
Supplementary  

Parameter Selection 

There are several parameters to be determined in SCIDRL, including the hyperparameters of the network and 

parameters β (the weight for the noise classifier) and 𝜆 (the weight for the discriminator). Experiments show that the 

performances are similar for a wide range of hyperparameters of the network. In our experiments, the default setting 

of manually optimized parameters is: depth of the autoencoder=3 with 64-10-64 neurons, depth of the noise classifier 

=1, depth of the discriminator =3 with 32-16-4 neurons, the weight of noise classifier β = 1. 

The most important parameter is the weight of the discriminator 𝜆, which controls the trade-off between the 

generation of biological representations and the discrimination of them in different batches. It varies from 0.1 to 5 

experimentally. The default value of  λ = 0.1 is usually sufficient for achieving reasonable results for most analyses. 

To identify the best parameter for better integration, we proposed a quantitative heuristic strategy. To select the best 

parameter 𝜆 in a data-specific way, 1) we firstly compute the discriminator’s loss 𝑙𝑜𝑠𝑠2̂ over the candidate parameter 

choices (𝜆 =0.1, 0.5 or 1) and select the minimum value (i.e. 𝜆𝑏𝑎𝑠𝑒), at which 𝑙𝑜𝑠𝑠2̂ has the tendency to firstly 

decreases and then increases. The discriminator’s loss 𝑙𝑜𝑠𝑠2̂  measures how well mixtures of cells from different 

batches. In the training process, the discriminator’s loss 𝑙𝑜𝑠𝑠2̂ usually decreases sharply during the beginning 

epochs, which indicates that the discriminator is well trained to classify different batches. After several epochs, the 

discriminator’s loss increases to be stable and displays very limited fluctuations. 2) We then just compute the LISI-

batch of each cell cluster over a grid of candidate parameter choices (𝜆 = 𝜆𝑏𝑎𝑠𝑒: 𝜆𝑠𝑡𝑒𝑝: 5, in which 𝜆𝑠𝑡𝑒𝑝=0.1 when 

𝜆𝑏𝑎𝑠𝑒=0.1 or 0.5 and 𝜆𝑠𝑡𝑒𝑝=1 when 𝜆𝑏𝑎𝑠𝑒 = 1) and select the elbow value (i.e. 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) that increasing it sharply. The 

cell clusters are determined by running Seurat with the default resolution value as 0.1 on the cells in the integrated 

representation space when 𝜆 = 𝜆𝑏𝑎𝑠𝑒. Although the cell clusters assigned by Seurat with default parameter may not 

be in complete agreement with the biological ground-truth, they can still reflect a certain layer of the cell type hierarchy 

tree. The optimal value 𝜆𝑜𝑝𝑡𝑖𝑚 is obtained by 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙-𝜆𝑠𝑡𝑒𝑝. 𝜆𝑜𝑝𝑡𝑖𝑚 will be further examined by UMAP visualizations, 

to be specific, test if some clusters, especially distant clusters, are mixed up when λ = 𝜆𝑜𝑝𝑡𝑖𝑚.  

We displayed some examples in Figure S4. Firstly, determine 𝜆𝑏𝑎𝑠𝑒 in all datasets we used. We find that 𝜆𝑏𝑎𝑠𝑒 of 

simulated, pancreas, DC, cell line, mouse hematopoietic, human cerebral organoids, mouse retina, mouse brain, PBMC 

and eight organ datasets can be set as 0.1, whereas, it can be set as 0.5 of mouse atlas and mouse cortex datasets, 

which can be intuitively visualized by the variation curves of 𝑙𝑜𝑠𝑠2̂ in Figure S4A&S4B. Secondly, determine 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

from UMAP visualizations and LISI-batch. In simulated 2 dataset (Figure S4C), when 𝜆 = 𝜆𝑏𝑎𝑠𝑒, the LISI-batch of 

cluster 0 is close to 2 and are close to 1 for the remaining clusters (left first), which indicates cluster 0 has two batches 

and the other clusters have one batch. This phenomenon is further proved by UMAP visualization that only cluster 0 

has two batches mixed (left second). Observing the curve, we find that when 𝜆 = 0.5, the LISI-batch of cluster 1 and 

cluster 5 have remarkable rise from 1 to 2, and it has obvious reduction from 2 to 1 for cluster 0, which warns us 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 

may be 0.5 (left first). As expected, the UMAP visualization of 𝜆 = 0.5 shows that cluster 0,1 and 5 are blended (left 

third), and the cell type labels indicate that Group 1, Group 2 and Group 5 are grouped together (left fourth). So, we 

recommend 𝜆𝑜𝑝𝑡𝑖𝑚 = 0.4 for this dataset. In DC dataset (Figure S4D), when 𝜆 = 0.1, the LISI-batch of cluster 0,1 and 

2 are 1.13, 1.78 and 1.85, which is consistent with UMAP that cluster 1 and 2 have two batches mixed, and cluster 0 

has two batches separated (left first and second). When 𝜆 = 0.5, the LISI-batch of cluster 0 has an obvious increase 

from 1.13 to 1.79, which indicates fault mixture happens in cluster 0. This inference is testified by the batch mixtures of 

cluster 0 from UMAP visualization (left third). This occurs due to the fault mixtures of CD141 and CD1C (left fourth). For 

this data, we set 𝜆𝑜𝑝𝑡𝑖𝑚 = 0.4. For mouse hematopoietic dataset (Figure S4E), when 𝜆 = 0.1, the UMAP visualization 

shows that cluster 2 is the only cluster that belongs to one batch (left second), which is consistent with 1.06 of LISI-

batch (left first). When 𝜆 = 0.3, the LISI-batch of cluster 2 has a quick growth from 1.06 to 1.38 (left first). Inspecting the 

UMAP visualization, we find that the cells of cluster 2 are blended with cells from another batch (left third). The cell type 

labels show fault mixture of CMP, MPP and LTHSC (left fourth). So, we set 𝜆𝑜𝑝𝑡𝑖𝑚 as 0.2. It worth noting that, at base 



value, the LISI-batch of cluster 0 and 1 are 1.14 and 1.15, which indicates cluster 0 and 1 include one batch empirically. 

However, LISI-batch is not an absolute standard because when two batches are close but not mixed, the LISI-batch is 

still small. So further testified by UMAP visualization is necessary. For down-sampled pancreas dataset with alpha as 

shared cell type (Figure S4F), when 𝜆 = 𝜆𝑏𝑎𝑠𝑒, we find that cluster 0 and 1 contain cells from two batches and cluster 6 

belongs to ‘baron’ batch from UMAP (left second), the corresponding LISI-batch are 1.02, 1.17 and 1.007 (left first). 

Observing the variation of LISI-batch, we find that cluster 6 has steep rise from 1 to 1.73 when 𝜆 = 0.6 (left first). 

Inspecting the UMAP, we find that cluster 6 mixes up with cluster 1 and 0 (left third), which is caused by the fault mixtures 

of alpha, gamma and epsilon cells (left fourth). It is worth noting that, the LISI-batch of cluster 8 has a relatively severe 

oscillation though, the UMAP visualization shows that there is no fault mixture of clusters. So, 𝜆𝑜𝑝𝑡𝑖𝑚 = 0.5  is an 

appropriate selection. As for multiple batches, we discussed cell line dataset and human cerebral organoid dataset. In 

cell line dataset (Figure S4G), when 𝜆 = 𝜆𝑏𝑎𝑠𝑒, the UMAP visualization and LISI-batch indicate cluster 0, 1 and 2 contain 

cells from two batches (left second and first). When 𝜆 = 0.3, the LISI-batch of cluster 0 and 1 rise dramatically from 1.7 

to 2.5 (left first), whose UMAP visualization also indicates wrong mixtures of 293t cells and jurkat cells (left fourth). So, 

we set 𝜆𝑜𝑝𝑡𝑖𝑚 = 0.2 for our comparison. In human cerebral organoid dataset (Figure S4H), when 𝜆 = 0.6, we find that 

the LISI-batch of cluster 2, 3, 6 and 8 have obvious rise, especially for cluster 8, which is from 1.9 to 2.3 (left first). The 

UMAP visualization of 𝜆 = 0.6 shows that cluster 2, 3 and 8 are mixed (left third), which is caused by the mixing of GE 

NPCs, cortical NPCs and Non-telencephalon NPCs (left fourth). For this dataset, we select 𝜆𝑜𝑝𝑡𝑖𝑚 = 0.5. For Pancreas 

dataset (Figure S4I), when 𝜆 = 𝜆𝑏𝑎𝑠𝑒, we find all clusters have two batches mixed (left second), although some mixtures 

are insufficient from UMAP visualization. When 𝜆 = 1, no cluster is mixed wrongly, and the batches are mixed more 

thoroughly (left third). In this case, the rise of LISI-batch indicates more thorough integration. In a word, these examples 

testified the effectiveness of our strategy.  
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Figure S1. Removing batch effect in simulated data.  

A. Distances of cell types in different batches. The red box highlights the nearest cell type pairs in different batches. 

B-F. Performance comparison of ten integrated methods for UMAP visualizations on datasets with rare cell types (B) and datasets 

with one shared cell types: Group2, Group1, Group3 or Group4 (C-F). Each point represents a cell and the cell is colored according 

to its known cell type label and shaped according to its batch label. 

 



 

 



 



 

Figure S2. Removing batch effect in two- or three-batch datasets. 

A. Expression patterns of marker genes of mesenchymal, macrophage, mast, epsilon and schwann cells. Each point represents a 

cell and the cell is colored according to the expressions their marker genes: COL1A1, SDS, CPA3, GHRL and SOX10.  

B. Performance comparison of nine methods for UMAP visualizations on pancreas dataset. Each point represents a cell, the rare 

cells are colored according to their known cell type labels and all cells are shaped according to their batch labels.  

C. Performance comparison of ten methods for SILS on six rare cell types of pancreas dataset. The x-axis represents rare cell types 

and the y-axis represents SILS (larger value means better performance). Different colors represent different methods. 

D. Performance comparison of the ten integrated methods for two metrics (SILS and LISI-CoM) on 57 down-sampling pancreas 

datasets. The number of share cell types in each dataset ranges from one to eight. The x-axis represents LISI-batch and the y-

axis represents 1/LISI-cell. Different colors represent different methods. 

E. Performance comparison of ten integrated methods for four metrics LISI-batch & LISI-cell (left）, SILS & LISI-CoM (right) on 

different down-sampling pancreas datasets: dataset with alpha as shared cell type (right), dataset with endothelial as shared cell 

type (middle), dataset with four cell types as shared cell types (left). The x-axis represents LISI-batch or LISI-CoM and the y-axis 

represents 1/LISI-cell or SILS. Different colors represent different methods. 



F-H. Performance comparison of ten methods for UMAP visualizations on DC (F), cell line (G) and mouse hematopoietic (H) 

datasets. Each point represents a cell and the cell is colored according to its known cell type label and shaped according to its 

batch label. 

I. Performance comparison of ten methods for LISI-CoM on mouse atlas (left), mouse brain (middle) and mouse retina dataset 

(right). The x-axis represents methods and the y-axis represents SILS. Different colors represent different methods. 

J. Performance comparison of four methods (SCIDRL, Seurat v3, Liger and iMAP) on integrated gene expression patterns of 

marker genes of ER-stress beta, mesenchymal, mast, macrophage and schwann cells. Each point represents a cell and the cell 

is colored according to the expression value of its marker gene. 

K. Performance comparison of the four integrated methods (SCIDRL, Seurat v3, Liger and iMAP) on overlaps between marker 

genes found by these methods and found by original data for each cell type. The x-axis represents top N genes and the y-axis 

represents the total number of overlaps in top N genes (N ranges from 1 to 100). The left panel shows the results of all cells 

and the right panel shows the results of epsilon cells. 



 



 



 



 



Figure S3. Removing batch effect in multiple datasets. 

A. Performance comparison of nine methods for UMAP visualizations on human cerebral organoids dataset. Each point represents 

a cell and the cell is colored according to its known cell type label and shaped according to its batch label. 

B. Performance comparison of nine methods for UMAP visualizations on PBMC dataset. Each point represents a cell and the cell 

is colored according to its known cell type label and shaped according to its batch label.  

C. Performance comparison of ten methods for UMAP visualizations on down-sampling PBMC dataset with none shared cell type 

in nine batches. Each point represents a cell and the cell is colored according to its known cell type label and shaped according 

to its batch label.  

D. Performance comparison of ten methods for UMAP visualizations on down-sampling PBMC dataset with CD14+ monocyte as 

shared cell type in nine batches. Each point represents a cell and the cell is colored according to its known cell type label and 

shaped according to its batch label. 

E. Performance comparison of the ten integrated methods for two metrics (SILS and LISI-CoM) on PBMC (dataset with all cells 

(left), dataset with CD14+ monocyte as shared cell type (middle) and dataset with zero shared cell type (right)). The x-axis 

represents LISI-CoM and the y-axis represents SILS. Different colors represent different methods. 

F. Performance comparison of the ten integrated methods for two metrics (SILS and LISI-CoM) on mouse coretex (dataset with all 

cells (left), dataset with astrocyte as shared cell type (middle) and dataset with excitatory as shared cell type (right)). The x-axis 

represents LISI-CoM and the y-axis represents SILS. Different color represents different methods. 

G. Performance comparison of the four integrated methods (SCIDRL, Seurat v3, Liger and iMAP) on overlaps between marker 

genes found by these methods and found by original data for each cell type on human cerebral organoids (left) and PBMC 

dataset (right). The x-axis represents top N genes and the y-axis represents the total number of overlaps in top N genes (N 

ranges from 1 to 100). 

H. Performance comparison of nine methods (except for Bermuda) for UMAP visualizations on eight-organ dataset. Each point 

represents a cell and the cell is colored according to its known cell type label (left) and its batch label (right). 

I. Performance comparison of the ten integrated methods for three metrics on eight-organ dataset (Left: LISI-batch and 1/LISI-cell, 

Right: LISI-CoM). The x-axis represents LISI-batch or methods and the y-axis represents 1/LISI-cell or LISI-CoM. Different colors 

represent different methods. 

J. Performance comparison of the nine integrated methods (except for Bermuda) for UMAP visualization on eight-organ dataset. 

Each point represents a cell, the immune cells are colored according to their known cell type labels and the remaining cells are 

colored using gray (left), all cells are colored according to its batch label (right). 



 



 
Figure S4. Parameter selections on datasets.  

A. Variation curves of Discriminator’s loss 𝑙𝑜𝑠𝑠2̂  when λ = 0.1  for datasets with 0.1 as base value. The x-axis represents the 

number of epochs and the y-axis represents the value of 𝑙𝑜𝑠𝑠2̂.  

B. Variation curves of Discriminator’s loss 𝑙𝑜𝑠𝑠2̂ for mouse atlas (left) and mouse cortex data (right) for different λ. The x-axis 

represents the number of epochs and the y-axis represents the value of 𝑙𝑜𝑠𝑠2̂. The colors represent different values of λ.  

C. Parameter selections on Simulated 2 data: The x-axis corresponds to the values (from 𝜆𝑏𝑎𝑠𝑒  to 1 or 10) of λ.  The y-axis 

represents the LISI-batch value for the dataset (first on the left). UMAP visualizations of different values of λ, which are 𝜆𝑏𝑎𝑠𝑒 

(second on the left), 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 for cluster labels (third on the left) and for known cell type labels (fourth on the left). Different colors 

represent different batches. The clusters are identified by Louvain clustering.   

D-I. the same as (C) on different datasets: DC (D), mouse hematopoietic (E), down-sampled pancreas (F), cell line (G), human 

cerebral organoid (H) and pancreas (I) datasets. 

  



Dataset Batch Cell Gene Technology 
Percentage of shared 

cells (types) (%) 

Number of rare cell types 

(proportion) 

𝛌 

simulated 1 2 
4,000 

4,500 
500 simulated 

100 

(100) 

 

1 

(0.01) 

0.1 

simulated 2 2 
695 

665 
500 simulated 

27.1 

(16.7) 
0 

0.1 

Pancreas 2 
8,654 

2,122 
1,398 

CEL-seq2 

Drop-seq 

94 

(53.3) 

6 

(0.0006,0.001,0.001,0.002,

0.005,0.007) 

1 

DC 2 
283, 

286 
1,596 

Smart-seq 

Smart-seq 

66.8 

(50) 
0 

0.4 

Mouse hemato  2 
2,729 

1,920 
4,649 

Smart-seq2 

MARS-seq 

76.2 

(42.8) 
0 

0.2 

Mouse Atlas 2 
21,855 

13,320 
20,00 

Micro-seq 

Smart-seq 

100 

(100) 
0 

1 

Mouse Brain 2 
302,175 

156,049 
1,970 

Drop-seq 

SPLiT-seq 

99.4 

(64.2) 

8 

(e-3, e-4, e-5) 

1 

Mouse Retina 2 
44,808 

27,499 
1,460 

Drop-seq 

Drop-seq 

97.4 

(38.5) 

9 

(e-3, e-4, e-5) 

0.1 

Cell Line 3 

3,053 

2,676 

3,162 

2,000 

10x 

10x 

10x 

Median:70.8 

(Median:50) 
0 

0.2 

Human 

Cerebral 

Organoids 

4 

17,019 

8,581 

9,433 

14,120 

2,000 

10x 

10x 

10x 

10x 

Median:99.2 

(Median:91.3) 

1 

(9e-3) 

0.4 

PBMC 18 

526 

526 

3,222 

3,222 

3,222 

6,584 

3,727 

6,584 

3,362 

2,146 

10x (v2)_A 

10x (v2)_B 

10x (v2) 

10x (v3) 

inDrops 

Seq-Well 

Drop-seq 

CEL-Seq2 

Smart-seq2 

Median:99 

(Median:82.6) 

1 

(0.005) 

5 

Mouse Cortex 8 

644 

5,571 

3,130 

5,599 

2,000 

Smart-seq2 

DroNC-seq 

10x (v2) 

sci-RNA-seq 

Median:87.1 

(Median:57.1) 
0 

5 

Eight Organ 8 

4,487 

8,367 

87,947 

57,020 

94,257 

6,584 

8,569 

1,319 

Drop-seq 

inDrops 

10x (v3) 

Median:21.4 

(Median:20.6) 
0 

0.1 

Table S1 – Statistics of Datasets.    

Each column corresponds to one statistic, each row corresponds to one dataset. 



 

 

Table S2 – Performance of SCIDRL on different categories of datasets    

Each column corresponds to one statistic, each row corresponds to one dataset. The colors represent different categories of datasets, 

which is little shared cells and little shared cell types (LL), little shared cells and many shared cell types (LM), many shared cells and 

little shared cell types (ML) and many shared cells and many shared cell types (MM). 

 

Dataset Percentage of 

shared cells 

(%) 

Percentage 

of shared 

cell types 

(%) 

LISI-

CoM 

(ranking) 

SILS 

(ranking) 

Combination

(ranking) 

Median/Mean

(ranking) 

PBMC  

(None Overlap) 

0 0 2 2 2 3/3.5 

Pancreas-LL 

(endothelial) 

7.7 11.1 4 2 3 

Eight Organ Median:21.4 Median:20.6 6  6 

Simulated 2 27.1 16.7 1 5 3 

Pancreas-LM  

(delta, endothelial, 

epsilon, gamma) 

24.5 26.67 4 1 2.5 2.5/2.5 

Pancreas-ML  

(alpha) 

60.5 11.1 1 1 1 2/2 

Mouse Cortex 

(Astrocyte) 

Median: 63.3 Median: 25 3 1 2 

PBMC 

 (CD14+ monocyte) 

79.5 33.3 2 2 2 

Mouse Retina 97.4 38.5 3  3 

Mouse Hemato 76.2 42.8 1 1 1 

Mouse Cortex 

(Excitatory neuron) 

Median: 89.5 Median: 45 4 2 3 

DC 66.8 50 1 6 3.5 2/2.44 

Cell Line Median:70.8 Median:50 1 6 3.5 

Pancreas 94 53.3 1 3 2 

Mouse Cortex Median:87.1 Median:57.1 3 1 2 

Mouse Brain 99.4 64.2 1  1 

PBMC Median:99 Median:82.6 2 2 2 

Human Cerebral 

Organoids 

Median:99.2 Median:91.3 1 1 1 

Simulated1 100 100 1 6 3.5 

Mouse Atalas 100 100 6 6 3.5 


