Supplementary Tables

Medium	Cell line	Passage number	No. of transferred	No. of growth-retarded	No. of normal pups	
			embryos	pups (% of	(% of transferred	
				transferred	embryos)	
				embryos)		
2i/L	2i-12	p9	216	2 (0.9)	2 (0.9)	
	2i-14	p31	108	0	0	
	2i-14	p54	80	0	0	
	Subtotal	р9-р54	404	2 (0.5)	2 (0.5)	
a2i/L	a2i-8	p9	36	1 (2.7)	4 (11.1)	
	a2i-8	p40	90	0	5 (5.5)	
	a2i-8	p54	120	0	6 (5)	
	Subtotal	р9-р54	246	1 (0.4)	15 (6.1)	
All pups were delivered by C-section at E19.5						

Table S1. Summary of <i>in vivo</i> development of ICAHCI embryos derived fron	1
haploid cells in different media.	

Genotype	Cell line	Medium	Passage number	No. of transferre d embryos	No. of growth-retarde d pups (% of transferred embryos) ^e	No. of normal pups (% of transferre d embryos) ^e
Wild-type	2i-7	2i/L	p37	117	$1(0.9)^{\rm e}$	$0^{\rm e}$
		SF/a2i/L	14-p ^d	126	$0^{\rm e}$	$0^{\rm e}$
	2i-14	2i/L	p47	80	0 ^e	$0^{\rm e}$
		SF/a2i/L	10-p ^d	200	$1(0.5)^{\rm e}$	$0^{\rm e}$
	Subtota	2i/L		197	1 (0.5) ^e	0 ^e
	1	SF/a2i/		326	1 (0.3) ^e	0 ^e
		L				
<i>H19</i> -DM	O48 ^a	2i/L	p51	140		19 (13.6)
R & <i>IG-</i> DMR		SF/a2i/L	14-15-p ^d	525		89 (17)
knockout	RHG23 ^c	2i/L	p28	105		16 (15.2)
		SF/a2i/L	9-p ^d	140		18 (12.9)
	RHG24 ^c	2i/L	p28	105		19 (18.1)
		SF/a2i/L	9-p ^d	105		15 (14.3)
$H19^{\Delta 13 \text{Kb}}$	O48	2i/L	p51-52	350		57 (16.3)
& IG	TKO ^b	S/Fa2i/L	9-10-p ^d	280		39 (13.9)
DMR	Subtota	2i/L		700		111
knockout	1					(15.9)
		SF/a2i/		1050		161
		L				(15.3)

Table S2. Summary of SC mice derived from 2i/L and 2i/L-SF/a2i/L-switched AG-haESCs.

a: Generated previously (Zhong et al., 2015).

b: Generated previously (Li et al., 2020).

c: Generated in this study.

d: 2i/L-cultured AG-haESCs switched to SF/a2i/L medium for different passages. e: Delivered by C-section at E18.5.

Primer Name	Sequence (5'-3')	Application
<i>H19</i> -BS-OF	GAGTATTTAGGAGGTATAAGAATT	Bisulfite
H19-BS-OR	ATCAAAAACTAACATAAACCCCT	sequencing
<i>H19</i> -BS-IF	GTAAGGAGATTATGTTTATTTTGG	
H19-BS-IR	CCTCATTAATCCCATAACTAT	
IG-BS-OF	TTAAGGTATTTTTTTTTTGATAAAATAA	
	TGTAGTTT	
IG-BS-OR	ССТАСТСТАТААТАСССТАТАТААТТА	
	TACCATAA	
IG-BS-IF	GATCTCGAGCTCAAGCTTCGCTATAAT	
	TTATCATAAACAAATCCCATAACTTAC	
	Т	
IG-BS-IR	CAGTTATCTAGATCCGGTGTTAGGAGT	
	TAAGGAAAAGAAAGAAATAGTATAGT	
Gtl2-BS-OF	AAAGGTTAGTGTTGGGGGATTT	
Gtl2-BS-OR	TCTAAATTCAAAATTACTAATCAACA	
Gtl2-BS-IF	TGTAAGGAAAAGAATTTTTAGGTA	
Gtl2-BS-IR	AAAAAACTTTCAACCACCAAAAC	
Igf2-BS-OF	GATTTTTGGAGGGTAGAAAGTAGAGA	
	Т	
<i>Igf2</i> -BS-OR	TATCCCATTCCAAAAACATCTAAC	
<i>Igf2-</i> BS-IF	TGAAATAGGTTATAGGTTGTGA	
<i>Igf2-</i> BS-IR	ATCCCTAACTTTTCTAACCTC	
Snrpn-BS-OF	TATGTAATATGATATAGTTTAGAAATT	
	AG	
Snrpn-BS-OR	AATAAACCCAAATCTAAAATATTTTAA	
	TC	
Snrpn-BS-IF	AATTTGTGTGATGTTTGTAATTATTTG	
	G	
Snrpn-BS-IR	ATAAAATACACTTTCACTACTAAAATC	
	С	_
Peg10-BS-OF	GTATTTAATTTGGAAAGTTGTAGGAGA	
	G	
Peg10-BS-OR	TACAACAAAAATAAATCCCCCACCTC	
Peg10-BS-IF	GGAAAGTTGTAGGAGAGTAATTAAA	
Peg10-BS-IR	ACAAACTATTACTAAACACCCATTC	_
Musd1-BS-OF	AAATTTGAGTTTTGATTAGTATGAAAT	
	TGT	4
Musd1-BS-OR	AATCTAATATTTCTTCTTCCTTAAACCA	
	ТА	4
Musd1-BS-IF	AAATTTGAGTTTTGATTAGTATGAAAT	
	TGT	

Table S3. List of primers and sgRNA sequences in this study.

Musd1-BS-IR	AACTTTAAACCCTTTCTTCTTCCACCTA	
	AA	
IAP-BS-OF	TTGATAGTTGTGTTTTAAGTGGTAAAT	
	AAA	
IAP-BS-OR	CAAAAAAAAACACCACAAAACCAAAAT	
IAP-BS-IF	TTGTGTTTTAAGTGGTAAATAAATAAT	
	TTG	
IAP-BS-IR	AAAACACCACAAAACCAAAATCTTCTA	
	С	
H19-qPCR-F	TGTAAACCTCTTTGGCAATGCTGCC	Realtime PCR
H19-qPCR-R	TATTGATGGACCCAGGACCTCTGGT	
<i>Igf2</i> -qPCR-F	CTAAGACTTGGATCCCAGAACC	
<i>Igf2</i> -qPCR-R	GTTCTTCTCCTTGGGTTCTTTC	
Gtl2-qPCR-F	TTGCACATTTCCTGTGGGAC	
Gtl2-qPCR-R	AAGCACCATGAGCCACTAGG	
Dlk1-qPCR-F	ACTTGCGTGGACCTGGAGAA	
Dlk1-qPCR-R	CTGTTGGTTGCGGCTACGAT	
Gapdh-qPCR-F	CACTCTTCCACCTTCGATGC	
Gapdh-qPCR-R	CTCTTGCTCAGTGTCCTTGC	
H19-DMR-CHIP-	GCACAGCGTGGAGAGTGAAC	
F		
H19-DMR-CHIP-	CATTTCTTGGGTAGCTCCTTCAG	
R		
IG-DMR-CHIP-F	TGGGTTTACCGTAAAGGATGATTT	
IG-DMR-CHIP-R	CTCTGGCACAAAGCAATGATACA	
Rasgrf1-CHIP-F	GCTGCTGCCGCTAAAGATAG	
Rasgrf1-CHIP-R	CAGCGCTGGCTTTATAAACTCTC	
Actb-CHIP-F	CGTATTAGGTCCATCTTGAGAGTAC	
Actb-CHIP-R	GCCATTGAGGCGTGATCGTAGC	
Olfr9-CHIP-F	CAACATCCCAGGGTCGTCA	
Olfr9-CHIP-F	CTGGTCTGTGTTCCCAAATGAATC	
<i>Tet1-</i> F	AGGTGCATAGTGGGAGCCTA	Sequencing of
<i>Tet1</i> -R	GAAGACTTGGCTGAACCGGA	<i>Tet1</i> mutation
<i>Tet2</i> -F	AGATCTCCTCTCCAAGCCGT	Sequencing of
Tet2-R	TGGATCCCAGACTCCAGCTT	<i>Tet2</i> mutation
<i>Tet3-</i> F	CAGGTGGAACAGGAGCAGAG	Sequencing of
<i>Tet3-</i> R	GGTCCCGTGATGGTGAATGT	<i>Tet3</i> mutation
Dusp9-F	TCAGGACAGGGGTTGACTTC	Sequencing of
Dusp9-R	CTGGTCGTACAGGAGCACAG	Dusp9 mutation
<i>Н19</i> -КО-F	GTGGTTAGTTCTATATGGGG	Genotyping of
<i>H19</i> -KO-R	TCTTACAGTCTGGTCTTGGT	<i>H19</i> -DMR
		knockout
IG-KO-F	TGTGCAGCAGCAAAGCTAAG	Genotyping of

IG-KO-R	ATACGATACGGCAACCAACG	IG-DMR
		knockout
Dnmt1-KO-F	AAGCATCAGGTGTCAGAGCC	
Dnmt1-KO-R	TGGTCCCAGCTACCCGATTA	Genotyping of
Dnmt1-WT-F	GCGATGTGGAGATGCTGTGT	Dnmt1 knockout
Dnmt1-WT-R	GAGGCCATTTCTGTCCCTCTG	
Dnmt3a-KO-F	TCCACTGGGCCTAATGCAAC	
Dnmt3a-KO-R	CTCCCGCTGAGAACTACAGG	Genotyping of
Dnmt3a-WT-F	ACACCCACTTTGGTAGGTCC	Dnmt3a
Dnmt3a-WT-R	TGTTCCCACACATGAGCACT	кпоскош
Dnmt3b-F	AAGTGCAAACAGGGCAGTT	Sequencing of
Dnmt3b-R	TGTTGTGTCTGGGAAGGACC	Dnmt3b mutation
H19-gene-KO-F	GCCTCGGGAGTTGGGATTAG	
H19-gene-KO-R	GAGCAAAGGCATCGCAAAGG	Genotyping of
H19-gene-WT-F	GCTCACCAAGAAGGCTGGAT	H19 gene
H19-gene-WT-R	ACACTGTATGCCCTAACCGC	- knockout
Igf2-KO-F	GGGGTGTCAATTGGGTTGTTT	
Igf2-KO-R	GGGATTAGGGGTGTGGCTTG	Genotyping of
Igf2-WT-F	GGTGCCTCCTGTCTGGTAAC	Igf2 knockout
Igf2-WT-R	GCCACTCTATCTTCCTCGCC	
Zfp57-KO-F	CCTCAGGAAAGCTCTTGGCA	
Zfp57-KO-R	GGTGGTCTACCAGACACAAACA	Genotyping of
<i>Zfp57-</i> WT-F	GAGTCACAAAGTTCCGGGGT	Zfp57 knockout
Zfp57-WT-R	GGCCTCCATGTGAACACCTA	
Tet1-sg	ATGATCACACTCCCCCGGAGG	sgRNA
Tet2-sg	AAAGTGCCAACAGATATCCAGG	sequence
Tet3-sg	AAGGAGGGGAAGAGTTCTCGAGG	
Dusp9-sg	GTCTGAGTCGGTCATGCCTGTGG	
H19-DMR-sg1	CATGAACTCAGAAGAGACTGAGG	
H19-DMR-sg2	AGGTGAGAACCACTGCTGAGTGG	
IG-DMR-sg1	CGTACAGAGCTCCATGGCACAGG	
IG-DMR-sg2	CTGCTTAGAGGTACTACGCTAGG	
<i>Zfp57-sg1</i>	ACCAGTCAGTTATGAGGACGTGG	
<i>Zfp57-sg2</i>	AAGTCCTGAATGCGTTGCCAAGG	
<i>Zfp57-</i> sg3	GATAGCCGAGCAAATGACCCAGG	
<i>Zfp57-</i> sg4	TAAGGGACTCCTCGGGAAAGAGG	
Dnmt1-sg1	TCGGAAGGATTCCACCAAGCAGG	
Dnmt1-sg2	ACAGCCGGAAAACACATCCAGGG	
Dnmt1-sg3	CGTGTCCTACAGACGCTCCATGG	
Dnmt1-sg4	ACTGTGACTACTACCGGCCTCGG	
Dnmt3a-sg1	ACATGCCTCCAATGAAGAGTGGG	
Dnmt3a-sg2	AATGAAGAGTGGGTGCTCCAGGG	

Dnmt3a-sg3	GCGGGCATAAGGGCACCTATGGG	
Dnmt3a-sg4	CGCACATGTAGCAGTTCCAGGGG	
Dnmt3b-sg	AGAGTGGGGGCCCGTTCGACTTGG	
H19-gene-sg1	TGTCGTCCATCTCCGTCTGAGGG	
H19-gene-sg2	CAATATAATGCGACTCATGGGGG	
H19-gene-sg3	TGGCGGCTGGTCGGATAAAGGGG	
H19-gene-sg4	TTACTTTTGGTTACAGGACGTGG	
Igf2-sg1	CAGTTTGTCTGTTCGGACCGCGG	
Igf2-sg2	CCAACATCGACTTCCCCACTGGG	
Igf2-sg3	GATCAGGGGACGATGACGTTTGG	
Igf2-sg4	TCTCCGAAGAGGCTCCCCGTGG	l

Table S4. List of all maternal and paternal DMRs used in this study.

Name	Genome	MethAllel	Chromosom	Start	End
		е	e		
ZAC1	mm9	m	chr10	12810276	12810604
ZAC1	mm9	m	chr10	12810950	12811333
GRB10	mm9	m	chr11	11925485	11926335
U2AF1-RS1	mm9	m	chr11	22871842	22872319
PEG13	mm9	m	chr15	72636765	72642079
IGF2R/AIR	mm9	m	chr17	12934163	12935573
IMPACT	mm9	m	chr18	13130706	13132250
MCTS2	mm9	m	chr2	15251249	15251301
				1	1
NNAT	mm9	m	chr2	15738578	15738739
				6	8
NESPAS	mm9	m	chr2	17412120	17412648
				8	2
GNAS-EXON1	mm9	m	chr2	17415243	17415450
А				1	8
PEG10	mm9	m	chr6	4697209	4697507
MEST	mm9	m	chr6	30686488	30689335
NAP1L5	mm9	m	chr6	58856690	58857056
ZIM2	mm9	m	chr7	6680287	6684827
SNURF/SNRP	mm9	m	chr7	67149878	67150301
Ν					
NDN	mm9	m	chr7	69493100	69493581
INPP5F_V2	mm9	m	chr7	13583178	13583215

				8	6
KCNQ10T1	mm9	m	chr7	15048106	15048139
				0	7
KCNQ10T1	mm9	m	chr7	15048150	15048152
				4	7
GTL2/DLK1	mm9	р	chr12	11076156	11076898
				3	9
H19/IGF2	mm9	р	chr7	14976616	14976842
				8	4
RASGRF1	mm9	р	chr9	89774406	89774691

Supplementary Figures

Fig. S1. Derivation of AG-haESCs by different culture media.

- A. Diagram for the generation of AG-haESCs from sperm-cloned blastocysts in serum/LIF (S/L), S/L supplemented with 2i (2i/L), or S/L with a2i (a2i/L) media. Haploid and diploid cells were labeled in blue and yellow, respectively. Haploid cells were enriched by FACS. 2i-7, 2i-12, 2i-14, and 2i-R9 are haploid cell lines derived in 2i/L medium. a2i-6 and a2i-8 are haploid cell lines derived in a2i/L medium. No AG-haESCs were successfully derived in S/L medium. FCS, fetal calf serum; FCAS, fluorescence-activated cell sorting.
- B. Summary of diploid and haploid ESCs derived from androgenetic blastocysts in S/L, 2i/L, and a2i/L media.
- C. Colony morphology of AG-haESCs cultured in 2i/L and a2i/L media.
- D. Immunofluorescent staining of OCT4 and SOX2 in AG-haESCs cultured in 2i/L and a2i/L media.
- E. SC pups from ICAHCI using the 2i/L-cultured AG-haESCs. Cell line 2i-12 was used in the experiment. Pups obtained by C-section from a pseudopregnant mouse at E19.5 are shown. Asterisks label growth-retarded SC pups.
- F. DNA methylations of *H19*-DMR and *IG*-DMR in 2i/L-cultured AG-haESCs (2i-12) with different passages were analyzed by bisulfite PCR. Cultured spermatogonial stem cells (SSCs) (Wang et al., 2021) with hypermethylated *H19* and *IG* DMRs are a positive control. Open and filled circles represent unmethylated and methylated CpG sites, respectively.
- G. SC pups from ICAHCI using the AG-haESCs cultured in a2i/L medium. The cell line a2i-8 was used in the experiment. Pups obtained by C-section from a pseudopregnant mouse at E19.5 are shown. The asterisk labels a growth-retarded SC pup.
- H. DNA methylations of *H19*-DMR and *IG*-DMR in a2i/L-cultured AG-haESCs (a2i-8) with different passages were analyzed by bisulfite PCR.

Fig. S2. Characterization of TSa2i/L-derived AG-haESCs and SC mice obtained by ICAHCI.

- A. Immunofluorescent staining of OCT4 and SOX2 in TSa2i/L-derived AG-haESCs (TSa2i-14).
- B. Histological images of teratoma sections from TSa2i/L AG-haESCs showing the formation of three germ layers.
- C. DNA methylations of *Rasgrf1* DMRs in TSa2i/L AG-haESCs (TSa2i-14, TSa2i-C57, and TSa2i-F1) with different passages determined by bisulfite PCR analysis.
- D. SC pups generated by ICAHCI of haploid cells from the TSa2i-14. Note that the recipient female delivered by itself.
- E. The sequences of *Tet1*, *2*, and *3* in *Tet*-triple-knockout (TKO) AG-haESCs.
- F. Immunoblot analysis of DUSP9 and HA in HA-tagged *Dusp9* haESCs (5' HA-120, 125, and 138). The asterisk labels a non-specific band of DUSP9 antibody. GAPDH is a loading control.
- G. Growth curve of SC mice generated from TSa2i/L-derived AG-haESCs (TSa2i-14 and TSa2i-C57), 2i/L-derived AG-haESCs with *H19* and *IG* DMR deletions (2i-O48) (Zhong et al., 2015), and sperm.
- H-K. Transcriptional analysis of imprinted genes (*H19*, *Igf2*, *Gtl2*, and *Dio3*) in different tissues of E18.5 fetuses (generated from TSa2i-14, 2i-O48, and sperm), including placenta, lung, liver, kidney, heart, and brain (n=3 samples for each group). The expression values were normalized to that of *Gapdh*. All error bars indicate the average mean ±SEM. *, *P*<0.05; **, *P*<0.01; ****, *P*<0.0001.

Fig. S3. DNA methylation profiling of TSa2i/L-derived AG-haESCs with early and late passages.

- A. Boxplot showing the DNA methylation levels of different gene elements in 2i/L, a2i/L, and TSa2i/L-derived AG-haESCs.
- B. Heatmap showing the DNA methylation levels of maternal DMRs in TSa2i/L AG-haESCs. Majority of maternal DMRs except *Peg13*-DMR were hypomethylated in TSa2i/L-treated AG-haESCs.
- C. The average DNA methylation levels of two somatic DMRs (*Igf2* and *Gtl2*) in 2i/L (2i-R9, 2i-7, and 2i-14) and TSa2i/L (TSa2i-14 and TSa2i-C57) AG-haESCs detected by bisulfite PCR combined with high-throughput sequencing. *Gtl2* DMR is located at the promoter of *Gtl2* and *Igf2* DMR is located at the gene body of *Igf2*.

Fig. S4. H3K9me3 distributions on the genome of 2i/L and TSa2i/L AG-haESCs.

- A. Bar plot showing H3K9me3 levels at maternal and paternal DMRs for two alleles during early embryonic development. RPKM, reads per kilobase of bin per million reads sequenced. The original H3K9me3 ChIP-seq is from the published data (Wang et al., 2018).
- B. Snapshot of H3K9me3 signals at *IG*-DMR for two alleles at early embryonic stages (Wang et al., 2018).
- C. The H3K9me3 peak distribution in different genomic regions for 2i/L and TSa2i/L-derived AG-haESCs.
- D. The H3K9me3 peak distribution in different repeat elements for 2i/L andTSa2i/L-derived cells.
- E. Heatmap of the H3K9me3 levels around paternal DMRs, maternal DMRs, and non-DMRs in different cell lines. The total H3K9me3 peaks were called using the H3K9me3 ChIP-seq data from all TSa2i/L and 2i/L cells. The peaks which are not overlapped with gamete DMRs were named non-DMRs.
- F. Snapshot of H3K9me3 at *Rasgrf1*-DMR for TSa2i/L AG-haESCs (TSa2i-14 and TSa2i-C57) with different passages.
- G. The average distribution of ZFP57 around DMRs and non-DMRs for 2i/L and TSa2i/L-derived AG-haESCs. The ZFP57 peaks were called using TSa2i-C57 ChIP-seq data. The peaks overlapped with gamete DMRs were named DMRs. Otherwise, the peaks were called non-DMRs.
- H. Immunoblot analysis of ZFP57 in WT (TSa2i-C57) and *Zfp57* KO cells.
- I. Boxplot showing the DNA methylation levels of the ZFP57 peaks overlapped with DMRs or non-DMRs in TSa2i/L AG-haESCs and the same cells with *Zfp57* KO (growing for 20 passages).

Fig. S5. Epigenetic changes in AG-haESCs transferred from 2i/L to SF/a2i/L.

- A. Dot blot analysis of 5mC in 2i/L-cultured cells (2i-14 and 2i-7) and the same cells transferred to SF/a2i/L medium for 5 passages (5-p) or 10 passages (10-p).
- B. Immunoblot analysis of DNMT1, DNMT3A, DNMT3B, DNMT3L, UHRF1, and ZFP57 in AG-haESCs cultured in 2i/L (2i-14, p48 and 2i-7, p40) or switched to SF/a2i/L for 10 passages (2i-14-2i/L-SF/a2i-10-p and 2i-7-2i/L-SF/a2i-10-p). ACTB is a loading control.
- C. Heatmap showing the increased H3K9me3 signals and DNA methylation levels in cells transferred from 2i/L to SF/a2i/L.

Fig. S6. Methylation heterogeneity of paternal DMRs in TSa2i/L-derived AG-haESCs.

- A. SC pups from ICAHCI using TS/a2i-C57 AG-haESCs. Pups obtained by C-section from a pseudopregnant mouse at E18.5 are shown. The asterisk labels a growth-retarded SC pup.
- B. Methylation state of the *H19*-DMR and *IG*-DMR in a normal SC pup and a retarded pup derived from TSa2i-C57 AG-haESCs.
- C. Strategy of single-cell expansions of TSa2i-C57 AG-haESCs. The subclones (sc1 to sc21, see also Fig. 6C) obtained through the first round of single-cell expansion were divided into three groups according to DNA methylation levels of *H19*-DMR, i.e., highly, moderately, and lowly methylated cells. In the second round of single-cell expansion, subclones with high (sc6), medium (sc13), and low (sc16) levels of *H19*-DMR methylation were used. The DNA methylation levels of *H19* and *IG* DMRs for all subclones were analyzed.
- D. The DNA methylation levels of *H19*-DMR and *IG*-DMR in TSa2i-14 AG-haESCs and the same cells with *Dnmt3a/3b* double knockout cultured for 10 passages or *Dnmt1* knockout cultured for 7 passages.
- E. DNA methylation levels of *H19* and *IG* DMRs in subclones with different *H19*-DMR methylations (sc6, sc8, sc13, and sc16) before and after proliferation for 10 passages.
- F. ChIP-qPCR analysis of H3K9me3 and H3K4me3 enrichment in different regions of subclones (sc6, sc13, and sc16). qPCR was performed with primers for paternal DMRs (*H19, IG,* and *Rasgrf1*-DMRs); the *Olfr9* gene was used as a negative control for H3K9me3 and H3K4me3 and promoter of *Actb* was used as a positive control for H3K4me3. All error bars indicate the average mean ±SEM. n=3 samples in each group. *, *P*<0.05; **, *P*<0.01; ****, *P*<0.0001.</p>
- G. Growth curve of selected subclones (sc6, sc8, sc13, and sc16) after growing for 9 or 14 passages (9-p or 14-p). All error bars indicate the average mean ±SEM. n=3 samples in each group.
- H. Genotyping analysis of *lgf2* deletion in sc6 cells with *lgf2* knockout.
- Growth curve of sc6-originated cells with hypermethylated *H19*-DMR and the same cells with *Igf2* knockout (*Igf2* KO-17, 63, 80, and 88 representing 4 different KO lines) in 120 hours. All error bars indicate the average mean ±SEM. n=3 samples in each group.
- J. Genotyping analysis of *H19* gene deletion in sc16 cells with *H19*-gene knockout.
- K. The ratio of cells with one set of chromosomes (1c) in the AG-haESCs with hypomethylated (2i-14-SF/a2i, 2i-7-SF/a2i representing 2i/L-SF/a2i/L-switched cells which sustain globally hypermethylated DNA but were free DNA methylation at paternal DMRs) and with hypermethylated *H19* and *IG* DMRs (TS/a2i-F1 and TSa2i-14) during cell passaging. All error bars indicate the average mean ±SEM. n=3 samples in each group.

- L. Genotyping analysis of *H19*-DMR deletion in TSa2i-C57 cells with *H19*-DMR deletion.
- M. Genotyping analysis of *IG*-DMR deletion in TSa2i-C57 cells with *IG*-DMR deletion.

Fig. S7. TSa2i/L-derived AG-haESCs sustain paternal DMR methylation state in culture without feeder cells.

DNA methylation levels of paternal DMRs in TSa2i/L-derived AG-haESCs cultured on feeders (mouse embryonic fibroblasts, MEF) for 10 passages or transferred from MEFs to Poly-Laminin, Matrigel, or Fibronectin and cultured for 10 passages. Imprints can be maintained without feeders at least in short-term culturing.

2i-12 p35 0% p35 1.2% p35 65.4% p35 1.2% p35 65.4% p36 65.4% p37 65.4% p36 65.4% p36 65.4% p36 65.4% p36 65.4% p60 39.1% p60 39.1%

5.4% p35 66.7%

Figure S6

