SUPPLEMENTARY ONLINE MATERIAL

Supplementary Fig. 1. Alignments and Logos for selected aptamer pools. The 'Genebee' program (http://www.genebee.msu.su) was used to identify 10 'supermotifs' within the selected regions of the sequenced aptamers against the various β_2 m targets – low pH monomer (A); WL fibrils (B) or LS fibrils (C). The matching sequence regions are shown within each supermotif together with the names of the aptamers. Logos were generated from these alignments using the 'Weblogo' program (http://weblogo.berkeley.edu), and are shown below the respective motifs. Of the 19 sequenced anti-monomeric β_2 m aptamers, 1 does not fall into any supermotif. The equivalent figures are 4/18 for the anti-WL fibril aptamers and 2/15 for the anti-LS aptamers.

Supplementary Fig. 2. Secondary structures of the individual aptamers screened. The secondary structure of WL-2 (see Fig. 2) was confirmed by denaturing polyacrylamide gel electrophoresis (A) after enzymatic digestion with RNase A (shown in blue), RNase T1 (shown in red) and S1 nuclease (shown in green). A base hydrolysis ladder (black) and two further marker lanes are also shown. The Mfold predicted secondary structures of aptamers LS-5 & M-2 are shown in B and C, respectively. The random regions are highlighted in green. Arrows on LS-5 (B) indicate bases, specifically protected from RNase A (blue) & RNase T1 (red) upon addition of LS fibrils, see also Supplementary Figure 3.

Supplementary Fig. 3. Nuclease protection assays demonstrate specific binding of LS fibrils. Nuclease protection was used to confirm binding of the cognate target to one of the aptamers, LS-5, using standard methods. Briefly, aptamer LS-5 was digested with RNase A (A) or RNase T1 (B) in the presence of a concentration gradient of LS fibrils (red) or a non-binding control protein, Met J (blue). Example bands showing protection (labelled on the left) were subjected to image densitometry. The resulting plots of relative intensity change (y axis) *vs* gel position (x-axis, arbitrary units) are shown to the right of the autoradiographs and clearly show decreasing band intensities with increasing fibril concentration (red) whilst no consistent changes occur for the MetJ lanes (blue). These demonstrate specific nuclease protection of LS-5 by LS fibrils. A summary of all protected sites is shown alongside the secondary structure plot of Supplementary Figure 2B.

Supplementary Fig. 4. Extended sensorgrams of aptamer WL-2 binding. Aptamer RNA was injected over flow-cells derivatised with WL fibrils (blue) or LS fibrils (red), then left to dissociate over ~35000 seconds. Sensorgrams show that the aptamer RNA does dissociate from fibrils over extended time periods.

Supplementary Table 1. Affinities of the aptamers derived from the SPR assay. Tables show the apparent kinetic parameters for aptamers WL-2, M-2 & LS-5 binding to monomeric β_2 m, WL fibrils & LS fibrils. Residual traces (not shown) suggest that 'kinetic fits' fall within 0.5% of experimental data. The derived kinetic parameters for repeated experiments are within 10% of each other, suggesting that these values are highly reproducible.

A

LOCAL SUPERMOTIF 1

МЗ	GAGCAGCACCGGGCCACGGCGCAATCACCTAAAATCGGAGCCGCCGGGTG
M7	-GGAGGCCGAGAGGGCAGAACCCAGCGACGCGACGGAAAGACCATAACGGCAGC
M8	GCACACGGGCCGCACCCCTGCGAAACGACTATACGTCACTAGAGCAGGTTT
M1A	GCACCTCGTTGAAGGAAGGACGGTGCGGAAAAAAATAACGCACAACGCGGCA
	ss saggicalsalle gcalq gli a as as as the
	LOCAL SUPERMOTIF 2

M10	GTGCGAGCAGGGCAACCAGAAGAAAACGTAGGTAGAGTG
M7A	TTACGGATAGGCAAGGCAAGGAGGAAACGATGCCGCGGGA
M13A	GTGACCAAGGTAGTAACCAAGAGAAAACGTGTTCCAGGGT

LOCAL SUPERMOTIF 3

M8	GCACACGGGCCGCACCCCTGCGAAACGACTATACG
МбА	-GCGCTGAGCCTCACGCCTGGGGACAAAACAGTTG
M11A	GTATGAGTCAGGCCTGGGAAAAGCAACGACG

	LOCAL SUPERMOTIF 4
M12	CAGACATCTACGTGGGCAGGGAGCATTG
140 7	

M8A	CACTGAAATGTGTGGGGCACATGGACAAG
M10A	TAGGGGGTGGCGTGGGCATTCTAAAGCG

ç <u>8</u> 84	ISC	UULA	SAA U
			wetwage.com/entry.inc

LOCAL SUPERMOTIF 5

M1	GATTAGGCGAACATA	GTAGTGAAAGAA	GTACAGCATGAGGGGCT	
М2	GTTGGTTACGCGTAC	AGTGAAACI	CGGAAAGTTGAAGGGCCAAATG	GGAA

U I I A UUU AU	AU I UAAA	A IVA UUUL	
		under a barbar	and the second se

LOCAL SUPERMOTIF 6M7GAGGCCGAGAGGGGCAGAACCCAGCGACG-CGACGGAAAGACCATAACGGCAGCM8---GCACACGGGCCGCACCCCTGCGAAA-CGACTATACGTCACTAGAGCAGGTM10ATCGTAGGGGGTGGCGTGGGCATTCTAAAGCGGCTAGGCGTGACCCGGAG----M11AAAGCAACGACGGCGTAGGCATACAAAA-CGTTCGTTGGCAATGT------

A A SA GUGUG A SVAT V AA VIÇA A A S SS

LOCAL SUPERMOTIF 7

- M10GGGCAACCAGAAGAAAACGTAGGTAGAGTGM6ACACGCCTGGGGACAAAACAGTTGCAAATGGM11AGGCGTAGGCATACAAAACGTTCGTTGGCAA
- M13A TAGTAACCAAGAGAAAACGTGTTCCAGGGT

LOCAL SUPERMOTIF 8

Ml	AGTGAAAGAAAGTACAG-CATGAGGGGGCT
M7	GGAGGCCGAGAGGGCAGAACCCAGCGACGCGACGGAAAGA
M10	GTGCGAGCAGGGCAACCA-GAAGAAAACGTAGGTAG
M11	AAGAGCGGAGAACGTTGAACCGACCGGAGG
M13	GCGAACGAGACAACCA-GATAAGGACCGCCCAAT
M1A	CGTTGAAGGAAGGACGGTGCGGAAAAAAAAAACG
M8A	ATGGACAAGCGACCCA-CATACGCTGTGGGCACA

G. G. GALCONGAG

LOCAL SUPERMOTIF 9

М5	GG-TACCGAAAAGTCATTGGTTACAACCAGGCAGGCGCAGGAA
M1A	TGAAGGAAGGACGG-TGCGGAAAAAAAAAACGCACAACGCGGCA
мба	GCTGAGCCTCACGCCTGGGGGACAAAA-CAGTTGCAAATGGCGTTGACAA

LOCAL SUPERMOTIF 10

- M1 GTGAAAGAAAGTACAGCATGAGGGGCT---
- M3GAGCCGCCGGGTGCAGCATGTGAC-----M6TGAGCGACTGAGGCAGCATGGAATCATACG

Supplementary Figure 1A

В

- A GA AN UNG A AASAA UGOG G ACA ANA A TA TARRE C. A ... & A A

			:	LOCAL SU	JPERMOTIE	' 8						
WL1				CACAGA	ACAGAGGA	-GAA	AGGGG-	ATGA	ATCAATAA	AGGTCA	CAC	
WL21				ACTATA	AGTCAGAT	GGAG	GGGGA	GCATGA	AACAATTO	AATTTA	GAA	
				A	A AG	GA	GGGG	ATGA	A CAAT	webloga	.berkeley.edu	
			:	LOCAL SU	JPERMOTIE	· 9						
WL1					ATGAGA	ATAC	CACAGA	ACAGAG	GAGAAGGG	GATGA	ATCA	
WL16				AGGAC	CAGGGGAGA	GTAC	CTCCAA	AGAGTG	AAGAAGGT	TT		
					GAG	TA) (A	A AG G	AGAAGG	weblo	go.berkeley.edu	
			:	LOCAL SU	JPERMOTIE	' 10						
WL2		-AA	AAA'	ТАА					AGTGTG	GTACAC'	TAAAAAG(CTAGCCCCCG
WL6								(CGGAAGAG	GCACAA	AAAAGGGG	GACTCGCCTT
WL14	GG	TAG	GAC.	AGA					GGAGTO	GAACAA	AAGAAGCA	AGAGAGGAGA
WL16				CGCAA(GAAATATAA	ACGI	GGGGA	GGACCA	GGGGAGAG	GTACTC	CAAAGAGI	FGAAGAAGGT
		A	A	Ą					GGGAGA	KA:	A GGG	A

Supplementary Figure 1B

LOCAL SUPERMOTIF 1

LS12	GGTAAGGTGGAAGGGAAAAGGAAACGGAATGAACCCGCGTTATGG
LS1B	AAGTGAGAGGCAAAAGGAAAAAAGGTGAACAAGGCTGCTC
LS5	TCGGCGGAGGAGTGGGAAGAAAAACGAGAGAGAGTTGGAACG
LS5B	GCAGGGGGAAAGGGATTGAACGAGAAGGAGGAGGAGC
LS8	AGGGCAGCGGCGA-GAAGGGGGAAAAAAGAAAAGAACTATTCGTGGAG

GGC of on Grand And Gunan and Grand and a star of the start of the sta

LOCAL SUPERMOTIF 2

LS1B	CCGCACACATAAGGGGGAGGGAAAGACAGCAGAATAAAGAGGAG
LS12	GGTAAGGTGGAAGGGAAAAGGAAACGGAATGAACCCGCGTTATG
LS1B	AAGTGAAGTG-AAAAAAGGTGAACAA
LS5	GCAAACGGGGGCGTTTCGGCGGAGGAGTGGGAAGAAAACGAGAGAAGAGTTGGA
LS5B	GCAGGGGGAAAGGGATTGAACGAGAAGAAGG
LS8	CCTGGAGGAGGGCAGCGGCGA-GAAGGGGAAAAAAGAAAAG

	LOCAL SUPERMOTIF 3
LS1B	GCCGCACACATAAGGGGGGGGGGAAAGACAGCAGAATAAAGAGGAGGCGATAGTGC
LS12	GGTAAGGTGGAAGGGAAAAGGAAACGGAATGAACCCGCGTTATGGCCGAAAAGG
LS5B	GCAGGGGGAAAGGGATTGAACGAGAAGAAGGAGGAGC
ls9	GGGGCTTCATGAGAGAAGGAACCACAGACGAAAAAAAGGGGGGGCGTTCAAGAGGAAG
	G = G = G = G = G = G = G = G = G = G =
	LOCAL SUPERMOTIF 4
LS10	ATTAACGAGATGAAGGAAACGGGAGGGAG
LS5B	AAAGGGATTGAACGAGAAGAAGGAGGAGC
1.59	AGGAACCACACGAAAAAAAGGGGGGCGTTCAAGA

	AUGAACCACACACAAAAAAAAAAACCOCCCIICAACA
LS9B	TAAGCTTGCGTCGAAGATGAAGAAAATGTCGAATCC

LOCAL SUPERMOTIF 5

LS10	GAGGGAGACAGGCACAACGGCGACAGAAAAGAGAGAG
LS1B	TAAGGGGGAGGGAAAGACAGCAGAATAAAGAGGAGGCGATAGTGC
LS15B	CGAGGACGAAAGAGTTTAGAAAAGGAGACGGCGCTTCGAACGAACCA
LS5B	GCAGGGGGAAAGGGATTGAACGAGAAGAAGGAGGAGC
LS7B	TGAGGGGAGGTTGGCGCGAAGGCGAGGCAGCACGACCAGAAGTTTTT
LS8	GAGGGCAGCGGCGAGAAGGGGAAAAAAGAAAGAACTATTCGTG

LS12 LS15B LOCAL SUPERMOTIF 6 AGGTGGAAGGGAAAAGGAAACGG-----AATGAACCCGCGTTATGG AAAGAGTTTAGAAAAGGAGAGCGGCGCTTCGAACGAACCATCCCCTAGG

	LOCAL SUPERMOTIF 7
LS10	CGAGATGAAGGAAACGGGAGGGAGACAGGCACAACGGCGACAGAAAAGAGAGAG
LS5	GCAAACGGGGGCGTTTCGGCGGAGGAGTGGGAAGAAAACGAGAGAAGAGTTGGAA
LS7B	TGAGGGGAGGTTGGCGCGAAGGCGAGGCAGCACGACCAGAAGTTTTTGAGTTC
LS9	ACAGACGAAAAAAAGGGGGGCGTTCAAGAGGAAGAGACCGA
	ACA CAA ALL II IIIII and an IIIII A A A A A A
	ANA WARE ARE NO VIVIAGENTA SCREAGENCARESE SA ENERGERINA I
	LOCAL SUPERMOTIF 8
LS10	-ATTAACGAGATGAAGGAAACGGGAGGGAGACAG
LS1B	ACAGCAGAATAAAGAGGAGGCGATAGTGC
LS12	AGGTGGAAGGGAAAAGGAAACGGAATGAACCCGC
LS15B	AAAGAGTTTAGAAAAGGAGACGGCGCTTCGAACG
LS8B	GAAAAGGAGGGGATTTGAAATCGC
LS9	GGGGGGCGTTCAAGAGGAAGAGACCGA
	LOCAL SUPERMOTIF 9
LS1B	CACACATAAGGGGGAGGGAAAGACAGCAGAATAAAGAGGAGGCGAT
LS1B	AAGTGAGAGGCAAAAGGAAAAAAAGGTGAACAAGGCTGCTC
LS8	GGGCAGCGGCGAGAAGGGGGAAAAAAGAAAAGAACTATTCGTGGAGCGG
lS9	GAAGGAACCACAGAC-G-AAAAAAAGGGGGGGCGTTCAAGAGGAAGAGA

	Ą Ą		AActe		
	LOCAL SUPE	RMOTIF 10			
LS12	ggtaaggtgga	aggGAAAAGGAAACGGAATGA	ACCCGCGTTAT	'GGCCGAAaagggac	
LS4b	-ggccCGACGA	AGTGGGGGGAGGAA	CGTCGTGTTGA	GTGATTGGAgtccctgg	ggc
lS5	cgtttCGGCGG	AGGAGTGGGAAGAA	AAACGAGAGAA	.GAGTTGGAAcg	
LS8b		GAAAAGGAGGGGATTTGA	AATCGCGTGAA	AGGTGAAttgtttgcca	agg
		GAAAAQqaq qiqa qaa		IG G F & AGF c	G

Supplementary Figure 1C

Supplementary Figure 3.

Supplementary Figure 4.

Aptamer	Target	Apparent dis rate cons	sociation stant	Apparent a rate co	ssociation nstant	Apparent equilibrium dissociation constant					
				k _{ass}			Rmax				
WL-2		k _{diss} (1/sec)	SE(kd)	(1/M.sec)	SE(ka)	K_D (M)	(RU)	SE(Rmax)	RI (RU)	SE(RI)	χ2
			5.50E-								
	Monomer	0.0504	02	9.45E+03	3.51E+04	5.34E-06	16.4	36.2	17.1	0.952	
			1.13E-								
	WL	8.37E-04	05	1.12E+05	1.26E+03	7.48E-09	593	2.8	426	1.29	4.73E+00
			9.10E-								
	LS	8.42E-04	06	1.10E+05	983	7.63E-09	754	2.62	503	1.29	

Supplementary Table 1. Affinities of the aptamers derived from the SPR assay.

				k _{ass}			Rmax				
М-2		k _{diss} (1/sec)	SE(kd)	(1/M.sec)	SE(ka)	K_D (M)	(RU)	SE(Rmax)	RI (RU)	SE(RI)	χ2
			1.06E-								
	Monomer	8.13E-03	03	7.10E+05	9.75E+04	1.15E-08	34.4	1.89	47.6	0.905	
			3.12E-								
	WL	7.48E-04	05	1.76E+05	8.04E+03	4.25E-09	766	26.7	155	0.855	9.10E-01
			5.59E-								
	LS	3.55E-03	05	5.21E+05	1.24E+04	6.82E-09	279	3.12	207	0.89	

L	S	-5
_	-	_

5		k _{diss} (1/sec)	SE(kd)	k _{ass} (1/M.sec)	SE(ka)	K_D (M)	Rmax (RU)	SE(Rmax)	RI (RU)	SE(RI)	χ2
	Monomer	8.16E-03	1.96E- 04 1.48E-	4.78E+04	3.53E+03	1.71E-07	30.1	0.746	15.2	0.578	
	WL	6.71E-04	05 1.15E-	2.45E+04	227	2.74E-08	285	1.04	63.4	0.458	2.39E+00
	LS	3.97E-04	05	1.79E+04	169	2.21E-08	411	1.91	57.5	0.436	