

Soil Soil Compost Bovine manure Root nodules Soil Rhizosphere Soil Root nodules Root nodules Seeds Potato field soil Intestinal tract Soil Rhizosphere Rhizosphere Rhizosphere Rhizosphere Rhizosphere Soil Root Root Rhizosphere Rhizosphere Pathogen Rhizosphere Root Rhizosphere Leaf Rhizosphere Seeds Seeds Rhizosphere Rhizosphere Root nodules Root nodules Root nodules Root

Source

Host

NA NΑ Corn NA Arachis villosa NA Maize NA Medicago sativa Robinia pseudoacacia Zea mays NA Homo sapiens NA Cicer arietinum Pine Sabina squemata Triticum aestivum Sophora japonica Sonchus oleraceus Typha angustifolia Wheat Zea mays Tomato Apis mellifera Acer okamotoanum Rice Populus alba Paeonia lactiflora Ouercus aliena Groundnut Garden pea Rice Pine Prosopis farcta Cicer arietinum Lupinus albus Maize

1

2 Fig. S1. Phylogenetic affiliation of the almost entire (1241 positions) 16S rRNA gene sequence 3 of Paenibacillus sp. strain UY79 relative to Paenibacillus spp., isolated from soil, rhizosphere 4 or different plant compartments (root nodule, root, leaf, seed). Sequences of P. larvae ATCC 5 9545 (a pathogen of Apis mellifera) and P. lautus NBRC15380 (a human pathogen) were also 6 included in the analysis. The tree was constructed using MEGA X program. The evolutionary 7 history was inferred by using the Maximum Likelihood method and Kimura 2-parameter 8 model (1). Numbers at each node represent percentage of bootstrap replications calculated 9 from 1,000 replicate trees (2). Branches corresponding to partitions reproduced in less than 10 60% bootstrap replicates were collapsed. Strain UY79 is shown in red, type strains are 11 indicated with a superscript T and NCBI accession numbers are shown in parentheses.

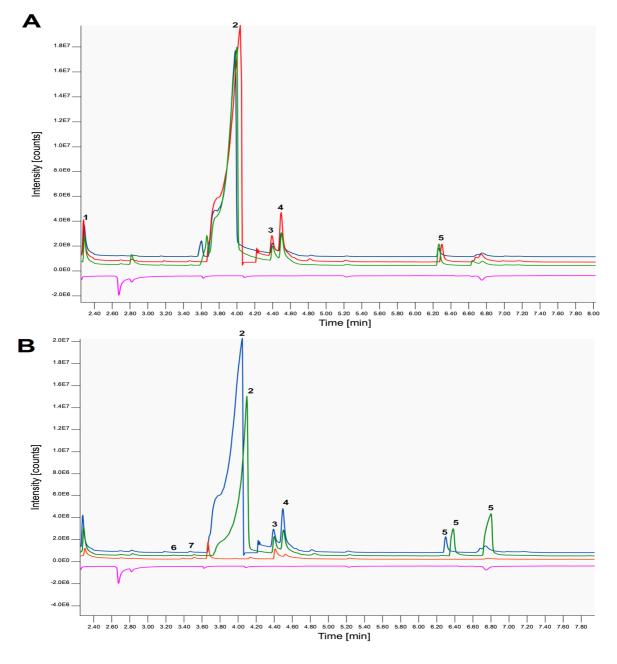


Fig. S2. SPME-GC-MS chromatograms. (A) Chromatograms of VCs produced by a 7-day culture 13 of UY79, collected by 30 min exposure to SPEM (red) or 10 min exposure to SPEM (blue); by a 14 15 36h culture of UY79 and 30min exposure to SPEM (green); and by PDA medium after 7 days of incubation and 30 min exposure to SPEM (fuchsia). (B) Chromatograms of VCs produced at 16 7 days and 30-min exposure to SPEM by UY79 (blue), S. rolfsii 1948 (red), UY79 faced to S. 17 rolfsii 1948 (green) and PDA medium (fuchsia). Identification of peaks depicted in the figure 18 correspond to: (1) 2-methyl-1-propanol, (2) 3-hydroxy-2-butanone, (3) 3-methyl-1-butanol, 19 (4) 2-methyl-1-butanol, (5) 2,3-butanediol, (6) 2-ethylfuran and (7) 2,5-dimethylfuran. 20

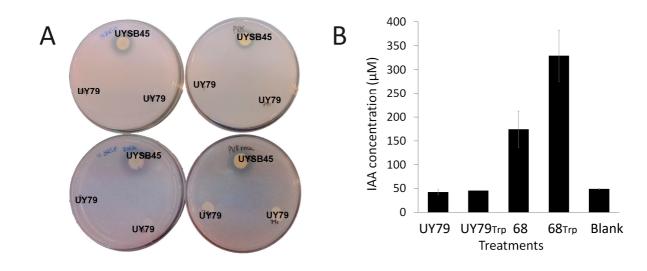


Fig. S3. In vitro evaluation of plant-growth promotion traits of Paenibacillus sp. strain UY79. 22 A) Phosphate solubilization was visualized as a clear halo around colonies grown in NBRIP (left) 23 or PVK (right) medium. Phosphate was supplied as (PO₄)₂Ca₃ (upper plates) or as rock 24 25 phosphate (bottom plates). Pantoea sp. strain UYSB45 was used as positive control. B) IAA 26 production was assessed colorimetrically using the Salkowski reagent. Microbacterium sp. strain UYFA68 (abbreviated as 68) was used as a positive control. Strain UY79 is abbreviated 27 as 79. Conditions with the addition of tryptophan are indicated as Trp. Medium without 28 bacteria was used as a negative control (Blank) 29

32

33			Strain	Phen	otype
34				ΤY	TSA
35				medium	medium
36			B. elkanii U-1301	I	nd
37	19.00	Coexistence (Co)	B. elkanii U-1302	I	nd
38		(00)	E. meliloti 1021	Со	nd
39		Inhibition	R. tropici CIAT 899	Со	nd
		(1)	C. necator. UYPR2.512	Со	П
40	- Commission		Paraburkholderia sp. UYPR4.13	nd	Со
41	(32)	Inhibition (II)	P. protegenes Pf-5	NG	NG
42	-uc	('')	P. fluorescens UP61	nd	NG
43	Str. T	Inhibition	P. fluorescens U148	nd	NG
44	100	(I)	A. brasilense SP7	Ш	Ш
			Streptomyces sp. UYFA 156	nd	Ш
45	-	Inhibition	E. caratovora SCC3193	Со	nd
46	-	(IV)	B. subtilis ATCC 6633	IV	Со

48 Fig. S4. Evaluation of antibiosis by UY79 strain against different soil bacteria. Antibiosis was analyzed by using the soft-agar overlay assay. The assay was performed twice. Different types 49 50 of bacterial interactions were observed. Examples of the interaction exerted and their 51 classification are depicted in the pictures: coexistence (Co), growth of both strains was 52 observed and no halo of inhibition was visualized; inhibition I (I), inhibition halo around the 53 drop of UY79 culture and moderate growth of UY79; inhibition (II), inhibition halo around the drop of UY79 and poor growth of UY79; inhibition (III) good growth of UY79 and inhibition 54 halo in the drop; inhibition (IV), good growth of UY79 and inhibition halo around the drop of 55 56 UY79 culture. NG, no visible growth of UY79; nd, not done.

57

59	Table S1. Genome statistics for Paenibacillus sp. st	rain UY79
----	--	-----------

Attribute	Value	Bioinformatic tool used
Genome size (bp)	4970505	Quast v5.0.2
N° of clean reads	12720648	FastQC
N° of contigs	167	Quast v5.0.2
N ₅₀ (bp)	281104	Quast v5.0.2
L ₅₀ (bp)	5	Quast v5.0.2
Maximum contig length (bp)	1146979	Quast v5.0.2
Minimum contig length (bp)	71	Quast v5.0.2
Avg genome coverage (X)	235.7	Bowtie2, Samtools,
		Bedtools
G+C content (%)	46.4	Quast v5.0.2
No. of predicted coding sequences	5353	RAST 2.0
RNA genes	109	RAST 2.0
Plasmid	1	PlasFlow
Plasmid size (bp)	42743	RAST 2.0
GenBank accession n°	JAFFQR010000000	
SRA accession n°	PRJNA697992	

- 62 **Table S2.** Relevant VCs produced by *Paenibacillus* sp. strain UY79 grown alone. VCs were
- 63 collected from bacterial cultures grown for 36 h or for 7 days and extracted for 10 minutes

64 or 30 minutes sorption to SPEM fibers

Compound ^a	RT ^b		Area (%)			
	36 h	7 d	7 d	36 h	7 d	7 d
	(30min) ^c	(10min)	(30min)	(30min)	(10min)	(30min)
2-methyl-1-propanol	2.283	2.281	2.274	1.77	2.51	1.70
3-hydroxy-2-butanone	3.995	3.752	4.043	70.38	76.25	>65
3-methyl-1-butanol	4.399	4.398	4.391	1.11	0.90	2.66
2-methyl-1-butanol	4.501	4.497	4.495	4.40	4.33	5.31
2,3-butanediol	6.268	6.262	6.301	1.71	1.06	1.14

^a Compounds were identified by comparison of the mass spectra against reference libraries

66 (NIST 08, Wiley 139)

67 ^b RT: Retention time

^c VCs were collected from bacterial cultures grown for 36 h or 7 days and extracted for 10 or

69 30 minutes with SPEM fibers

71 **Table S3**. Proteins or genes of interest for this work mined in the genome of *Paenibacillus* sp.

72 strain UY79

Putative	Predicted function	RAST ID	Tool used for
activity			mining
Cellulase a	activity		
	Cellulose 1,4-beta-cellobiosidase (reducing end) (EC 3.2.1.176)	UY79_2001	RAST
	Cellulose 1,4-beta-cellobiosidase (reducing end) (EC 3.2.1.176)	UY79_4217	RAST
	Endo-1,4-beta-glucanase (cellulase) (EC 3.2.1.4)	UY79_2748	RAST
	Endo-1,4-beta-glucanase E1precursor (EC 3.2.1.4)	UY79_2705	RAST
	Endo-1,4-beta-glucanase B precursor (EC 3.2.1.4)	UY79_948	RAST
	Endoglucanase	UY79_2712	RAST
	Endo-beta-1,3-1,4 glucanase (licheninase) (EC 3.2.1.73)	UY79_916	RAST
Beta-gluco	osidase activity		
	Beta-glucosidase (EC 3.2.1.21)	UY79_4825	RAST
	Beta-glucosidase (EC 3.2.1.21)	UY79_1789	RAST
	Beta-glucosidase (EC 3.2.1.21)	UY79_1150	RAST

	Chitinase (EC 3.2.1.14)	UY79_3954	RAST
	Chitin binding protein	UY79_1619	RAST
Xylanase a	activity		
	Endo-1,4-beta-xylanase A precursor (EC 3.2.1.8)	UY79_5258	RAST
	Endo-1,4-beta-xylanase A precursor (EC	UY79_5194	RAST
	3.2.1.8)		
	Endo-1,4-beta-xylanase (EC 3.2.1.8)	UY79_5111	RAST
	Endo-1,4-beta-xylanase (EC 3.2.1.8)	UY79_3919	RAST
	Endo-1,4-beta-xylanase A precursor (EC	UY79_3218	RAST
	3.2.1.8)		
	Endo-1,4-beta-xylanase A precursor (EC	UY79_3217	RAST
	3.2.1.8)		
	Endo-1,4-beta-xylanase (EC 3.2.1.8)	UY79_3987	RAST
	Endo-1,4-beta-xylanase A precursor (EC	UY79_2728	RAST
	3.2.1.8)		
	Endo-1,4-beta-xylanase A precursor (EC	UY79_2727	RAST
	3.2.1.8)		
	Endo-1,4-beta-xylanase A precursor (EC	UY79_2726	RAST
	3.2.1.8)		

	Endo-1,4-beta-xylanase (EC 3.2.1.8)	UY79_203	RAST
	Endo-1,4-beta-xylanase (EC 3.2.1.8)	UY79_178	RAST
	Endo-1,4-beta-xylanase (EC 3.2.1.8)	UY79_907	RAST
	Xylan 1,4-beta-xylosidase (EC 3.2.1.37)	UY79_1887	RAST
	Xylan 1,4-beta-xylosidase (EC 3.2.1.37)	UY79_135	RAST
	Xylan alpha-1,2-glucuronosidase (EC	UY79_134	RAST
	3.2.1.131)		
Protease			
	Bacillopeptidase F	UY79_2733	RAST
HCN produ	iction	NOT FOUND	
NRPS			
	NRPS: Tridecaptin	UY79_5164	RAST,
			antiSMASH
		UY79_5163	RAST,
			antiSMASH
	NRPS-like	UY79_3034	RAST,
			antiSMASH
	NRPS	UY79_2567	RAST,
			antiSMASH
		UY79_2566	RAST, antiSMASH
			ลาแวเขเควที

	NRPS: Fusaricidin B	UY79_2178	RAST,	
			antiSMASH	
		UY79_2177	RAST,	
			antiSMASH	
	NRPS: Tridecaptin	UY79_2096	RAST,	
			antiSMASH	
		UY79_2094	RAST,	
			antiSMASH	
		UY79_2093	RAST,	
			antiSMASH	
	NRPS	UY79_1857	RAST,	
			antiSMASH	
	Lassopeptide Paeninodin	UY79_3797	antiSMASH	
Nitrogen fi	xation			
	Nitrogenase iron protein, NifH	NOT FOUND		
Auxin production				
	Indole acetic acid synthesis	NOT FOUND		
Phosphate	solubilization			
	Alkaline phosphatase (EC 3.1.3.1)	UY79_2289	RAST	
Sidaranha	re biosynthesis and iron (siderenhore transport			

Siderophore biosynthesis and iron/ siderophore transport

ABC transporter	UY79_5210	RAST
(iron/B12/siderophore/hemin), PBP		
Siderophore biosynthesis diaminobutyrate	UY79_5202	RAST,
2-oxoglutarate aminotransferase (EC		antiSMASH
2.6.1.76)		
PF06276.12 (Ferric iron reductase FhuF-like	UY79_5200	antiSMASH
transporter)		
Achromobactin biosynthesis protein, AcsC-	UY79_5199	RAST,
like		antiSMASH
Achromobactin biosynthesis protein AcsB	UY79_5198	RAST,
		antiSMASH
Diaminopimelate decarboxylase (EC 4.1.1.20)	UY79_5197	RAST,
		antiSMASH
Achromobactin biosynthesis protein AcsA @	UY79_5196	RAST,
Siderophore synthetase superfamily, group B		antiSMASH
ABC-type Fe3+-siderophore transport	UY79_5186	RAST
system, PBP		
Fe-bacillibactin uptake system FeuB	UY79_5185	RAST
ABC-type Fe3+-siderophore transport	UY79_5184	RAST
system, permease		
ABC-type Fe3+-siderophore transport system	UY79_5183	RAST

Ferrichrome transport ATP-binding protein	UY79_4883	RAST
FhuC		
Ferric uptake regulation protein Fur	UY79_4700	RAST
Fe-bacillibactin uptake system FeuC	UY79_3500	RAST
Siderophore transport protein	UY79_3038	RAST
Ferrichrome transport system permease	UY79_4121	RAST
protein FhuB		
Ferrichrome transport system permease	UY79_4120	RAST
protein FhuG		
ABC-type Fe3+-siderophore transport	UY79_2524	RAST
system, permease		
ABC-type Fe3+-siderophore transport	UY79_2038	RAST
system, permease		
Ferrous iron transport periplasmic protein	UY79_1725	RAST
EfeO,		
Ferrous iron transporter FeoB	UY79_1175	RAST
Ferrichrome-binding periplasmic protein	UY79_825	RAST
precursor (TC 3.A.1.14.3)		
<i>fla/che</i> operon	UY79_2937-	RAST
	UY79_2983,	
	UY79_3019	

Motility

Large flagellar gene cluster	UY79_4992-	RAST
	UY79_5014	
Stator operon <i>motAB</i>	UY79_5051-	RAST
	UY79_5052,	
	UY79_4227-	
	UY79_4228	

Putative genes involved in volatile compound production

Acetolactate synthase (E.C. 2.2.1.6)	UY79_3438,	RAST
	UY79_3439,	
	UY79_5281	
Acetoin biosynthesis (E.C. 1.1.1.304)	UY79_4819	BLASTP,
		HMMER, PFAM,
		HHPRED,
		MODELLER
2,3-butanediol biosynthesis (E.C. 1.1.1.4)	UY79_2598	BLASTP,
		HMMER, PFAM,
		HHPRED,
		MODELLER
2-methyl-1-butanol biosynthesis	UY79_1834	RAST, BLASTP,
(Amino acid aminotransferase E.C 2.6.1.42)		HMMER, PFAM,

2-methyl-1-butanol biosynthesis	UY79_2174	BLASTP,
(2-ketoacid decarboxylase)		HMMER, PFAM,
		HHPRED,
		MODELLER
2-methyl-1-butanol biosynthesis	UY79_273,	RAST
(Alcohol dehydrogenase EC 1.1.1.1)	UY79_705,	
	UY79_1349,	
	UY79_2626,	
	UY79_4296	
CRISPR/Cas system ^a		
CRISPR-associated protein Cas1, Cas2, Cas3	3, UY79_5312,	
Cas4, Cas5, Csd1(Cas8c), Csd2/Csh2(Cas7)	UY79_1015,	
	UY79_5311,	
	UY79_5313 to	
	UY79_5317	
CRISPR-associated RAMP Cmr1, Cmr2; Cmr	-3, UY79_1469 to	
Cmr4, Cmr5, Cmr6	UY79_1464,	
	UY79_1471,	
	UY79_1472,	
	UY79_1534	

Phages

<i>Tenacibaculum</i> phage pT24 (<i>Myoviridae</i> family)	UY79_2931 to UY79_2972	Prophage hunter (A ^b)
<i>Vibrio</i> phage phi2 (<i>Myoviridae</i> family)	UY79_383 to UY79_469	Prophage hunter (A) Phaster (I ^c)
<i>Brevibacillus</i> phage Jimmer2 (<i>Myoviridae</i> family)	UY79_3611 to UY79_3691	Prophage hunter (A) Phaster (I)
<i>Bacillus</i> phage vB BtS BMBtp14 (<i>Siphoviridae</i> family)	UY79_1908 to UY79_1998	Prophage hunter (A) Phaster (IN ^d)
<i>Paenibacillus</i> phage Shelly (<i>Siphoviridae</i> family)	UY79_2361 to UY79_2429	Prophage hunter (AM ^e) Phaster (IN)
<i>Lactococcus</i> phage bIL312 (<i>Siphoviridae</i> family)	UY79_4988 to UY79_5025	Prophage hunter (A)
<i>Paenibacillus</i> phague PG1 (<i>Siphoviridae</i> family)	UY79_3855 to UY79_3385	Prophage hunter (AM) Phaster(IN)
<i>Moraxella</i> phage mcat7 (<i>Siphoviridae</i> family)	UY79_4609 to UY79_4645	Prophage hunter (AM)

⁷³ ^a Several CRISPR related regions were detected: eighty-four CRISPR repeats and seventy-six

74 CRISPR spacers, distributed among eight CRISPR arrays, and two CRISPR/CAS systems with

- the following protein arrangement: Cas3-Cas5-Csd1(Cas8c)-Csd2/Csh2(Cas7)-Cas4-Cas1-
- 76 Cas2, corresponding for putative Type I-C system and fCmr6-Cmr1-Cmr2-Cmr3-Cmr4-Cmr5-
- 77 Cmr6, corresponding for putative Type III-B system (Table S3). Similar systems have also
- been described in *P. polymyxa* A18 (Type I-C and III-B), *Bacillus halodurans* (Type I-C) and
- 79 *Pyrococcus furiosus* (Type III-B) (3, 4).
- 80 ^bA: active
- 81 ^cI: intact
- 82 ^dIN: incomplete
- 83 ^eAM: ambiguous

84 References

- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions
 through comparative studies of nucleotide sequences. Journal of Molecular Evolution
 16:111-120.
- Felsenstein J. 1985. Confidence Limits on Phylogenies: An Approach Using the Bootstrap.
 Evolution 39:783-791.
- 90 3. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng
- D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP,
 Venclovas C, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J,
 Barrangou R, Koonin EV. 2020. Evolutionary classification of CRISPR-Cas systems: a burst of
- 94 class 2 and derived variants. Nat Rev Microbiol 18:67-83.
- Pasari N, Gupta M, Eqbal D, Yazdani SS. 2019. Genome analysis of Paenibacillus polymyxa
 A18 gives insights into the features associated with its adaptation to the termite gut
 environment. Sci Rep 9:6091.