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Design of five masking schemes

Given the three synthetic datasets without zero inflation, we use five masking schemes to introduce
a varying number of non-biological zeros into each dataset. Since there is no consensus on the
generation mechanism of non-biological zeros, we design the five masking schemes to reflect two
fundamental questions: whether the occurrence of non-biological zeros (1) depends on the actual
gene expression levels and/or (2) is gene-specific. As the five masking schemes cover the extreme
answers to both questions (Additional File 1: Fig. S1a), we expect that they together cover the
unknown generation mechanism of non-biological zeros and would thus reveal the realistic effects
of non-biological zeros on cell clustering and DE gene identification.

We provide a toy example to demonstrate the five masking schemes in Additional File 1:
Fig. S1b and summarize their technical details in Additional File 1: Fig. S1c. In short, for a dataset
with n non-zero counts, given a masking proportion p, all schemes would mask approximately np

non-zero counts. However, the five schemes differ in masking which np non-zero counts, and they
can be categorized in two ways corresponding to the two aforementioned questions.

The first categorization is whether masking depends on the non-zero count values: random
masking vs. quantile masking. While the two random masking schemes assume the indepen-
dence between whether a non-zero count would be masked and the count value itself, the three
quantile masking schemes assume a complete dependence by truncating non-zero values below a
quantile (which corresponds to the masking proportion) to zero. Specifically, the two random mask-
ing schemes differ in the definition of independence: random mask (all genes) assumes the
complete independence between masking and count values; random mask (per-gene, specific

%) only assumes the conditional independence between masking and count values given each
gene, and the masking proportion is gene-specific. Note that we define each gene’s specific
masking proportion as a function of the gene’s non-zero counts based on an empirical formula
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in the literature [1, 2] (Additional File 1: Fig. S1c); in short, the larger a gene’s non-zero counts
are, the smaller the gene’s masking proportion is. Besides the two random masking schemes, the
three quantile masking schemes differ in how they perform the truncation: quantile mask (all

genes) truncates the lowest 100p% non-zero counts of all genes; quantile mask (per-gene,

same %) truncates the lowest 100p% non-zero counts of each gene; quantile mask (per-gene,

specific %) truncates the lowest non-zero counts of each gene based on the gene’s specific
masking proportion determined by the empirical formula.

The second categorization is regarding whether the masking proportion is gene-specific. Two
schemes mask the same expected proportion 100p% of non-zero counts for all genes: random

mask (all genes) and quantile mask (per-gene, same %). Three schemes use gene-specific
masking proportions: quantile mask (all genes), random mask (per-gene, specific %), and
quantile mask (per-gene, specific %). Specifically, although quantile mask (all genes)

does not use the empirical formula to determine gene-specific masking proportions as in random

mask (per-gene, specific %) and quantile mask (per-gene, specific %), it still truncates
different proportions of non-zero counts for different genes. The reason is that its truncation
threshold is set to the p-th quantile of all genes’ non-zero counts, and different genes have different
numbers of non-zero counts below that threshold. It is also worth noting that we do not include
random mask (per-gene, same %) because it is theoretically equivalent to random mask (all

genes)—both schemes are expected to randomly mask 100p% of every gene’s non-zero counts
(Additional File 1: Fig. S1a).

Note that random masking aims to reflect the random nature of sampling zeros. In a sequenc-
ing experiment, allocation of reads to genes is essentially random sampling from a multinomial
distribution, whose probabilities are the proportions of genes in terms of cDNA copy numbers
in the sequencing library. Due to the randomness of sampling, for two genes with moderately
different non-zero proportions, it is possible that, in one experiment, the gene with the larger
proportion receives a zero read count, i.e., a sampling zero, while the gene with the smaller
proportion receives a non-zero read count. The magnitude of the randomness depends on the
sequencing depth. For every gene, the standard deviation of its count over its expected count is
equal to a large constant depending on its proportion (i.e.,

√
(1− qi)/qi, where qi is the proportion

of gene i) multiplied by the inverse of the square root of the sequencing depth (i.e., 1/
√
N , where

N is the sequencing depth). Hence, the smaller the sequencing depth, the larger the standard
deviation of every gene’s count in relation to its expected count, the more likely that genes receive
sampling zeros irrespective of their proportions. Moreover, the expected number of sampling
zeros (i.e.,

∑I
i=1(1 − qi)

N , where I is the number of genes) decreases as the sequencing depth
increases. In contrast, quantile masking aims to reflect gene proportions in the sequencing library
and technical zeros, i.e., zero counts due to zero proportions without randomness. Quantile
masking also reflects the fact that, despite of randomness, a gene with a small proportion is more
likely to receive a sampling zero than a gene with a much larger proportion does.

Hence, for Drop-seq and 10x Genomics, since they sequence many cells, per-cell sequencing
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depth is low and thus randomness is influential, random masking better represents the occurrence
of non-biological zeros, sampling zeros in particular, than quantile masking does. For Smart-seq2,
since per-cell sequencing depth is high and thus randomness is negligible, quantile masking better
resembles the generation mechanism of non-biological zeros, technical zeros in particular, than
random masking does.
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Figure S1: Five masking schemes for introducing non-biological zeros. (a) A tree diagram
illustrating the design of the five masking schemes. From the top, the first division is about whether
masking is independent of or completely dependent on count values, with the former as random
masking and the latter as quantile masking. The second division is about whether masking is
performed across all genes (with the same masking proportion) or within each gene (i.e., per-
gene). If the latter, the third division is regarding whether the masking proportion is the same
for all genes or specific to each gene depending on the gene’s mean non-zero expression level.
Note that random masking across all genes is equivalent to random masking per-gene with the
same masking proportion (shown by the double arrow on the left). (b) A toy example illustration
of the five masking schemes. The topleft plot shows the expression counts of three genes in four
cells without zero-inflation; the other five plots show the expression counts after the five masking
schemes are applied with the same masking proportion p = 0.5 (i.e., 50% of the non-zero gene
expression counts are masked as zeros). (c) Technical explanation of each masking scheme. In
the notations, p denotes the overall masking proportion across all genes, and pi is the masking
proportion of gene i.
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Figure S2: Effects of non-biological zeros on DE gene identification in terms of precision
and recall. We introduce a varying number of non-biological zeros, which correspond to masking
proportions 0.1–0.9, into the simulated (a) Smart-seq2, (b) Drop-seq, and (c) 10x Genomics
datasets using five masking schemes. The horizontal axes show (top) the total zero proportion
(including the zeros before masking and the non-biological zeros introduced by masking) and
(bottom) the masking proportion (i.e., the proportion of non-zero counts masked by a masking
schemes). After the introduction of non-biological zeros, we apply Monocle 3 and Seurat to each
dataset to identify DE genes. We evaluate the accuracy using the precision and recall (given the
false discovery rate 5%; defined in Fig. ??d), respectively.
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Figure S3: Evaluation of clustering analysis on observed, binarized and imputed data. We
evaluate the clustering analysis on Smart-seq2, Drop-seq, and 10x Genomics data based on
observed, binarized and imputed data. We perform this analysis before and after using the five
masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros. Besides the bin-Qiu et
al. which indicates the clustering algorithm developed specially for binarized data, we use Louvain
clustering (in Seurat) on observed, binarized, and imputed data. We use ARI to evaluate the
clustering results.
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Figure S4: Dimension reduction comparison using PCA, TSNE and UMAP. In addition
to the original data, we use five masking schemes (Type 1–Type 5) to introduce 50% non-
biological zeros and evaluate the effects on the downstream analyses with different input
data. The five masking schemes are random mask (all genes), quantile mask (all genes),
random mask (per-gene, specific %), quantile mask (per-gene, same %), and quantile

mask (per-gene, specific %), corresponding to type 1–type 5, respectively. Then, we perform
scImpute, Saver, or Magic to get the imputed data. Finally, We evaluate the dimension reduction
using PCA, t-SNE or UMAP on Smart-seq2, Drop-seq, and 10x Genomics data based on observed
and imputed data and use Silhouette score to evaluate the dimension reduction results.
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Figure S5: Evaluation of dimension reduction analysis on observed, binarized and imputed
data. We evaluate the dimension reduction analysis on Smart-seq2, Drop-seq, and 10x Genomics
data based on observed, binarized and imputed data. We perform this analysis before and after
using the five masking schemes (type 1 ZI–type 5 ZI) to introduce non-biological zeros. We use
UMAP (in Seurat) on observed, binarized, and imputed data to perform dimension reduction. We
use Silhouette score to evaluate the dimension reduction results.
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Figure S6: UMAP dimesion reduction visualization on observed, binarized and imputed
Smart-seq2 data. We perform UMAP (in Seurat) on Smart-seq2’s observed, binarized and
imputed data. We perform this analysis before and after using the five masking schemes (type
1 ZI–type 5 ZI) to introduce non-biological zeros.
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Figure S7: UMAP dimesion reduction visualization on observed, binarized and imputed
Drop-seq data. We perform UMAP (in Seurat) on Drop-seq’s observed, binarized and imputed
data. We perform this analysis before and after using the five masking schemes (type 1 ZI–type 5
ZI) to introduce non-biological zeros.
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Figure S8: UMAP dimesion reduction visualization on observed, binarized and imputed
10x Genomics data. We perform UMAP (in Seurat) on 10x Genomics’ observed, binarized and
imputed data. We perform this analysis before and after using the five masking schemes (type 1
ZI–type 5 ZI) to introduce non-biological zeros.
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Figure S9: Evaluation of DE analysis on observed, binarized and imputed data. We evaluate
the DE analysis on Smart-seq2, Drop-seq, and 10x Genomics data based on observed, binarized
and imputed data. We perform this analysis before and after using the five masking schemes
(type 1 ZI–type 5 ZI) to introduce non-biological zeros. We apply two-sample proportion test on
binarzied data and MAST (in Seurat) on observed, binarized, and imputed data to perform DE
analysis. We use precision (given the false discovery rate 5%) to evaluate the DE results.
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Figure S10: Evaluation of DE analysis on observed, binarized and imputed data. We evaluate
the DE analysis on Smart-seq2, Drop-seq, and 10x Genomics data based on observed, binarized
and imputed data. We perform this analysis before and after using the five masking schemes
(type 1 ZI–type 5 ZI) to introduce non-biological zeros. We apply two-sample proportion test on
binarzied data and MAST (in Seurat) on observed, binarized, and imputed data to perform DE
analysis. We use recall (given the false discovery rate 5%) to evaluate the DE results.
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Figure S11: Evaluation of DE analysis on observed, binarized and imputed data. We evaluate
the DE analysis on Smart-seq2, Drop-seq, and 10x Genomics data based on observed, binarized
and imputed data. We perform this analysis before and after using the five masking schemes
(type 1 ZI–type 5 ZI) to introduce non-biological zeros. We apply two-sample proportion test on
binarzied data and MAST (in Seurat) on observed, binarized, and imputed data to perform DE
analysis. We use F1 score (given the false discovery rate 5%) to evaluate the DE results.
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