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Contents

1 Data statistics 4
1.1 Basic network statistics . . . . . . . . . . . . . . . . . . . . . 4
1.2 The number of pathways considered per molecular network . . 4
1.3 The distribution of pathway sizes per molecular network . . . 4

2 Methodology 5
2.1 Centrality measures . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Degree centrality . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Graphlet centrality . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Core number . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Betweenness centrality . . . . . . . . . . . . . . . . . . 6
2.1.5 Closeness centrality . . . . . . . . . . . . . . . . . . . . 7
2.1.6 Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Set enrichment analysis . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Assigning ancestor annotations to pathways . . . . . . 8
2.2.2 Assigning GO-term annotations to pathways . . . . . . 8
2.2.3 Pathway set enrichment . . . . . . . . . . . . . . . . . 8

2.3 Random model network generation . . . . . . . . . . . . . . . 9
2.4 Network distance measures . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Graphlet based network distance . . . . . . . . . . . . 9
2.4.2 Non-graphlet based network distance measures . . . . . 10

3 Comparing graphlet eigencentrality to other node centrali-
ties. 10
3.1 Comparison of different node centralities in model networks . . 10
3.2 Comparison of different node centralities in molecular networks 19

4 Graphlet adjacencies describe topologically and biologically
distinct pathways 26
4.1 Pathway participation prediction accuracy . . . . . . . . . . . 27
4.2 Identifying pathways described by graphlet adjacencies . . . . 32
4.3 Graphlet adjacencies describe complementary groups of func-

tionally related pathways . . . . . . . . . . . . . . . . . . . . . 38
4.4 Pathways described by the same graphlet adjacency are topo-

logically similar . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Linking pathways described by graphlet adjacencies to model

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2



5 Graphlet eigencentralities capture complementary cancer mech-
anisms 52
5.1 Cancer related gene prediction accuracy . . . . . . . . . . . . 52
5.2 The number of cancer genes predicted and their overlap . . . . 56

3



1 Data statistics

1.1 Basic network statistics

Nodes Density Diam.
PPI yeast 5,881 0.0055 6
PPI human 17,380 0.0019 9
COEX yeast 5,363 0.0129 4
COEX human 15,373 0.0131 4
GI yeast 5,634 0.0273 6

Supplementary Table 1: Network statistics. The columns ‘nodes’, ‘Den-
sity’ and ‘Diameter’ respectively report the number of nodes, density and
diameter of each of the molecular networks (first column).

1.2 The number of pathways considered per molecular
network

Nr. of pathways

PPI yeast All 187
PPI human All 969
PPI human Disease 92
PPI human Non-disease 877
COEX yeast All 141
COEX human All 712
COEX human Disease 68
COEX human Non-disease 644
GI yeast All 241

Supplementary Table 2: Number of pathways considered for each
molecular network.

1.3 The distribution of pathway sizes per molecular
network

We create a set of pathway networks for each of our five molecular networks
by inducing the gene set of each pathway in Reactome on the full molecular
network (see Section 2.4.2 of the main paper). In Supplementary Figure 1, we
provide the distribution of pathway sizes for each of our molecular networks.
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Supplementary Figure 1: Distribution of pathway sizes per molecular
network. Each box plot represents the distribution of the pathway sizes for
each of our molecular networks (x-axis) considering all pathways, non-disease
pathways and disease pathways (colour) in the Reactome ontology.

2 Methodology

2.1 Centrality measures

Network centrality measures quantify the importance of a node in a network
based on some topological property. We consider the formal definition of
eigencentrality and extend this definition to graphlet eigencentrality in Sec-
tions 2.1 and 2.2 of the main paper. Here, we define a selection of node
centrality measures applied in network biology. For more details, we refer
the reader to Newman (2010).

2.1.1 Degree centrality

The degree centrality considers highly connected nodes to be the most im-
portant nodes in the network. The degree centrality of a node is synonymous
with its degree: it is its number of neighbours in the network, or equivalently,
the number of edges in the network including the node. Formally, the degree
centrality of a node, u ∈ V , is:

DC(u) = dG0
u =

n∑
v=1

AG0
uv , (1)

where dG0
u is the number of times node u touches graphlet 0 (i.e. an edge),

n is the number of nodes in the network and AG0
uv is the graphlet adjacency
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matrix for graphlet 0 (equivalent to the standard adjacency matrix). It was
shown that perturbing nodes with a high degree in PPI networks has a higher
probability of impacting cell viability (Jeong et al., 2001).

2.1.2 Graphlet centrality

The graphlet centrality of a node, u ∈ V , is the weighted sum of its log
transformed graphlet degrees:

GCD(u) =
8∑

i=0

wi × log(dGi
u + 1), (2)

where wi is a weight coefficient to take into account redundancies between
graphlet counts and the log transformations scales graphlet counts for differ-
ent graphlets to the same order of magnitude (Milenković et al., 2011). The
graphlet centrality is a direct extension of the degree centrality, designed to
take the extended neighbourhood of a node into account. For instance, a
node with a low degree that touches many of the 4-node graphlets would
rank higher when considering its graphlet centrality instead of its degree
centrality. Thus, GDC captures the wider impact of a node on the network.
Based on this idea, it was shown that GDC can be used to uncover disease
genes and drug targets in the human PPI network (Milenković et al., 2011)..

2.1.3 Core number

The k-core of a network is the maximal subgraph such that all nodes in the
subgraph have a degree of at least k. The core number of a node u is c if
the node is in the k-core for k = c and not in the k-core for k = c + 1.
Nodes with a high core number in the human PPI network have been shown
to likely be part of the core diseaseome, a subnetwork of the PPI network
of statistically significantly similarly wired and functionally similar disease
genes (Janjić and Pržulj, 2012).

2.1.4 Betweenness centrality

The betweenness centrality measures the amount of control u has on the flow
of information in the network. Formally, the betweenness centrality of a node
u is the fraction of shortest paths between all nodes in the network on which
u occurs over all shortest paths in the network:

BC(u) =

s,t∈V∑ σ(s, t|u)

σ(s, t)
, (3)
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where σ(s, t) is the number of shortest paths in the network from node s to
node t, and σ(s, t|v) is the number of those paths that include node u. As
the betweenness centrality captures direct and indirect influences of proteins
distant in the network, the betweenness centrality indicates how important
a node is within the wider context of the network. It was shown in the
yeast PPI network that genes with a high betweenness, regardless of their
degree, are likely to be essential genes. The authors explain this through their
observation that many genes with high betweenness also have a low degree,
and therefore function as hub nodes linking functional modules within the
PPI network (Joy et al., 2005).

2.1.5 Closeness centrality

The closeness centrality considers a node to be central in the network if it is
nearby to all other nodes in the network. Formally, the closeness centrality a
node, u ∈ V , is equal to the reciprocal of the average distance of u to every
other node in the network:

CC(u) =
1∑n

v=1 d(u, v)
, (4)

were d(u, v) is the shortest path distance between u and v.

2.1.6 Eccentricity

The eccentricity of a node in the network measures how distant it is from
any other node in the network. Formally, the eccentricity of a node, u ∈ V ,
is equal to the longest shortest path distance from u to any of the nodes in
the network:

ECC(u) = maxv∈V {d(u, v)}, (5)

where d(u, v) is the shortest path distance from node u to v. Thus, a node is
considered important in the network, i.e. central, if it has low eccentricity.

2.2 Set enrichment analysis

In Section 3.1.2 of the main paper, we investigate if a set of pathways contains
similar types of pathways and biological functions. We first annotate all
pathways with their second level ancestors, i.e., annotations in the second
most general level of the pathway ontology, and annotate each pathway with
the GO-term annotations in which its respective gene set is enriched. Then,
we apply pathway-set enrichment analysis to check if a set of pathways is
enriched in pathways sharing pathway ancestry or GO-term annotations.
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2.2.1 Assigning ancestor annotations to pathways

The Reactome Ontology is a collection of 23 direct acyclic graphs (dags),
where nodes represent pathway annotations and directed edges represent ‘is
a’- relationships. We annotate each pathway with its ancestor terms found 1
step away from the root node of the corresponding dag. That is, to annotate
a given pathway with its ancestor(s), we first find that pathway in the Reac-
tome dag, from there trace the Reactome Ontology dag upwards (against the
direction of the ‘is a’ relationships) until we reach the pathway annotation(s)
that is(are) one step away from the root node(s), and use the annotations
corresponding to these nodes as ancestor annotations.

2.2.2 Assigning GO-term annotations to pathways

We annotate each pathway with the GO-terms in which its respective gene set
is enriched, considering GO biological process terms (GO-BP), GO cellular
component terms (GO-CC) and GO molecular function terms (GO-MF). To
determine the enriched annotations, we apply classical gene set enrichment
analysis, where we consider a set of genes as a ‘sampling without replacement’
experiment counting each time we find a given GO-term annotation as a
‘success’. The probability of observing the same or higher enrichment (i.e.
successes) of the given GO-term annotation purely by chance is equal to:

p = 1−
X−1∑
i=0

(
K

i

)(
M −K
N − i

)
/

(
M

N

)
, (6)

where N is the number of GO-term annotated genes in the pathway, X
is the number of genes annotated with the given GO-term annotation in
the pathway, M is the number of GO-term annotated genes covered by all
pathways, and K is the number of genes annotated with the given GO-term
annotation over all pathways. A GO-term annotation is considered to be
statistically significantly enriched if its enrichment p-value is lower than or
equal to 5% after application of the Benjamini and Hochberg correction for
multiple hypothesis testing.

2.2.3 Pathway set enrichment

To assess a set of pathways is statistically significantly enriched by pathways
sharing ancestor annotations or GO-term annotations, we apply the hyper-
geometric test. That is, we consider a set of pathways as a ‘sampling without
replacement’ experiment, in which each time we find a given ancestor or GO-
term annotation, we count that as a ‘success’.
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The probability of observing the same or higher enrichment (i.e. suc-
cesses) of the given annotation purely by chance is equal to:

p = 1−
X−1∑
i=0

(
K

i

)(
M −K
N − i

)
/

(
M

N

)
. (7)

where N is the number of GO-term or ancestor annotated pathways in the
pathway-set, X is the number of pathways annotated with the given ancestor
or GO-term annotation in the pathway, M is the number of ancestor or
GO-term annotated pathways pathways and K is the number of pathways
annotated with the given ancestor or GO-term annotation over all pathways
in the pathway-set. An ancestor or GO-term annotation is considered to be
statistically significantly enriched if its enrichment p-value is lower than or
equal to 5% after application of the Benjamini and Hochberg correction for
multiple hypothesis testing.

2.3 Random model network generation

For each pathway, as induced on each of the molecular networks, we generate
ten networks containing the same number of nodes and edges, for each of the
following seven random network models: Erdős-Rènyi random graphs (ER)
(Erdős Paul and Rényi Alfréd, 1959), generalized random graphs with the
degree distribution matching to the input graph (ER-DD) (Newman, 2010),
Barabási-Albert scale-free networks (SF) (Barabási and Albert, 1999), geo-
metric random graphs (GEO) (Penrose, 2003), geometric graphs that model
gene duplications and mutations (GEO-GD) (Pržulj et al., 2010), stickiness-
index based networks (Sticky) (Pržulj and Higham, 2006), nonuniform PSO
graphs (nPSO) (Muscoloni and Cannistraci, 2018). We provide a summary
on the basic properties of these networks and how to generate in (Windels
et al., 2019).

2.4 Network distance measures

To measure the topological dissimilarity between different sets of pathways
and model networks, we consider graphlet-based and non-graphlet based net-
work distance measures.

2.4.1 Graphlet based network distance

The Graphlet Correlation Distance (GCD-11) is the current state of the art
heuristic for measuring the topological distance between networks (Yaveroǧlu
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et al., 2014, 2015). First, the global wiring pattern of a network is captured in
its Graphlet Correlation Matrix (GCM), an 11 × 11 symmetric matrix com-
prising the pairwise Spearman’s correlations between 11 different graphlet
based counts over all nodes in the network. The Graphlet Correlation Dis-
tance between two networks is computed as the Euclidean distance of the
upper triangle values of their GCMs.

2.4.2 Non-graphlet based network distance measures

The difference between the following non-graphlet based network descriptors
can be used to measure the distance between two networks:

• The degree distribution is the distribution of node degrees over all
nodes. It is summarised as a vector of counts, i.e. the kth value is the
number of nodes that have degree k. To measure the distance between
two networks, this vector is first rescaled to reduce the contribution of
higher degree nodes. The pairwise distance between two networks is the
euclidean distance between their rescaled degree distribution vectors.
For more details, see (Yaveroǧlu et al., 2014).

• The average clustering coefficient is the total number of three node
cliques in the network over the number of possible three node cliques
in the network. The distance between two networks is the absolute
difference of their average clustering coefficient.

3 Comparing graphlet eigencentrality to other

node centralities.

Here we investigate the agreement/relationship between our new graphlet
eigencentrality measures and state of the art centrality measures used in
network biology in a selection of well investigated model networks and our
set of molecular networks. For a review of current centrality measures, see
Landherr et al. (2010).

3.1 Comparison of different node centralities in model
networks

For each type of model network (see Supplementary Section 2.3) we generate
ten networks and over the nodes of those networks, we compute the aver-
age pairwise Spearman correlation between any two different node centrality
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measures (see Section 2.1). Results are presented in Supplementary Figures
2 to 9. We exclude graphlet eigencentrality for graphlet G8 from our compar-
isons in ER, GeoGD, SF and SFGD networks, as this graphlet rarely occurs
in them.

First of all, we observe across all model networks that most centrality
measures are positively correlated. The exceptions are the clustering coeffi-
cient and eccentricity, which are typically anti-correlated to the other cen-
trality measures. In the case of eccentricity, this is expected from its very
definition, as the more eccentric a node is, the less important it is expected
to be in the network. The clustering coefficient does not correlate with other
centrality measures as, unlike most centrality measures, the local density of
the network does not affect it. For instance, a node that is part of a triangle
but with no other connections to the network would have a high clustering
coefficient of 1.0 (the maximal score) but a low degree-centrality (since it
only touches 2 nodes).

Secondly, we observe that the correlations between the different centrality
methods heavily depend on the model network. For instance, betweenness
centrality and graphlet eigencentrality for graphlet 0 strongly correlate in
Scale-Free networks, with an average correlation over ten runs of 97% (least
significant p-value measured over ten runs: 0.0). On the other hand, in Ge-
ometric networks, these two centrality measures are poorly correlated, with
an average correlation of only 24% (although this is still a statistically signif-
icant correlation, with the least significant p-value measured at 1.97e-19). As
a consequence, the clusters of highly correlated centrality measures depend
on the model network considered. For instance, in Geometric model net-
works, we observe clear (overlapping) clusters of highly correlated centrality
measures. If we ignore the clustering coefficient and eccentricity measures,
the average correlation between the different centrality measures in geomet-
ric networks is 63%. Graphlet eigencentrality for graphlets 0, 1, 2, 6, 8
and the degree centrality form a cluster of highly related centralities in Ge-
ometric networks, with an average correlation of 83%. Similarly, graphlet
eigencentralities for graphlets 1, 3, 4, 5, 6, 7, the degree centrality and the
graphlet centrality form a cluster of highly correlated centrality measures
with an average correlation of 85%. This clustering structure is not at all
present in SFGD networks, where all centrality measures, again ignoring the
anti-correlated eccentricity and clustering coefficient, are highly positively
correlated with an average correlation of 90%, so that no clustering of cen-
trality measures shows.

We conclude: different graphlet eigencentralities are positively correlated
with each other and most existing centrality measures. The correlations and
clustering between different centrality measures is strongly depended on the
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topology of the network considered.
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Supplementary Figure 2: Clustered heat map of average pairwise cor-
relations between different centrality measures over 10 ER net-
works. Correlations that are not consistently significant at the 5% signifi-
cance level across the 10 networks are hatched (//).
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Supplementary Figure 3: Clustered heat map of average pairwise cor-
relations between different centrality measures over 10 ER-DD net-
works. Correlations that are not consistently significant at the 5% signifi-
cance level across the 10 networks are hatched (//).
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Supplementary Figure 4: Clustered heat map of average pairwise cor-
relations between different centrality measures over 10 Geo net-
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Supplementary Figure 5: Clustered heat map of average pairwise cor-
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works. Correlations that are not consistently significant at the 5% signifi-
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Supplementary Figure 7: Clustered heat map of average pairwise cor-
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Supplementary Figure 8: Clustered heat map of average pairwise cor-
relations between different centrality measures over 10 Sticky net-
works. Correlations that are not consistently significant at the 5% signifi-
cance level across the 10 networks are hatched (//).

18



ei
ge

n 
c.

 A
G

2

ei
ge

n 
c.

 A
G

8

ei
ge

n 
c.

 A
G

5
de

gr
ee

ei
ge

n 
c.

 A
G

0
be

tw
ee

nn
es

s
gr

ap
hl

et
 c

en
tra

lit
y

ei
ge

n 
c.

 A
G

3

ei
ge

n 
c.

 A
G

7

ei
ge

n 
c.

 A
G

1

ei
ge

n 
c.

 A
G

6
cl

os
en

es
s

ei
ge

n 
c.

 A
G

4
cl

us
te

rin
g

ec
ce

nt
ric

ity

eigen c. AG2
eigen c. AG8
eigen c. AG5
degree
eigen c. AG0
betweenness
graphlet centrality
eigen c. AG3
eigen c. AG7
eigen c. AG1
eigen c. AG6
closeness
eigen c. AG4
clustering
eccentricity

1

0

1

nPSO

Supplementary Figure 9: Clustered heat map of average pairwise cor-
relations between different centrality measures over 10 nPSO net-
works. Correlations that are not consistently significant at the 5% signifi-
cance level across the 10 networks are hatched (//).

3.2 Comparison of different node centralities in molec-
ular networks

For each of our molecular networks (see Section 2.7.1 in the main paper)
we compute the pairwise Spearman correlation matrix between the differ-
ent node centrality measures (see Supplementary Section 2.1). Results are
presented in Supplementary Figures 10 to 14.

Firstly, we observe that we can make the same observations as in model
networks: apart from node eccentricity and the clustering coefficient, all
other node centrality methods are positively correlated. Additionally, the
strength of these correlations and their clustering is dependent on the network
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considered.
Secondly, we observe that graphlet eigencentralities correlate strongly.

These relatively high correlations do not mean different graphlet adjacencies
do not capture different biology however, as indicated by our results pre-
sented in the main paper. To provide insight into why this is the case, we
present a scatter plot between the rank of the graphlet eigencentrality scores
for graphlet G0 and G1 in the human PPI network in Supplementary Figure
15. These two eigencentralities are highly correlated, with a Spearman cor-
relation of 86%. In the COEX networks of yeast and human, we observe that
the same centrality measures cluster together. This is not true for the yeast
and human PPI network. For instance, the strongest clustering in the yeast
PPI network is found between the graphlet eigencentralities for graphlet 0,
2, 3, and 8, with an average correlation of 97%. The same centralities are
not clustered together in the yeast PPI network and have a lower average
correlation of 88%.

Thirdly, despite graphlet eigencentralities being highly correlated, visual
inspection shows that a pair of highly correlated graphlet eigencentralities
can agree on what nodes are very central and not at all, but still show a
clear visual disagreement about the importance of the nodes not on those
extremes of the centrality spectrum. To quantify this result, we measure
average node overlap using the Jaccard index between the top 100 most
central nodes according to the nine different graphlet eigencentralities in
each of our molecular networks (see Supplementary Table 3). We find that
the average Jaccard Index ranges from 0.30 in the Human COEX network to
0.76 in the yeast GI network, revealing that for all of our molecular networks,
there is some disagreement between the different eigencentralities on what
nodes are the most central, indicating their potential complementarity in
biological applications.

We conclude: as was shown in model networks, graphlet eigencentralities
cluster positively with existing centrality measures in molecular networks,
with the strength of the correlations and their clustering being strongly de-
pended on the network considered. Additionally, despite high overall agree-
ment between the different graphlet-eigencentralities on the centrality of
nodes, we show there is a distinct disagreement on the top 100 most central
nodes, indicating their potential complementarity in biological applications.
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Supplementary Figure 10: Clustered heat map of pairwise correlations
between different centrality measures in the yeast PPI network.
Correlations that are not significant at the 5% significance level are hatched
(//).
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Supplementary Figure 11: Clustered heat map of pairwise correlations
between different centrality measures in the human PPI network.
Correlations that are not significant at the 5% significance level are hatched
(//).
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Supplementary Figure 12: Clustered heat map of pairwise correlations
between different centrality measures in the yeast COEX network.
Correlations that are not significant at the 5% significance level are hatched
(//).
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Supplementary Figure 13: Clustered heat map of pairwise correla-
tions between different centrality measures in the human COEX
network. Correlations that are not significant at the 5% significance level
are hatched (//).

24



be
tw

ee
nn

es
s

ei
ge

n 
c.

 A
G

2
ei

ge
n 

c.
 A

G
8

ei
ge

n 
c.

 A
G

4
ei

ge
n 

c.
 A

G
6

ei
ge

n 
c.

 A
G

7
de

gr
ee

ei
ge

n 
c.

 A
G

0
gr

ap
hl

et
 c

en
tra

lit
y

cl
os

en
es

s
k 

co
re

ei
ge

n 
c.

 A
G

3
ei

ge
n 

c.
 A

G
1

ei
ge

n 
c.

 A
G

5
cl

us
te

rin
g

ec
ce

nt
ric

ity

betweenness
eigen c. AG2
eigen c. AG8
eigen c. AG4
eigen c. AG6
eigen c. AG7
degree
eigen c. AG0
graphlet centrality
closeness
k core
eigen c. AG3
eigen c. AG1
eigen c. AG5
clustering
eccentricity

1

0

1

GI yeast 

Supplementary Figure 14: Clustered heat map of pairwise correlations
between different centrality measures in the yeast GI network. Cor-
relations that are not significant at the 5% significance level are hatched (//).

Average Jaccard Index Stdev. of Jaccard Index

PPI yeast 0.65 0.19
PPI human 0.73 0.10
COEX yeast 0.31 0.23
COEX human 0.30 0.23
GI yeast 0.76 0.14

Supplementary Table 3: Average node overlap (Jaccard index) and
its standard deviation between the top 100 most central nodes
according to the nine different graphlet eigencentralities in each of
our molecular networks.
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Supplementary Figure 15: Scatter plot of the rank of graphlet eigen-
centrality scores for graphlet 0 and 1 (x-axis, y-axis respectively)
in the human PPI network.

4 Graphlet adjacencies describe topologically

and biologically distinct pathways

To enable our investigation of topology and biology captured by different
graphlet adjacencies, we first identify sets of pathways that are described by
each graphlet adjacency. Per graphlet adjacency, we consider the described
pathways to be those pathways for which we achieve a normalised AUC-PR
higher than 3.0 (for details, see Section 3.1.1 of the main paper). We report
the pathway participation prediction accuracy based on different graphlet
adjacencies for our five different molecular networks in Supplementary Sec-
tion 4.1. Based on these prediction accuracy results, we identify the sets of
pathways described by each graphlet adjacency for each of our five molecular
networks in Supplementary Section 4.2.
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4.1 Pathway participation prediction accuracy

In Supplementary Figures 16 to 20, we compare the pathway participation
prediction accuracy based on different graphlet adjacencies and prediction
methods, for our five molecular networks.

In Supplementary Figures 16-A to 20-A, we observe that regardless of
the underlying graphlet adjacency and molecular network type, our local
approach and GeneMANIA consistently perform better than random (AUC-
ROC=0.5), achieving median AUC-ROC scores higher than 0.6. This, except
in the yeast GI network, where GeneMANIA performs close to random and
in the yeast PPI network, where our local approach performs close to random
when applied on graphlet adjacency ÃG4 . Our global approach performs as

by random when applied on graphlet adjacencies for ÃG1 , ÃG2 and ÃG8 in
PPI and GI networks, with median AUC-ROC scores around 0.5.
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Supplementary Figure 16: Pathway participation prediction accuracy
in the yeast PPI network. Plot (A) and (B) show the pathway par-
ticipation prediction accuracy measured using AUC-ROC and AUC-PR re-
spectively, for three methods (see legend), applied on different graphlet ad-
jacencies (x-axis), in the yeast PPI network. Each box plot represents the
distribution of prediction accuracies over all pathways using the indicated
method and graphlet adjacency.
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Supplementary Figure 17: Pathway participation prediction accuracy
in the human PPI network. Plot (A) and (B) show the pathway par-
ticipation prediction accuracy measured using AUC-ROC and AUC-PR re-
spectively, for three methods (see legend), applied on different graphlet ad-
jacencies (x-axis), in the human PPI network. Each box plot represents the
distribution of prediction accuracies over all pathways using the indicated
method and graphlet adjacency.
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Supplementary Figure 18: Pathway participation prediction accuracy
in the yeast COEX network. Plot (A) and (B) show the pathway partic-
ipation prediction accuracy measured using AUC-ROC and AUC-PR respec-
tively, for three methods (see legend) applied on different graphlet adjacencies
(x-axis), in the yeast COEX network. Each box plot represents the distribu-
tion of prediction accuracies over all pathways using the indicated method
and graphlet adjacency.
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Supplementary Figure 19: Pathway participation prediction accuracy
in the human COEX network. Plot (A) and (B) show the pathway
participation prediction accuracy measured using AUC-ROC and AUC-PR
respectively, for three methods (see legend) applied on different graphlet
adjacencies (x-axis), in the human COEX network. Each box plot represents
the distribution of prediction accuracies over all pathways using the indicated
method and graphlet adjacency.
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Supplementary Figure 20: Pathway participation prediction accuracy
in the yeast GI network. Plot (A) and (B) show the pathway participation
prediction accuracy measured using AUC-ROC and AUC-PR respectively,
for three methods (see legend) applied on different graphlet adjacencies (x-
axis), in the yeast GI network. Each box plot represents the distribution
of prediction accuracies over all pathways using the indicated method and
graphlet adjacency.

4.2 Identifying pathways described by graphlet adja-
cencies

Here we identify the pathways described by different graphlet adjacencies in
our five molecular networks, based on the pathway participation prediction
accuracy scores achieved using local graphlet eigencentralities. We consider
the pathways described by a given graphlet adjacency to be those for which
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we achieve a normalized AUC-PR score higher than 3 (in analogy to the
99.7% confidence interval of standard normally distributed variables). Here,
we report the number of described pathways per type of graphlet adjacency
and the overlap between the set of pathways described by different graphlet
adjacencies, for our five molecular networks, in Supplementary Figures 21 to
25.

We observe in each of our molecular networks that all graphlet adjacencies
describe at least some pathways. Specifically, depending on the underlying
graphlet adjacency, we are able to identify between 5 to 13 pathways with
a described graphlet adjacency topology in the yeast PPI network (see the
bar chart in Supplementary Figure 21), between 43 and 75 pathways in the
human PPI network (see the bar chart in Supplementary Figure 22), between
5 and 16 pathways in the yeast COEX network (see the bar chart in Sup-
plementary Figure 23), between 27 and 70 pathways in the human COEX
network (see the bar chart in Supplementary Figure 23) and between 5 and
22 pathways in the yeast GI network (see the bar chart in Supplementary
Figure 25).

Additionally, we find that their is only little overlap between the sets of
pathways described by different graphlet adjacencies within the same molecu-
lar network (as measured using the average Jaccard index). This means that
different graphlet adjacencies tend to describe different pathways. Specif-
ically, the average Jaccard Index between pathways described by different
graphlet adjacencies is 0.12 in the yeast PPI network (see the heat map in
Supplementary Figure 21), 0.18 in the human PPI network (see the heat
map in Supplementary Figure 22),0.11 in the yeast COEX network (see the
heat map in Supplementary Figure 23), 0.30 in the human network (see the
heat map in Supplementary Figure 24) and 0.17 in the yeast GI network
(see the heat map in Supplementary Figure 25). We investigate if the sets of
pathways described by different graphlet adjacencies are actually biologically
functionally different in the next section.
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Supplementary Figure 21: The number of pathways described by each
graphlet adjacency and their overlap in the yeast PPI network.
A clustered heat map of the Jaccard similarity indices between the sets of
pathways described by different graphlet adjacencies (x-axis). On top, a
bar-chart indicating the number pathways described by each corresponding
graphlet adjacency.
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Supplementary Figure 22: The number of pathways described by each
graphlet adjacency and their overlap in the human PPI network.
A clustered heat map of the Jaccard similarity indices between the sets of
pathways described by different graphlet adjacencies (x-axis). On top, a
bar-chart indicating the number pathways described by each corresponding
graphlet adjacency.
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Supplementary Figure 23: The number of pathways described by each
graphlet adjacency and their overlap in the yeast COEX network.
A clustered heat map of the Jaccard similarity indices between the sets of
pathways described by different graphlet adjacencies (x-axis). On top, a
bar-chart indicating the number pathways described by each corresponding
graphlet adjacency.
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Supplementary Figure 24: The number of pathways described by each
graphlet adjacency and their overlap in the human COEX network.
A clustered heat map of the Jaccard similarity indices between the sets of
pathways described by different graphlet adjacencies (x-axis). On top, a
bar-chart indicating the number pathways described by each corresponding
graphlet adjacency.
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Supplementary Figure 25: The number of pathways described by each
graphlet adjacency and their overlap in the yeast GI network. A
clustered heat map of the Jaccard similarity indices between the sets of path-
ways described by different graphlet adjacencies (x-axis). On top, a bar-chart
indicating the number pathways described by each corresponding graphlet
adjacency.

4.3 Graphlet adjacencies describe complementary groups
of functionally related pathways

In this section, we show that in each of our five molecular networks, each
graphlet adjacency describes a set of pathways that is biologically function-
ally consistent in terms of the type of pathways they represent and the GO-
terms in which they are enriched. Additionally, we show that the biological
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function captured is specific to each graphlet adjacency.
To check if a given graphlet adjacency captures functionally similar path-

ways, we first annotate each pathway with its second level ancestors, i.e.
the more generic pathways of which descendant, found one step away from
the root nodes of the Reactome ontology (see Supplementary Section 2.2.1).
Analogously, we annotate each pathway with the GO-terms in which its
gene set is enriched (see Supplementary Section 2.2.2). Then, for each set of
pathways described by a given graphlet adjacency, we perform pathway-set
enrichment analysis (see Supplementary Section 2.2.3) to determine if the
pathways in the set share biological function.

In the bar charts at the top of Supplementary Figures 26 to 30, we observe
that in all five of our molecular networks, each graphlet adjacency describes
pathways that are enriched in at least one ancestor annotation, GO-BP term,
GO-CC term and GO-MF term. This means that in all five of our molecular
networks, different graphlet adjacencies describe pathways that are function-
ally similar in terms of the types of ancestor annotations, GO-BP terms,
GO-CC terms and GO-MF terms in which they are enriched. There is one
exception to this conclusion in the yeast COEX network, where the set of
pathways described by graphlet adjacency AG1 is not enriched in any ances-
tor annotations, meaning these pathways are not statistically significantly
similar in terms of the type of pathways they represent.

For our set of yeast molecular networks, in the heat maps presented in
Supplementary Figures 26, 28 and 30, we generally find very low overlap
between the functional annotations enriched in the pathway sets described
by different graphlet adjacencies. This is true for all four of our different
functional annotations (i.e. ancestor annotations, GO-BP terms, GO-CC
terms and GO-MF terms). For yeast, the lowest overlap in terms of enriched
functional annotations is achieved in the COEX network, where the aver-
age Jaccard index between the ancestors enriched in the pathways described
by two different graphlet adjacencies 0.11. The highest overlap in terms of
enriched functional annotations is achieved in the PPI network, where the av-
erage Jaccard index between the GO-MF enriched in the pathways described
by two different graphlet adjacencies is 0.40.

For our set of human molecular networks, in the heat maps presented
in Supplementary Figures 27 and 29, we generally find low overlap between
the ancestor annotations, GO-CC terms and GO-BP terms enriched in the
pathway sets described by different graphlet adjacencies. Of these three
types of functional annotations, the lowest overlap is achieved in the PPI
network, where the average Jaccard index between the ancestors enriched
in the pathways described by two different graphlet adjacencies 0.17. The
highest average overlap is achieved in the human PPI network, where the
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average Jaccard index between the GO-BP terms enriched in the pathways
described by two different graphlet adjacencies 0.45. Graphlet adjacencies
describes pathways that are relatively similar in terms of molecular function
in the human PPI network, as the average overlap between enriched GO-MF
terms is 0.71.

We conclude that, apart from in terms of GO-MF terms in the human
PPI network, pathways described by different graphlet adjacencies are func-
tionally different in terms of the ancestor annotations, GO-BP terms, GO-CC
terms and GO-MF terms in which they are enriched.
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Supplementary Figure 26: Biological similarity between pathways de-
scribed by different graphlet adjacencies in the yeast PPI network.
Plots (A), (B), (C) and (D) respectively show a clustered heat map of the
Jaccard similarity indices between the sets of ancestor annotations (A), GO-
BP terms (B), GO-CC terms (C) and GO-MF terms (D), that are enriched
in the sets of pathways described by different types of graphlet adjacencies
(x-axis and y-axis). On top of each heat map, a bar-chart indicates the num-
ber of ancestor annotations (A), GO-BP terms (B), GO-CC terms (C) and
GO-MF terms (D), that are enriched in the sets of pathways described by
each corresponding graphlet adjacency (x-axis).
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Supplementary Figure 27: Biological similarity between pathways
described by different graphlet adjacencies in the human PPI net-
work. Plots (A), (B), (C) and (D) respectively show a clustered heat map
of the Jaccard similarity indices between the sets of ancestor annotations
(A), GO-BP terms (B), GO-CC terms (C) and GO-MF terms (D), that are
enriched in the sets of pathways described by different types of graphlet ad-
jacencies (x-axis and y-axis). On top of each heat map, a bar-chart indicates
the number of ancestor annotations (A), GO-BP terms (B), GO-CC terms
(C) and GO-MF terms (D), that are enriched in the sets of pathways de-
scribed by each corresponding graphlet adjacency (x-axis).
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Supplementary Figure 28: Biological similarity between pathways de-
scribed by different graphlet adjacencies in the yeast COEX net-
work. Plots (A), (B), (C) and (D) respectively show a clustered heat map
of the Jaccard similarity indices between the sets of ancestor annotations
(A), GO-BP terms (B), GO-CC terms (C) and GO-MF terms (D), that are
enriched in the sets of pathways described by different types of graphlet ad-
jacencies (x-axis and y-axis). On top of each heat map, a bar-chart indicates
the number of ancestor annotations (A), GO-BP terms (B), GO-CC terms
(C) and GO-MF terms (D), that are enriched in the sets of pathways de-
scribed by each corresponding graphlet adjacency (x-axis).
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Supplementary Figure 29: Biological similarity between pathways
described by different graphlet adjacencies in the human COEX
network. Plots (A), (B), (C) and (D) respectively show a clustered heat
map of the Jaccard similarity indices between the sets of ancestor annota-
tions (A), GO-BP terms (B), GO-CC terms (C) and GO-MF terms (D), that
are enriched in the sets of pathways described by different types of graphlet
adjacencies (x-axis and y-axis). On top of each heat map, a bar-chart indi-
cates the number of ancestor annotations (A), GO-BP terms (B), GO-CC
terms (C) and GO-MF terms (D), that are enriched in the sets of pathways
described by each corresponding graphlet adjacency (x-axis).
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Supplementary Figure 30: Biological similarity between pathways de-
scribed by different graphlet adjacencies in the yeast COEX net-
work. Plots (A), (B), (C) and (D) respectively show a clustered heat map
of the Jaccard similarity indices between the sets of ancestor annotations
(A), GO-BP terms (B), GO-CC terms (C) and GO-MF terms (D), that are
enriched in the sets of pathways described by different types of graphlet ad-
jacencies (x-axis and y-axis). On top of each heat map, a bar-chart indicates
the number of ancestor annotations (A), GO-BP terms (B), GO-CC terms
(C) and GO-MF terms (D), that are enriched in the sets of pathways de-
scribed by each corresponding graphlet adjacency (x-axis).

4.4 Pathways described by the same graphlet adja-
cency are topologically similar

Here we validate that the pathways that are described by the same graphlet
adjacency are statistically significantly topologically similar.

To assess if the pathways described by the same graphlet adjacency are
topologically similar, we compare the topological similarity between the path-
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ways that are described by a given graphlet adjacency to all other pathways
that are not described by it. We create two distance distributions: the
topological distances between the pathways described by a given graphlet
adjacency and a second distribution of distances between the pathways de-
scribed by the given graphlet adjacency and the remaining pathways that are
not (see Supplementary Figure 31 for the case of ÃG6 in the human PPI net-
work). Pathways described by the same graphlet adjacency are significantly
topologically more similar to each other than to the remaining pathways, if
the left-sided Wilcoxon-Mann-Whitney U-test (MWU) between the two dis-
tributions of distances is lower than or equal to 5% after application of the
Benjamini and Hochberg (BH) correction for multiple hypothesis testing. As
measures for network distance, we use GCD11, the degree distribution dis-
tance (DDD) and the clustering coefficient distance (CCD), defined in Sup-
plementary Section 2.3. Results are summarised in Supplementary Figures
32 to 36.

We observe in all molecular networks that the pathways described by a
given graphlet adjacency are topologically significantly similar to each other
according to at least one network distance measure. For instance, in the yeast
PPI network, pathways described by graphlet adjacency ÃG6 are statistically
significantly similar both in terms of their average clustering coefficient, de-
gree distribution and graphlet correlations. Exceptions are the pathways
described by ÃG3 in the yeast PPI network, ÃG4 in the yeast COEX network

and the pathways described by ÃG1 in the yeast GI network, of which we
can not say they are statistically significantly topologically similar by any
measure.
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Supplementary Figure 31: Pathways described by graphlet adjacency
ÃG6 in the human PPI network are statistically significantly topo-
logically similar based on GCD11. The GCD11 network distance dis-
tribution between the pathways described by graphlet adjacency ÃG6 (blue)
and the GCD11 distance distribution between the pathways described by
graphlet adjacency ÃG6 and the pathways not described by it. Applying a
left-sided MWU-test, the adjusted p-value of 0.00 indicates that pathways
described graphlet adjacency ÃG6 are statistically significantly more similar

to each other than to pathways not described by ÃG6 .

47



AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet-adjacency

 GCD11

Clust. coef.

Degree distr.

D
is

ta
nc

e 
m

ea
su

re

0.00 0.00 0.06 0.61 0.00 0.36 0.00 0.00 0.06

0.00 0.00 0.00 0.63 0.87 0.67 0.00 0.00 0.00
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Supplementary Figure 32: The statistical significance of the topologi-
cal similarity of the pathways described by a given graphlet adja-
cency in the yeast PPI network. A summary of adjusted p-values for
the MWU tests measuring if pathways described by a given graphlet adja-
cency (x-axis) are statistically significantly topologically similar based on a
given network-distance measures (y-axis).
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Supplementary Figure 33: The statistical significance of the topologi-
cal similarity of the pathways described by a given graphlet adja-
cency in the human PPI network. A summary of adjusted p-values
for the MWU tests measuring if pathways described by a given graphlet ad-
jacency (x-axis) are statistically significantly topologically similar based on
a given network-distance measures (y-axis).
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Supplementary Figure 34: The statistical significance of the topologi-
cal similarity of the pathways described by a given graphlet adja-
cency in the yeast COEX network. A summary of adjusted p-values
for the MWU tests measuring if pathways described by a given graphlet ad-
jacency (x-axis) are statistically significantly topologically similar based on
a given network-distance measures (y-axis).
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Supplementary Figure 35: The statistical significance of the topologi-
cal similarity of the pathways described by a given graphlet adja-
cency in the human COEX network. A summary of adjusted p-values
for the MWU tests measuring if pathways described by a given graphlet ad-
jacency (x-axis) are statistically significantly topologically similar based on
a given network-distance measures (y-axis).

49



AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet-adjacency

 GCD11

Clust. coef.

Degree distr.D
is

ta
nc

e 
m

ea
su

re

0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.83 0.00 0.83 0.16 0.11 0.00 0.00 0.00

0.00 0.88 0.00 0.99 0.00 0.12 0.21 0.90 0.00

Supplementary Figure 36: The statistical significance of the topologi-
cal similarity of the pathways described by a given graphlet adja-
cency in the yeast GI network. A summary of adjusted p-values for the
MWU tests measuring if pathways described by a given graphlet adjacency
(x-axis) are statistically significantly topologically similar based on a given
network-distance measures (y-axis).

4.5 Linking pathways described by graphlet adjacen-
cies to model networks

Having established that the pathways described by a given graphlet adjacency
have statistically significantly similar topology, we investigate if this topology
is similar to that of well-studied model networks. To that end, we compare
the topology of each set of described pathways to that of well-studied model
networks (see Supplementary Section 2.2). We create two distance distribu-
tions: the topological distances between the pathways described by a given
graphlet adjacency, and a second distribution of the distances between the
described pathways and randomly generated model networks. We consider
a set of pathways described by the same graphlet adjacency to be indistin-
guishable of a given model network, if the two-sided MWU between the two
distance distributions is lower than or equal to 5% after application of the
Benjamini and Hochberg (BH) correction for multiple hypothesis testing.

In Figure 37-B, corresponding to the results in the human PPI network,
we observe that pathways described graphlet adjacency AG2 can not be dis-
tinguished from ER, ERDD SFGD and nPSO model networks. They are
however, definitely not Geo, GeoGD or SF at the 5% significance level. We
also observe that all sets of graphlet adjacency described pathways can not
be topologically differentiated from nPSO model networks.
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Supplementary Figure 37: Linking the topology of described path-
ways to that of model networks. The adjusted p-values for the MWU-
test, testing if pathways described by a given type of graphlet adjacency
(columns) can be distinguished from model networks (rows), based on GCD11
in: (A) the yeast PPI network, (B) the human PPI network, (C) the yeast
COEX network, (D) the human COEX network and (E) the yeast GI net-
work.
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5 Graphlet eigencentralities capture comple-

mentary cancer mechanisms

5.1 Cancer related gene prediction accuracy

In experiment Section 3.2.1 of the main paper, we apply our graphlet cen-
trality to predict cancer-related genes. We predict genes participating in
a pathway to be cancer-related according to their pathway centrality. We
consider the set of cancer driver genes listed by intOGen as our set of true
positives (Gonzalez-Perez et al., 2013). Results in the human PPI network
and human COEX network are presented in Supplementary Figures 38 and
39, respectively.

In the PPI network, we observe that local and global graphlet eigencen-
tralities approaches perform better than the expected AUC-ROC of 0.5 in
case of random prediction accuracy, with median AUC-ROC scores over all
pathways typically over 0.60, for each of the different underlying graphlets.
Looking at AUC-PR performance to compare both approaches, we observe
that our global graphlet eigencentrality approach based on graphlet adjacen-
cies ÃG1 and ÃG6 achieves the highest overall prediction accuracy with an
AUC-PR of 0.4 in both cases. Both when measuring prediction accuracy
based on AUC-PR or AUC-ROC, global graphlet eigencentralities consis-
tently outperform local graphlet eigencentralities, regardless of the underly-
ing graphlet-adjacency considered. We hypothesise this is the case because
pathways overlap and driver genes tend to the interactions between path-
ways. To support this hypothesis, we validate cancer driver genes occur in
statistically significantly more pathways than non-driver genes. We apply a
one sided Mann–Whitney U test in which we compare the distribution the
number of pathways driver genes occur in, with the distribution of number
of pathways non-driver genes occur in. Doing so, we achieve a significant
p-value 5.19E−20. On average, cancer driver genes occur in 10.56 different
pathways, whereas non-driver genes occur in only 6.07 different pathways.

We find similar results in the COEX network. In the COEX network, we
observe that only global graphlet eigencentrality based on ÃG1 , ÃG3 , ÃG4 and

ÃG6 performs better than the expected AUC-ROC of 0.5 in case of random
prediction accuracy, achieving median AUC-ROC scores over all pathways of
at least 0.60. For these graphlet adjacencies, we achieve a median AUC-PR
0.23 in all four cases. Again we observe that our global approach greatly out-
performs our local approach in terms of median AUC-PR as well as median
AUC-ROC. We validate that cancer driver genes occur in statistically signifi-
cantly more pathways than non-driver genes. As before, we apply a one sided
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Mann–Whitney U test in which we compare the distribution the number of
pathways driver genes occur in, with the distribution of the number of path-
ways non-driver genes occur in. Doing so, we achieve a significant p-value
3.44E−13. On average, cancer driver genes occur in 6.31 different pathways,
whereas non cancer driver genes occur in only 4.64 different pathways.

We conclude global eigencentrality is the best approach for finding path-
ways in which cancer-related genes play a central role.
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Supplementary Figure 38: Cancer-related gene prediction accuracy
Panels (A) and (B) show the distribution of cancer-related gene prediction
accuracies over all pathways as box plots, measured using AUC-ROC and
AUC-PR respectively (y-axis), applying our local and global graphlet eigen-
centrality methods (colour, see legend), applied on different types of graphlet
adjacencies (x-axis), in the human PPI network. In panel (A), a dashed red
line at 0.5 indicates the expected AUC-ROC in case of random performance.

54



(A)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-R
O

C

Local eigencentrality Global eigencentrality

(B)

AG0 AG1 AG2 AG3 AG4 AG5 AG6 AG7 AG8
Graphlet adjacency

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

-P
R

Local eigencentrality Global eigencentrality

Supplementary Figure 39: Cancer-related gene prediction accuracy
Panels (A) and (B) show the distribution of cancer-related gene prediction
accuracies over all pathways as box plots, measured using AUC-ROC and
AUC-PR respectively (y-axis), applying our local and global graphlet eigen-
centrality methods (colour, see legend), applied on different types of graphlet
adjacencies (x-axis), in the human COEX network. In panel (A), a dashed
red line at 0.5 indicates the expected AUC-ROC in case of random perfor-
mance.
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5.2 The number of cancer genes predicted and their
overlap

In Section 3.2.2 of the main paper we compare the overlap between cancer-
related genes found to be central in pathways described by central cancer
genes, based on different graphlet-adjacencies. Here we show the results
in both the human PPI network and the human COEX network. With
an average Jaccard index of 0.30 in the human PPI network and 0.45 in
the human COEX network, we conclude that different graphlet adjacencies
describe the role in cancer of different sets of cancer related genes.
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Supplementary Figure 40: The overlap between correctly predicted
cancer genes in pathways described by central cancer genes based
on different graphlet adjacencies, in the human PPI network. A
clustered heat map of the Jaccard similarity indices between the sets of cor-
rectly predicted cancer genes found in pathways described by central driver
genes based on different graphlet adjacencies. On top, a bar-chart indicating
for each type of graphlet adjacency the number of correctly predicted genes.
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Supplementary Figure 41: The overlap between correctly predicted
cancer genes in pathways described by central cancer genes based
on different graphlet adjacencies, in the human COEX network. A
clustered heat map of the Jaccard similarity indices between the sets of cor-
rectly predicted cancer genes found in pathways described by central driver
genes based on different graphlet adjacencies. On top, a bar-chart indicating
for each type of graphlet adjacency the number of correctly predicted genes.
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cians for topology-function and topology-disease relationships. Bioinfor-
matics , 35(24), 5226–5234.
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