| 1  | Supplementary Materials for                                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | A superefficient ochratoxin A hydrolase with promising                                                                                                   |
| 3  | potential for industrial applications                                                                                                                    |
| 4  | Han Luo <sup>a¶</sup> , Gan wang <sup>b¶</sup> , Nan Chen <sup>a¶</sup> , Zemin Fang <sup>c</sup> , Yazhong Xiao <sup>c</sup> , Min Zhang <sup>b</sup> , |
| 5  | Khishigjargal Gerelt <sup>a</sup> , Yingying Qian <sup>a</sup> , Ren Lai <sup>b*</sup> , Yu Zhou <sup>a*</sup>                                           |
| 6  | <sup>a</sup> State Key Laboratory of Tea Biology and Utilization, School of Tea and Food                                                                 |
| 7  | Science Technology, Anhui Agricultural University, Heifei 230036, China                                                                                  |
| 8  | <sup>b</sup> Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese                                                                     |
| 9  | Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province,                                                                             |
| 10 | KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common                                                                               |
| 11 | Diseases, Sino-AfricanJoint Research Center, Center for Biosafety Mega-Science,                                                                          |
| 12 | Kunming Institute of Zoology, Kunming 650223, Yunnan, China;                                                                                             |
| 13 | <sup>c</sup> School of Life Sciences, Anhui University, 230601 Hefei, Anhui, China                                                                       |
| 14 | <sup>¶</sup> These authors contributed equally to this work (HL purified and characterized the                                                           |
| 15 | enzyme ADH3, GW illustrated the efficient catalytic mechanism, and NC isolated the                                                                       |
| 16 | strain CW117 and screened the enzyme ADH3).                                                                                                              |
|    |                                                                                                                                                          |

17 \*Correspondence Authors: <u>microbes@ahau.edu.cn (YZ);</u> <u>rlai@mail.kiz.ac.cn (RL)</u>

#### **18** Supplementary Text:

#### 19 Text S1 genomic analysis

Based on OTA degradation product by S. acidaminiphila CW117, amido bond 20 hydrolases are considered as the degradation enzymes (1, 2). Currently, few known 21 examples of hydrolases, such as peptidase, amidohydrolase and carboxypeptidase 22 were characterized as OTA degradation enzyme (3-6). In order to obtain the OTA 23 degradation genes from the strain CW117, we assembled and analyzed the complete 24 genome sequence of S. acidaminiphila CW117, and the general genomic information 25 was outlined in Table S1-Table S3. After genomic data assemble, gene prediction and 26 annotation were performed by BLAST searches in 10 databases (Fig.S2 - Fig.S3). 27 More than 3800 genes were annotated by the database of COG, KEGG, NR, Pfam and 28 29 Swissprot, and a complete genome map of S. acidaminiphila CW117 was produced by assembled and annotation results (Fig.S4). By genome sequence analysis, 53 amido 30 31 bond hydrolase including 5 amidases, 14 amidohydrolases, 5 carboxypeptidases and 29 peptidases' family (Table S4) were screened from complete genome sequence of 32 33 CP062156.1 (S. acidaminiphila CW117).

| 36 | Table S1 Results for genome sequencing on the S. acidaminiphila CW117 |
|----|-----------------------------------------------------------------------|
| 37 |                                                                       |

| Туре            | Illumina | PacBio |
|-----------------|----------|--------|
| RawReads        | 9463494  | 307993 |
| RawBases        | 1.4 G    | 3.7 G  |
| CleanReads      | 9279424  | 221027 |
| CleanBases      | 1.3 G    | 2.7 G  |
| Meanlength (bp) | -        | 12375  |
| N50 (bp)        | -        | 12616  |

| 10 | Table 62 Conome accombly  | ODE determination and        | basal information on the C   |
|----|---------------------------|------------------------------|------------------------------|
| 40 | Table 52 Genome assembly. | <b>OKF</b> determination and | l dasai miormation on the 5. |
|    |                           |                              |                              |

# acidaminiphila CW117.

| Туре             | Number/character | Average length (or<br>Percentage in genome) | Total length |
|------------------|------------------|---------------------------------------------|--------------|
| Contigs/Genome   | 1 (Circular)     | 4090129 bp                                  | 4090129 bp   |
| Gene             | 3844             | 954.38 bp (89.7%)                           | 3668652 bp   |
| G+C (%)          | -                | 68.75                                       | -            |
| sRNA             | 11               | 144.182 bp                                  | 1586         |
| 23S rRNA         | 3                | 2875 bp                                     | 8625         |
| 16S rRNA         | 3                | 1534 bp                                     | 4602         |
| 5S rRNA          | 3                | 114 bp                                      | 342          |
| tRNA             | 61               | 77.541 bp                                   | 4730         |
| SINEs            | 14               | 0.02%                                       | 912 bp       |
| LINEs            | 6                | 0.01%                                       | 500 bp       |
| DNA transposon   | 5                | 0.01%                                       | 342 bp       |
| Tandem repeats   | 234              | 0.42%                                       | 17229 bp     |
| Num. of Prophage | 2                | 68681.5                                     | 137363 bp    |
| Num. of CRISPR   | 2                | 984 bp                                      | 1968 bp      |
| LTR elements     | 0                | 0%                                          |              |
| Unclassified     | 0                | 0%                                          | 0            |

45 Table S3 The genomics island (GIs) predictions in the S. acidaminiphila CW117

46 genome.

| GIs number | Start position | End position | GI length |
|------------|----------------|--------------|-----------|
| GI1        | 135821         | 145627       | 9807 bp   |
| GI2        | 167433         | 205407       | 37975 bp  |
| GI3        | 361511         | 371271       | 9761 bp   |
| GI4        | 639600         | 643913       | 4314 bp   |
| GI5        | 1468321        | 1482892      | 14572 bp  |
| GI6        | 1493582        | 1503040      | 9459 bp   |
| GI7        | 1545600        | 1558567      | 12968 bp  |

47 48

# 49 Table S4. The candidates of OTA degradation gene screened from the S.

| Gama na  | anduma                                  | Gene         | Expression primore                              |
|----------|-----------------------------------------|--------------|-------------------------------------------------|
| Gene no. | enzyme                                  | locus_tag    | Expression primers                              |
|          |                                         |              |                                                 |
| 1        | Dipeptidyl                              | H7691 1749   | F:CCGGAATTCATGTCGCGCACCCTCATTC                  |
| cpi      | carboxypeptidase II                     | 0            | R:CCGCTCGAGTTACTTCAGCCCGCGGTTC                  |
| 2        |                                         | H7691 0588   | F:CCGGAATTCATGGACAGGCGGCGATTC                   |
| cp2      | LD-carboxypeptidase                     | 5            | R:CCGCTCGAGTCAGCTGCCGGCGAACAC                   |
| 4        | D-alanyl-D-alanine                      | H7691 0291   | F:CGCGGATCCATGAAATTCCGCTTTGCCG                  |
| cp4      | carboxypeptidase                        | 0            | R:CCGCTCGAGTCAGGACTTCCACCACATC                  |
| _        | D-alanyl-D-alanine                      | H7691 1363   | F:CCGGAATTCATGCCCCAAGCTACCGCC                   |
| cpS      | carboxypeptidase                        | 5            | R:CCGCTCGAGTCAGGCAGGCGTGCCGC                    |
| 14       | Metallocarboxypeptidase                 | H7691 0593   | F:CCGGAATTCATGACCACCGCCTTCTATCC                 |
| cpm14    | M14                                     | 0            | R:CCGCTCGAGTCAGCGGTGCGCCAGCG                    |
|          | ·                                       | •            |                                                 |
|          | 1                                       | 117(01 020)  |                                                 |
| ad1      | amidase                                 | H7691_0386   | F:CGCGGATCCATGCGCGCCCTCCACACC                   |
|          |                                         | 5            | <u>R:</u> CCG <u>CTCGAGTCAACGGGTCTGCGCGGTAT</u> |
| ad2      | <i>N</i> -acetylmuramoyl- <i>L</i> -ala | H7691_1304   | F:CGC <u>GGATCCATGCCCGCGATCCACATC</u>           |
|          | nineamidase                             | 5            | <u>R:CCGCTCGAGCTACATGCGCTGCAGGGGT</u>           |
| ad3      | N-acetylmuramoyl-L-ala                  | H7691_0130   | F:CGC <u>GGATCCATGAAGATGTCCACCAAGC</u>          |
|          | nine amidase                            | 0            | <u>R:</u> CCG <u>CTCGAGTCAGCGGTGGGTGGCC</u>     |
| ad4      | N-acetylmuramoyl-L-ala                  | H7691_0128   | F:CCGGAATTCATGACGCATCGGAAAACCC                  |
|          | nine amidase                            | 5            | <u>R:</u> CCG <u>CTCGAGTTACGGCGTATCGGTCGTG</u>  |
| ad5      | N-acetylmuramoyl-L-ala                  | H7691_0854   | <u>F:</u> CCG <u>GAATTCATGCTCAAGGGAAGCCGCC</u>  |
| uus      | nine amidase                            | 5            | <u>R:</u> CCG <u>CTCGAGTTACGGCGTATCGGTCGTG</u>  |
|          |                                         |              |                                                 |
|          |                                         | H7691 0886   | F.CCGCAATTCATGAATGACCTCCGTATTTCAC               |
| adh1     | Amidohydrolase                          | 5            | R:CCGCTCCACTCAGCCCAGGGTGAAGG                    |
|          |                                         | H7601 0310   | F:CCGCAATTCATGAGCGCGTCCATCGTGT                  |
| adh2     | adh2 Amidohydrolase                     | 5            | R-CCGCTCCACTCAGCGCCGGTAGGCCG                    |
|          | <i>lh3</i> Amidohydrolase               | H7691 1293   | F:CGCCGCATCCATGCCGATCCGCCGCCGC                  |
| adh3     |                                         | 5            | R:CCGCTCGAGTCACTGCTTGTAGATCACCCCG               |
|          |                                         | H7691 0959   | F:CCGGAATTCATGAACCCGCTGACCGCC                   |
| adh4     | Amidohydrolase                          | 5            | R:CCGCTCGAGTCAGGGGGGCCACATTGCGT                 |
|          |                                         |              | F:CCGGAATTCATGAAAACCACGCTCTGCCTC                |
| adh5     | Amidohydrolase                          | H7691_11440  | R:CCGCTCGAGTCAGCGGGCGGCTTCGG                    |
|          |                                         | H7691 0844   | F:CCGGAATTCATGGGCGCGAGGCGGGC                    |
| adh6     | Amidohydrolase                          | 5            | R:CCGCTCGAGTCATCGCGACGAAGGCTTG                  |
|          |                                         | H7691 1424   | F:CGCGGATCCATGCGCCGTACCGCCGC                    |
| adh7     | Amidohydrolase                          | 5            | R:CCGCTCGAGTCAGCCCTCGCTGGCCG                    |
| 11.0     |                                         | H7691 1354   | F:CGCGGATCCATGAAACTGCTGTTGGCCC                  |
| adh8     | Amidohydrolase                          | 5            | R:CCGGAATTCTTATTTCCCCGCTTGCTCC                  |
| 11.0     | A 11 1 1                                | H7691 0844   | F:CGCGGATCCATGAACATGAACCCCCGC                   |
| aan9     | Amidonydrolase                          | 0            | R:CCGCTCGAGTCAGTAGAAGCCCACGTTG                  |
| 11.10    |                                         | H7691 0320   | F:CCGGAATTCATGCGACACCGACTGCTG                   |
| adh10    | Amidohydrolase                          | 0            | R:CCGCTCGAGTCATGGCCGCACCTCCTG                   |
|          |                                         | H7691 0343   | F:CCGGAATTCATGAGCCGGCTCGACAAC                   |
| adh11    | Amidohydrolase                          | 0            | R:CCGCTCGAGCTAGCCGAGCTGCAGC                     |
|          |                                         | H7691 0589   | F:CCGGAATTCATGCGCCCGCTGTCGTTG                   |
| adh12    | Amidohydrolase                          | 0            | R:CCGCTCGAGTCAGTCGGCGCCCTTG                     |
|          |                                         | 117/01 11/00 | F:CCGGAATTCATGTTCGACCACCTGTTCAC                 |
| adh13    | Amidohydrolase                          | н/691_11430  | R:CCGCTCGAGTCAGGACGCGGTTGCGTC                   |
|          |                                         | H7691 0135   | F:CGCGGATCCATGATCCGCAAGACCGTTCTGT               |
| naa      | amidohydrolase                          | 5            | R:CCGCTCGAGTCAGCCGGCGCCGCCGT                    |
|          |                                         |              |                                                 |
|          |                                         |              |                                                 |
| pd1      | peptidase                               | H7691_0307   | F:CCG <u>GAATTC</u> ATGGCGGTGGCGGTGTG           |
| 1        |                                         | 0            | R:CUG <u>CTCGAG</u> TCAAGGGAACTGGGCCCC          |
| pd2      | peptidase                               | H7691_1275   | F:CGC <u>GGATCC</u> ATGAAGAACGCCACCGG           |
| r ~~     | r -r -raube                             | 5            | R:CCG <u>CTCGAG</u> TTACCAGATCACTACCTGC         |

# 50 *acidaminiphila* strain CW117 genome (53 candidates).

| pd3           | peptidase                               | H7691_0371       | F:CCG <u>GAATTC</u> ATGTTGCGAGCAGTGGG     |
|---------------|-----------------------------------------|------------------|-------------------------------------------|
| -             |                                         | 0                | R:CCG <u>CTCGAG</u> TCATTCCGGGTCGGCCC     |
| pds8          | peptidase S8                            | H7691_0586       | F:CCG <u>GAATTC</u> ATGCGCAGCACGTTCAGGG   |
| Pubb          | populate 20                             | 5                | R:CCG <u>CTCGAG</u> TCAGAACCCGCGCATGAAC   |
| ndsQ          | pentidase S9                            | H7691_0063       | F:CCG <u>GAATTC</u> ATGGGAAGGGGATGGTG     |
| puss          | peptidase 37                            | 0                | R:CCG <u>CTCGAG</u> TCAGCTCCCGATGTGCTC    |
| 1-10          |                                         | H7691 0706       | F:CCG <u>GAATTC</u> ATGAAACACCTGCTGTACGT  |
| pasio         | peptidase S10                           | 5                | R:CCGCTCGAGTCAGTTGCGCTGGTACATG            |
| 1.41          |                                         | 117(01 01105     | F:CCGGAATTCATGCGTGTAGCCGGCCTT             |
| pds41         | peptidase S41                           | H7691_01105      | R:CCGCTCGAGTCACTTGCCGCCGTCGAC             |
|               |                                         | H7691 1837       | FCCGGAATTCATGAAGCGCACACCGCT               |
| pds46         | peptidase S46                           | 0                | R:CCGCTCCACTTACTCCCGCGGCAGGC              |
|               |                                         | 0                | ECCCCCATCCATCACCCTCTTACCCCATATC           |
| pds49         | peptidase S49                           | H7691 11860      | P. COC GGATCCATGACCCTGTTACCGCATATG        |
| 1             |                                         | _                | R:CCG <u>GAATTC</u> TCACITCTCCTGTCCGGC    |
|               | carboxy                                 | H7691 0294       | F·CCG <b>GAATTC</b> ATGAACTACCGAGTACCCG   |
| c-pds         | terminal-processing                     | 0                | R'CCG <b>CTCGAG</b> TCAGTCGGCCCAGCGG      |
|               | peptidase                               | U                | R.eed <u>ereaka</u> rendreddeeendedd      |
| m on da       | matalla and an anti daga                | H7691_0866       | F:CCG <u>GAATTC</u> ATGCGCTCGATGCTCCTG    |
| mepas         | metanoendopeptidase                     | 0                | R:CCG <u>CTCGAG</u> CTACTTGCCGCGTTCGAG    |
|               | M1 family                               | H7691 0285       | F:CGCGGATCCATGCGTTCACCCTTCCTG             |
| pdm1          | metallopentidase                        | 0                | R'CCG <b>GAATTC</b> TTACGGCTTCGGCGCGG     |
|               | M2 family                               | H7601 1372       | FCGCCCATCCATGTACCCGGAAATGACCTC            |
| pdm2          | matallanantidasa                        | 11/091_13/2      |                                           |
|               | metanopeptidase                         | 0                |                                           |
| pdm3          | M3 family                               | H/691_0931       | F:CGC <u>GGATCC</u> AIGGCIIIGCAACAGCAGGCG |
| I mus         | metallopeptidase                        | 5                | R:CCG <u>CTCGAG</u> TTACTTGCTTTCGGCGCCGG  |
| ndm13         | pentidase M13                           | H7691_0529       | F:CCG <u>GAATTC</u> ATGACCCTTTCCAAGCTCG   |
| pamis         | peptidase W115                          | 5                | R:CCG <u>CTCGAG</u> TTACCAGATGACCACGCG    |
| 15            | M15 family                              | H7691 0131       | F:CCG <u>GAATTC</u> ATGCGCAGAGCCATTGCC    |
| pam15         | metallopeptidase                        | 0                | R:CCGCTCGAGCTAGCGCACCGGGAAGTC             |
| 1 20          |                                         | H7691 1445       | F:CCGGAATTCATGGACAGCGCCAAGCTC             |
| pdm20         | peptidase M20                           | 0                | R:CCGCTCGAGTCAGCAGCAGCCGTGGC              |
|               |                                         | H7691 1404       | F·CCGGAATTCATGCACCGCCTGACGCTC             |
| pdm23         | peptidase M23                           | 0                | R'CCGCTCCAGTCAGGGCGGGGGGCGCCC             |
|               |                                         | H7601 1/60       | F:CCGCAATTCATGCGCCGCCTCACCTTC             |
| pdm28         | peptidase M28                           | 5                |                                           |
|               |                                         | 5                | E.CCCCAATTCATCATCCTCCCCCAACTC             |
| pdm48         | peptidase M48                           | H7691 04110      | P.CCOGAATTCATOATOCTOCOCOAACTO             |
| -             |                                         | -                | R:CCGCICGAG ICAGCGGCGCIGCAIGI             |
| pdm61         | peptidase M61                           | H7691_0040       | F:CCG <u>GAATTC</u> AIGIACGCGCACAAGIGGT   |
| 1             | 1 1                                     | 0                | R:CCG <u>CTCGAG</u> TCAACGCCGCGGCGCG      |
| ndc13         | pentidase C13                           | H7691_1049       | F:CGC <u>GGATCC</u> ATGCCTGCCGCCATCACC    |
| puers         | peptidase ers                           | 0                | R:CCG <u>GAATTC</u> TCAGCGCGTCCCGGGG      |
| n do 10       | nontidaga C40                           | H7691 1279       | F:CGC <u>GGATCC</u> ATGCACATCACGCCAGCT    |
| <i>pac</i> 40 | peptidase C40                           | 5                | R:CCG <u>GAATTC</u> TCAGCGCAGCACGCGCTT    |
|               | 1 D1                                    | H7691 0517       | F:CCGGAATTCATGATCAAGCGCTGGTCCC            |
| pdp1          | peptidase PI                            | 0                | R:CCGCTCGAGTCAGCGTGGCGCCGGC               |
|               |                                         | H7691 0272       | F:CCG <b>GAATTC</b> ATGAAGATCAGCCTTGGCC   |
| pdu32         | peptidase U32                           | 5                | R:CCGCTCCAGTCAGGCCTGCATGCGCAT             |
|               |                                         | J<br>117601 1070 | E.CCCCATCCATCCCCTCTCTCTCTCTCTC            |
| dpd-1         | dipeptidase                             | П/091_18/8       | P.COCGGATCCATOCCOCTOTOTOTOTO              |
| -             | ~ ~                                     | 0                |                                           |
| dnd-2         | dipeptidase                             | H7691_1510       | F:CGC <u>GGATCC</u> ATGACCAATGGCCTGCTG    |
| ap a 2        | all | 5                | R:CCGGAATTCTTACTCCAGCGCCGCCTT             |
| ndz           | zinc-dependent pentidase                | H7691_1722       | F:CGC <u>GGATCC</u> ATGGCACCGCCTGCTGC     |
| paz           | Zine-dependent peptidase                | 5                | R:CCG <u>CTCGAG</u> CTATGGCTGTTGCAGCGC    |
|               | M-4-11-1-1                              | H7691 0537       | F:CGCGGATCCATGATCAAGCGGTGCTTGCT           |
| m-hd          | Metallo-hydrolase                       | 0                | R:TCCCCCGGGTCAGTCTTCCAGCAGCGG             |



Figure S1. The liquid chromatography-tandem mass analysis of OTA degradation product by the strain CW117 under the positive ionization mode. A, the spectra of OTA standard; B, the spectra of OT $\alpha$  standard; C, the spectra of OTA degradation product. The OTA standard produced [M+H<sup>+</sup>] at m/z 404 as precursor ion in MS spectrum, and product ions at m/z 239 and 358 in MS/MS spectrum. The OT $\alpha$ standard produced [M+H<sup>+</sup>] at m/z 256.9 as precursor ion in MS spectrum, and product ions at m/z 167 and 211 as in MS/MS spectrum.





63 Figure S2. The gene length distribution of CW117 genome. The gene length of

64 CW117 was mainly distributed in the range of 100 - 1500 bp.





Figure S3. The statistics of gene annotation in different database. NR,
Non-Redundant Protein Database; Swiss-prot, Swiss-prot Database; COG, Cluster of
Orthologous Group of Proteins; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; Pfam, Pfam Database; CAZyme, Carbohydrate-Active enZYmes
Database; PHI, Pathogen Host Interactions; VF, Virulence Factors of Pathogenic
Bacteria; AR, Antibiotic Resistance Genes Database.





Figure S4. The complete genome of *Stenotrophomonas acidaminiphila* CW117. Rings from the outside to inside 1) scale marks of the genome; 2) protein-coding genes on the forward strand; 3) protein-coding genes on the reverse strand; 4) tRNA (black) and rRNA (red) genes on the forward strand; 5) tRNA (black) and rRNA (red) genes on the reverse strand; 6) GC content; 7) GC skew. Protein-coding genes are color coded according to their COG categories.

| AfOTase   | IKAALETMPGYQI       | QTGIAQTGVKAVL                                             | KGGKPGPVVALR                     | ADMDALPVQERND —                                | 117 |
|-----------|---------------------|-----------------------------------------------------------|----------------------------------|------------------------------------------------|-----|
| ADH3      | RVVDLGDKVCLPG       | WT <mark>DL</mark> HVH                                    | LGSQSSP-QSYS                     | EDFRLDPVDH                                     | 106 |
| OTase     | ALVISDKIIAFVGSEADIP | KKYLRSTQSTHRVPVLMPGLW                                     | DCHMHFGGDDDYYNDYT                | SGLATHPASSG                                    | 136 |
| CP        | IASMTKMMTEYLL       | LEAIQ                                                     | EGKVKWDQTYT                      | PDDYVYEISQDN                                   | 106 |
| PJ15 1540 | PASMTKMMTSYII       | <mark>E</mark> QKLLK                                      | GELTENEQVR                       | MNESAWCRGSSSE -                                | 97  |
| CP A      | FPSLQAVKVFLEA       | HGIRYR                                                    | IMIEDVQSLL                       | DEEQEQMFASQS                                   | 109 |
| AfOTase   | VVAAAETVVALNNIIAQRT | NPQDGTTVVTVGSLQSGNRPN                                     | VLPESADISGTVR                    |                                                | 314 |
| ADH3      | IKAVVDTARDYGFRVAAHA | HGTEGMKRAVQAGVTSIE <mark>h</mark> gt                      | YMDDEVMRLMKQHGTWY                | VPTFYAGRFVTEK —:                               | 303 |
| OTase     | LKVIVEEAARQNRIVSAHV | HGKAGIMAAIKAGCKSLEHVS                                     | YADEEVWELMKEKG                   | ILYVATRSVIE -:                                 | 334 |
| CP        | WNFMLKGLVSEYPGVDGLK | TGSTDSAGSCFTSTAQRNGMR                                     | VITVVLNAKGNLHTG                  | RFDETKKMLDY:                                   | 304 |
| PJ15 1540 | ALLYTDPSVDGLK       | TGHTNEAGFCLTTSSKRGPMR                                     | LISVIFGTPSMNER                   | ANQTRTLLAW                                     | 268 |
| CP A      | R-SVTSSSLCVGVDANRNW | DAGFGKAGASSSPCSETYHGK                                     | YANSEVEVKSIVD                    | FVKDHGNFKAF                                    | 302 |
| AfOTase   | ELIQRYAQNIAANHDLKAT | VRIDTGYEVLVSDPKATQT                                       | VIPALDLATDGIGAKEV                | APGMG-SEDFGAF -:                               | 381 |
| ADH3      | AAIDGYFPEVVRPKAARIG | ALISQTAAKAYRNGVRIA                                        | FGTDQGVGPHGDNAREF                | VYMVE-AGIPAAY —:                               | 369 |
| OTase     | IFLASNGEGLVKESWAKLQ | ALADSHLKAYQGAIKAGVTIA                                     | LGTDTAPGGPTALEL                  | QFAVERGGMTPLE —4                               | 402 |
| CP        | AFNSNFSMKDLYPEGSQVK | GHKTID-VEKGKDKQVDIVTD                                     | KALSIPVKSGDEKNYKA                | EVTL <mark>DKKE</mark> ITAPV —:                | 373 |
| PJ15 1540 | GFSN-FETANVQPANQVLA | KAKVWFGKQDDVQIGLA                                         | ENFNVTMPKGQADKIKT                | QLVVQ-PKLNAPL —:                               | 332 |
| CP A      | LSIHSYSQLLLYPYGYTTQ | SIP <b>D</b> KT <mark>E</mark> LNQVAKSAV <mark>E</mark> A | LKSLY <mark>g</mark> tsykygsiitt | IYQAS <mark>GG</mark> SI <mark>D</mark> WSY —: | 369 |
|           |                     |                                                           |                                  |                                                |     |

| 87 | Figure S5. Multiple sequences alignments of ADH3 and other OTA detoxify              |
|----|--------------------------------------------------------------------------------------|
| 88 | enzymes with known polypeptide sequences. The catalytic residues for ADH3 are        |
| 89 | shown in white character with a black background. The result of multiple sequences   |
| 90 | alignments showed that the sequences of the identified peptidases (detoxify enzymes) |
| 91 | responsible OTA detoxification showed high diversity, and ADH3 showed the closest    |
| 92 | relative to OTase indentified from Aspergillus niger. The amino acid sequences used  |
| 93 | in multiple sequences alignments were as follows: ADH3 (QOF97534.1), AfOTase         |
| 94 | (OSZ37025.1), PJ15_1540 (KHF78480.1), OTase (AIG55189.1), CP (AKA44618.1),           |
| 95 | CPA (NP_777175.1).                                                                   |



99

Figure S6. Gene cloning, protein expression, purification and activity assay of ADH3. A, the PCR product of gene *adh3* from the CW117 genome; B, The PCR verification of *gene adh3* from *E. coli* BL21 transformant pGEX-4T-1/*adh3*; C, SDS-PAGE analysis of the heterologous expressed rADH3 (M, marker; 1, the expressed rADH3 in precipitant; 2, the expressed rADH3 in supernatant); D, SDS-PAGE analysis of the purified rADH3 (M, marker; rADH3, the purified rADH3 protein); E, OTA degradation assays on purified rADH3 by 1.2 μg/mL active protein.

### 108 **Reference**

- 1101.Stander MA, Steyn PS, van Der Westhuizen FH, Payne BE. 2001. A kinetic study into the111hydrolysis of the ochratoxins and analogues by carboxypeptidase A. Chem Res Toxicol11214:302-4.
- Wu Q, Dohnal V, Huang L, Kuca K, Wang X, Chen G, Yuan Z. 2011. Metabolic pathways of ochratoxin A. Curr Drug Metab 12:1-10.
- 115 3. Chang X, Wu Z, Wu S, Dai Y, Sun C. 2015. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Addit Contam Part A Chem Anal Control Expo Risk Assess
  117 32:564-71.
- 1184.Dobritzsch D, Wang H, Schneider G, Yu S. 2014. Structural and functional characterization of119ochratoxinase, a novel mycotoxin-degrading enzyme. Biochem J 462:441-52.
- Liuzzi VC, Fanelli F, Tristezza M, Haidukowski M, Picardi E, Manzari C, Lionetti C, Grieco F,
   Logrieco AF, Thon MR, Pesole G, Mule G. 2016. Transcriptional Analysis of Acinetobacter sp.
   neg1 Capable of Degrading Ochratoxin A. Front Microbiol 7:2162.
- 123 6. Zhang H, Zhang Y, Yin T, Wang J, Zhang X. 2019. Heterologous Expression and
  124 Characterization of A Novel Ochratoxin A Degrading Enzyme, N-acyl-L-amino Acid
  125 Amidohydrolase, from Alcaligenes faecalis. Toxins (Basel) 11.
- 126