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Figure S1. Potential Clinical Relevance of Problem Posed
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Figure S1. Proposed clinical utility of proposed work: global assessment of drug mechanism of action (A) Traditional
drug development focuses on single-targets and phenotypes directly relevant to inhibiting cancer cell growth. This approach
ignores other effects of the drug on cancer cells as metabolism and stress-response programs such as autophagy (B) drug-
perturbed RNA sequencing of cancer cell-lines yields unbiased genome-scale information on a drugs mechanism of action.
This information could be used to narrow the haystack of 2,000 druggable proteins that traditional methods are agnostic too.
(C) Clinically, off-targets are often identified post-hoc following the identification of clinical toxicity. Related to Figure 1A

which described the underlying assumptions of this DREAM competition.



Figure S2. Rationale for Choice of Drug-Target Benchmarking Data
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Figure S2. The Kinome Binding Resource (KBR) was chosen as a gold-standard due to concerns about literature-over
fitting and overall sparsity. While the KBR only features 250 out of the total ~600 kinases in the Human genome, the fact
that all drug-kinase pairs were annotated with a numeric value (Ks) that was obtained under the same conditions was very
appealing as literature databases either have binary definitions of drug targets (DrugBank) or have inconsistent binding
constant measurements. For example, within ChHEMBL the Lapatinib-EGFR Ky is recorded as having a range of values from
0.92 to 3600 nM; these values were obtained using different experimental systems and conditions and cannot be easily
reconciled. In addition, literature-curated databases are better known than the new KBR. As a result, the organizers were
concerned that the use of one database in training would result in over-fitting as the ultimate source of data was the

experimental literature. Related to Figure 1C which illustrates the benchmarking data used and Figure 3 which

compares different benchmarking datasets.



Figure S3. Results of community challenge.
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Figure S3. Results of community challenge. (A-B) In the Leaderboard phase, 39 out of 86 models showed statistically

significant predictive power by both scoring criteria (C-D) In the final round, 6 models beat the base-line model of the

organizers (E-F) We re-scored all teams removing the non-kinase filtering step to evaluate performance as a function of the
rank of the gold-standard kinases within all 1259 “druggable” targets. (G-H) Unsupervised analysis of model performance

across individual drugs. Related to Figure 1F which described our competion scoring procedure (detailed here).



Figure S4. Comparison of Model Performance on “canonical targets” vs “new

targets”
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Figure S4. Comparison method scores for DrugBank-targets (x-axis) versus Unique-Kinome-targets (y-axis) for each drug

within the predictions of the winning teams. Related to Figure 3 which described the difference between benchmarking

datasets.



Figure SS. Team ranking as a function of gold standard dataset
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Figure SS5. Team ranking as a function of gold standard dataset. “Kinome” ranks were determined using the Challenge
scoring metrics, gold standard, and null modes generated from the possible kinome targets. Kinome (KBR, the dataset used in
the challenge), ChEMBL, DTC (DrugTargetCommons), KinomeScan, and DrugBank ranks were calculated using the
DREAM challenge scoring metrics, compound target profiles from each of the respective databases, and using a null model
generated from 1259 possible “druggable” targets, to consider targets beyond the kinome. Team ranks are relatively
consistent across different gold standards, but in some cases affects the relative ranking of different teams. Related to Figure

3 which described the difference between benchmarking datasets.



Figure S6. Contribution of Drug-Sensitivity to Model Performance

A.

Figure S6 Assessment of the contributions of drug-sensitivity and drug-perturbed RNAseq to model performance a.
Comparison of different drug sensitivity metrics. b. Overall prediction accuracy for the weighted averaging method using
different types of predictors. P-values are determined using paired Wilcoxon tests. ¢. Drug-wise prediction accuracy for the

weighted averaging method using different predictors. Drugs highlighted in grey are those predicted poorly using signature
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data alone. Related to Figure S which describes winning methodologies.



Figure S7. Overview of Team Netphars modeling Strategy
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Figure S7. Overview of Team Netphar’s modeling strategy. Related to Figure 5 which describes winning methodologies.



Figure S8. Overview of Team SBNB’s modeling Strategy
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Figure S8. Overview of Team SBNB’s modeling strategy. Related to Figure S which describes winning methodologies.



Figure S9. Overview of Team Atoms modeling Strategy
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Figure S9. Model Architecture of Team Atom. Related to Figure 5 which describes winning methodologies.



