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Mathematical details of GNNs
We present mathematical details of GNNs based on a simple message passing neural network (MPNN), which provides a
general framework for dealing with supervised learning tasks on graph-structured datasets.1 Let G be an undirected graph with
node set V (G) and edge set E(G). When transforming molecular graphs into vectors, nodes and edges correspond to atoms and
bonds, respectively. Suppose that node features {hhh0

v |v ∈V (G)} and edge features {cccvu|vu ∈ E(G)} are assigned to the nodes
and edges. The forward pass of an MPNN is divided into two phases: the message passing phase and the readout phase. In the
message passing phase, message mmmt

v and hidden state hhht
v of each node v ∈V are alternately updated for t = 1, . . . ,T as follows:

mmmt
v = ∑

u∈N(v)
Mt(hhht−1

v ,hhht−1
u ,cccvu) and hhht

v =Ut(hhht−1
v ,mmmt

v),

where Mt is a message function, Ut is an update function, and N(v) represents neighbors of v. After the T -th iteration, we apply
readout function R to hidden-state vectors for computing vector xxx of graph G as follows:

xxx = R({hhhT
v |v ∈V (G)}).

In the training step, parameters of Mt , Ut , and R, together with those of task-specific layers, are updated by backpropagation.
With our specific choice of a GNN architecture, called Attentive FP,2 atom features are updated by using a graph attention

mechanism in the message-passing phase.3 Then it updates a feature of a virtual node, which connects all atoms to represent
the whole molecular graph, in the readout phase by using the same embedding attention mechanism. Our method uses the
updated vector of the virtual node as molecular vector xxx.

Mathematical details of submodular function maximization
We present mathematical details of submodular function maximization. We consider a situation where n items are given, from
which we select diverse k items. We number the items by 1, . . . ,n and consider selecting an index subset S ⊆ N := {1, . . . ,n}.

Let f : 2N → R be a set function, which assigns diversity value f (S) to every subset S ⊆ N of items. Function f is said to
be submodular if

f (S)+ f (T )≥ f (S∩T )+ f (S∪T )

holds for every pair of S,T ⊆ N. The problem of selecting up to k items that maximizes submodular function f can be written
as

maximize f (S) subject to S ⊆ N, |S| ≤ k.

A standard algorithm for this problem is the greedy algorithm. The algorithm first sets S = /0 and then sequentially adds to
S an element, i ∈ N, that yields the largest increase in the f value. If f satisfies f ( /0) = 0, monotonicity (i.e., S ⊆ T implies
f (S)≤ f (T )), and submodularity, we can mathematically guarantee that the greedy algorithm returns subset S ⊆ N such that
f (S) is at least 1−1/e ≈ 63% of the optimal value, i.e., maxS⊆N:|S|≤k f (S).4

Results on property prediction tasks
We experimentally studied how the use of the normalization layer affects molecular property prediction. With the QM9 dataset,
we trained GNNs with and without normalization via property prediction tasks. Table 1 presents mean absolute error (MAE)
values achieved by GNNs trained with and without normalization. We see that the performances are similar to each other,
even though vectors generated by the GNN with normalization loses the norm information. This implies that, when the GNN
is trained with normalization, the information that should be retained in the norm is represented by the angles of vectors.
Therefore, the resulting molecular vectors are expected to work well with the log-determinant function, as explained in the
method section.
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Table 1. MAE values on QM9 achieved by using GNNs with and without normalization. The results are shown by means and
standard deviation over 5 trials.

w/o normalization w/ normalization

mu (Debye) 0.4352±0.0072 0.4265±0.0060
alpha (Bohr3) 0.5895±0.0204 0.5741±0.0253
HOMO (Hartree) 0.003596±0.000042 0.003477±0.000032
LUMO (Hartree) 0.004095±0.000083 0.003993±0.000094
gap (Hartree) 0.005108±0.000085 0.005013±0.000079
R2 (Bohr2) 31.12±1.19 29.71±0.82
ZPVE (Hartree) 0.001815±0.000092 0.001786±0.000076
U0 (Hartree) 1.186±0.175 1.334±0.192
U (Hartree) 1.186±0.175 1.334±0.192
H (Hartree) 1.186±0.175 1.334±0.192
G (Hartree) 1.186±0.175 1.334±0.192
Cv (cal/(mol K)) 0.3044±0.0264 0.2844±0.0152
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