**Cell Reports Medicine, Volume 3** 

## **Supplemental information**

## Pegylated arginine deiminase

## drives arginine turnover and systemic

## autophagy to dictate energy metabolism

Yiming Zhang, Cassandra B. Higgins, Brian A. Van Tine, John S. Bomalaski, and Brian J. DeBosch

## **Cell Reports Medicine**

# **Supplemental Information**

# Pegylated arginine deiminase (ADI-PEG 20), drives arginine turnover and systemic autophagy to dictate energy metabolism

Yiming Zhang<sup>1</sup>, Cassandra B. Higgins<sup>1</sup>, Brian Van Tine<sup>2,3,4</sup>, John S. Bomalaski<sup>5</sup>, and Brian J. DeBosch<sup>1,6\*</sup>

<sup>1</sup>Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
<sup>2</sup>Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO 63108
<sup>3</sup>Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, St. Louis, MO 63108
<sup>4</sup>Siteman Cancer Center, St. Louis, MO 63108
<sup>5</sup>Polaris Pharmaceuticals, Inc, San Diego, CA 63110
<sup>6</sup>Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110

\*To whom correspondence should be addressed. Brian DeBosch, Departments of Pediatrics and Cell Biology and Physiology, Washington University School of Medicine, 5107 McDonnell Pediatrics Research Building, 660 S. Euclid Ave, Box 8208, St. Louis, MO 63110. Telephone: 314-454-6173; FAX: 314-454-2412; E-mail: <u>deboschb@wustl.edu</u>

## Figure S1.



#### Figure S1. The effect of hepatocyte-specific arcA expression in db/db mice. Related to Figures 1 and 2.

(A) mRNA expression of *arcA* in the livers of AAV8-eGFP or AAV8-arcA injected *db/db* mice by qPCR. Gene expression was normalized to  $\beta$ -actin mRNA levels. Liver weights.

(B and C) Respiration exchange ratio (RER, B) and locomotion (C) during light and dark cycle (shaded area) in AAV8-eGFP or AAV8-arcA injected *db/db* mice.

(D) Food consumption measured in AAV8-eGFP or AAV8-arcA injected *db/db* mice.

- (E and F) Liver weights (E) and liver weight/body weight ratio (F) of AAV8-eGFP or AAV8-arcA injected *db/db* mice.
- (G) Hepatic mRNA expression of fatty acid transports by qPCR.
- (H) Gene ontology terms for significant pathways related to DNL and fatty acid oxidation.
- (I) Hepatic mRNA expression of cytokines and chemokines by qPCR.
- (J) Hepatic mRNA expression of macrophage infiltration by qPCR.
- (K) Hepatic mRNA expression of fibrosis development by qPCR.
- (L) Hepatic mRNA expression of urea cycle enzymes by qPCR.
- (M) Hepatic mRNA expression of glutamine synthetase (Glul) by qPCR.

Data represented in mean  $\pm$  s.e.m. Each data point represents an individual animal. Exact *P*-value are shown. Statistical significance was determined using unpaired two-tailed Student's *t*-test. Gene expression was normalized to  $\beta$ -actin mRNA levels.



#### Figure S2. The effect of ADI-PEG 20 treatment in *db/db* mice. Related to Figure 3.

(A) Hepatic mRNA expression of Ghrelin (Ghrl) and Leptin (Lep) by qPCR.

(B) Western blot analysis of GHRL protein abundance in ADI-PEG 20-treated *db/db* mice.

(C) Food consumption measured in vehicle and ADI-PEG 20 treated *db/db* mice.

(D) Body weight changes superimposed with daily food consumption in vehicle and ADI-PEG 20 treated *db/db* mice.

(E and F) Respiration exchange ratio (RER, C) and locomotion (D) during light and dark cycle (shaded area) in vehicle and ADI-PEG 20 treated db/db mice.

(G and H) Liver, white adipose tissue , and brown adipose tissue (iBAT) weights (E). Liver, white, and brown adipose tissue weight/body weight ratio (F) of vehicle and ADI-PEG 20 treated db/db mice.

(I) Hepatic mRNA expression of cytokines and chemokines by qPCR.

(J) Hepatic mRNA expression of macrophage infiltration related genes by qPCR.

(K) Hepatic mRNA expression of fibrosis development related genes by qPCR.

(L) Hepatic mRNA expression of urea cycle enzymes by qPCR.

(M) Hepatic mRNA expression of glutamine synthetase (Glul) by qPCR.

(N) Hepatic mRNA expression of thermogenic genes, Pgc-1a, Fgf21, and Ucp1 by qPCR.

(O) Hepatic mRNA expression of *p62/Sqstm1* expression by qPCR.

(P) Western blot analysis of mTORC1 signaling substrates in liver samples from vehicle and ADI-PEG20 treated db/db mice.  $\beta$ -Actin was used as a loading control.

(Q) Western blot quantifications of (P).

(R) Hepatic mRNA expression of genes related to fatty acid  $\beta$ -oxidation by qPCR.

(S) Hepatic mRNA expression of gluconeogenic genes by qPCR.

(T) Hepatic mRNA expression of genes related in fatty acid intake and export qPCR.

(U) mRNA expression of *Grp78* and *Atf4* in the livers of *db/db* mice treated with or without ADI-PEG 20 by qPCR. Gene expression was normalized to  $\beta$ -actin mRNA levels.

Data represented in mean  $\pm$  s.e.m. Each data point represents an individual animal. Exact *P*-value are shown. Statistical significance was determined using unpaired two-tailed Student's *t*-test. Gene expression was normalized to  $\beta$ -actin mRNA levels.

## Figure S3.



#### Figure S3. Supplemental information on ADI-PEG 20-treated Fgf21<sup>fl/fl</sup> and Fgf21<sup>-/-</sup> LKO mice. Related to Figure 4.

(A) Food consumption measured in vehicle and ADI-PEG 20 treated Fgf21 LKO mice.

(B and C) Respiration exchange ratio (RER, C) and locomotion (D) during light and dark cycle (shaded area) in vehicle and ADI-PEG 20 treated *Fgf21* LKO mice.

(D and E) Liver weights (D). Liver weight/body weight ratio (E) of vehicle and ADI-PEG 20 treated Fgf21 LKO mice.

(F) Hepatic mRNA expression of gluconeogenic genes, Pckl, G6pc, and Fbpl by qPCR. Gene expression was normalized to  $\beta$ -actin mRNA levels.

Data represented in mean ± s.e.m. Each data point represents an individual animal. Exact *P*-value are shown. Statistical significance was determined using unpaired two-tailed Student's *t*-test.

# Figure S4.



#### Figure S4. Supplemental information on ADI-PEG 20-treated Becn1<sup>fl/fl</sup> and Becn1<sup>-/-</sup> LKO mice. Related to Figure 5.

(A) mRNA expression of *Becn1* in the livers of Becn1 LKO mice treated with or without ADI-PEG 20 by qPCR. Gene expression was normalized to  $\beta$ -actin mRNA levels.

(B and C) Respiration exchange ratio (RER, C) and locomotion (D) during light and dark cycle (shaded area) in vehicle and ADI-PEG 20 treated *Becn1* LKO mice.

(D and E) Liver weights (D). Liver weight/body weight ratio (E) of vehicle and ADI-PEG 20 treated Becn1 LKO mice.

(F) mRNA expression of *Grp78* and *Atf4* in the livers of *Becn1* LKO mice treated with or without ADI-PEG 20 by qPCR. Gene expression was normalized to  $\beta$ -actin mRNA levels.

Data represented in mean ± s.e.m. Each data point represents an individual animal. Exact *P*-value are shown. Statistical significance was determined using unpaired two-tailed Student's *t*-test.

# Figure S5.



**Figure S5. Supplemental information on ADI-PEG 20-treated** *Becn1*<sup>+/+</sup> **and** *Becn1*<sup>+/-</sup> **mice. Related to Figure 6.** (A) Liver weights.

(B) Liver weight/body weight ratio of vehicle and ADI-PEG 20 treated BecnHet mice.

Data represented in mean ± s.e.m. Each data point represents an individual animal. Exact *P*-value are shown. Statistical significance was determined using unpaired two-tailed Student's *t*-test.

# Table S1.

| Gene       | Forward (5' - 3') |     |     |     |     |     |     |     |     | Reverse (5' - 3') |     |     |     |     |     |    |  |
|------------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|-----|----|--|
| β-Actin    | GAT               | TAC | TGC | TCT | GGC | TCC | TAG |     | GAC | TCA               | TCG | TAC | TCC | TGC | TTG |    |  |
| arcA       | ATT               | CAC | CCA | TCG | CAA | ACG | AC  |     | GCG | ATT               | TCC | ATC | TCG | GTA | GCT |    |  |
| Arg1       | CTC               | CAA | GCC | AAA | GTC | CTT | AGA | G   | AGG | AGC               | TGT | CAT | TAG | GGA | CAT | С  |  |
| Asl        | CTA               | TGA | CCG | GCA | TCT | GTG | GAA |     | AGC | AAC               | CTT | GTC | CAA | CCC | TTG |    |  |
| Ass1       | ACA               | CCT | CCT | GCA | TCC | TCG | Т   |     | GCT | CAC               | ATC | CTC | AAT | GAA | CAC | СТ |  |
| Atf4       | AGC               | AAA | ACA | AGA | CAG | CAG | CC  |     | ACT | CTC               | TTC | TTC | CCC | CTT | GC  |    |  |
| Becn1      | ATG               | GAG | GGG | TCT | AAG | GCG | TC  |     | TGG | GCT               | GTG | GTA | AGT | AAT | GGA |    |  |
| Ccl2       | TTA               | AAA | ACC | TGG | ATC | GGA | ACC | AA  | GCA | TTA               | GCT | TCA | GAT | TTA | CGG | GT |  |
| Cd36       | GGA               | ACT | GTG | GGC | TCA | TTG | С   |     | CAT | GAG               | AAT | GCC | TCC | AAA | CAC |    |  |
| Cd68       | TGT               | CTG | ATC | TTG | CTA | GGA | CCG |     | GAG | AGT               | AAC | GGC | CTT | TTT | GTG | А  |  |
| Col1a1     | GCT               | CCT | CTT | AGG | GGC | CAC | Т   |     | CCA | CGT               | CTC | ACC | ATT | GGG | G   |    |  |
| Cps1       | ACA               | TGG | TGA | CCA | AGA | TTC | CTC | G   | TTC | CTC               | AAA | GGT | GCG | ACC | AAT |    |  |
| Cpt-1a     | AGT               | GGC | CTC | ACA | GAC | TCC | AG  |     | GCC | CAT               | GTT | GTA | CAG | CTT | CC  |    |  |
| Cpt-1β     | GCA               | CAC | CAG | CAG | GCA | GTA | GCT | TT  | CAG | GAG               | TTG | ATT | CCA | GAC | AGG | TA |  |
| Cxcl9      | GGA               | GTT | CGA | GGA | ACC | CTA | GTG |     | GGG | ATT               | TGT | AGT | GGA | TCG | TGC |    |  |
| Fbp1       | CAC               | CGC | GAT | CAA | AGC | CAT | СТ  |     | AGG | TAG               | CGT | AGG | ACG | ACT | TCA |    |  |
| Fgf21      | CTG               | CTG | GGG | GTC | TAC | CAA | G   |     | CTG | CGC               | СТА | CCA | CTG | TTC | С   |    |  |
| G6pc       | TCT               | GTC | CCG | GAT | CTA | CCT | ΤG  |     | GCT | GGC               | AAA | GGG | TGT | AGT | GT  |    |  |
| Gck        | CAA               | CTG | GAC | CAA | GGG | CTT | CAA |     | TGT | GGC               | CAC | CGT | GTC | ATT | С   |    |  |
| Ghrl       | TCA               | AGC | TGT | CAG | GAG | CTC | AGT | А   | TTG | TCA               | GCT | GGC | GCC | TCT | Т   |    |  |
| Glul       | TGA               | ACA | AAG | GCA | TCA | AGC | AAA | TG  | CAG | TCC               | AGG | GTA | CGG | GTC | ΤТ  |    |  |
| Grp78      | GAA               | AGG | ATG | GTT | AAT | GAT | GCT | GAG | GTC | TTC               | AAT | GTC | CGC | ATC | CTG |    |  |
| II-1β      | GCA               | ACT | GTT | CCT | GAA | CTC | AAC | Т   | ATC | TTT               | TGG | GGT | CCG | TCA | ACT |    |  |
| II-6       | CTG               | CAA | GAG | ACT | TCC | ATC | CAG |     | AGT | GGT               | ATA | GAC | AGG | TCT | GTT | GG |  |
| Lep        | GAG               | ACC | CCT | GTG | TCG | GTT | С   |     | CTG | CGT               | GTG | TGA | AAT | GTC | ATT | G  |  |
| Mmp2       | CAA               | GTT | CCC | CGG | CGA | TGT | С   |     | TTC | TGG               | TCA | AGG | TCA | CCT | GTC |    |  |
| Mttp       | ATG               | ATC | CTC | TTG | GCA | GTG | CTT |     | TGA | GAG               | GCC | AGT | TGT | GTG | AC  |    |  |
| Otc        | ACA               | CTG | TTT | GCC | TAG | AAA | GCC |     | CCA | TGA               | CAG | CCA | TGA | TTG | TCC |    |  |
| p62/Sqstm1 | AGG               | ATG | GGG | ACT | TGG | TTG | С   |     | TCA | CAG               | ATC | ACA | TTG | GGG | TGC |    |  |
| Pck1       | GAT               | GGG | CAT | ATC | TGT | GCT | GG  |     | CAG | CCA               | CCC | TTC | CTC | CTT | AG  |    |  |
| Pgc1α      | ACA               | CCG | CAA | TTC | TCC | CTT | GT  |     | CGG | CGC               | TCT | TCA | ATT | GCT | ΤT  |    |  |
| Slc25a15   | GCT               | GCC | TCA | AGA | CCT | ACT | CC  |     | CCG | TAA               | CAC | ATG | AAC | AGC | ACC |    |  |
| Timp1      | GCA               | ACT | CGG | ACC | TGG | TCA | TAA |     | CGG | CCC               | GTG | ATG | AGA | AAC | Т   |    |  |
| Tnfα       | CAG               | GCG | GTG | CCT | ATG | TCT | С   |     | CGA | TCA               | CCC | CGA | AGT | TCA | GTA | G  |  |
| Ucp1       | AGG               | CTT | CCA | GTA | CCA | TTA | GGT |     | CTG | AGT               | GAG | GCA | AAG | CTG | ATT | Т  |  |
| Ucp2       | ATG               | GTT | GGT | TTC | AAG | GCC | ACA |     | CGG | TAT               | CCA | GAG | GGA | AAG | TGA | Т  |  |
| Ucp3       | CTG               | CAC | CGC | CAG | ATG | AGT | ΤT  |     | ATC | ATG               | GCT | TGA | AAT | CGG | ACC |    |  |

Table S1. Mouse primer sequences used for quantitative RT-PCR. Related to STAR Methods.