Potent, Selective, Allosteric Inhibition of Human Plasmin by Sulfated Non-Saccharide Glycosaminoglycan Mimetics

Daniel K. Afosah,[#] Rami A. Al-Horani,[#] Nehru Viji Sankaranarayanan and Umesh R. Desai*

Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University

Supplementary Infor	mation
---------------------	--------

	Section	Page #
1)	Table S1. Thermodynamics (K_D and ΔF_{MAX}) of NSGMs (UFH) – Plasmin Interaction	S2
2)	Table S2. Salt-Dependence of Plasmin Inhibition by NSGM 2	S2
3)	Figure S1. Spectrofluorometric Measurement of the Affinity of Active-Site-Blocked Human Plasmin for Inhibitors 2 and 13	S3
4)	Spectral profiles for NSGM 2	S4
5)	Spectral profile for NSGM 3	S6
6)	Spectral profile for NSGM 4	S8
7)	Spectral profile for NSGM 5	S10
8)	Spectral profile for NSGM 6	S12
9)	Spectral profile for NSGM 7	S14
10)	Spectral profile for NSGM 8	S16
11)	Spectral profile for NSGM 9	S18
12)	Spectral profile for NSGM 10	S20
13)	Spectral profile for NSGM 11	S22
14)	Spectral profile for NSGM 12	S24
15)	Spectral profile for NSGM 13	S26
16)	Spectral profile for NSGM 14	S28
17)	Spectral profile for NSGM 15	S30
18)	Spectral profile for NSGM 16	S32
19)	PAINs Statement	S33

Table S1. Dissociation Equilibrium Constants (K_D) and Maximal Fluorescence Change (ΔF_{MAX}) for the Interactions of NSGMs and UFH with Human Plasmin.^{*a*}

Inhibitor	Κ _D (μΜ)	ΔF_{MAX} (%)
2	0.7 ± 0.1^{b}	-112 ± 3
4	1.0 ± 0.1	-90 ± 2
10	3.6 ± 0.6	-101 ± 7
13	1.9 ± 0.2	-108 ± 3
UFH	6.7 ± 0.8	-97 ± 7

^a Measured using the intrinsic tryptophan fluorescence change in pH 7.4 buffer at 37 °C. See Experimental Part for details. ^b Errors represent standard error calculated using global fit of the data.

Table S2. Salt-Dependence of Plasmin Inhibition by NSGM 2.^a

[NaCl] (mM)	IC ₅₀ (μM)	HS	ΔY(%)
0	2.8 ± 0.3^b	1.0 ± 0.3	90 ± 7
100	6.3 ± 0.4	0.7 ± 0.1	93 ± 4
200	17.1 ± 2.7	0.8 ± 0.2	71 ± 7

^{*a*} The IC₅₀, HS, and ΔY values were obtained following nonlinear regression analysis of direct inhibition of human plasmin in appropriate TrisHCl buffers of pH 7.4 at 37 °C. Inhibition was monitored spectro-photometrically. See Experimental Section for details. ^{*b*} Errors represent ± 1 S.E.

Figure S1: Spectrofluorometric measurement of the affinity of inhibitors **2** (•) and **13** (\Box) for active-siteblocked, dansyl-EGR-cmk- plasmin at pH 7.4 and 37 °C using the intrinsic tryptophan fluorescence ($\lambda_{EM} = 348 \text{ nm}$, $\lambda_{EX} = 280 \text{ nm}$). Solid lines represent the nonlinear regressional fits using quadratic equation 3.

Figure S1a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 2

Figure S1b: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 2

Figure S1d: UPLC profile for NSGM 2

Figure S2b: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 3

Figure S2c: Mass Spectrum for NSGM 3

[e] - <mark>4</mark> 0.5 69.1011 512 V 0.4 0.3 0.2 0.1 0.0 150 100 50 [ppm]

Figure S3b: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 4

Page S10

Figure S4d: UPLC profile for NSGM 5

Page S11

Figure S5b: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 6

Figure S4d: UPLC profile for NSGM 6

Page S14

Figure S7a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 8

Figure S7b: $^{13}\mathrm{C}$ NMR (100 MHz, DMSO-d6) for NSGM 8

Page S16

Figure S7d: UPLC profile for NSGM 8

Figure S8a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 9

Page S18

Page S19

Figure S9b: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 10

Page S20

Figure S9c: Mass Spectrum for NSGM 10

Figure S10a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 11

Page S22

Page S23

Figure S11a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 12

Page S24

Page S25

Figure S12a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 13

Figure S12b: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 13

Page S26

Page S27

Figure S13a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 14

Page S28

Figure S14a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 15

Page S30

Figure S15a: ¹H NMR (400 MHz, DMSO-d6) for NSGM 16

Figure S15a: ¹³C NMR (100 MHz, DMSO-d6) for NSGM 16

PAINS Evaluation

- 1. The compounds reported in this manuscript are not documented as pan assay interference compounds (PAINS).
- 2. In multiple chromogenic substrate assay employed to measure inhibition potencies using several log fold range in concentrations, no interference was detected with substrate or other excipients.
- 3. The compounds themselves are off-white or yellowish in color and therefore do not generate color interference.
- 4. None of the compounds possess a reactive functional group. The compounds do not react covalently with plasmin or with any of the homologous enzymes studied herein. This is also supported by the fact that reversal of inhibition can be effected with protamine sulfate. This reversal is complete (100%).
- 5. Finally, no aggregation of compounds in water was observable in the range of concentrations studied (nM to \sim 500 μ M). All compounds studied are highly water soluble and not known to aggregate in water. Further, the assay buffer used for studying inhibition contained 0.02% Tween80, which is a surfactant that limits induction of aggregation.