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S1 Materials and Methods

S1.1 Materials

SnSe ingots (20 g) were synthesized by mixing appropriate ratios of high purity starting materials

(Sn chunk, 99.999%, American Elements, USA and Se shot, 99.999%, 5N Plus, Canada) in 13 mm

diameter quartz tubes. The tubes were flame-sealed at a residual pressure of 1× 10−4 mmHg, then

slowly heated to 1223 K over 10 h, soaked at this temperature for 6h and subsequently furnace cooled

to room temperature. The obtained ingots were crushed into powder and flame-sealed in quartz tubes,

which were placed into other, bigger, flame-sealed quartz tubes. Crystals with dimensions of ∼13 mm

(diameter) × 20 mm (length) were obtained.

Seven samples were used for the ultrafast electron scattering measurements, to ensure reproducibil-

ity. Six samples were ultramicrotomed with a diamond blade, while one sample was mechanically

exfoliated. Three of the ultramicrotomed samples were cut from a first SnSe mother flake at a thick-

ness of 90 nm. The remaining three ultramicrotomed samples were cut to a thickness of 70 nm from a

different mother flake, synthetized separately from the first. The exfoliated sample was prepared from

the second mother crystal, with a final thickness of 45 nm. The thickness of the exfoliated samples

were estimated based on the ratio of diffracted intensity compared to the ultramicrotomed samples

with known thicknesses.

S1.2 Methods

Ultrafast electron scattering measurements were carried out in a homemade, radio-frequency com-

pressed instrument [2, 5]. A diagram is shown in Figure S1.

Pulses of roughly 1×106 electrons were emitted at 1 kHz. 35 fs pulses of 800 nm light were upconverted

to 266 nm and focused in vacuum on a bulk photocathode. Electrons were accelerated in a DC field

to a total energy of 90 keV. Electron bunches were compressed with a 3 GHz compression cavity to a

time-resolution between 130 fs and 300 fs, depending on the number of electrons per bunch. Electron

pulses were focused on a Gatan Ultrascan 895 electron camera. Pump pulses of 800 nm light were
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Figure S1: Diagram of the instrument used for ultrafast electron scattering experiments. BS1/2:
Beam splitter. HPD: high-bandwidth (>12 GHz) photodiode. BBO: β-Barium borate crystal. DM:
Dichroic mirror. BS1/2: Beamsplitter. L1/2/3: Focusing lens. EL1/2: Electron lens. APD: alignment
photodiode. HPD: High-bandwidth photodiode. DL: Driving loop. PL: Pickup loop.

shone on the samples, with a spatial full-width at half-maximum (FWHM) at least thrice as wide as

the sample area to ensure uniform photoexcitation.

To minimize the effect of long-term laser power fluctuations on the electron number, data points

were acquired at random, until averaging was sufficient. Data acquisition time ranged from 4 h to 72 h,

depending on the sample area and the amount of time-points required.

The experimental repetition rate was varied from 25 Hz to 1000 Hz to try and detect any heat

accumulation in the sample. However, the dynamics were found to be identical – except for significantly

increased noise at lower repetition rates.
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Figure S2: Photocarrier density generated in SnSe for800 nm pump fluences on a
50 µm× 50 µm× 0.045 µm sample.

S2 Details on ultrafast electron diffuse scattering experiments and
data analysis

S2.1 Ultrafast laser pumping

In this section, we determine the amount of energy that ultrafast laser pumping deposits in the samples

used for ultrafast electron diffuse scattering experiments. The total energy deposited for a particular

fluence f , E(f), is given by

E(f) = (1−R)ηf
(

1− e−
t
δ

)
(1)

where R = 0.54 is the reflectivity at 1.55 eV[4], η = 0.27 is the internal quantum efficiency determined

via time-resolved Terahertz spectroscopy, t is the sample thickness, and δ = 100 nm is the penetration

depth at 800 nm[4, 1]. For reference, roughly 17% of the light is absorbed by a sample with thickness of

45 nm. The photocarrier density Nγ is given by E(f)/V/1.55 eV, where V is the sample volume. The

relationship between fluence and Nγ is shown in Figure S2 for a 50 µm× 50 µm× 0.045 µm sample.

S2.2 Absence of dynamics of the Bragg peak profiles

A natural question that arises from Fig. 2 is whether or not the diffuse dynamics close to Γ can be

explained in terms of Bragg peak profile changes. To confirm that this was not the case, Bragg peaks
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were fit with a Gaussian profile as shown in Fig. 2c. The full-width at half-maximum was tracked over

time-delay. The results are shown in Fig. S3. This figure shows that the dynamics close to the Bragg

peaks are distinct from peak broadening.

S2.3 Diffuse dynamics at high-symmetry points

In this section, we investigate the diffuse intensity dynamics at the in-plane high-symmetry points of

the orthorhombic Brillouin zone: Y , Z, and T [6]. The result is shown on Fig. S4, compared to the

average diffuse increase across the Brillouin zone shown in Fig. 2d. While the rise amplitude is slightly

different for every point, the rise time is identical (3.5± 0.5 ps).

S2.4 Comparison of Debye-Waller dynamics along b? and c?

In-plane reflections can be separated into two categories: the reflections which are nearly parallel to

the c? axis, and the reflections which are not. For the reflections which are within ∼ 45◦ degrees of the

c? axis, the amplitude of the Bragg peak follows a Debye-Waller suppression with two time-constants

400± 100 fs and 4± 1 ps. The amplitude of the fast exponential component is maximal for reflections

which are exactly parallel to c? (i.e. (00l)). For reflections which are not nearly parallel to c? (i.e.

(0k0)), only the slower time-constant is present. Fig. S5 shows the comparison between the amplitude

suppression for reflections which are exactly parallel to b? ({(0k0) | k ∈ 2Z}) and reflections which are

exactly parallel to c? ({(00l) | l ∈ 2Z}).

S2.5 Comparison of diffuse increase along b? and c?

Analogously to the previous section, we can compare the scattering intensity change near zone-center

(region (2), Fig. 2b) for reflections which are either parallel to b? or c?. The result are shown in

Fig. S6. Note that the data presented in Fig. S6 is raw ; nearby Bragg peak contribution was not

subtracted.

6



S2.6 Ultrafast phonon amplitude changes from Bragg intensity

The calculation of vibrational amplitude increase with respect to fluence from Fig. 5 is presented in

this section. The time-resolved suppression of Bragg intensity due to atomic vibrations is given by the

following expression:

I0(q, t)− I0(q, 0)

I0(q, 0)
≡ ∆I0(q, t)

=
NcIe|F |2

NcIe|F |2

[
e−2M(q,t) − e−2M(q,0)

]
e−2M(q,0)

= e−2[M(q,t)−M(q,0)] − 1 (2)

For small displacements, we can use the harmonic potential approximation[8]:

−1

2
ln [1 + ∆I0(q, t)] =

1

2
|q|2∆〈u2〉 (3)

Therefore, the expression for the change in mean-square-displacement is:

∆〈u2〉 = − ln [1 + ∆I0(q, t)]

|q|2
(4)

and the associated error σu is given by:

σu =
∂∆〈u2〉
∂I

σI =
−σI

|q|2 [1 + ∆I0(q, t)]
(5)

where σI is the uncertainty in the pre-time-zero intensity I.

S2.7 Energy flow between electrons and zone-center optical modes

In this section, we explain how we determine that by 1 ps, most (> 85%) of the energy deposited by

the laser pump shots have been converted to atomic displacement associated with c-polarized strongly-

coupled phonons.

The equilibrium mean-square displacement (MSD) of atoms 〈u2〉therm is given by:

〈u2〉therm(T ) =
6~2

µkBθD

[
1

4
+

T

θD

∫ θD/T

s=0
ds

s

es − 1

]
(6)
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where µ is the average atomic mass, and θD = 220 K[9] is the Debye temperature. Since experiments

were carried out at 300 K, the total MSD after photoexcitation, 〈u2〉(τ), is given by:

〈u2〉(τ) = 〈u2〉therm(T = 300 K) + ∆〈u2c〉(τ) (7)

where ∆〈u2c〉(τ) is shown in Fig. 5 of the main text. A temperature-equivalent can be assigned to the

measurements. A temperature equivalent can be assigned to the measurements 〈u2〉(τ) via Eq. 6. For

example, for a photoexcitation of 13.2 mJ cm−2, 〈u2〉(τ = 1 ps) = 〈u2〉therm(T = 375 K).

Finally, the excess energy in the carriers was calculated in Sec. S2.1. The excess energy above the

band gap (1.55 eV - 0.9 eV) can be converted to a temperature via the heat capacity which is given by

[9]. For example, at a fluence of 13.2 mJ cm−2, the electrons have enough energy above the conduction

band minimum to heat up the sample to 380 K. The ratio between the temperature-equivalent of

the MSD and energy deposited by photopumping gives the proportion of energy transferred between

photogenerated carriers and strongly-coupled c-polarized zone-center phonon modes by 1 ps.

S2.8 Possibility of intervalley scattering

The isotropic slow rise of diffuse intensity for large wavevectors is incompatible with intervalley scat-

tering, whereby electrons and holes relax from the local band edge to the global band edge by emitting

large wavevector phonons[7]. To understand why, the allowed intervalley relaxation pathways were sim-

ulated for electrons and holes; the following explanation focuses on electrons for simplicity. Consider

E(k) to be the in-plane electronic dispersion in reciprocal space. An initial electron density-of-states

gie−(ε) around local band minima is assumed. Electrons with energy ε can only relax to locations in

reciprocal space where the dispersion is lower in energy. This constraint can be expressed using the

Heaviside step function Θ, where Θ
{
−gie−(ε)

}
is unity for ε < gie−(ε) and zero otherwise. The number

of allowed relaxation pathways Pe−(k) in reciprocal space are therefore given by the cross-correlation

between the initial electron density gie−(ε)E(k) and the allowed relaxation pathways Θ
{
−gie−(ε)

}
E(k):

Pe−(k) ∝
∫ ∞
0

dε
[
gie−(ε)E(k)

]
?
[
Θ
{
−gie−(ε)

}
E(k)

]
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where ? is the normalized cross-correlation operation with symmetric boundary conditions, which

accounts for Umklapp scattering processes. The proportionality constant is chosen so that Pe−(k) ≤ 1.

Similarly, holes scatter up in energy so that:

Ph+(k) ∝
∫ ∞
0

dε
[
gih+(ε)E(k)

]
?
[
Θ
{
gih+(ε)

}
E(k)

]
where gih+(ε) is the initial holes density-of-states. The results of these calculations are shown in Figure

S8. While these calculations are sensitive to the initial density-of-states, note that there are still many

regions in reciprocal space where relaxation is forbidden regardless of the initial conditions (i.e. Pe−(k)

and Ph+(k) are zero). It follows that intervalley scattering of charge-carriers does not explain the

isotropic rise in diffuse intensity on a 3.5 ps time-scale.

S2.9 Polaronic contribution to scattering intensity

The following derivation is based on the work by Guzelturk et al. [3] Consider the classical result of

electron scattering at zero-temperature:

f0(q) =
∑
j

fe,j(q)e−iq·rj (8)

where q is the scattering vector, f(q) is the scattering amplitude (i.e. the diffracted intensity is

I0 = |f |2), {fe,j} are the atomic form factor for electron scattering, and {rj} are the equilibrium

atomic positions. We model a polaron as a small atomic displacement field u(r) centered at r = 0.

The scattering amplitude becomes:

f(q) =
∑
j

fe,j(q)e−iq·[rj+u(rj)]

=
∑
j

fe,j(q)e−iq·rje−iq·u(rj)

≈
∑
j

fe,j(q)e−iq·rj (1− iq · u(rj)) (9)

9



where the last transformation follows from a first order Taylor expansion, since the displacement |u| is

small. We can separate the contribution of a polaron into:

f(q) ≈ f0(q) + fp(q)

≈ f0(q)− i
∑
j

fe,j(q)e−iq·rj [q · u(rj)] (10)

Now consider that q = G + k, where G is the nearest Bragg peak and k is restricted to the first

Brillouin zone. With these definitions, G · u(rj) is the dominant contribution to the term q · u(rj) for

the reflections considered in the main text, so we may further simplify:

f(q) ≈ f0(q)− i
∑
j

fe,j(q)e−iq·rj G · u(r) (11)

which is the result presented in the main text. As a simple model for polaronic lattice distortions in

SnSe, we consider a Gaussian vector displacement field of the form u(r) ∝ e|r|
2/r2pû, where 2

√
2 ln 2rp

is the full-width at half-maximum of the displacement amplitude. Within this model, the scattering

intensity I(q) = |f(q)|2 is given by:

I(q) = |4πfe(q)|2
∣∣∣∣S(k)− iG · r̂A

√
πrpe

−
|k|2r2p

4

∣∣∣∣2
= |4πfe(q)|2

[
S(k)− iG · r̂A

√
πrpe

−
|k|2r2p

4

] [
S(k) + iG · r̂A

√
πrpe

−
|k|2r2p

4

]
= |4πfe(q)|2

[
S(k)2 +A2π(G · r̂)2r2pe

−
|k|2r2p

2

]
= I0(q) + |4πfe(q)|2 πr2pe−

|k|2r2p
2 (G · r̂)2 (12)

where S(k) is the crystal shape function (which tends towards δ(k) for an infinite crystal) and I0 is the

scattering intensity at zero temperature. It follows that the fractional change in scattering intensity is

given by:

I(q)− I0(q)

I0(q)
≡ ∆I(q)

I0(q)

∝
r2pe
−
|k|2r2p

2

I0(q)
(Ĝ · r̂)2 (13)
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where Ĝ is used to denote the unit vector along the G reflection. Assuming that the scattering intensity

without polaronic lattice distortion near reflection G, I0(q = G + k), falls off like 1
k :

∆I(q)

I0(q)
∝ |k|r2pe−

|k|2r2p
2 (Ĝ · r̂)2 (14)

For a uniaxial displacement field, where û ≡ ĉ (i.e. along the crystal c-axis), the term G · ĉ only

contributes for reflections which have a projection along the vector c?. In both cases, to a first approx-

imation, the fractional change in scattering intensity is spherically-symmetric across the Brillouin zone

(see main text, Fig. 3c and d)
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Figure S3: Dynamics of the width and position of various Bragg peaks following photoexcitation. For
every time-delay, Bragg peaks were fit with a Gaussian function. In the right column, the change in
full-width at half-maximum ∆σ is shown over time. In the left column, the absolute shift in the center
position of the peak ∆xc is shown, as a percentage of the average full-width at half-maximum σ̄. For
all plots, the error bars represent the covariance of fit parameter.

12



1.00

1.01

I/I
0 [

a.
u.

]

bg Y Z T

1.00

1.01

I/I
0 [

a.
u.

]

1.00

1.01

I/I
0 [

a.
u.

]

0 5 10 15
Time-delay [ps]

1.00

1.01

I/I
0 [

a.
u.

]

Figure S4: Comparison of diffuse intensity dynamics at the in-plane high-symmetry points of the
Brillouin zone Y , Z, and T , compared to the background increase shown in the main text.
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Figure S7: Ratio between the energy deposited by laser pump shots and the energy associated with
atomic vibrations due to strongle-coupled, c-polarized, zone-center modes at 1 ps for experimental
fluences.
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distribution of hot charge carriers. a Relative number of relaxation pathways for electrons. b Relative
number of relaxation pathways for holes.
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