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SUPPLEMENTARY MATERIAL
Microarray qPCR
Gene Probeset Fold Pseudo
Gene name S D Cheiee | el Fold Change | P-value
Cyclin dependent kinase sk *%
inhibitor 1A CDKN1A | 202284 s at 2.94 3.02 £ 048
Cyclin dependent kinase 4 CDK4 202246_s_at -1.14 * -2.09+0.15 *
BCL2 associated X, apoptosis * 4 *
regulator BAX 211833_s_at 1.29 1.75+0.217
BCL2 like 11 BCL2L11 | 1558143 _a_at 1.17 * 2.32+0.166 *
BCL2 binding component 3 BBC3 211692 s at -1.04 ns 3.98 +1.02 *
Phorbol-12-myristate-13- *
+
acetate-induced protein 1 PR ARG 9 et 1.5 ns SIS
Fas ligand FASLG 211333 s_at 1.04 ns 5.04 +1.11 *x
*p< 0.05; **p<0.01

Table S1: Representative set of p53 pathway genes in MCF-7 cells altered by SPCA2KD.
Comparison of a subset of p53 pathway genes determined to be differentially expressed in the
microarray (n = 2) to expression measured by gPCR (n = 3). For genes that contain multiple
probe sets in the Affymetrix Human Genome U133 Plus 2.0 Array, a representative value was
selected, typically the value of highest significance.
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Figure S1: SPCA2 drives cell cycle progression and survival

(A) Knockdown of SPCA2 (SPCA2 KD) in MCF-7 cells was confirmed by gPCR, n=3. (B) SPCA2
KD in MCF-7 significantly decreased BrdU incorporation compared to control (n=6 for control,
n=5 for KD. (C) Knockdown of SPCA2 in MCF-10A cells was confirmed by qPCR, n=3. (D)
SPCA2 KD in MCF-10A significantly decreased cell proliferation compared to control, n=3. (E)
Knockdown of SPCA2 in ZR-75 cells was confirmed by qPCR, n=3. (F) SPCA2 KD in ZR-75
significantly decreased cell proliferation compared to control, n=3. (G) SPCA2 overexpression
(using silencing resistant construct SPCA2R) in HS578T increased cell proliferation compared
to vector control, n=3. (H) SPCA2 KD significantly increased percentage of apoptotic cells
compared to control, n=3. Significance: *P < 0.05, ** P < 0.01, *** P < 0.001.
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Figure S2: ATPase deficient mutation in SPCA2 does not block cell proliferation or Ca?*
entry

(A) Overexpression of SPCA1 in MCF-7 cells was confirmed by qPCR, n=3. (B) SPCA1
overexpression in MCF-7 did not significantly increase cell proliferation compared to vector
control, n=3. (C) Overexpression of SPCA2 in MCF-7 cells was confirmed by gPCR, n=3. (D)
SPCAZ2 overexpression in MCF-7 significantly increased cell proliferation compared to vector
control, n=3. (E-F) SPCA2 transcript levels measured by qPCR in MCF-7 control, SPCA2
knockdown (KD), and after transfection with empty vector (EV), recombinant, silencing-resistant
SPCA2R construct (R) or mutant D379N, as indicated n=3. (G) SPCA1 transcript was
significantly increased in MCF-7 SPCA2 KD (2KD) cells as confirmed by qPCR, n=3. (H) SPCA2
transcript remains significantly decreased in MCF-7 SPCAZ2 KD cells which overexpress SPCA1
(2KD+SPCA1), as confirmed by gPCR, n=3. (I-J) Treatment of MCF-7 cells with SKF-96365 (10
MM, 65 hours) reduces cell proliferation and viability. n=3. Significance: " P> 0.05, *P < 0.05, **
P <0.01, ** P<0.001.
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Figure S3: Store-independent Ca?* entry inhibits p53 signaling

(A-B) SPCA2 KD in ZR-75 cells significantly increased p21 and NOXA, n=3. (C) Knockdown of
SPCA1 in MCF-7 cells was confirmed by gPCR, n=3. (D) Representative Western blot of cleaved
caspase-3 and p21 in MCF-7 control and SPCA1 KD cells; GAPDH was used as a loading
control. (E) SPCA2 KD in p53 KO MCF-7 cell line was confirmed by gPCR, n=3. (F-H) SPCA2
KD did not increase p21, PUMA, and NOXA mRNA in p53 KO MCF-7 cell line, measured by
gPCR, n=3. (I) Orai1 knockdown in MCF-7 was confirmed by qPCR, n=3. (J-K) Orai1 knockdown
in MCF-7 cells increased p21 and NOXA, n=3. (L-M) Treatment of MCF-7 cells with SKF-96365
(20 uM, 24 hours) increased p21 and NOXA, n=3. Significance: " P > 0.05, *P < 0.05, ** P <
0.01.
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Figure S4: Loss of SPCA2 activates the ATM/ATR-p53 pathway

(A) Representative Western blot of p-H2AX in MCF-10A control and SPCA2 KD cells; GAPDH
was used as a loading control. SPCA2 KD in MCF-10A showed a significant increase in p-H2AX
compared to control, n=3. (B) Representative Western blots of p-ATM, p21, p-p53, and cleaved
caspase-3 (Cl. C3) in MCF-10A control and SPCA2 KD cells; GAPDH was used as a loading
control. (C) Western blots of p-ATR, p-p53, p21, cleaved caspase-3 (Cl. C3), p-H2AX in MCF-7
control and SPCA2 KD cells transfected with SPCA2R (KD+R); GAPDH was used as a loading
control. (D) Western blots of p21, cleaved caspase-3 (Cl. C3), and p-H2AX in MCF-7 control and
SPCA2 KD cells transfected with silencing-resistant SPCA2 mutant D379N (KD+D379N),
GAPDH was used as a loading control. (E) Western blot of p21 in MCF-7 control + Empty vector
(EV), SPCA2 KD +EV, and SPCA2 rescued cells (KD+SPCA2R, and KD+D379N); GAPDH was
used as a loading control. (F-G) SPCA1 overexpression in MCF-7 SPCA2 KD cells
(2KD+SPCA1) fails to reverse the increase in p21 and NOXA seen in SPCA2 KD cells compared
to control. n=3. (H-1) MCF-7 SPCA2 KD cells, which overexpress SPCA1 (2KD+SPCA1), show
an increase in p-H2AX, n=3; 3-actin was used as a loading control. Significance: " P > 0.05, *P
<0.05, " P<0.01, *™* P <0.001.
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Figure S5: Loss of SPCA2 expression sensitizes cells to DNA damaging agents

(A) SPCA2 KD in MCF-10A cells increased chemosensitivity to doxorubicin (0-500 nM)
compared to control (n=5 or 6, time=120 hours). (B). Approximately 10,000 cells were plated
and incubated overnight. Cells were then treated with doxorubicin (DOX; 200 nM) (time=72
hours). Chemosensitivity to doxorubicin is significantly reversed by forced overexpression of
SPCAZ2R, n=5. (C) Representative western blot of p-H2AX in MDA-MB-231 control and SPCA2
KD cells treated with doxorubicin (DOX) (250 nM, 24 hours); GAPDH was used as a loading
control. (D) MDA-MB-231 SPCA2 KD cells treated with doxorubicin showed a significant
increase in p-H2AX compared to control cells treated with doxorubicin, n=3. Significance: *P <
0.05, ** P<0.01.
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Figure S6: SPCA2 protects against ROS-mediated DNA damage

(A) Representative flow cytometry showing ROS production in MCF-10A control and SPCA2 KD
cells. (B) ROS production is significantly increased in SPCA2 KD compared to control. H202
(500 pM for 20 minutes) was used as positive control. n=3 for SPCA2 KD and control, n=2 for
H202 experiment. (C) Representative flow cytometry showing ROS production in MCF-7 control
and SPCA2 KD rescued (KD + SPCA2R) cells. (D) There was no significant difference in ROS
production between control and SPCA2 KD rescued cells, n=3. (E-J) Anti-oxidants (Vitamin C,
500 uM + N-acetyl cysteine, 500 uM) were added to MCF-7 SPCA2 KD cells for 12 hours and
24 hours and immunoblotting is performed using GAPDH as loading control. Quantification of p-
ATM, p-p53, p21, cleaved caspase-3, p-H2AX, and Cyclin D1. (K) MCF-7 SPCA2 KD cells were
treated with NAC (500 uM) for 24 hours. Cell proliferation was measured using BrdU proliferation
assay. NAC treatment significantly rescued the cell proliferation compared to MCF-7 SPCA2 KD
cells. n=6 for control, n=5 for KD and n=4 for KD+ NAC (500 yM). (L-N) Mitochondrial anti-
oxidant (MitoTempo, 5 pM) was added to MCF-7 SPCA2 KD cells for 24 hours and
immunoblotting was performed using GAPDH as loading control. Quantification of cleaved
caspase-3, p21 and p-H2AX. Significance: "¢ P > 0.05, *P < 0.05.
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Figure S7: Loss of SPCA2 and extracellular Ca?* decrease mitochondrial Ca?* levels and
membrane potential

(A) Representative flow cytometry images showing mitochondrial calcium (Rhod-2 AM
fluorescence) in MCF-10A control and SPCA2 KD cells. (B) Quantification of flow cytometry in
MCF-10A. Mitochondrial calcium was significantly decreased in SPCA2 knockdown compared
to control. lonomycin (10 uM for 15 seconds) was used as positive control; n=3. (C) SPCA2 KD
in MCF-7 showing significant decrease in ratio of JC-1 Red/ JC-1 green compared to control.
n=3 for control and n=4 for SPCA2 KD. (D) Representative flow cytometry showing mitochondrial
membrane depolarization in MCF-7 cells exposed to Ca?*-free media for 15 min compared to
cells grown in media with 2 mM Ca?*. Fenretinide (4-HPR) (10 uM for 20 hours) was used as
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positive control. (E) Mitochondrial membrane depolarization was significantly increased in in
MCF-7 cells exposed to Ca?*-free media compared to cells grown in media with 2 mM Ca?*. n=3.
(F-G) Representative Western blot of Tom20 in MCF-7 control and SPCA2 KD cells; B-actin was
used as a loading control. SPCA2 KD in MCF-7 did not significantly increase Tom20 protein
expression compared to control, n=3. Significance: " P > 0.05, *P < 0.05, ***P < 0.001.
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