Supplementary

Parameter Selection

There are several parameters to be determined in SCIDRL, including the hyperparameters of the network and
parameters  (the weight for the noise classifier) and A (the weight for the discriminator). Experiments show that the
performances are similar for a wide range of hyperparameters of the network. In our experiments, the default setting
of manually optimized parameters is: depth of the autoencoder=3 with 64-10-64 neurons, depth of the noise classifier
=1, depth of the discriminator =3 with 32-16-4 neurons, the weight of noise classifier § = 1.

The most important parameter is the weight of the discriminator A, which controls the trade-off between the
generation of biological representations and the discrimination of them in different batches. It varies from 0.1 to 5
experimentally. The default value of A = 0.1 is usually sufficient for achieving reasonable results for most analyses.
To identify the best parameter for better integration, we proposed a quantitative heuristic strategy. To select the best
parameter 1 in a data-specific way, 1) we firstly compute the discriminator’s loss loss, over the candidate parameter
choices (1 =0.1, 0.5 or 1) and select the minimum value (i.e. 1,4.), at which loss, has the tendency to firstly
decreases and then increases. The discriminator’s loss loss, measures how well mixtures of cells from different
batches. In the training process, the discriminator’s loss loss, usually decreases sharply during the beginning
epochs, which indicates that the discriminator is well trained to classify different batches. After several epochs, the
discriminator’s loss increases to be stable and displays very limited fluctuations. 2) We then just compute the LISI-
batch of each cell cluster over a grid of candidate parameter choices (1 = Apgge: Astep: 5, In Which Ag0,=0.1 when
Apase=0.10r 0.5 and Ag,=1 when 4,4, = 1) and select the elbow value (i.e. Aciricq;) that increasing it sharply. The
cell clusters are determined by running Seurat with the default resolution value as 0.1 on the cells in the integrated
representation space when 1 = 4;,,,.. Although the cell clusters assigned by Seurat with default parameter may not
be in complete agreement with the biological ground-truth, they can still reflect a certain layer of the cell type hierarchy
tree. The optimal value A,p,sim is Obtained by Acyiticai=Astep- Aoprim Will be further examined by UMAP visualizations,
to be specific, test if some clusters, especially distant clusters, are mixed up when A = 4,,:,-

We displayed some examples in Figure S4. Firstly, determine 4,,. in all datasets we used. We find that 1,,,, of
simulated, pancreas, DC, cell line, mouse hematopoietic, human cerebral organoids, mouse retina, mouse brain, PBMC
and eight organ datasets can be set as 0.1, whereas, it can be set as 0.5 of mouse atlas and mouse cortex datasets,
which can be intuitively visualized by the variation curves of loss, in Figure S4A&S4B. Secondly, determine Ariticar
from UMAP visualizations and LISI-batch. In simulated 2 dataset (Figure S4C), when A = 4., the LISI-batch of
cluster 0 is close to 2 and are close to 1 for the remaining clusters (left first), which indicates cluster 0 has two batches
and the other clusters have one batch. This phenomenon is further proved by UMAP visualization that only cluster 0
has two batches mixed (left second). Observing the curve, we find that when A = 0.5, the LISI-batch of cluster 1 and
cluster 5 have remarkable rise from 1 to 2, and it has obvious reduction from 2 to 1 for cluster 0, which warns us A.itica
may be 0.5 (left first). As expected, the UMAP visualization of 1 = 0.5 shows that cluster 0,1 and 5 are blended (left
third), and the cell type labels indicate that Group 1, Group 2 and Group 5 are grouped together (left fourth). So, we
recommend A,p,:im = 0.4 for this dataset. In DC dataset (Figure S4D), when 4 = 0.1, the LISI-batch of cluster 0,1 and
2 are 1.13, 1.78 and 1.85, which is consistent with UMAP that cluster 1 and 2 have two batches mixed, and cluster 0
has two batches separated (left first and second). When A = 0.5, the LISI-batch of cluster O has an obvious increase
from 1.13 to 1.79, which indicates fault mixture happens in cluster 0. This inference is testified by the batch mixtures of
cluster 0 from UMAP visualization (left third). This occurs due to the fault mixtures of CD141 and CD1C (left fourth). For
this data, we set 4,,:;, = 0.4. For mouse hematopoietic dataset (Figure S4E), when 4 = 0.1, the UMAP visualization
shows that cluster 2 is the only cluster that belongs to one batch (left second), which is consistent with 1.06 of LISI-
batch (left first). When A = 0.3, the LISI-batch of cluster 2 has a quick growth from 1.06 to 1.38 (left first). Inspecting the
UMAP visualization, we find that the cells of cluster 2 are blended with cells from another batch (left third). The cell type
labels show fault mixture of CMP, MPP and LTHSC (left fourth). So, we set A, as 0.2. It worth noting that, at base



value, the LISI-batch of cluster 0 and 1 are 1.14 and 1.15, which indicates cluster 0 and 1 include one batch empirically.
However, LISI-batch is not an absolute standard because when two batches are close but not mixed, the LISI-batch is
still small. So further testified by UMAP visualization is necessary. For down-sampled pancreas dataset with alpha as
shared cell type (Figure S4F), when 1 = 4,,.., we find that cluster 0 and 1 contain cells from two batches and cluster 6
belongs to ‘baron’ batch from UMAP (left second), the corresponding LISI-batch are 1.02, 1.17 and 1.007 (left first).
Observing the variation of LISI-batch, we find that cluster 6 has steep rise from 1 to 1.73 when A = 0.6 (left first).
Inspecting the UMAP, we find that cluster 6 mixes up with cluster 1 and 0 (left third), which is caused by the fault mixtures
of alpha, gamma and epsilon cells (left fourth). It is worth noting that, the LISI-batch of cluster 8 has a relatively severe
oscillation though, the UMAP visualization shows that there is no fault mixture of clusters. So, A,,:m = 0.5 is an
appropriate selection. As for multiple batches, we discussed cell line dataset and human cerebral organoid dataset. In
cell line dataset (Figure S4G), when 1 = 4,,.., the UMAP visualization and LISI-batch indicate cluster 0, 1 and 2 contain
cells from two batches (left second and first). When A = 0.3, the LISI-batch of cluster 0 and 1 rise dramatically from 1.7
to 2.5 (left first), whose UMAP visualization also indicates wrong mixtures of 293t cells and jurkat cells (left fourth). So,
we set A,,:m = 0.2 for our comparison. In human cerebral organoid dataset (Figure S4H), when 1 = 0.6, we find that
the LISI-batch of cluster 2, 3, 6 and 8 have obvious rise, especially for cluster 8, which is from 1.9 to 2.3 (left first). The
UMAP visualization of A = 0.6 shows that cluster 2, 3 and 8 are mixed (left third), which is caused by the mixing of GE
NPCs, cortical NPCs and Non-telencephalon NPCs (left fourth). For this dataset, we select 4,,:;,, = 0.5. For Pancreas
dataset (Figure S4l), when 1 = 1,4, we find all clusters have two batches mixed (left second), although some mixtures
are insufficient from UMAP visualization. When A = 1, no cluster is mixed wrongly, and the batches are mixed more
thoroughly (left third). In this case, the rise of LISI-batch indicates more thorough integration. In a word, these examples
testified the effectiveness of our strategy.
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Figure S1. Removing batch effect in simulated data.

A. Distances of cell types in different batches. The red box highlights the nearest cell type pairs in different batches.

B-F. Performance comparison of ten integrated methods for UMAP visualizations on datasets with rare cell types (B) and datasets
with one shared cell types: Group2, Group1, Group3 or Group4 (C-F). Each point represents a cell and the cell is colored according
to its known cell type label and shaped according to its batch label.
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Figure S2. Removing batch effect in two- or three-batch datasets.

A.

Expression patterns of marker genes of mesenchymal, macrophage, mast, epsilon and schwann cells. Each point represents a
cell and the cell is colored according to the expressions their marker genes: COL1A1, SDS, CPA3, GHRL and SOX10.
Performance comparison of nine methods for UMAP visualizations on pancreas dataset. Each point represents a cell, the rare
cells are colored according to their known cell type labels and all cells are shaped according to their batch labels.

Performance comparison of ten methods for SILS on six rare cell types of pancreas dataset. The x-axis represents rare cell types
and the y-axis represents SILS (larger value means better performance). Different colors represent different methods.
Performance comparison of the ten integrated methods for two metrics (SILS and LISI-CoM) on 57 down-sampling pancreas
datasets. The number of share cell types in each dataset ranges from one to eight. The x-axis represents LISI-batch and the y-
axis represents 1/LISI-cell. Different colors represent different methods.

Performance comparison of ten integrated methods for four metrics LISI-batch & LISI-cell (left) , SILS & LISI-CoM (right) on
different down-sampling pancreas datasets: dataset with alpha as shared cell type (right), dataset with endothelial as shared cell
type (middle), dataset with four cell types as shared cell types (left). The x-axis represents LISI-batch or LISI-CoM and the y-axis

represents 1/LISI-cell or SILS. Different colors represent different methods.



F-H. Performance comparison of ten methods for UMAP visualizations on DC (F), cell line (G) and mouse hematopoietic (H)
datasets. Each point represents a cell and the cell is colored according to its known cell type label and shaped according to its
batch label.

.  Performance comparison of ten methods for LISI-CoM on mouse atlas (left), mouse brain (middle) and mouse retina dataset
(right). The x-axis represents methods and the y-axis represents SILS. Different colors represent different methods.

J. Performance comparison of four methods (SCIDRL, Seurat v3, Liger and iMAP) on integrated gene expression patterns of
marker genes of ER-stress beta, mesenchymal, mast, macrophage and schwann cells. Each point represents a cell and the cell
is colored according to the expression value of its marker gene.

K. Performance comparison of the four integrated methods (SCIDRL, Seurat v3, Liger and iMAP) on overlaps between marker
genes found by these methods and found by original data for each cell type. The x-axis represents top N genes and the y-axis
represents the total number of overlaps in top N genes (N ranges from 1 to 100). The left panel shows the results of all cells
and the right panel shows the results of epsilon cells.



UAMP 2

UAMP 2

UAMP 2

UAMP 2

UAMP 2

UAMP 2

seuratv3

10
5
0
T T T
o w =1
UMAP 1
fastMNN
10
5 Il
Lo
]
T T T T T
2 e w3 m
UMAP 1
DESC
20 . “
N .
10

20

5 i
T T T T T 1
w0 = w ) w <
8 5 N w 9~ 8

UMAP 1
origin
20 ¥
¥
w0 &
‘e
. -
0 ‘ * ~ 4
e

-10 ' ’

T T T T
2 ° =1 g

[+
]

harmony

10

liger

iMAP

BERMUDA
15
10
o~
o
= 5
<
=
[
-5
T T T T
] o w g
UMAP 1
scvi
15

UAMP 2
@

seurat v3

15 -~
- 15
10 .

-10 7

harmony

~ o 10
o o
= 5 = “' *
E » i .
0 0
5 E] ’
. = < w» 8 =
UMAP 1 UMAP 1
fastMNN scanorama
-
s -
f&- 10 a7
v e | A
Zs =
E]
» . 4
5
w 9 " o Im s
UMAP 1 UMAP 1
celltype batch
m Bcell O 10x Chromium {v2Z
B CD14+ monocyte 10x Chromium {v2} A
B CD16+ monocyte 10x Chromium (v2) B
. H CD4+ Tcell 10x Chromium {v3,
H Cytotoxic T cell X CEL-Seq2
W Dendritic cell B Drop-seq
B Megakaryo ® inDrops
 Natural killer cell A Seq-Well
= Plasmacytoid dendritic cell ¢ Smart-seq2
T T T
a B ]
UMAP 1
harmony
“ &£
o~ 10 I
o
= . @
=]

o N 5
a o
= =
< < g
=] =
-5
. -10
2
scanorama
10
10
o o
o o
s 5 = 5
< <
=] I, =1
o o
T T T T T
w e w E] 2
UMAP 1
elltype batch
. . A Batchi
Ceortical excitatory neurons X Batch2
Cortical IPs ‘¢ Batch3
Gortical NPCs @ Batchd
Diencephalon excitatory neurons
Diencephalon inhibitory neurons (CR cells)
GE NPCs
inhibitory neurcns
¥ neurons
¥ neurons
E inhibito
Nen-telencephalon NPCs
Unknow
BERMUDA
15
K
10
10
o o~ 5
: 1 -~
E \ Y z
5 ° 5 ¢
5 ' ‘ .
-10 .
T T
e 2
UMAP 1
scvi
20
20
10
~ - ™
o 10 o
= N E 0
3 N ‘ 3
o -10
T T T T T
e w g & g
UMAP 1
scidrl
Bl e 75
~ 10 . o~
£ :
E 5 g 50
E . B
o o ¥
25
5 L
T T T T T
L] ) w S 9
UMAP 1

-5
a
5
10 7



SILS

liger BERMUDA fastMNN scanorama

bad pe.

12

8
~ ¢ o 8 o
o a s Y a 10
= 4 = =z =
5 5 $ 5 |- A
[}
0 ‘@ 0
N 5 9 Fi=
P A T s
UMAP 1 UMAP 1 UMAP 1
iMAP scvi
batch
i celltype
M O 10x Chromium (v2
- S = Bcell R 10x Chromium {v2) A
Wl & N H CD16+ monocyte 10x Chromium {v2) B
g o o W CD4+ T cell -+ 10x Chromium (v3
g 2 . S B Cytotoxic T cell X CEL-Seq2
= E a2y = ® Dendritic cell B Drop-seq
] = 2 = B Megakaryocyte ® inDrops
e W Natural Killer cell A Seq-Well
[ Plasmacytoid dendritic cell ¢ Smart-seq2
4 L 4
T T T T T
I UMAP 1
scidrl harmony
20 N :
15 4 ~ 5%
o ™ ¢ o
a Nyl o
: 2.{® : g
E] S = ES
5 o
0 z v v : -
= - 8 A
UMAP 1 UMAP 1
scanorama
~
~ o ~ L
o -3 o o
i i i e
< < < =z .
E 2 > 2 -
o "
. =
UMAP 1
iMAP scvi
hatch celltype
15 f 20 1 O 10x Chromium (v2 = Bcell
. 8 10x Chromium (v2) A = CD14+ monocyte
10 . o o 10x Chromium (v2} B ® CD16+ monocyte
u S : o -+ 10x Chromium (v3 = GD4+ T cell
= A = = = é.‘. H X CEL-Seq2 B Cytotoxic T cell
< 5 < s ¢ E B Drop-seq ® Dendritic cell
S S - @ inDrops = Megakaryocyte
0 0 . A Seq-Well = Natural killer cell
- 4 + Smart-seq2 = Plasmacytoid dendritic cell
-5 T T T T . T
UMAP 1 UMAP 1

QOverlaps of Marer Genes

PBMC Mouse Cortex
All cell | |CD14+monut:yte| | None Overlap | All Cell | | Astrocyte ‘ qui(alory neurul+ b 0T St o’g“""'d‘ | RIS
L 03 0 method »
s ® - g method
0.25 L] L] 4 ™ BERMUDA £
S Y ®e . 02 F o te . = DESC & 400 MAP
- * e =i
. 4 0.1 . [} fastMNN k- W liger
0.00 1 [ . * ] & 2% harmoeny 3 H g'dl
. 2 o0 ° . ! TaAp 2 scidr
- w 00 L o . ® iiger & 200+ W seuratv3
0.25 4 0.1 - B scanorama g
T W scidr 5
N 024 ° B scvi 0+
050 b———— T T ———— T T & seurat — T T T T T T
881318 8K¥8 3R 848988 8 § 82 8§18 L 88§38 = 8 8 B §e= & 8 & g
dd & S48 S5 S S & 88 & 5 & & & & 8 S TotalGenes
LISI-CoM LISI-CoM



UMAP2

UMAP2

UMAP2

ULisi-cell

seurat v3 harmony
Cell Type Batch Cell Type Batch

15 &f& "&

15

1o 10
~N
o “ W
< vt et
E - -
2 0
-5 -5
T T T T 1 T T T
0 10 0 10 0 10 0 10
UMAP1 UMAP1 UMAP1 UMAFP1
liger fastMNN
Cell Type Batch Cell Type Batch
20 -
15 te: k
Y 4 celltype
10 & 10 ﬁ W Ervthroidcell W Epi
- 5 8 & Blood_vessel E';ﬁs,‘,?:"a'
0 Z 5 1& v 5 ¥ S ogenir B oS
T m Muscle cells
0] @ © ko ke
-10 T T T =5 T u T T > T : :.Edg:l::yocyte Eglg‘ﬁ%t:l stellate
-10 O 10 0 10 ] 10 o Maia = apha "
UMAP1 UMAP1 UMAP1 o brobisst B doiis
PT B epsilon
= DT = gamma
" on Lot stelate
scanorama iMAP
Cell Type Batch Cell Type Batch
batch

Pancreas

20 : ’ = Eidney
™ g ° * 5 ] og’saorphagus
10 - ﬂ;.‘ - - i : ‘S"I;;]gen
. ’ gt " S PBMCH
. % a4 * o b o g n
0 s = - i
*
T
10

UMAP2

w v
- -
T T 1 _5
0 10 (]
UMAP1 UMAP1
scvi
Cell Type Batch
2 8 20
10 * 4 ¢ ‘el ,
- a

UMAP2
=}

&3 : -20

L] 10 V] 10
UMAP1 UMAP1
J origin
Eight Organ Eight Organ
method 20
o4 ¥ DESC
§ 03 = ElstMNN ~
? armony
g °2 u iMAP o 10
= 01 N liger <
. W origin =
ool e m T B scanorama >
@ = scidrl 0
GEfe yeizs s b s
22525 E
v 2 ] H ggégggéﬁmg sedraty T T T T
LISI-batch method ] 2Q 0 20



scidrl
Cell Type Batch
<+
10 - Ly d:ﬁ,: Ly
a ¥ m_ a
; : . - h .
0 ) . -y ) w5 . oy
s (p‘y £ ‘ rﬁ £
g, . -y, .
_10 | T 1 1 1 1 T
0 10 20 Li] 10 20
UMAP1 UMAP1
harmony
Cell Type Batch
e ‘ .* -’:g,,, ‘ ;* k:w
10 ’ 4 :
N .
S i s
s 2] . .
=) S - sk
] A | i !
-5 - - :
0 10 0 10
UMAP1 UMAP1
fastMNN
Cell Type Batch
15 - ‘ { 3 4
N 10 ‘ ki é R
g ¥ .:‘:5; 4 ~ }' _'\f-g:i &4
E 5-k .gr‘;f; B ¥ ,zig
01 W ©
_5 I ] I 1
0 10 0 10
UMAP1 UMAP1
iMAP
Cell Type Batch
N
o
<
=
=
o~
o
o
=
=]

UMAP2

seurat v3

Cell Type Batch
15 A g :
s & it
10 T N s 3 ¥ s ’
] R
—5 - ~.“
I 1 I 1
0 10 1] 10
UMAP1 UMAP1
liger
Cell Type
20 4
4 )
10 1% ; N
! 14
0 -
—-10 4
T T I
-10 0 10
UMAP1
scanorama
Cell Type Batch
20 + f
- : 4 oo : . jf
10 4 - “\D’ -
. 2a f " 2a
b L F ‘4 L Fdoe
i 2 g » s
0 oy _B-o:{jﬁa - 7.-;:5*;
w o -
) 1 1 )
4] 10 1] 10
UMAP1 UMAP1
scvi
Cell Type
¢
10 > #
o
o
bl &
e é;_ “; |3
T T T 1
0 10 0 10
UMAP1 UMAP1
celltype batch
m DC | Kidney
mB H Liver
= NK W oesophagus
CD34_progenitor B lung
mT spleen
= Mast PBMCA1
B Macs m PBMCZ2
H Mono B Pancreas

others



Figure S3. Removing batch effect in multiple datasets.

A.

Performance comparison of nine methods for UMAP visualizations on human cerebral organoids dataset. Each point represents
a cell and the cell is colored according to its known cell type label and shaped according to its batch label.

Performance comparison of nine methods for UMAP visualizations on PBMC dataset. Each point represents a cell and the cell
is colored according to its known cell type label and shaped according to its batch label.

Performance comparison of ten methods for UMAP visualizations on down-sampling PBMC dataset with none shared cell type
in nine batches. Each point represents a cell and the cell is colored according to its known cell type label and shaped according
to its batch label.

Performance comparison of ten methods for UMAP visualizations on down-sampling PBMC dataset with CD14+ monocyte as
shared cell type in nine batches. Each point represents a cell and the cell is colored according to its known cell type label and
shaped according to its batch label.

Performance comparison of the ten integrated methods for two metrics (SILS and LISI-CoM) on PBMC (dataset with all cells
(left), dataset with CD14+ monocyte as shared cell type (middle) and dataset with zero shared cell type (right)). The x-axis
represents LISI-CoM and the y-axis represents SILS. Different colors represent different methods.

Performance comparison of the ten integrated methods for two metrics (SILS and LISI-CoM) on mouse coretex (dataset with all
cells (left), dataset with astrocyte as shared cell type (middle) and dataset with excitatory as shared cell type (right)). The x-axis
represents LISI-CoM and the y-axis represents SILS. Different color represents different methods.

Performance comparison of the four integrated methods (SCIDRL, Seurat v3, Liger and iMAP) on overlaps between marker
genes found by these methods and found by original data for each cell type on human cerebral organoids (left) and PBMC
dataset (right). The x-axis represents top N genes and the y-axis represents the total number of overlaps in top N genes (N
ranges from 1 to 100).

Performance comparison of nine methods (except for Bermuda) for UMAP visualizations on eight-organ dataset. Each point
represents a cell and the cell is colored according to its known cell type label (left) and its batch label (right).

Performance comparison of the ten integrated methods for three metrics on eight-organ dataset (Left: LISI-batch and 1/LISI-cell,
Right: LISI-CoM). The x-axis represents LISI-batch or methods and the y-axis represents 1/LISI-cell or LISI-CoM. Different colors
represent different methods.

Performance comparison of the nine integrated methods (except for Bermuda) for UMAP visualization on eight-organ dataset.
Each point represents a cell, the immune cells are colored according to their known cell type labels and the remaining cells are
colored using gray (left), all cells are colored according to its batch label (right).
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Figure S4. Parameter selections on datasets.

A.

D-I.

Variation curves of Discriminator’'s loss loss, when A = 0.1 for datasets with 0.1 as base value. The x-axis represents the
number of epochs and the y-axis represents the value of [oss,.

Variation curves of Discriminator’s loss loss, for mouse atlas (left) and mouse cortex data (right) for different A. The x-axis
represents the number of epochs and the y-axis represents the value of loss,. The colors represent different values of A.
Parameter selections on Simulated 2 data: The x-axis corresponds to the values (from A5 to 1 or 10) of A. The y-axis
represents the LISI-batch value for the dataset (first on the left). UMAP visualizations of different values of A, which are Ap4.
(second on the left), A.-iticar TOr cluster labels (third on the left) and for known cell type labels (fourth on the left). Different colors
represent different batches. The clusters are identified by Louvain clustering.

the same as (C) on different datasets: DC (D), mouse hematopoietic (E), down-sampled pancreas (F), cell line (G), human

cerebral organoid (H) and pancreas () datasets.



Percentage of shared | Number of rare cell types A
Dataset Batch Cell Gene | Technology
cells (types) (%) (proportion)
100 0.1
4,000 1
simulated 1 2 500 simulated (100)
4,500 (0.01)
695 271 0.1
simulated 2 2 500 simulated 0
665 (16.7)
6 1
8,654 CEL-seqg2 94
Pancreas 2 1,398 (0.0006,0.001,0.001,0.002,
2,122 Drop-seq (53.3)
0.005,0.007)
283, Smart-seq 66.8 04
DC 2 1,596 0
286 Smart-seq (50)
2,729 Smart-seq2 76.2 0.2
Mouse hemato 2 4,649 0
1,920 MARS-seq (42.8)
21,855 Micro-seq 100 1
Mouse Atlas 2 20,00 0
13,320 Smart-seq (100)
302,175 Drop-seq 99.4 8 1
Mouse Brain 2 1,970
156,049 SPLiT-seq (64.2) (e-3, e-4, e-5)
44,808 Drop-seq 97.4 9 0.1
Mouse Retina 2 1,460
27,499 Drop-seq (38.5) (e-3, e-4, e-5)
3,053 10x 0.2
Median:70.8
Cell Line 3 2,676 2,000 10x 0
(Median:50)
3,162 10x
17,019 10x 04
Human
8,581 10x Median:99.2 1
Cerebral 4 2,000
) 9,433 10x (Median:91.3) (9e-3)
Organoids
14,120 10x
526 10x (v2)_A 5
526 10x (v2)_B
3,222 10x (v2)
3,222 10x (v3)
Median:99 1
PBMC 18 3,222 2,146 inDrops
(Median:82.6) (0.005)
6,584 Seqg-Well
3,727 Drop-seq
6,584 CEL-Seq2
3,362 Smart-seq2
644 Smart-seq2 5
5,571 DroNC-seq Median:87.1
Mouse Cortex 8 2,000 0
3,130 10x (v2) (Median:57.1)
5,599 sci-RNA-seq
4,487 0.1
8,367
87,947 Drop-seq
Median:21.4
Eight Organ 8 57,020 1,319 inDrops ) 0
(Median:20.6)
94,257 10x (v3)
6,584
8,569

Table S1 — Statistics of Datasets.

Each column corresponds to one statistic, each row corresponds to one dataset.




Dataset Percentage of | Percentage LISI- SILS Combination | Median/Mean
shared cells of shared CoM (ranking) (ranking) (ranking)
(%) cell types (ranking)
(%)
PBMC 0 0 2 2 2 3/3.5
(None Overlap)
Pancreas-LL 7.7 111 4 2 3
(endothelial)
Eight Organ Median:21.4 Median:20.6 | 6 6
Simulated 2 271 16.7 1 5
Pancreas-LM 245 26.67 4 1 25 2.5/2.5
(delta, endothelial,
epsilon, gamma)
Pancreas-ML 60.5 111 1 1 1 2/2
(alpha)
Mouse Cortex Median: 63.3 Median: 25 3 1 2
(Astrocyte)
PBMC 79.5 33.3 2 2 2
(CD14+ monocyte)
Mouse Retina 97.4 38.5 3 3
Mouse Hemato 76.2 42.8 1 1 1
Mouse Cortex Median: 89.5 Median: 45 4 2 3
(Excitatory neuron)
DC 66.8 50 1 6 3.5 2/2.44
Cell Line Median:70.8 Median:50 1 6 3.5
Pancreas 94 53.3 1 3 2
Mouse Cortex Median:87.1 Median:57.1 | 3 1 2
Mouse Brain 99.4 64.2 1 1
PBMC Median:99 Median:82.6 | 2 2 2
Human Cerebral Median:99.2 Median:91.3 | 1 1 1
Organoids
Simulated1 100 100 1 35
Mouse Atalas 100 100 6 3.5

Table S2 - Performance of SCIDRL on different categories of datasets
Each column corresponds to one statistic, each row corresponds to one dataset. The colors represent different categories of datasets,
which is little shared cells and little shared cell types (LL), little shared cells and many shared cell types (LM), many shared cells and

little shared cell types (ML) and many shared cells and many shared cell types (MM).



