- Supporting Materials for: Molecular Methods for
- ² Assessing the Morphology, Topology, and Performance
- ³ of Polyamide Membranes

⁴ Riley Vickers^a, Timothy M. Weigand^a, Cass T. Miller^{a,*}, Orlando Coronell^{a,*}

^aDepartment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA

5 S1. Molecular Dynamics Force Field Parameters and Atomic Partial Charges

We utilized the General Amber Force Field (GAFF) to define bonded interac-6 tion parameters including those for bonds, angles, dihedrals, and impropers. Figure S1 shows the locations of the atoms defined by their symbols, with subscript 8 numbers indicating variations of otherwise identical atoms that only differ based 9 upon charge. GAFF was also used to define Lennard Jones σ and ε values. The 10 AM1-BCC method was used to assign atomic partial charges to the monomers, 11 MPD-TMC oligomer, hydroxide, and hexane. The TIP3P water model was used 12 to define bond, angle, partial charge, and Lennard Jones parameters for water 13 molecules. Table S1 contains all atom-specific force field information, including 14 mass, Lennard Jones parameters, and atomic partial charge. Tables S2-S5 contains 15 all bond, angle, improper, and dihedral force field constants, respectively. 16

^{*}Corresponding Author emails: C.T. Miller, casey_miller@unc.edu; O. Coronell, coro-nell@unc.edu

Name	Symbol	m (Da)	ε (Kcal.mol ⁻¹)	σ (Å)	<i>q</i> (e)
Aromatic Carbon	ArC1	12.010	0.08600	3.3996700	0.171600
	ArC2	12.010	0.08600	3.3996700	-0.230000
	ArC3	12.010	0.08600	3.3996700	-0.156500
	ArC4	12.010	0.08600	3.3996700	-0.195600
	ArC5	12.010	0.08600	3.3996700	0.014000
A mana dia 11a dua area	ArH1	1.008	0.01500	2.5996000	0.107450
Aromatic Hydrogen	ArH2	1.008	0.01500	2.5996000	0.181600
Amine Nitrogen	AN	14.010	0.17000	3.2500000	-0.462100
Amine Hydrogen	AH	1.008	0.01570	1.0691000	0.231050
Acyl Carbon	AcC	12.010	0.08600	3.3996700	0.679700
Acyl Oxygen	AcO	16.000	0.21000	2.9599000	-0.576100
Acyl Chloride	AcCl	35.450	0.26500	3.4709414	-0.103600
Amide Nitrogen	LN	14.010	0.17000	3.2500000	-0.398375
Amide Carbon	LC	12.010	0.08600	3.3996700	0.743425
Hydroxyl Oxygen	HyO	16.000	0.21000	2.9599000	-0.535100
Hydroxyl Hydrogen	HyH	1.008	0.01500	2.5996000	0.431500
Hexane Carbon	HeC	12.010	0.10940	3.3996700	-0.080400
Hexane Hydrogen	HeH1	1.008	0.01569	2.6495440	0.032700
	HeH2	1.008	0.01569	2.6495440	0.038700
TIP3P Water Oxygen	WO	16.000	0.15210	3.1570000	-0.830000
TIP3P Water Hydrogen	WH	1.008	0.01500	2.0580000	0.415000
Graphene Piston Carbon	GC	12.010	0.06844	3.4070000	0.000000

Table S1: Mass *m*, Lennard Jones parameters ε , σ , and partial charge *q* for each atom type used in simulations of polyamide polymerization, hydration, equilibration, and operation.

Figure S1: Representative monomers, oligomers, and constituent molecules with corresponding atomic symbols; (a) *m*-phenylenediamine (MPD), (b) trimesoyl chloride (TMC), (c) MPD-TMC oligomer, (d) water, (e) hexane.

17 S2. Minkowski Functional Grid Independence Study

Figure S2 shows the Minkowski functionals evaluated for the pore space opening map of a dry 1x domain polymerized domain. Voxel sizes used were 0.4 Å, 0.2 Å, 0.1 Å, and 0.05 Å. The relative error between the finest two resolutions (0.1 Å and 0.05 Å) calculated with an l^2 -norm was 0.0093, 0.011, 0.057, and 0.032 for the porosity density, surface area density, mean surface curvature density, and Euler characteristic density, respectively. Therefore 0.05 Å is sufficiently small enough to give resolution independent results.

Bonded Atoms	K_b (Kcal.mol ⁻¹ .Å ⁻²)	r_0 (Å)
ArC - ArC	461.1	1.3984
ArC - ArH	345.8	1.0860
ArC - AcC/LC	345.9	1.4906
AcC - AcCl	267.4	1.8029
AcO - AcC/LC	637.7	1.2183
AcC - HyO	400.1	1.3513
HyO - HyH	371.4	0.9730
LN - LC	427.6	1.3790
ArC - AN/LN	417.9	1.3859
AH - AN/LN	404.6	1.0121
WO - WH	450	0.9572
HeC - HeC	300.9	1.5375
HeC - HeH	330.6	1.0969

Table S2: Bond force constants K_b and equilibrium bond lengths r_0 for all bond types used in simulations of polyamide polymerization, hydration, equilibration, and operation.

Bonded Atoms	K_{θ} (Kcal.mol ⁻¹)	θ_0 (deg.)
ArC - ArC - ArC	66.6	120.020052
ArC - ArC - AcC/LC	64.3	120.330052
ArC - ArC - ArH	48.2	119.880051
ArC - AcC/LC - AcO	68.7	122.600053
ArC - AcC - HyO	69.2	113.450049
AcC - HyO - HyH	49.9	106.550046
AcO - AcC - HyO	75.9	122.100052
ArC - ArC - AN/LN	68.3	120.950052
ArC - AN/LN - AH	48.4	116.070050
AH - AN - AH	40.1	115.120050
LC - LN - ArC	63.8	123.710053
LC - LN - AH	48.3	117.550051
LC - LN - ArC	67.7	115.250050
LN - LC - AcO	74.2	123.050053
ArC - AcC - AcCl	61.1	114.705049
AcO - AcC - AcCl	58.8	120.690052
WH - WO - WH	55	104.520000
HeC - HeC - HeC	62.9	111.510048
HeC - HeC - HeH	46.3	109.800047
HeH - HeC - HeH	39.4	107.580046

Table S3: Bond angle force constants K_{θ} and equilibrium bond angles θ_0 for all bond angle types used in simulations of polyamide polymerization, hydration, equilibration, and operation.

Bonded Atoms	K_{ϕ} (Kcal.mol ⁻¹)	n (-)	d (deg.)	Weighting Factor (-)
ArC - ArC - ArC - ArC	3.625	2	180	0.5
ArC - ArC - ArC - ArH	3.625	2	180	0.0
ArH - ArC - ArC - ArH	3.625	2	180	0.0
ArH - ArC - ArC - AN/LN	3.625	2	180	0.0
ArC - ArC - ArC - AN/LN	3.625	2	180	0.0
ArC - ArC - AN/LN - AH	0.450	2	180	0.0
ArC - ArC - ArC - AcC/LC	3.625	2	180	0.0
ArH - ArC - ArC - AcC/LC	3.625	2	180	0.0
ArC - ArC - AcC/LC - AcO	1.050	2	180	0.0
ArC - ArC - AcC - AcCl	1.000	2	180	0.0
ArC - ArC - LN - LC	0.450	2	180	0.0
ArC - LC - LN - ArC	2.300	2	180	0.0
ArC - LC - LN - AH	2.300	2	180	0.0
ArC - ArC - LC - LN	1.050	2	180	0.0
ArC - LN - LC - AcO	2.300	2	180	0.0
AH - LN - LC - AcO	2.300	2	180	0.0
ArC - ArC - AcC/LC - AcO	1.000	2	180	0.0
ArC - AcC - HyO - HyH	2.300	2	180	0.0
AcO - AcC - HyO - HyH	2.300	2	180	0.0
HeC - HeC - HeC - HeC	0.250	2	180	0.0
HeC - HeC - HeC - HeH	0.160	3	0	0.0
HeH - HeC - HeC - HeH	0.150	3	0	0.0

Table S4: Dihedral torsion angle force constants K_{ϕ} , periodicity constant *n*, phase shift angle *d*, and weighting factors for all dihedral torsion angle types used in simulations of polyamide polymerization, hydration, equilibration, and operation.

Table S5: Improper dihedral angle force constants K_{χ} and equilibrium improper dihedral angles χ_0 for all improper dihedral angle types used in simulations of polyamide polymerization, hydration, equilibration, and operation.

Bonded Atoms	K_{χ} (Kcal.mol ⁻¹)	χ_0 (deg.)
ArC - ArC - ArC - ArH	1.1	180
ArC - ArC - ArC - AN/LN	1.1	180
ArC - ArC - ArC - AcC/LC	1.1	180
ArC - LC - LN - AH	1.1	180
ArC - LN - LC - AcO	10.5	180
ArC - AcC - AcO - HyO	1.1	180
ArC - AN - AH - AH	1.1	180

Figure S2: Minkowski functionals of dry, 1x domain pore space opening map: (a) free volume density, i.e. porosity; (b) free volume surface density; (c) mean free volume surface curvature density: (d) free volume Euler characteristic density.