the non-linear
model makes a profound difference. However, the problem here is that for most of the 21st
century, there is very little difference in the models; linear and nonlinear MB simulations are
nearly identical.

In assessing the merit and impact of this work, one wonders about the appropriateness of
this national focus on just a small subset of glaciers in France only. Are these new insights of



sufficient scope? What new insights do we gain about the future of Alps? And what about
other regions where the authors suggest such a modeling approach would be more
important? Does this method improve what would be predicted by a more temperature
dependent index method that the authors categorize under the generalized 'linear' methods?
Furthermore, what are the actual physical process insights elucidated by this approach? As
a data-driven method, it is not solving fundamental equations of dynamics.

These are all very interesting questions, which have driven the main changes in the
refactoring of the manuscript for this new version. We believe adding these aspects
into the manuscript has helped improve it, adding more depth and providing a more
solid main story line regarding the implications of nonlinear climate-glacier
interactions for global glacier models. These changes have particularly helped to
identify the limitations of models using linear relationships between PDDs and melt,
and precipitation and accumulation for flatter glaciers and ice caps. And these
comments also lead us to a lengthy literature review, enabling us to determine that
the captured nonlinearities arise from a decreasing sensitivity of MB to increasing
temperatures under climate change. We will cover each of the changes performed in
the manuscript following each of the reviewer’s comments.

Regarding the geographical focus on the French Alps, as we previously discussed, it
is not straightforward to determine if the behaviours observed in the French Alps will
be relevant in other glacierized regions. In order to further investigate this subject, we
have performed a whole new set of synthetic experiments in which we explore the
role of mass balance nonlinearities for what we have called ice-cap type glaciers, i.e.
glaciers for which a topographical feedback is not possible, as it is the case of
mountain glaciers. It is noteworthy that ice caps store a large percentage of all ice
outside the two main ice sheets. Regions like Arctic Canada and Russia include a
large amount of ice caps, for which uncertainties in projections are very high. To do
so, in this synthetic experiment, we performed simulations keeping the glacier
geometries constant throughout time, thus keeping the glacier centroid and therefore
the altitude at which we obtain the climate data to compute the mass balance
constant throughout time. This virtually removes the positive topographical feedback
of steep mountain glaciers, and allows investigating the response of ice caps to
future climate warming. We show that for such glaciers, mass balance nonlinearities
play a much more important role. Ice caps cannot retreat to higher elevations, thus
enduring much higher air temperatures and consequently more extreme negative
mass balance rates throughout the century. In order to further explain this, we have
completely rewritten the Discussion section and large parts of the Results. Moreover,
Fig. 4 has been remade by comparing the behaviour of mountain glaciers vs. ice-cap
type glaciers. A new figure (Fig. 5) has been added, which summarizes the main
findings of the paper regarding glacier geometry, topographical feedback and
nonlinear climate-glacier interactions.

Regarding the future of the Alps, this study improves projections of glacier evolution
as it has used all currently available data in the French Alps, which was not used in
any previous study covering the region (e.g. Zekollari et al., 2019). Additionally, the
skill (both RMSE and r2) of the mass balance model is better than any other study,
which combined with the rich training dataset mean that these projections carry



reduced uncertainties compared to previous studies. Region-wide simulations in
terms of volume and area do not differ much (except for RCP 2.6, for which our
estimates are significantly more pessimistic). Nonetheless, simulations for individual
glaciers which are relevant for touristic, hydrological and cultural reasons are much
more accurate, giving important information to French society and decision-makers
on the magnitude of the impacts of climate change to iconic French glaciers.

Regarding the potential physical processes explaining this, it is true that such a
"black box" neural network offers limited explanations on the origins of these
simulated differences. Despite the "black-boxness" of neural networks, we managed
to extract the climatic response of the model to the main drivers of glacier mass
balance. In order to understand and attribute the captured nonlinear sensitivities of
our MB models to different climate forcings, we performed an extensive literature
review on the physical basis and limitations of temperature index models. Already in
1995, Roger Braithwaite (1995) pointed out that temperature-index models provide a
very simplistic response to changes in air temperature. He demonstrated with both
observations and more complex surface energy balance models, that the response of
degree-day factors associated to different albedos and turbulent fluxes vary
significantly with air temperature. This is particularly important for low albedo values
typical of ice, implying that the sensitivity of ice melt to increasing temperature
decreases strongly, which is something that cannot be captured by linear models like
the Lasso or temperature-index models. Another study by Pellicciotti et al. (2005)
confirmed the same results with an alpine glacier in the Italian Alps, highlighting the
“over-sensitivity of temperature-index to changes in air temperature”. Finally, a study
by Huss et al. (2009) further confirmed this, for which they detected a decrease of
-7% per decade in degree-day factors for snow during the ablation season. They did
not perform the same analysis for ice degree-day factors, but after our analyses we
can only expect the differences to be even larger. That study concluded saying: “We
find relatively stable DDFs until the mid-1970s followed by a negative trend of 7% per
decade (Figure 4d). The drivers for these long-term variations cannot be detected
based on the available data sets as they do not resolve all components of the energy
balance. Higher air temperature dependent incoming longwave radiation (Figure 4c)
plausibly explains part of the observed decrease in DDFsnow over the last decades,
confirming an oversensitivity of temperature-index models to temperature change
[Pellicciotti et al., 2005]. DDFs are, however, also affected by variations in global
shortwave radiation, and, to a lesser extent, by turbulent heat fluxes [Braithwaite,
1995; Ohmura, 2001]. We therefore caution against using classical
temperature-index models calibrated in the past for projecting snow and ice melt in
glaciological and hydrological studies and to calculate future sea level rise.” This
coincides with the findings by Braithwaite (1995), with a strong nonlinear decrease of
ice melt sensitivity to increasing air temperatures. Furthermore, these results
correspond perfectly with the captured nonlinear response of our deep learning MB
model. For the most extreme climate scenarios (RCP 2.6 for mountain glaciers, all
climate scenarios for ice caps), the nonlinear model is clearly less sensitive to
changes in air temperature. Moreover, this reduced sensitivity from the ablation
season is captured in Fig. 3c, with the reaction to summer snowfall depicting a
reduced sensitivity compared to the Lasso. This analysis also accommodates other
particular behaviours observed in our machine learning models. In cross-validation,



the Lasso was found to be more biased for extreme MB rates, giving a contradictory
behaviour with what is observed in the projections (Fig. S9 vs. Fig. 3 and 4). This
behaviour can also be explained by the linear sensitivity to changes in air
temperature of the Lasso. The Lasso is calibrated with observed air temperature
changes between 1967-2015, already giving worse results than the nonlinear model
for this past calibration period in cross-validation. However, its over-sensitivity to
temperature changes implies that for future projections the bias observed in
cross-validation is reversed: the bias goes from providing estimates that are
under-sensitive to extremes for past periods (Fig. S9), to providing estimates that are
either too high for the positive MB rates or too low for the negative MB rates for future
projections (Fig. 4).

The lack of insight on the underlying physical processes when working with neural
networks is a well known problem by the machine learning community (e.g.
Rackauckas et al., 2020). In order to go a step further the limitations of this study, we
have started a new project combining differential equations of glacier processes (e.g.
enhanced nonlinear temperature-index model and the Shallow Ice Approximation)
and neural networks. Such an approach aims at precisely identifying the governing
processes driving large-scale glacier changes. Therefore, this study clearly does not
provide all (but some) answers to what these nonlinearities are exactly due to, but it
serves to raise awareness of their importance, it quantifies them, and points out new
research avenues to be explored with more complex models like the one just
mentioned. This aspect has been added in the Discussion section, in order to give
context on the relevance of these findings and what are the next steps to be
investigated.

I'm persuaded that this is a novel method applied to glacier change studies, but I lack
adequate knowledge to give thorough technical review of the deep learning. I think that a
more compelling case could be made to justify this data-analytical method by showing how it
better captures physical processes, or allows for specific new predictive capacity for water
management in the future. I think more discussion about the specific 'non-linearities' and
their implications would help. The non-linear deep learning is not obvious to the non-expert.
As written, the authors show how mass balance responds non-linearly to some specific
variables in Fig 3, but don't explain why in terms of physical processes. It is insufficient to
claim that climate and glacier systems are known to be nonlinear (L149). What does it mean
to treat PDD in a non-linear way? Are there feedbacks or sensitivities of mass balance to
specific variables that are characterized by nonlinear models? If so, how? Furthermore, are
they really that big of a deal when it seems that we won't see much difference for 50 more
years, and by then there will be so much less ice anyway that it is perhaps "much ado about
nothing"? As written, the paper suggests that uncertainties "might be even greater than we
previously thought" for future climate scenarios, but does not hypothesize why or where. The
authors claim that their work is very similar to the linear models, and only diverge in
extremes. They speculate that the impacts could be more pronounced in complex regions.
However, this is hard to grasp, since the method is effectively as good as the data.

This study raises awareness on the importance of nonlinearities in glacier mass
balance. Since we use statistical models, it is not possible to directly attribute
changes to specific physical processes, but it serves to quantify them and to



understand the dynamics. Fig. 3 clearly shows the nonlinear response to climatic
drivers, and as we argued in the previous paragraph, these differences can
potentially be explained by known nonlinear physical processes related to
degree-day factors and variations in air temperature. We have added a new section
in the Discussion in which we explain the physical processes that can explain these
nonlinear mass balance responses. Additionally, we demonstrated that a nonlinear
MB model is more skilled than a linear model in representing annual mass balance
rates. This means that glacier evolution projections, and therefore hydrological
studies from glacierized basins, will have reduced uncertainties compared to
projections done with linear mass balance models.

We agree with the reviewer that the previous version of the manuscript did not give
enough details on why and where these nonlinear mass balance responses could
play a more important role. In order to further explore this aspect, we performed new
simulations reproducing the behaviour of ice caps, and we showed the enhanced
importance of these nonlinear sensitivities for such cases. There is a very interesting
relationship between glacier geometry and mass balance nonlinear responses. Ice
caps have a rather negative topographical feedback, since when their thickness
decreases they move to lower altitudes, further enhancing the melt. This produces
more extreme negative mass balance rates, which are associated with an increased
importance of nonlinear MB effects. We have added a whole new section in the
Discussion about this, as well as a new version of Fig. 4 and a new Fig. 5. This new
experiment identifies two main behaviours in mass balance nonlinearities: (1)
Mountain glaciers lying on relatively steep terrain and with short response times can
adequately be simulated with a linear mass balance model. (2) Ice caps and large
valley glaciers with long response times are better simulated with nonlinear mass
balance models. This gives new insights to the global glacier modelling community,
pointing out the regions which have increased uncertainties and that will require more
complex models, either statistical nonlinear models or physical models including
some of the nonlinear processes discussed in the manuscript.

It is interesting to see how initial ice thickness is the main source of uncertainties of glacier
simulations. Only 4 of the glaciers have such data. Is there a need to get more of these
measurements?

This is one of the main challenges of large-scale glacier modelling and the topic of a
lot of current research. There is indeed the need for more observations of glacier ice
thickness, but such observations are very costly to obtain. They require large teams
of people to perform radar measurements on complex terrain. This means that only
very developed nations like Switzerland can afford to have an important percentage
of their glaciers measured. The GlaThida database gathers all observations
performed worldwide. In this study, we used all the available observations in the
French Alps, performed by the GLACIOCLIM national glacier observatory.



Some line edits:

L23: The abstract mentions 75 and 88% glacier volume loss by end of century. Loss from
what point, the 2021 currently existing volume? Explain/clarify.

The glacier volume loss is with respect to the year 2015. Since there is a very strict
limit in the number of words in the abstract, we prefer to omit that in order to keep
other more relevant findings in the abstract. The year is clearly mentioned throughout
the manuscript.

L50: delete the 'in order' before to

The sentence has been updated as suggested.

L53: type of model

Updated as suggested.

L103-106: The description of the future snowfall rates on glaciers not being effected is not
clear as written. Maybe articulating more clearly about elevation dependent ratio of solid to
liquid precipitation would make this more evident.

A new sentence has been added in order to clarify this aspect: “The increase in
glacier altitude also helps the solid to liquid precipitation ratio to remain relatively
constant.”

L137: would be better worded as, "…Little Ice Age that are strongly out of balance with the
current climate."

The sentence has been updated accordingly.

L138: change wording; our projections describe the almost COMPLETE disappearance

Updated as suggested.

L140: instead of store, I recommend "retain"

Updated as suggested.

L141: large should be "larger" and give a dimension to match the Fig S4 (>2 km2)

Sentence updated accordingly.

L187: rely should be "relies"

Updated as suggested.

L228 : change are to "comprise"



This sentence has been removed from the new version of the manuscript.

L242: typo? Not sure what is Fig. "4Sb"

Indeed, it was a typo. This sentence no longer appears in the new version of the
manuscript.

L246: also, 5Se

Same, a typo. This sentence has also been removed from the new version.

L268-270: this seems a stretch beyond the data to speculate that heterogeneous topography
and "climatic char's" are likely to go thru higher variety of climate extremes. On what basis?

This sentence has also been removed from the new version of the discussion. See
previous comments for our justification on why this might be relevant for other
glacierized regions.

L274: sentence ends incompletely.

This sentence has also been removed in the new version.

L275-278: awkward word choice/prose: "in a first term" and "in a second term." Do the
authors intend this as an idiom like, "on one hand," or is it referring to an actual quantitative
measure of uncertainty term? Please clarify.

This is indeed used as a quantitative measure, with the “first term” implying the first
and most important source of uncertainty. The sentence has been rephrased as
follows in order to make it smoother:

“The main uncertainties in future glacier estimates proceed from future climate
projections and levels of greenhouse gas emissions (differences between RCPs,
GCMs and RCMs), whose relative importance progressively increases throughout
the 21st century. With a secondary role, glacier model uncertainty decreases over
time, but it represents the greatest source of uncertainty until the middle of the
century.”

L354: should be combined effects

Updated as suggested.

Fig. 2: (a) confusing shading below the 2015 mean elevation; makes it seem like topography
rather than median elevation.

This is the intended effect. The glacier mean elevation is very related to the mean
elevation of each massif. The vertical orientation helps understand the topography of
the different massifs and how glaciers will evolve in them throughout the century.



In c - e panels, lines all have end points; is that when respective glaciers disappear? Should
be mentioned/clarified.

The following sentence has been added in the legend: “Years in white in c-e indicate
the disappearance of all glaciers in that massif.”

Also, there appear to be random pixelated yrs of positive MB in (c). Why?

As glaciers retreat upslope, it is not impossible for them to have slightly negative to
slightly positive MB (as indicated by the legend). This is perfectly normal, particularly
in the northern massifs with lower temperatures and higher precipitation rates.

Caption to Fig. 2 (c) has a spurious "A"

This has been removed as suggested.

Fig. 4: the RCP 8.5 graphs are strange. Annual nonlinear difs starts in postitive values.
How?

Even if both MB models have been calibrated with exactly the same data it does not
mean they will produce exactly the same results. The models have been calibrated
with past climate data, and the dataset used for the climate projections is based on
random statistical trajectories set by different levels of greenhouse gases emissions.
Moreover, every year quite a lot of glaciers disappear, thus changing the simulated
state from the past states used to train the MB model. As glaciers disappear, certain
characteristics of each MB model (nonlinearities due to extreme forcings) will show
up differently, enhancing the differences. The very first year produces almost exact
results, and after that year the results slightly drift away.

And the cumulative nonlinear difference goes positive. Is that right? Explain.

The slight differences explained above produce slightly more positive results for the
deep learning model, thus giving a positive difference in cumulative.

Table S1: climate 'members' to force glacier evolution model

What should exactly be changed? This seems like the current legend of the table.



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Dear Authors 

I am happy and satisfied with your efficient efforts to address all the concerns. I hope this manuscript 

will be a milestone in glaciological studies reaping the benefits of AI/ML/DL. 

 

Thanks 

Anul 

 

Mohd Anul Haq 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The updated version of this manuscript addressed all of my original comments. I enjoyed reading the 

updated version, and I think that this paper is a valuable contribution to science. The new, additional 

analysis and discussion around feedbacks, glacier geometry and topography, and the impacts of these 

results strengthens the manuscript. My only note is that some paragraphs are quite long. I wonder if 

some can be split up, making them easier to read. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have undertaken a significant revision to the original manuscript that addresses many of 

the concerns raised by myself and other reviewers. Congratulations. I think the additional figures, 

amplified discussion, and more complete literature review all broaden the relevance of this study, 

justifying the title change and making it more generalizable. Yet there are now implications for 

modeling ice caps that emerge in discussion that I want to be sure do not go beyond what the model 

can support. The non-linear deep learning model here is developed and applied to the French Alps. 

The authors articulate well how their model does show decreased sensitivity to extreme conditions, 

and then show a compelling difference between mountain slope glaciers and flat ice caps. This 

provides the opportunity to make more generalizable claims about different responses of mountain 

glaciers and ice caps. However, I am unsure how appropriate the claims are that suggest ice cap 

models under higher RCP scenarios are over-estimating mass loss and sea level rise. Since it is a 

statistical model tuned to mountain data, is it too speculative to comment on polar ice caps and sea 

level rise, since the polar ice cap stability is arguably much more tied to other dynamics (i.e. ocean 

energy, temperature)? If the authors can explain this briefly, it would make the paper stronger. 

 

I found it somewhat confusing to follow how the discussion treats the biases revealed by the model 

comparisons. On L305-08 the authors suggest that non-linear MB changes would be more negative, 

even while Fig. 4e shows the opposite -- the linear models showing more negative MB. Is the text 

misleading here? e.g. "flatter glaciers and ice caps will experience substantially more negative MB 

rates…and therefore greater differences due to nonlinearities for the vast majority of future climate 

scenarios." I may be misunderstanding the text, but I just want to be sure. 

 

This seems to be rectified later in the discussion of consequences of these biases. L336 mentions that 

indeed the linear models have a "tendency to negative MB biases." However, would it be worth 

discussing why? What processes would explain this? This implies more optimistic scenarios of ice cap 

preservation. Nevertheless, a model predicting less responsive ice cap mass balance decrease is 

actually counterintuitive. The schematic in Fig. 5 depicts that without vertical displacement, the ice 



mass is vulnerable to increasingly negative mass balance. So what processes could explain the lower 

sensitivity seen in the model? Some clarity here would make the paper stronger. 

 

I like the new Fig. 5. However, two other issues: First, I find myself mixed up about positive and 

negative feedbacks. Wouldn't the retreat to higher altitudes of the mountain glacier case be depicting 

a negative feedback (i.e. counter acting the nature of the initial perturbation, while the thinning ice 

cap is a positive (i.e. self-reinforcing), feedback? Second, the figure states "nonlinear mass balance 

sensitivity" following "+extreme negative mass balance." Yet shouldn't the figure more clearly show 

that the model predicts less mass loss than the linear model? 

 

Minor stylistic points: It might make the discussion easier to read by breaking up that first immense 

paragraph (i.e. end of L259). 

Is "parallelisms" a good word choice? I find it arcane, and reminds me of grade school grammar class. 

 

Overall, a very interesting and well written paper. Hopefully my ambiguities are merely my lack of 

understanding of the method. 



Bolibar et al. responses to editor and reviewer’s comments 
 
Author responses are given in italic after each of the editor and reviewer’s comments.  
 
REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
Dear Authors 
I am happy and satisfied with your efficient efforts to address all the concerns. I hope this 
manuscript will be a milestone in glaciological studies reaping the benefits of AI/ML/DL. 
 
Thanks 
Anul 
Mohd Anul Haq 
 
Thanks a lot for the positive feedback, we appreciate the comments given throughout the 
review process.  
 
 
Reviewer #2 (Remarks to the Author): 
The updated version of this manuscript addressed all of my original comments. I enjoyed 
reading the updated version, and I think that this paper is a valuable contribution to science. 
The new, additional analysis and discussion around feedbacks, glacier geometry and 
topography, and the impacts of these results strengthens the manuscript. My only note is that 
some paragraphs are quite long. I wonder if some can be split up, making them easier to read. 
 
We are grateful for the positive feedback to our modified version of the manuscript. We believe 
the constructive comments given in the first round greatly helped to improve it and push it 
towards its current version. , Following the reviewer’s suggestion (which was also made by 
Reviewer #3), we have split several  paragraphs in order to improve readability.  
 
Reviewer #3 (Remarks to the Author): 
The authors have undertaken a significant revision to the original manuscript that addresses 
many of the concerns raised by myself and other reviewers. Congratulations. I think the 
additional figures, amplified discussion, and more complete literature review all broaden the 
relevance of this study, justifying the title change and making it more generalizable. Yet there 
are now implications for modeling ice caps that emerge in discussion that I want to be sure do 
not go beyond what the model can support. The non-linear deep learning model here is 
developed and applied to the French Alps. The authors articulate well how their model does 
show decreased sensitivity to extreme conditions, and then show a compelling difference 
between mountain slope glaciers and flat ice caps. This provides the opportunity to make more 
generalizable claims about different responses of mountain glaciers and ice caps. However, I 
am unsure how appropriate the claims are that suggest ice cap models under higher RCP 
scenarios are over-estimating mass loss and sea level rise. Since it is a statistical model tuned 
to mountain data, is it too speculative to comment on polar ice caps and sea level rise, since 
the polar ice cap stability is arguably much more tied to other dynamics (i.e. ocean energy, 
temperature)? If the authors can explain this briefly, it would make the paper stronger. 



 
We are grateful for the positive feedback to our updated version of the manuscript. We believe 
it was greatly helped by the constructive comments given during the first round of reviews.  
 
We understand the concerns on drawing conclusions on ice caps based on a synthetic dataset 
from mountain glacier data. Indeed, one should be careful when taking into account the 
conclusions from our synthetic experiment, since they are focusing on just one of the 
processes of glacier change. For marine-terminating ice caps, calving and ocean temperature 
will also play a role, as stated by the reviewer. Nonetheless, mass balance-related changes 
are expected to play an important role as well for these regions (see figure below). We added 
the following sentence to further clarify this: “These conclusions drawn from these synthetic 
experiments could have large implications given the important sea-level contribution from ice 
cap-like ice bodies (Marzeion et al., 2020). However, to further investigate these findings, 
experiments designed more towards ice caps, and including crucial mechanisms such as ice-
ocean interactions and thermodynamics, should be used for this purpose.” 
 
 

 

 
 
I found it somewhat confusing to follow how the discussion treats the biases revealed by the 
model comparisons. On L305-08 the authors suggest that non-linear MB changes would be 
more negative, even while Fig. 4e shows the opposite -- the linear models showing more 
negative MB. Is the text misleading here? e.g. "flatter glaciers and ice caps will experience 



substantially more negative MB rates…and therefore greater differences due to nonlinearities 
for the vast majority of future climate scenarios." I may be misunderstanding the text, but I just 
want to be sure. 
 
In the above mentioned sentence we are not comparing the linear and nonlinear mass balance 
models. After presenting the synthetic experiment, which consists of modified simulations of 
alpine glaciers, we present how these new synthetic simulations of “ice caps” compare to the 
mountain glacier ones. The goal of that sentence is to describe the consequences of keeping 
glacier geometry constant through time, which is quite similar to what many ice caps will go 
through (particularly in terms of surface area). There are two main topics analyzed in this 
paper: (1) the main one is the role of mass balance nonlinearities due to climate forcings, and 
(2) a secondary topic is the role of glacier geometry, which relates to the previous one.  
 
In order to make this clearer to the reader, this sentence has been rephrased.  
 
This seems to be rectified later in the discussion of consequences of these biases. L336 
mentions that indeed the linear models have a "tendency to negative MB biases." However, 
would it be worth discussing why? What processes would explain this? This implies more 
optimistic scenarios of ice cap preservation. Nevertheless, a model predicting less responsive 
ice cap mass balance decrease is actually counterintuitive. The schematic in Fig. 5 depicts 
that without vertical displacement, the ice mass is vulnerable to increasingly negative mass 
balance. So what processes could explain the lower sensitivity seen in the model? Some 
clarity here would make the paper stronger. 
 
As discussed in our response to the previous paragraph, we were comparing the effects of 
glacier altitudinal adjustments and not linear vs. nonlinear mass balance models. Therefore, 
we think this sentence is well aligned with the main message of the paper.  
 
The physical reasons behind this increased sensitivity of linear mass balance models are 
discussed in the first big paragraph of the Discussion section (L238-287). Mass balance 
models are calibrated with past climate and mass balance data, for which shortwave radiation 
plays a more important role (or fraction) than in the future climates that we will experience in 
the mid-late 21st century. This is due to the fact that a large share of future increase in snow 
and ice melt at the glacier surface will come from an increase in longwave radiation and 
turbulent fluxes consecutively to increasing temperatures. Consequently, the combination of 
physical processes that explained mass balance in the past will not be the same as in the 
future. This means that mass balance sensitivity to atmospheric variables changes with 
climate, but since linear models cannot take this into account they can only keep stationary 
sensitivities, which are likely to be too high for future climates. However, this is well captured 
by a nonlinear mass balance model (deep learning), since it can produce a different sensitivity 
depending on the input climate data. By comparing the responses captured in Fig. 3 with the 
physical basis known from the literature, we prove that our model has captured a realistic 
response to climate changes, which serves to build our hypothesis and argument about the 
overly pessimistic mass balance projections for ice caps and overly optimistic projections for 
low emission scenarios for mountain glaciers. 
 
 



I like the new Fig. 5. However, two other issues: First, I find myself mixed up about positive 
and negative feedbacks. Wouldn't the retreat to higher altitudes of the mountain glacier case 
be depicting a negative feedback (i.e. counter acting the nature of the initial perturbation, while 
the thinning ice cap is a positive (i.e. self-reinforcing), feedback?  
 
We thank the reviewer for raising this non-trivial point. For the refactoring of the manuscript 
we have been talking to a lot of different people in order to acquire a good idea of what is the 
general perspective on the “sense/direction” of feedbacks and biases. What we found out is 
that it is very heterogeneous and there is not really a consensus about this. The way we 
perceive it it may be clearer to keep the signs of the feedbacks exactly as they are for the 
mass balance. Meaning that a positive feedback (i.e. response) to the mass balance signal 
implies a change towards less negative or more positive mass balances. Alternatively, a 
negative feedback implies a change towards more negative or less positive mass balances.  
 
Given this existing ambiguity, we have decided to reformulate the way we refer to these 
feedbacks. We now refer to the overall process as “topographical feedback”, but when 
mentioning a given direction we refer to it as either a “positive impact on MB” or a “negative 
impact on MB”. This way, we translate it directly into absolute terms for the MB, which makes 
it more straightforward for the reader to understand.  
 
Second, the figure states "nonlinear mass balance sensitivity" following "+extreme negative 
mass balance." Yet shouldn't the figure more clearly show that the model predicts less mass 
loss than the linear model? 
 
This comment directly relates to the two first remarks on this second round of reviews. Two 
different analyses are performed in the manuscript: the linear vs nonlinear mass balance 
models and the role of glacier geometry and topographical feedback. The goal of Fig. 5 is to 
explain the consequences of combining these two analyses. First it derives the implications of 
the two main types of topographical feedback: mountain glaciers vs ice caps. The comment 
of “+ extreme negative mass balance” falls into that category, and therefore it is a 
consequence of the lack or reduced amount of topographical retreat of ice caps. The second 
(lower) part of the figure deals with the consequences of linear vs nonlinear mass balance 
models, which starts under the text “Implications for temperature-index models”. In this section 
the implications are in the direction mentioned in this comment, indicating that linear mass 
balance models over-estimate mass losses for all climate scenarios for ice caps.  
 
In order to make it clearer for the readers, we have updated Fig. 5 with “impacts on mass 
balance” instead of “feedback” and a line has been added to separate the upper part to the 
consequences section.   
 
Minor stylistic points: It might make the discussion easier to read by breaking up that first 
immense paragraph (i.e. end of L259). 
 
That is a good point. We have split the paragraph in order to increase readability.  
 
Is "parallelisms" a good word choice? I find it arcane, and reminds me of grade school 
grammar class. 
 



Maybe it is not, not being native English speakers we might have borrowed that from our native 
tongues. We have now replaced it with “analogies”.  
 
Overall, a very interesting and well written paper. Hopefully my ambiguities are merely my lack 
of understanding of the method. 
 
Thank you again for your kind words. We are very pleased with this really constructive and 
detailed review. 
 
 


