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Figure S1. Activated HIF1A-associated Gene Expression in Human MDS. A, The leading edge 1 
genes from the gene set enrichment analysis of HIF1A induced genes in Figure 1A. B, Scatter plots 2 
comparing log2 expression of individual genes in CD34+ BM cells from MDS patients (n = 183) relative 3 
to healthy donor (n = 17). Known HIF1A target genes(1) upregulated in MDS patients are shown with 4 
red dots (P < 0.05).  5 
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Figure S2. HIF1A Expression in the BM from Human MDS. HIF1A immunohistochemistry staining 1 
of MDS BM biopsy samples and de-identified adult BM samples diagnosed as apparently normal. 2 
Percentage indicates the frequency of HIF1A expressing cells. Underlined cases are shown in Figure 1B. 3 
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Figure S4. HIF1A Activates Immune Cells. A, GSEA plot showing decreased gene expression of 1 
AHR targets in c-Kit+ BM cells from Vav1-Cre/TPM mice relative to Vav1-Cre/LSL-tTA mice (Vav1-2 
Cre/Control). NES, P value, and FDR are shown. B, Splenomegaly observed in Vav1-Cre/TPM mice. C, 3 
Reticulin and trichrome staining of the BM from Vav1-Cre/Control and Vav1-Cre/TPM mice. Data are 4 
mean ± s.d. D-E, Flow cytometric analysis of 7AAD- lineage marker negative (lineage-) single whole 5 
BM cells from Vav1-Cre/Control and Vav1-Cre/TPM mice (n = 3 per each group) (D). Percentage of 6 
cells in the lineage-, c-Kit+, Sca-1+ cells (LSK), lineage-, c-Kit+, Sca-1- cells (LK), common myeloid 7 
progenitor (CMP) (LK, CD16/32-, CD34+), granulocyte/macrophage progenitor (GMP) (LK, CD16/32+, 8 
CD34+), and megakaryocyte/erythroid progenitor (MEP) (LK, CD16/32-, CD34-) in BM (n = 3 per each 9 
group) in BM is shown in (E). Data are mean ± s.d. F, Schematic of CFU replating assay, competitive 10 
BMT assay, and Non-competitive BMT assay. G, Serial CFU replating assay of BM cells from indicated 11 
genotypes. Doxycycline (1 μg/ml) was added in the M3434 methylcellulose medium. Data are mean ± 12 
s.d. from triplicate cultures. H, Flow cytometric analysis of cells forming primary colonies in (G). I, PB 13 
chimerism (as measured by CD45.2 marker) from 1:1 ratio competitive BMT assay from the primary 14 
Vav1-Cre/TPM mice showing MDS phenotypes and control mice. Equal number of BM cells from 15 
B6.SJL mice (CD45.1) as a competitor. Doxycycline administration was continued after the 16 
engraftment. J, Blood count after Non-competitive BMT assay from the primary Vav1-Cre/TPM mice 17 
showing MDS phenotypes and control mice. WBC, HB, MCV, and Plts counts in PB from the recipient 18 
mice are shown. Data are mean ± s.d. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant. 19 
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Figure S5. HIF1A induction in the erythroid, megakaryocyte, and myelomonocytic lineages. A, HB, 1 
MCV, and Plts counts in PB from EpoR-Cre/LSL-rtTA (EpoR-Cre/Control) mice (n = 4) and EpoR-2 
Cre/LSL-rtTA/TPM (EpoR-Cre/TPM) mice (n = 6). Data are mean ± s.d. B, Flow cytometric analysis of 3 
7AAD- single whole BM cells from EpoR-Cre/Control and EpoR-Cre/TPM mice. C, Percentages of 4 
proerythroblasts (gate I), basophilic erythroblasts (gate II), polychromatic erythroblast (gate III), and 5 
orthochromatic erythroblasts (gate IV) in femur from EpoR-Cre/Control and EpoR-Cre/TPM mice (n = 2 6 
per each group). Data are mean ± s.d. D, GFP expression in the each erythroblast population in (B) and 7 
CD71- Ter119- non-erythroid population. Representative data is shown. EpoR-Cre -negative mouse was 8 
used as a GFP-negative control. E, Flow cytometric analysis of 7AAD- Gr-1- 115- multiplets from EpoR-9 
Cre/Control and EpoR-Cre/TPM mice. F, Plts counts in PB from PF4-Cre/LSL-rtTA (PF4-Cre/Control) 10 
mice and PF4-Cre/LSL-rtTA/TPM (PF4-Cre/TPM) mice (n = 6 per each group). Data are mean ± s.d. G, 11 
Wright Giemsa staining of BM cells from PF4-Cre/Control and PF4-Cre/TPM mice. H, RBC counts, 12 
HB, and MCV in PB from LysM-Cre/Control mice (n = 16, 5 months to 10 months after HIF1A 13 
induction) and LysM-Cre/TPM mice (n = 6, 5 months after HIF1A induction; n = 6, 8 months after 14 
HIF1A induction; n = 9, 10 months after HIF1A induction). Data are mean ± s.d. I, Flow cytometric 15 
analysis of 7AAD- Gr-1- 115- multiplets from LysM-Cre/LSL-rtTA (LysM-Cre/Control) mice and LysM-16 
Cre/LSL-rtTA/TPM (LysM-Cre/TPM) mice. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, 17 
not significant. 18 
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A

Figure S6. Critical role of activated HIF1A signaling in MLL-PTD-mediated Clonal Advantage. 1 
A, Cross comparison of the H3K4me3 ChIP-Seq data with the ENCODE binding data of CD34+ 2 
myeloid progenitors (control_ENCFF565KJC.bam, H3K4me3_ENCFF218HFN.bam; 3 
https://www.encodeproject.org/experiments/ENCSR072ENL/). KEGG pathway enrichment analysis on 4 
genes of the overlapped binding sites. False discovery rate (FDR) < 0.001 was used. B, Schematic of 5 
CFU replating assay and serial competitive BMT assay. C, Serial CFU replating assay of BM cells from 6 
indicated genotypes. Data are mean ± s.d. from triplicate cultures. D-E, PB chimerism (as measured by 7 
CD45.2 marker) from 2 consecutive serial competitive BMT assay from the indicated genotypes (n = 8 8 
to15 per group). Data are mean ± s.d. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 9 
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Figure S7. Metabolic shift in MllPTD/WT mice. A-B, Mdm2 mRNA and Tp53 mRNA expression in the 1 
c-Kit+ cells from indicated mice. Data are mean ± s.d. *P < 0.05, **P < 0.01; NS, not significant.  2 
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Figure S8. HIF1A protein is constantly degraded by PHD-VHL axis in BM. Hif1a protein expression 1 
in the purified c-Kit+ cells from indicated mice. 2 
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Figure S9. Phenotype of MllPTD/WT/Rx1-S291fs mice. A, Reticulin staining of BM from 1 
MllPTD/WT/empty and MllPTD/WT/Rx1-S291fs mice. B, Survival of MllPTD/WT/empty (n = 8) and 2 
MllPTD/WT/Rx1-S291fs (n = 12) BMT mice. C, Sdha, Sdhb, and Sdhd protein expression in the c-Kit+ 3 
cells from indicated mice. D, Hif1a protein expression in the cells from primary colonies. E, 4 
Quantification of Hif1a protein expression in (C). Results were normalized to the expression level in the 5 
control cells. Data are mean ± s.d. F, Known Hif1a target gene expression in the c-Kit+ cells from 6 
indicated mice. Data are mean ± s.d. G-H, MDM2 mRNA and TP53 mRNA expression in BM 7 
mononuclear cells from healthy donors (n = 6) and MDS patients (RUNX1-wild type, n = 8; RUNX1-8 
mutation, n = 5). I, Sdha, Sdhb, and Sdhd protein expression in the c-Kit+ cells from indicated mice. *P 9 
< 0.05, **P < 0.01, ***P < 0.001.  10 
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Figure S10. Genetic Deletion of Runx1 in MllPTD/WTmice. A, Hif1a, Mdm2, and Tp53 protein expression 1 
in the c-Kit+ cells from indicated mice. B, Serial CFU replating assay of BM cells from indicated 2 
genotypes. Data are mean ± s.d. from triplicate cultures. C-G, BM morphology of indicated mice. H, 3 
ATAC-Seq and HIF1A ChIP-Seq tracks illustrating co-regulation at select loci of representative genes 4 
shown in Figure 6F. The data of ATAC–Seq analysis, which indicates the location of open-chromatin, in 5 
LSK cells (GSM1463179) and HIF1A ChIP-Seq (GSE40918) analysis were obtained from GEO record. 6 
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Figure S11. Pseudohypoxia related signature after Hif1a deletion. GSEA plots showing genes 1 
related to glycolysis and mitochondrial oxidative phosphorylation in c-Kit+ BM cells from 2 
MllPTD/WT/Runx1Δ/Δ cells with or without Hif1a deletion. NES, P value, and FDR are shown. 3 
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Figure S12. Effect of Echinomycin on normal hematopoiesis. A, Echinomycin treatment in CFU assay 1 
using WT and MllPTD/WT BM cells. Colony numbers were normalized to those in the control. Data are 2 
mean ± s.d. from independent 3 experiments. B, Schematic of drug treatment, analysis, and competitive 3 
BMT assays in (C and D). C, WBC, HB, MCV, and Plts counts in PB from vehicle treated control mice 4 
and Echinomycin treated mice (n = 4 to 6 per each group). Data are mean ± s.d.  D, PB chimerism (as 5 
measured by CD45.1 marker) at 4 months after CBMT (n = 5 per each group). Data are mean ± s.d., ***P 6 
< 0.001, ****P < 0.0001; NS, not significant.  7 
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Figure S13. MDS Genesis through activated HIF1A signaling. Model for HIF1A signaling mediated 1 
MDS development. (1) MDS associated mutations activate HIF1A signaling in both MDS HSPCs and 2 
multi-lineages mature cells. (2) Activated HIF1A signaling gives clonal expansion advantage to MDS 3 
HSPCs. (3) Activated HIF1A signaling also causes dysplasia, activated inflammatory immunity, and 4 
ineffective erythropoiesis. 5 







Table S3. Sequence information for primers
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Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 
MDM2 GAAGGAAACTGGGGAGTCTTG GGTCTCTTGTTCCGAAGCTG 
TP53 GTACATCTGGCCTTG AAACC AGCTGCCCAACTGTAGAAAC 
HIF1A AGGTGGATATGTCTGGGTTG AAGGACACATTCTGTTTGTTG 
ACTB CACCCAGCACAATGAAGATC GTCATAGTCCGCCTAGAAGC 

 

 

Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 
Mdm2 TCCGAGCCTGGGTCTGTGTG ATGCGAGGGCGTCTCTGTGG 
Tp53 ACGCTTCTCCGAAGACTGG AGGGAGCTCGAGGCTGATA 
Hprt1 CAGTCCCAGCGTCGTGATTA GGCCTCCCATCTCCTTCATG 
Actb GCTCTTTTCCAGCCTTCCTT CTTCTGCATCCTGTCAGCAA 
Plod1 GAACTGAGCTGAACGCTTGA AAGGATGACGCCAAGCTAGA 
Egln3 CTGGATAGCAAGCCACCATT CATCAACTTCCTCCTGTCCC 
Bnip3 TGAAGTGCAGTTCTACCCAGG CCTGTCGCAGTTGGGTTC 
Pdk1 TTACTCAGTGGAACACCGCC GTTTATCCCCCGATTCAGGT 
Idh1 TATGATGGGCGTTTCAAAGA TGAGCCTGTGTTCATAGCAGA 
Idh2 GGATGTACAACACCGACGAGT CGGCCATTTCTTCTGGATAG 
Idh3a CAGGTGACAAGAGGTTTTGC TGAAATTTCTGGGCCAATTC 
Idh3b GCTGCGGCATCTCAATCT CCATGTCTCGAGTCCGTACC 
Idh3g TCTCCTCTGCCGTCCTTG ACTGAGGAAATGCTCCTTCG 
Sdha AGCCGTTTGGGGAACACTGG TAGCAGGAGGTACGGTGGCA 
Sdhb ACGAGTGCATCCTGTGTGCC TGCATGAGAACTGCAGGCCC 
Sdhc ACTGTCCGTTTGCCACCGAG TTGGCCCCAAACACAGGGAC 
Sdhd TCTTGGGGCTGATCCCTGCT ACCACTTGTCCAAGGCCCCA 
Sdhaf1 GACATGCTGTGATACACCAACC CGATGGGAGGAGAAAGTGC 
Sdhaf2 CGGTGGTCACCTTGATCC CGTCTGAATGATGTCACACTAGG 
Sdhaf3 TCTTGAAGGAATGGGAGACG TTTTCCAGTTGAGCTTTGTCTG 
Sdhaf4 CCGTTTCACGGATGACTTTC TTCCTCAAAGAATGATTCAGAAGA 
Fh1 GCACCCCAATGATCATGTTA ATTGCTGTGGGAAAGGTGTC 

 


