Type of Surgery	First Author and Year o	f Publication	Fetal Spina Bifida Patients (No.)	Fetus ≤ 26 weeks GA scans (No.)	Fetus >26 weeks GA scans (No.)	Neonatal ≤28 days scans (No.)
Postnatal Surgery	Ando 2007[30]		5	-	5	-
	Araujo 2013[2]		10	-	10	-
	Levine 2002[15]		13	9	4	-
	Saleem 2009[14]		8	3	9 4	-
	Walker 2016[55]		46	46 (GA r	not stated)	34
Fetal surgery (Open Fetal and Fetoscopic)	Vazquez 2016[56]	Open Fetal	7	7	7	7
		Fetoscopic	7	7	7 7	7
Both Postnatal and Open Fetal surgery	Didier 2019[31]	Postnatal	459	459 (GA	not stated)	
		Open Fetal	8	8 (GA n	ot stated)	28
	Maurice 2020[32]	Postnatal	12	12	-	-
		Open Fetal	13	13	-	-
7	Total Postnatal Surgery	1	553	24	24	34
T	otal Open Fetal surgery			20	7	35
T	otal Fetoscopic surgery			7	7	7
	Total		588	51	38	76

Table 1: Included studies for systematic review 1 comparing MRI directly to ultrasound in detection of additional brain abnormalities, in patients with fetal spina bifida in the fetal and early neonatal period. GA: gestational age

Type of Surgery	First Author and Year of Publication	Fetal Spina Bifida (OSB) Patients (No.)	Closed Spina Bifida (CSB) Patients (No.)	Fetus ≤ 26 week GA scans (No.)	Fetus >26 week GA scans (No.)	Neonatal ≤28 days scans (No.)
Postnatal Surgery	Abele 2013[57]	37	-	-	37	-
	Appasamy 2006[58]	8	-		8 (GA not stated)	l
	Batty 2012[35]	65	-	1	17	-
	Chance 2015[59]	-	1	-	-	1 (CSB)
	Hashiguchi 2015[19]	16		-		16
	Hino-Shishikura 2015[37]	66	29	-		66
	Manganaro 2012[60]	1	-	-	-	1
	Mignone Philpott 2013[47]	8	-	8	-	-
	Nagaraj 2016[52]	90	16	90	16 (CSB)	90 (OSB), 16 (CSB)
	Rangasami 2012[61]	15	-	-	15	-
	Rickard 2006[53]	17	-	17		-
	Shrot 2019[49]	26	-	26		-
	Sival 2011[62]	40	-	-	-	40
	Sweeny 2012[54]	33	-	-	-	33
	Vaikousi 2017[26]	11	-		11 (GA not stated)	L
	Warner 2019[8]	20	-	20	20	-
	Woitek 2014[33]	44	13	44(OSB), 13 (CSB)	-	-
	Woitek 2016[50]	15	-	15	-	-
	Yu 2018[27]	10	-	10	-	-
	Total	381	-	231 (OSB),13 (CSB)	89 (OSB),16 (CSB)	246 (OSB), 17 (CSB)
Open Fetal Surgery	Bekiesinska-Figatowska 2013[63]	18	-	18	18	-
	Calle 2020[3]	29	-	29	-	-
	Mangels 2000[43]	33	-	32	1	4
	Mehollin-Ray 2014[44]	12	-	12	12	
	Nasiadko 2014[46]	9	-	9	9	

	Rethmann 2017[42]		27	-	27	27	27
	Simon 2000[64]		4	-	4		
	Total		93	-	131	67	31
Fetal surgery (Fetoscopic)	Carrabba 2019[65]		5	-	-	3	5
Both Open Fetal and	Nagaraj 2020[45]	Open Fetal	47	-	47	5	47
Fetoscopic Fetal Surgery		Fetoscopic	15	-	15	6	15
	Sanz-Cortes 2018[28]	Open Fetal	10	-	10	10	-
		Fetoscopic	10	-	10	10	-
	Sanz-Cortes 2020[48]	Open Fetal	30	-	16	24	-
		Fetoscopic	27	-	14	24	-
	Zarutskie 2019[51]	Open Fetal	30	-	30	30	-
		Fetoscopic	18	-	18	18	-
	Total Open Fetal	Open Fetal	117	-	103	69	47
	Total Fetoscopic	Fetoscopic	70	-	57	58	15
Both Postnatal and Open	Aertsen 2019[6]	Postnatal	29	-	29		-
Fetal Surgery		Open Fetal	23	-	23	23	-
	Danzer 2007[40]	Postnatal	16	-	-	16	-
		Open Fetal	22	-	22	22	-
	Grant 2011[36]	Postnatal	24	-	-	-	24
		Open Fetal	29	-	29	29	-
	Nagaraj 2017[39]	Postnatal	70	-	70	-	70
		Open Fetal	32	-	32	-	32
	Nagaraj 2016[66]	Postnatal	74	-	74	-	-
		Open Fetal	21	-	21	-	-
	Total Postnatal Surgery	Postnatal	213	-	173	16	94
	Total Open Fetal Surgery	Open Fetal	127	-	127	74	32

Fetal Spina Bifida			Fetus ≤ 26 weeks GA scans (No)	Fetus >26 weeks GA scans (No)	Neonatal ≤28 days scans (No)
Total Postnatal Surgery	594	-	282	118	340
Total Open Fetal Surgery	337	-	371	220	110
Total Fetoscopic Fetal Surgery	75	-	57	61	20
Total	1006	-	710	399	470
Closed Spina Bifida		-	-	-	-
Total	46	-	13	16	17

Table 2: Included studies for systematic review 2 on detection of brain abnormalities by MRI in fetal and early neonatal spina bifida. OSB = fetal spina bifida, CSB = closed spina bifida, GA=gestational age

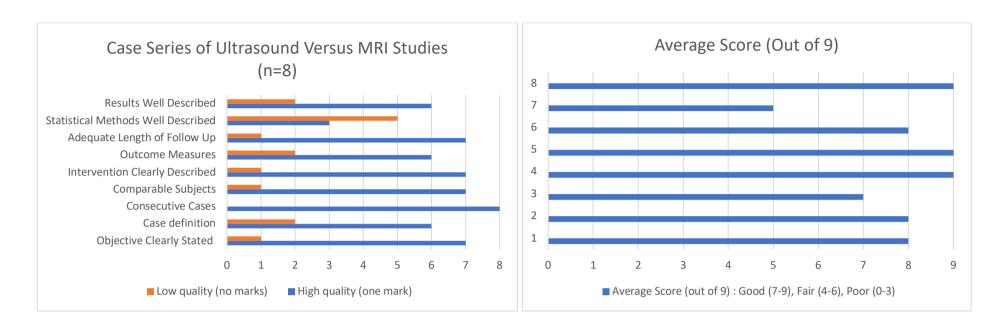


Fig. 1 Summary of risk of bias for according to study type (case-series) in the systematic review comparing MRI to ultrasound in detection of additional brain abnormalities, in fetal and early neonatal spina bifida (SR1)

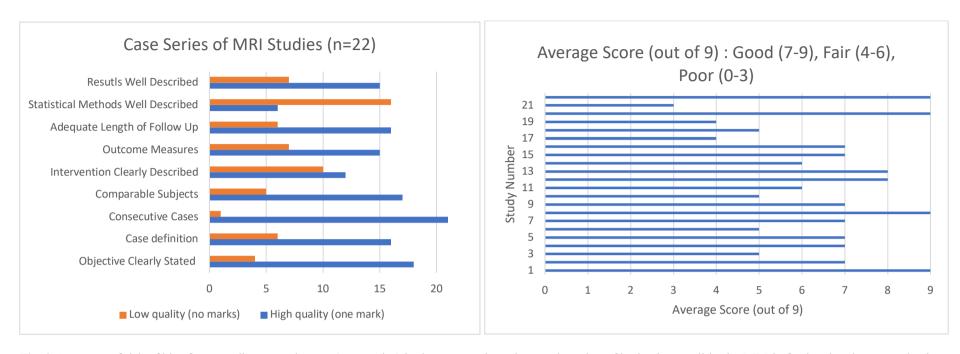


Fig. 2 Summary of risk of bias for according to study type (case-series) in the systematic review on detection of brain abnormalities by MRI in fetal and early neonatal spina bifida (SR2)

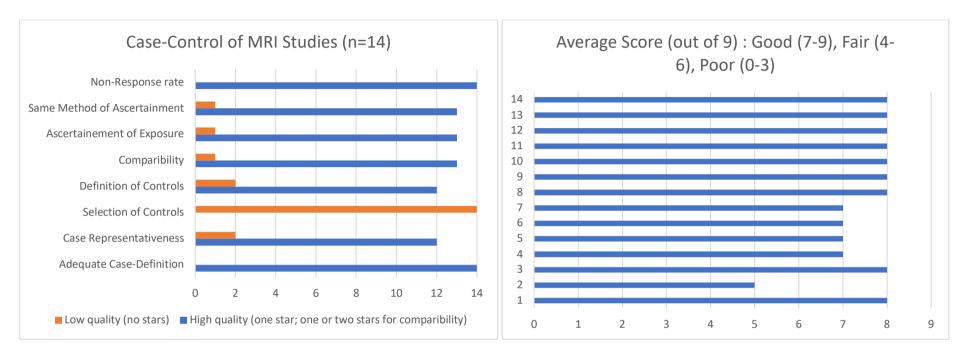


Fig. 3 Summary of risk of bias for according to study type (non-randomised study) in the systematic review on detection of brain abnormalities by MRI in fetal and early neonatal spina bifida (SR2)

Abnormality	Timepoint	Number of Studies	Event Rate	Lower Limit	Upper Limit	Hete	erogeneity
						I-squared	P-Value
Callosal (Agenesis: complete/partial), Heterotopia, Hindbrain herniation, Ventriculomegaly/ Hydrocephalus	Fetus ≤26 weeks GA	22	87.5	72.5	94.9	78.875	0.000
Heterotopia, Hindbrain herniation, Ventriculomegaly/Hydrocephalus	Fetus > 26 weeks GA	9	82.2	54.5	94.7	81.908	0.000
Callosal (Agenesis: complete/partial), Heterotopia, Hindbrain herniation, Ventriculomegaly/Hydrocephalus	Neonatal ≤28 days	13	75.9	52.9	89.8	89.654	0.000
Callosal (Agenesis: complete/partial), Cerebellar Abnormalities, Hindbrain herniation, Ventriculomegaly/Hydrocephalus	All gestations	22	89.0	81.8	93.6	71.441	0.000
Callosal (Agenesis: complete/partial)	Fetus ≤26 weeks GA, Neonatal ≤ 28 days, All gestations	4	15.1	5.7	34.3	0.000	0.779
	Fetus ≤26 weeks GA	2	15.5	3.8	45.7	0.000	0.482
	Neonatal ≤ 28 days	1	25.0	3.4	76.2	0.000	1.000
	All gestations	1	9.1	1.3	43.9	0.000	1.000
Cerebellar Abnormalities	All gestations	4	88.9	22.0	99.6	85.031	0.000
Heterotopia	Fetus ≤26 weeks GA, Fetus>26 weeks GA, Neonatal ≤ 28 days	10	25.5	17.4	35.9	63.686	0.003
	Fetus ≤26 weeks GA	3	19.8	7.7	42.2	27.446	0.252
	Fetus>26 weeks GA	2	25.3	13.7	41.9	0.000	0.508
	Neonatal ≤ 28 days	5	26.9	15.3	42.8	80.157	0.000
Hindbrain herniation	All gestations	9	92.2	84.4	96.3	62.943	0.006
	Fetus ≤26 weeks GA	7	97.4	92.8	99.1	0.000	0.941
	Fetus>26 weeks GA	4	90.6	43.7	99.2	79.945	0.002
	Neonatal ≤ 28 days	3	98.9	94.7	99.8	0.000	0.940
Ventriculomegaly/Hydrocephalus	All gestations	8	87.6	77.6	93.5	50.525	0.049
	Fetus ≤26 weeks GA	10	93.2	82.5	97.5	59.447	0.008
	Fetus>26 weeks GA	3	92.5	78.8	97.6	0.000	0.378
	Neonatal ≤ 28 days	4	96.6	90.6	98.8	0.000	0.853

Table 3: Heterogeneity for all MRI Studies

Abnormality	Timepoint Number of Studies Event Rate			Lower Limit	Upper Limit	Heterogeniety	
						I-squared	P-Value
Chiari II reversal (Complete/Partial)	Fetus > 26 weeks GA,		85.9	66.3	94.9		
	Neonatal ≤28 days, All						
	gestations	10				87.400	0.000
	Fetus > 26 weeks GA	4	87.7	69.9	95.7	27.327	0.248
	Neonatal ≤28 days	4	92.3	60.7	99.0	72.755	0.012
	All gestations	3	76.2	22.7	97.2	93.912	0.000
Stable Ventriculomegaly Post Operatively			11.1	1.5	50.0		
	Fetus ≤26 weeks GA	1				0.000	1.000
Reduced Ventriculomegaly Post Operatively			6.3	1.6	22.2		
	Fetus > 26 weeks GA	2				0.000	0.423
Increased Ventriculomegaly Post Operatively	Fetus >26 weeks GA,		71.7	44.6	88.8		
	Neonatal ≤28 days	6				76.171	0.001
	Fetus >26 weeks GA	5	76.8	63.1	86.4	0.000	0.448
	Neonatal ≤28 days	2	43.4	23.8	65.3	70.968	0.063

Table 4: Heterogeneity for Post-Operative Findings

	Chara	cteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus ≤ 26	Callosal Abnormalities (Agenesis -	Yu 2018 (Postnatal Surgery)[27]	1 / 10	10.0	1.4	46.7
Weeks GA	Complete or Partial)	Simon 2000 (Open Fetal Surgery)[16]	1 / 4	25.0	3.4	76.2
	Heterotopia	Nasiadko 2014 (Open Fetal Surgery)[25]	1/9	11.1	1.5	50.0
		Rethmann 2017 (Open Fetal Surgery)[42]	4 / 27	14.8	5.7	33.5
		Simon 2000 (Open Fetal Surgery)[16]	2/4	50.0	12.3	87.7
	Hindbrain Herniation	Yu 2018 (Postnatal Surgery)[27]	10 / 10	95.5	55.2	99.7
		Calle 2020 (Open Fetal Surgery)[3]	29 / 29	98.3	78.3	99.9
		Simon 2000 (Open Fetal Surgery)[16]	4/4	90.0	32.6	99.4
		Nagaraj 2020 (Open Fetal Surgery)[45]	47 / 47	99.0	85.4	99.9
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	15 / 15	96.9	65.0	99.8

		Aertsen 2019 (Open Fetal Surgery)[6]	23 / 23	97.9	74.1	99.9
		Aertsen 2019 (Postnatal Surgery)[6]	29 / 29	98.3	78.3	99.9
	Ventriculomegaly/Hydrocephalus	Batty 2012 (Postnatal Surgery)[35]	48 / 48	99.0	85.7	99.9
		Rickard 2006 (Postnatal Surgery)[53]	14 / 17	82.4	57.3	94.2
		Shrot 2006 (Postnatal Surgery)[49]	16 / 26	61.5	42.1	77.9
		Yu 2018 (Postnatal Surgery)[27]	10 / 10	95.5	55.2	99.7
		Nasiadko 2014 (Open Fetal Surgery)[25]	9/9	95.0	52.5	99.7
		Rethmann 2017 (Open Fetal Surgery)[42]	27 / 27	98.2	77.0	99.9
		Sanz-Cortes 2018 (Open Fetal Surgery)[28]	10 / 10	95.5	55.2	99.7
		Sanz-Cortes 2018 (Fetoscopic Fetal Surgery)[28]	10 / 10	95.5	55.2	99.7
		Sanz-Cortes 2020 (Open Fetal Surgery)[48]	16 / 16	97.1	66.4	99.8
		Sanz-Cortes 2020 (Fetoscopic Fetal Surgery)[48]	14 / 14	96.7	63.4	99.8
	Cumulative St	udy Statistics	327/398	87.5	72.5	94.9
	Charact	eristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus > 26	Heterotopia	Nasiadko 2014 (Open Fetal Surgery)[25]	3 / 9	33.3	11.1	66.7
Weeks GA		Rethmann 2017 (Open Fetal Surgery)[42]	6 / 27	22.2	10.3	41.4
	Hindbrain Herniation	Abele 2013 (Postnatal Surgery)[57]	37 / 37	98.7	82.2	99.9
		Carrabba 2019 (Fetoscopic Fetal Surgery)[65]	5 / 5	91.7	37.8	99.5
		Hashiguchi 2015 (Postnatal Surgery)[65]	7 / 16	43.8	22.5	67.6
		Rangasami 2012 (Postnatal Surgery)[61]	15 / 15	96.9	65.0	99.8
	Ventriculomegaly/Hydrocephalus	Warner 2019 (Postnatal Surgery)[8]	20 / 20	97.6	71.3	99.9
		Batty 2012 (Postnatal Surgery)[35]	17 / 17	97.2	67.8	99.8
		Rangasami 2012 (Postnatal Surgery)[61]	13 / 15	86.7	59.5	96.6
	Cumulative St	udy Statistics	123/161	82.2	54.5	94.7
	Charact			Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Neonatal ≤28 days	Callosal Abnormalities (Agenesis - Complete or Partial)	Mangels 2000 (Open Fetal Surgery)[17]	1 / 4	25.0	3.4	76.2
•	Heterotopia	Rethmann 2017 (Open Fetal Surgery)[42]	12 / 27	44.4	27.2	63.1
	•	Nagaraj 2020 (Open Fetal Surgery)[45]	19 / 47	40.4	27.5	54.9
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	2 / 15	13.3	3.4	40.5
		Nagaraj 2016 (Open Fetal Surgery and Postnatal Surgery)[66]	11 / 95	11.6	6.5	19.7
		Hino-Shishijura 2015 (Postnatal Surgery)[37]	20 / 66	30.3	20.5	42.4

	Hindbrain Herniation	Sival 2011 (Postnatal Surgery)[62]	40 / 40	98.8	83.3	99.9
		Hino-Shishijura 2015 (Postnatal Surgery)[37]	66 / 66	99.3	89.2	100.0
		Sweeny 2012 (Postnatal Surgery)[54]	33 / 33	98.5	80.4	99.9
	Ventriculomegaly/Hydrocephalus	Danzer 2007 (Open Fetal Surgery)[40]	22 / 22	97.8	73.2	99.9
		Danzer 2007 (Postnatal Surgery)[40]	16 / 16	97.1	66.4	99.8
		Sival 2011 (Postnatal Surgery)[62]	38 / 40	95.0	82.1	98.7
		Sweeny 2012 (Postnatal Surgery)[54]	33 / 33	98.5	80.4	99.9
	Cumulative St	udy Statistics	313/504	75.9	52.9	89.8
	Charact	eristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate	Lower	Upper
				(%)	Limit (%)	Limit (%)
All		Vaikousi 2017 (Postnatal Surgery)[26]	1 / 11	9.1	1.3	43.9
gestations	Cerebellar Abnormalities	Danzer 2007 (Open Fetal Surgery)[40]	22 / 22	97.8	73.2	99.9
		Danzer 2007 (Postnatal Surgery)[40]	16 / 16	97.1	66.4	99.8
		Vaikousi 2017 (Postnatal Surgery)[26]	1 / 11	9.1	1.3	43.9
		Warner 2019 (Postnatal Surgery)[8]	20 / 20	97.6	71.3	99.9
	Hindbrain Herniation	Batty 2012 (Postnatal Surgery)[35]	50 / 65	6.9	65.2	85.6
		Mangels 2000 (Open Fetal Surgery)[17]	37 / 37	98.7	82.2	99.9
		Grant 2011 (Open Fetal Surgery)[36]	29 / 29	98.3	78.3	99.9
		Nagaraj 2016 (Open Fetal Surgery and Postnatal	87 / 95	91.6	84.1	95.7
		Surgery)[66]				
		Nagaraj 2016 (Postnatal Surgery)[52]	86 / 90	95.6	88.8	98.3
		Mehollin-Ray 2014 (Open Fetal Surgery)[44]	11 / 12	91.7	58.7	98.8
		Warner 2019 (Postnatal Surgery)[8]	20 / 20	97.6	71.3	99.9
		Bekiesinska-Figatowska 2013 (Open Fetal	18 / 18	97.4	69.0	99.8
		Surgery)[63]				
		Appasamy 2006 (Postnatal Surgery)[58]	6 / 8	75.0	37.7	93.7
	Ventriculomegaly/Hydrocephalus	Mangels 2000 (Open Fetal Surgery)[17]	37 / 37	98.7	82.2	99.9
		Grant 2011 (Postnatal Surgery)[36]	24 / 24	98.0	74.9	99.9
		Nagaraj 2016 (Open Fetal Surgery and Postnatal	75 / 95	78.9	69.6	86.0
		Surgery)[66]				
		Hashiguchi 2015 (Postnatal Surgery)[19]	16 / 16	97.1	66.4	99.8
		Nagaraj 2016 (Postnatal Surgery)[52]	77 / 90	85.6	76.7	91.4
		Mehollin-Ray 2014 (Open Fetal Surgery)[44]	12 / 12	96.2	59.7	99.8
		Vaikousi 2017 (Postnatal Surgery)[26]	11 / 11	95.8	57.5	99.7
		Appasamy 2006 (Postnatal Surgery)[58]	5/8	62.5	28.5	87.5
	Cumulative St	udy Statistics	661/747	89.0	81.8	93.6

	Chara	cteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus ≤26	Callosal Abnormalities (Agenesis -	Vaikousi 2017 (Postnatal Surgery)[26]	1 / 11	9.1	1.3	43.9
weeks,	Complete or Partial)	Yu 2018 (Postnatal Surgery)[27]	1 / 10	10.0	1.4	46.7
Neonatal ≤		Simon 2000 (Open Fetal Surgery)[16]	1 / 4	25.0	3.4	76.2
28 days, All gestations				25.0	3.4	76.2
		Mangels 2000 (Open Fetal Surgery)[17]	1 / 4			
	Cumulative	Study Statistics	4/29	15.1	5.7	34.3
	Chara	cteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate	Lower	Upper
F :		G' 2000 (O F + 1 G)[1(7]	1 / 4	(%)	Limit (%)	Limit (%)
Fetus ≤26 weeks GA	Callosal Abnormalities (Agenesis - Complete or Partial)	Simon 2000 (Open Fetal Surgery)[16]	1 / 4	25.0	3.4	76.2
		Yu 2018 (Postnatal Surgery)[27]	1 / 10	10.0	1.4	46.7
	Cumulative	Study Statistics	2/14	15.5	3.8	45.7
	Chara	cteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Neonatal ≤28 days	Callosal Abnormalities (Agenesis - Complete or Partial)	Mangels 2000 (Open Fetal Surgery)[17]	1/4	25.0	3.4	76.2
	1 /	tudy Statistics †a	1/4	25.0	3.4	76.2
		cteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
All gestations	Callosal Abnormalities (Agenesis - Complete or Partial)	Vaikousi 2017 (Postnatal Surgery)[26]	1/11	9.1	1.3	43.9
	Cumulative St	tudy Statistics †a	1/11	9.1	1.3	43.9
	Chara	cteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
All	Cerebellar Abnormalities	Danzer 2007 (Open Fetal Surgery)[40]	22 / 22	97.8	73.2	99.9
gestations		Danzer 2007 (Postnatal Surgery)[40]	16 / 16	97.1	66.4	99.8
S		Vaikousi 2017 (Postnatal Surgery)[26]	1/11	9.1	1.3	43.9
		Warner 2019 (Postnatal Surgery)[8]	20 / 20	97.6	71.3	99.9
	Cumulative	Study Statistics	59/69	88.9	22.0	99.6

		Characteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus ≤26	Heterotopia	Nasiadko 2014 (Open Fetal Surgery)[25]	1/9	11.1	1.5	50.0
weeks GA,	1	Rethmann 2017 (Open Fetal Surgery)[42]	4 / 27	14.8	5.7	33.5
Fetus>26		Simon 2000 (Open Fetal Surgery)[16]	2 / 4	50.0	12.3	87.7
weeks GA,		Nasiadko 2014 (Open Fetal Surgery)[25]	3/9	33.3	11.1	66.7
Neonatal \leq		Rethmann 2017 (Open Fetal Surgery)[42]	6 / 27	22.2	10.3	41.4
28 days		Hino-Shishijura 2015 (Postnatal Surgery)[37]	20 / 66	30.3	20.5	42.4
		Nagaraj 2016 (Open Fetal Surgery and Postnatal Surgery)[66]	11 / 95	11.6	6.5	19.7
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	2 / 15	13.3	3.4	40.5
		Nagaraj 2020 (Open Fetal Surgery)[45]	19 / 47	40.4	27.5	54.9
		Rethmann 2017 (Open Fetal Surgery)[42]	12 / 27	44.4	27.2	63.1
	C	umulative Study Statistics	80/326	25.5	17.4	35.9
		Characteristics		Statistics for		
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate	Lower	Upper
	-			(%)	Limit (%)	Limit (%)
Fetus ≤26	Heterotopia	Nasiadko 2014 (Open Fetal Surgery)[25]	1/9	11.1	1.5	50.0
weeks GA		Rethmann 2017 (Open Fetal Surgery)[42]	4 / 27	14.8	5.7	33.5
		Simon 2000 (Open Fetal Surgery)[16]	2/4	50.0	12.3	87.7
	C	umulative Study Statistics	7/40	19.8	7.7	42.2
		Characteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus>26	Heterotopia	Nasiadko 2014 (Open Fetal Surgery)[25]	3/9	33.3	11.1	66.7
weeks GA		Rethmann 2017 (Open Fetal Surgery)[42]	6 / 27	22.2	10.3	41.4
	C	umulative Study Statistics	9/36	25.3	13.7	41.9
		Characteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Neonatal ≤	Heterotopia	Hino-Shishijura 2015 (Postnatal Surgery)[37]	20 / 66	30.3	20.5	42.4
28 days		Nagaraj 2016 (Open Fetal Surgery and Postnatal Surgery)[66]	11 / 95	11.6	6.5	19.7
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	2 / 15	13.3	3.4	40.5
		Nagaraj 2020 (Open Fetal Surgery)[45]	19 / 47	40.4	27.5	54.9
		Rethmann 2017 (Open Fetal Surgery)[42]	12 / 27	44.4	27.2	63.1

	Cumi	ulative Study Statistics	64/250	26.9	15.3	42.8	
		Characteristics		Statistics for	each study		
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)	
All	Hindbrain Herniation	Appasamy 2006 (Postnatal Surgery)[58]	6 / 8	75.0	37.7	93.7	
gestations		Batty 2012 (Postnatal Surgery)[35]	50 / 65	76.9	65.2	85.6	
		Bekiesinska-Figatowska 2013 (Open Fetal Surgery)[63]	18 / 18	97.4	69.0	99.8	
		Grant 2011 (Open Fetal Surgery)[36]	29 / 29	98.3	78.3	99.9	
		Mangels 2000 (Open Fetal Surgery)[17]	37 / 37	98.7	82.2	99.9	
		Mehollin-Ray 2014 (Open Fetal Surgery)[44]	11 / 12	91.7	58.7	98.8	
		Nagaraj 2016 (Open Fetal Surgery and Postnatal Surgery)[66]	87 / 95	91.6	84.1	95.7	
		Nagaraj 2016 (Postnatal Surgery)[52]	86 / 90	95.6	88.8	98.3	
		Warner 2019 (Postnatal Surgery)[8]	20 / 20	97.6	84.1 88.8 71.3 84.4 or each study e Lower Limit (%) 74.1 78.3	99.9	
	Cum	ulative Study Statistics	344/374	92.2	84.4	96.3	
		Characteristics		Statistics for	each study		
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)		Upper Limit (%)	
Fetus ≤26	Hindbrain Herniation	Aertsen 2019 (Open Fetal Surgery)[6]	23 / 23	97.9	74.1	99.9	
weeks GA		Aertsen 2019 (Postnatal Surgery)[6]	29 / 29	98.3	78.3	99.9	
		Calle 2020 (Open Fetal Surgery)[3]	29 / 29	98.3	78.3	99.9	
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	15 / 15	96.9	65.0	99.8	
		Nagaraj 2020 (Open Fetal Surgery)[45]	47 / 47	99.0	85.4	99.9	
		Simon 2000 (Open Fetal Surgery)[16]	4 / 4	90.0	32.6	99.4	
		Yu 2018 (Postnatal Surgery)[27]	10 / 10	95.5	55.2	99.7	
	Cumi	ulative Study Statistics	157/157	97.4	92.8	99.1	
		Characteristics		Statistics for	each study		
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)	
Fetus>26 weeks GA	Hindbrain Herniation	Abele 2013 (Postnatal Surgery)[57]	37 / 37	98.7	82.2	99.9	
		Carrabba 2019 (Fetoscopic Fetal Surgery)[65]	5/5	91.7	37.8	99.5	
		Hashiguchi 2015 (Postnatal Surgery)[19]	7 / 16	43.8	22.5	67.6	
		Rangasami 2012 (Postnatal Surgery)[61]	15 / 15	96.9	65.0	99.8	
	Cumi	ılative Study Statistics	64/73	90.6	43.7	99.2	

	Char	acteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Neonatal ≤	Hindbrain Herniation	Hino-Shishijura 2015 (Postnatal Surgery)[37]	66 / 66	99.3	89.2	100.0
28 days		Sival 2011 (Postnatal Surgery)[62]	40 / 40	98.8	83.3	99.9
-		Sweeny 2012 (Postnatal Surgery)[54]	33 / 33	98.5	80.4	99.9
	Cumulative	Study Statistics	139/139	98.9	94.7	99.8
	Char	acteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
All	Ventriculomegaly/Hydrocephalus	Appasamy 2006 (Postnatal Surgery)[58]	5/8	62.5	28.5	87.5
gestations		Grant 2011 (Postnatal Surgery)[36]	24 / 24	98.0	74.9	99.9
8		Hashiguchi 2015 (Postnatal Surgery)[19]	16 / 16	97.1	66.4	99.8
		Mangels 2000 (Open Fetal Surgery)[17]	37 / 37	98.7	82.2	99.9
		Mehollin-Ray 2014 (Open Fetal Surgery)[44]	12 / 12	96.2	59.7	99.8
		Nagaraj 2016 (Open Fetal Surgery and Postnatal Surgery)[66]	75 / 95	78.9	69.6	86.0
		Nagaraj 2016 (Postnatal Surgery)[52]	77 / 90	85.6	76.7	91.4
		Vaikousi 2017 (Postnatal Surgery)[26]	11/11	95.8	57.5	99.7
	Cumulative	Study Statistics	257/293	87.6	77.6	93.5
		acteristics		Statistics for		
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus ≤26	Ventriculomegaly/Hydrocephalus	Batty 2012 (Postnatal Surgery)[35]	48 / 48	99.0	85.7	99.9
weeks GA	v entirearoniegary/11y arocepharas	Nasiadko 2014 (Open Fetal Surgery)[25]	9/9	95.0	52.5	99.7
		Rethmann 2017 (Open Fetal Surgery)[42]	27 / 27	98.2	77.0	99.9
		Rickard 2006 (Postnatal Surgery)[53]	14 / 17	82.4	57.3	94.2
		Sanz-Cortes 2018 (Fetoscopic Fetal Surgery)[28]	10 / 10	95.5	55.2	99.7
		Sanz-Cortes 2018 (Open Fetal Surgery)[28]	10 / 10	95.5	55.2	99.7
		Sanz-Cortes 2020 (Fetoscopic Fetal Surgery)[48]	14 / 14	96.7	63.4	99.8
		Sanz-Cortes 2020 (Open Fetal Surgery)[48]	16 / 16	97.1	66.4	99.8
		Shrot 2006 (Postnatal Surgery)[49]	16 / 26	61.5	42.1	77.9
		Yu 2018 (Postnatal Surgery)[27]	10 / 10	95.5	55.2	99.7
·	Cumulative	Study Statistics	174/196	93.2	82.5	97.5
		acteristics		Statistics for		

Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate	Lower	Upper
				(%)	Limit (%)	Limit (%)
Fetus>26	Ventriculomegaly/Hydrocephalus	Batty 2012 (Postnatal Surgery)[35]	17 / 17	97.2	67.8	99.8
weeks GA		Rangasami 2012 (Postnatal Surgery)[61]	13 / 15	86.7	59.5	96.6
		Warner 2019 (Postnatal Surgery)[8]	20 / 20	97.6	71.3	99.9
	Cumulative Study Statistics			92.5	78.8	97.6
	Charact	eristics	Statistics for each study			
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate	Lower	Upper
	•			(%)	Limit (%)	Limit (%)
Neonatal ≤	Ventriculomegaly/Hydrocephalus	Danzer 2007 (Open Fetal Surgery)[40]	22 / 22	97.8	73.2	99.9
28 days		Danzer 2007 (Postnatal Surgery)[40]	16 / 16	97.1	66.4	99.8
		Sival 2011 (Postnatal Surgery)[62]	38 / 40	95.0	82.1	98.7
		Sweeny 2012 (Postnatal Surgery)[54]	33 / 33	98.5	80.4	99.9
	Cumulative St	udy Statistics	109/111	96.6	90.6	98.8

Table 5: Meta-Analysis for all MRI studies. †a Meta-Analysis not possible as reported by a single study.

	Charac	eteristics	Statistics for each study				
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)	
Fetus >26	Chiari II reversal (Complete/Partial)	Mehollin-Ray 2014 (Open Fetal Surgery)[44]	11 / 12	91.7	58.7	98.8	
weeks GA, Neonatal		Nasiadko 2014 (Open Fetal Surgery)[25]	9/9	95.0	52.5	99.7	
≤28 days, All		Rethmann 2017 (Open Fetal Surgery)[42]	25 / 27	92.6	74.8	98.1	
gestations		Carrabba 2019 (Fetoscopic Fetal Surgery)[65]	3 / 5	60.0	20.0	90.0	
		Nagaraj 2020 (Open Fetal Surgery)[45]	47 / 47	99.0	85.4	99.9	
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	15 / 15	96.9	65.0	99.8	
		Zarutskie 2019 (Open and Fetoscopic Fetal Surgery)[51]	32 / 48	66.7	52.3	78.5	
		Grant 2011 (Open Fetal Surgery)[36]	29 / 29	98.3	78.3	99.9	
		Nagaraj 2017 (Open Fetal Surgery)[39]	26 / 32	81.3	64.1	91.3	
		Nagaraj 2017 (Postnatal Surgery)[39]	19 / 74	25.7	17.0	36.8	

	Cumulative S	Study Statistics	216/298	85.9	66.3	94.9
	Chara	cteristics	Statistics for each study			
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus > 26	Chiari II reversal (Complete/Partial)	Carrabba 2019 (Fetoscopic Fetal Surgery)[65]	3 / 5	60.0	20.0	90.0
weeks GA		Mehollin-Ray 2014 (Open Fetal Surgery)[44]	11 / 12	91.7	58.7	98.8
		Nasiadko 2014 (Open Fetal Surgery)[25]	9/9	95.0	52.5	99.7
		Rethmann 2017 (Open Fetal Surgery)[42]	25 / 27	92.6	74.8	98.1
	Cumulative Study Statistics			87.7	69.9	95.7
	Chara	cteristics		Statistics for	each study	1
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Neonatal ≤	Chiari II reversal (Complete/Partial)	Carrabba 2019 (Fetoscopic Fetal Surgery)[65]	5 / 5	91.7	37.8	99.5
28 days		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	15 / 15	96.9	65.0	99.8
		Nagaraj 2020 (Open Fetal Surgery)[45]	47 / 47	99.0	85.4	99.9
		Zarutskie 2019 (Open and Fetoscopic Fetal Surgery)[51]	32 / 48	66.7	52.3	78.5
	Cumulative S	Study Statistics	99/115	92.3	60.7	99.0
	Chara	cteristics		Statistics for	each study	•
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
All gestations	Chiari II reversal (Complete/Partial)	Grant 2011 (Open Fetal Surgery)[36]	29 / 29	98.3	78.3	99.9
		Nagaraj 2017 (Open Fetal Surgery)[39]	26 / 32	81.3	64.1	91.3
		Nagaraj 2017 (Postnatal Surgery)[39]	19 / 74	25.7	17.0	36.8
	Cumulative S	Study Statistics	74/135	76.2	22.7	97.2
	Chara	cteristics		Statistics for	each study	1

Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus >26 weeks GA	Stable Ventriculomegaly Post Operatively	Nasiadko 2014 (Open Fetal Surgery)[25]	1/9	11.1	1.5	50.0
		Study Statistics †a	1/9	11.1	1.5	50.0
	Char	acteristics		Statistics for	each study	1
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus > 26	Reduced Ventriculomegaly Post	Nasiadko 2014 (Open Fetal Surgery)[25]	1/9	11.1	1.5	50.0
weeks GA	Operatively	Rethmann 2017 (Open Fetal Surgery)[42]	1 / 27	3.7	0.5	22.1
Cumulative Study Statistics				6.3	1.6	22.2
	Char	acteristics		Statistics for	each study	1
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
	Increased Ventriculomegaly Post Operatively	Mehollin-Ray 2014 (Open Fetal Surgery)[44]	12 / 12	96.2	59.7	99.8
		Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	6/6	92.9	42.3	99.6
≤28 days		Nagaraj 2020 (Open Fetal Surgery)[45]	3 / 5	60.0	20.0	90.0
		Nasiadko 2014 (Open Fetal Surgery)[25]	7 / 9	77.8	42.1	94.4
		Rethmann 2017 (Open Fetal Surgery)[42]	20 / 27	74.1	54.7	87.1
		Zarutskie 2019 (Open and Fetoscopic Fetal Surgery)[51]	16 / 48	33.3	21.5	47.7
	Cumulative	Study Statistics	64/107	71.7	44.6	88.8
	Char	acteristics		Statistics for	each study	1
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Fetus >26	Increased Ventriculomegaly Post	Mehollin-Ray 2014 (Open Fetal Surgery)[44]	12 / 12	96.2	59.7	99.8
weeks GA	Operatively	Nagaraj 2020 (Fetoscopic Fetal Surgery)[45]	6 / 6	92.9	42.3	99.6
		Nagaraj 2020 (Open Fetal Surgery)[45]	3 / 5	60.0	20.0	90.0

		Nasiadko 2014 (Open Fetal Surgery)[25]	7/9	77.8	42.1	94.4
		Rethmann 2017 (Open Fetal Surgery)[42]	20 / 27	74.1	54.7	87.1
Cumulative Study Statistics			48/59	76.8	63.1	86.4
	Chara	acteristics		Statistics for	each study	
Time Point	Abnormality	Study Name (Author, year, Type of Surgery)	Event/Total	Event rate (%)	Lower Limit (%)	Upper Limit (%)
Neonatal ≤28 days	Increased Ventriculomegaly Post Operatively	Rethmann 2017 (Open Fetal Surgery)[42]	15 / 27	55.6	36.9	72.8
≥26 uays	Operatively	Zarutskie 2019 (Open and Fetoscopic Fetal Surgery)[51]	16 / 48	33.3	21.5	47.7
Cumulative Study Statistics			31/75	43.4	23.8	65.3

Table 6: Meta-Analysis for Intracranial Post-operative findings †a Meta-Analysis not possible as reported by a single study

Reported Abnormality	First Author, Year of Publication and timing of MMC surgery	Description n/N (%) or p value
Posterior Fossae Measurements	Woitek 2014 (Postnatal Surgery[33]	 Clivus supra-occiput angle (CSA) and transverse diameter of the posterior fossae (TDPF) of MMC was significantly smaller than controls (p≤0.001) TDPF in closed spina bifida was significantly smaller in closed spina bifida patients than in controls (p≤0.001)
	Aertsen 2019 (Postnatal and Fetal Surgery)[6]	• CSO, TDPF, Transverse cerebellar diameter (TCD), and posterior fossae area (PFA) was significantly different between MMC (who were operated on postnatally), and MMC (who had open Fetal surgery) versus controls (p≤0.0001)
	Batty 2012 (Postnatal Surgery)[35]	PFA was reduced in MMC patients
	Warner 2019 (Postnatal Surgery)[8]	 Bony PFA was smaller in MMC patients, at 20-24 weeks (p≤0.001), and 30-32 weeks (p≤0.001)

	Grant 2011 (Postnatal Surgery)[36]	CSA was acute in MMC patients but was comparable to controls at birth 24/70 (34.3%)
Anatomical Descriptive markers of Chiari II malformation	Hino-Shishikura 2015 (Postnatal Surgery)[37]	Lower level of medullary kink and low pontomesencephalic junction in MMC patients with cortical malformations 20/66 (30.3%)
	Calle 2020 (Fetal Open Surgery)[3]	 Downward herniation of the cerebellum 29/29 (100%) Towering cerebellum 6/29 (20.7%) Intermediate towering of the cerebellum 9/29 (31%) Downward herniation of the brainstem 18/29 (62.1%) Intermediate herniation of the brainstem 9/29 (31%) Flattening or deformity of the fourth ventricle
		28/29 (96.6%) • Tectal beaking 7/29 (24.1%) • Intermediate tectal beaking 20/29 (69%) • Hypoplastic tentorium 29/29 (100%)

Table 7: Additional infratentorial intracranial findings using traditional MRI sequences.

Reported Abnormality	First Author, Year of	Description n/N (%) or p value
	Publication and timing of	
	MMC surgery	
Ventricular Abnormality	Rickard 2006 (Postnatal	 Angular appearance of ventricle 5/17 (29%)
	Surgery)[53]	
	Sweeny 2012 (Postnatal	Triventricular hydrocephalus 19/33 (57.6%)
	Surgery)[54]	• Lateral ventricular dilatation or colpocephaly 14/33 (42.4%)
	Nagaraj 2017 (Postnatal Surgery)[39]	Lateral and third ventricle increased 70/74 (94.6%)
	Danzer 2007 (Postnatal Surgery and Fetal Open Surgery)[40]	Antero-Posterior (AP) diameter of the fourth ventricle of MMC patients (who were operated on

		postnatally and prenatally) is significantly smaller than controls $p \le 0.001$
Cortical Abnormalities	Sival 2011 (Postnatal Surgery)[62]	 Diffuse white matter oedema 33/40 (82.5%) Grey matter oedema 30/40 (75%)
	Danzer 2007 (Postnatal Surgery and Fetal Open Surgery)[40]	 Brain thickness reduced pre and postnatally in MMC patients having postnatal surgery, and MMC patients having Fetal open surgery p ≤0.0001
	Rethman 2017 (Fetal Open Surgery)[42]	• Polymicrogyria 1/27 (3.7%)
Subarachnoid Spaces and Cerebro- Spinal Fluid (CSF) Abnormalities	Danzer 2007 (Postnatal Surgery)[40]	• The CSF space at the level of the cerebellar width (p ≤ 0.0001) and AP diameter of cerebellum (p ≤ 0.001) was reduced prenatally and postnatally in MMC
	Rethman 2017 (Fetal Open Surgery)[42]	 The total subarachnoid space at the level of the temporal horns was smaller in MMC and myeloschisis (MS) patients 27/27 (100%) Supratentorial spaces were smaller in MS patients 9/27 (33.3%)
	Danzer 2007 (Fetal Open Surgery)[40]	• No supratentorial CSF in the subarachnoid space was seen prior to surgery 22/22 (100%)
	Nagaraj 2017 (Postnatal and Fetal Open Surgery)[39]	Effacement of extra-axial CSF in all MMC patients prenatally was 94/102 (92.1%) in the antenatal period, and 23/102 (22.5%) in the postnatal period MMC

Table 8: Additional supratentorial intracranial findings using traditional MRI sequences

Reported Abnormality	First Author, Year of	Description n/N (%) or p value
	Publication and timing of	
	MMC surgery	
Intracranial Haemorrhages and cysts	Mangels 2000 (Fetal Open	Periventricular Leukomalacia 3/4 (75%)
	Surgery)[17]	 Subependymal haemorrhage 1/4 (25%)
		• Subdural haematoma 1/4 (25%)
		• Lobar haemorrhage 1/4 (25%)
Signal Intensity Ratio Changes	Rangasami 2012 (Postnatal	Signal intensity ratio is higher in the cerebellar
	Surgery)[61]	vermis and periventricular region of MMC patients
		15/15 (100%)

Table 9: Miscellaneous intracranial findings using traditional MRI sequences

Reported Feature	First Author, Year of Publication and timing of MMC surgery	Description n/N (%) or p value
Posterior Fossae Measurements	Aertsen 2019 (Postnatal and Fetal Open surgery)[6]	 In MMC patients who had Fetal open surgery TCD, CSO, TDPF, PFA showed significant differences within 1 week of prenatal surgery (p 0.01 to ≤ 0.001), most evident of which is cerebellar herniation level (CHL), and CSO angle (p ≤ 0.0001)
	Rethmann 2017 (Fetal Open surgery)[42]	 CSO angle increased significantly between pre and post-operative MRI 27/27 (100%) The cerebral bony BPD increased significantly at postoperative MRI 27/27 (100%) Posterior fossae volume (PFV), PFA, and TDPF were still smaller in MMC than in controls after surgery 27/27 (100%)
	Grant 2011 (Postnatal and Fetal Open surgery)[36]	 CSO angle starts off as acute (p≤0.001) but becomes similar to controls after birth in all MMC patients. Antenatal repair had little effect. At birth the posterior fossae size for MMC patients with postnatal repair was reduced more than MMC patients who had antenatal repair and controls p=0.015
	Nagaraj 2020 (Fetal Open and Fetoscopic Surgery)[45]	• Improvement in posterior fossae crowding was seen in MMC patients after open Fetal surgery 5/5 (100%), and fetoscopic surgery 6/6 (100%)
Anatomical Descriptive Markers of Chiairi II Malformation	Rethmann 2017 (Fetal Open surgery)[42]	 Persistent herniation of the choroid plexus through the foramen magnum was seen in cases of reversed Chiari II 12/27 (44.4%) Flattening of the inferior pontine notch was present after birth with resolved hindbrain herniation 21/27 (77.8%) The tectal plate remained dysplastic in all neonates with resolved hindbrain herniation 25/27 (92.6%)
Subarachnoid space and CSF	Mehollin-Ray 2014 (Fetal Open surgery)[44]	MMC patients showed an increase in extra-axial space of 5.5 mm on average after surgery 10/12 (83.3%)

	Rethmann 2017 (Fetal Open surgery)[42]	 Supratentorial total subarachnoid space widened postoperatively 22/25 (88%) Post-operatively the total subarachnoid spaces increased more in myeloschisis than in MMC 9/27 (33.3%) In all cases of resolved hindbrain herniation, total subarachnoid space decreased 1-3 mm width postnatally 25/25 100%
	Danzer 2007 (Postnatal and Fetal open surgery)[40]	 Subarachnoid space and supratentorial CSF remained reduced postnatally in MMC patients who had postnatal surgery p ≤ 0.0001 Subarachnoid space and supratentorial CSF improved in MMC patients who had prenatal surgery In MMC patients who had prenatal surgery, the CSF space at the level of the cerebellar width (p ≤0.0001) and AP diameter of the cerebellum (p≤0.001) reduced and improved postnatally
	Nagaraj 2020 (Fetal Open and Fetoscopic Surgery)[45]	Patency of extra-axial space was seen in MMC patients after open Fetal surgery 5/5 (100%), and fetoscopic surgery 6/6 (100%)
Ventricular system measurements	Nasiadko 2014 (Fetal Open Surgery)[25]	• Resolved aqueductal stenosis post-surgery 7/9 (77.8%)
	Rethmann 2017 (Fetal Open surgery)[42]	 Ventricular width index (VWI) increased in 2/27 (7.4%), and decreased in 12/27 (44.4%) antenatally VWI increased in 3/27 (11.1%) and decreased in 10/27 (37%) in the neonatal period.
	Nagaraj 2017 (Postnatal and Fetal Open Surgery)[39]	The prenatal lateral and third ventricle size was significantly smaller than the postnatal ventricular size in both the prenatal and postnatal repair groups p ≤0.001

Table 10: Additional post-operative MRI features using traditional MRI sequences

Reported Abnormality	First Author, Year of Publication and timing of MMC surgery	Intracranial Location and Description n/N (%) or p value reported in individual studies
	Mignone Philpott 2013 (Postnatal Surgery)[47]	Infratentorial:

Apparent Diffusion Co-efficient (ADC) value changes in MMC		• ADC values in MMC cerebella higher than in controls <i>p</i> =0.0126
brains	Shrot 2006 (Postnatal	Supratentorial:
	Surgery)[49]	• ADC values lower in frontal (p =0.01) and temporal lobes (p =0.05) in MMC brains
	Sanz-Cortes 2020 (Fetal Open and Fetoscopic Surgery)[48]	 Supratentorial: ADC values were higher in the genu of the corpus callosum in MMC undergoing open Fetal surgery 16/30 (53.3%) ADC values were higher in the genu of the corpus callosum in MMC undergoing fetoscopic Fetal surgery 14/27 (51.9%) ADC values where higher in basal ganglia of MMC undergoing open Fetal surgery 16/30 (53.3%) ADC values were higher in basal ganglia of MMC undergoing fetoscopic surgery 14/27 (51.9%)
Fractional Anisotropy Changes	Woitek 2016 (Postnatal Surgery)[50]	Fractional Anisotropy significantly higher in the midbrain of MMC patients p=0.003
Abnormal high T2 signal	Warner 2019 (Postnatal	Infratentorial:
	Surgery)[8]	• Abnormal high T2 signal in cerebellar vermis 10/20 (50%) at 20-22 weeks, and 11/20 (55%) at 30-32 weeks.
Ventricular Abnormalities	Sival 2011 (Postnatal	Supratentorial:
	Surgery)[62]	• Aqueductal stenosis 38/40 (95%)
		• Occipital horn enlargement 40/40 (100%)
		Temporal horn enlargement 22/40 (55%)
	Zarutskie 2019 (Fetal Open	Supratentorial:
	and Fetoscopic Surgery)[51]	

		Increased ventricular volume and increased ventricular volume growth post open and fetoscopic Fetal surgery 16/48 (33.3%)
Intraventricular and Intracranial	Nagaraj 2020 (Fetal Open	Miscellaneous:
haemorrhages	and Fetoscopic Surgery)[45]	• Intraventricular haemorrhage in MMC brain of open Fetal surgery 1/47 (2.1%)
		• Intracranial haemorrhage in MMC brains of open Fetal surgery 10/47 (21.3%)
		• Intraventricular haemorrhage in MMC brain of fetoscopic Fetal surgery 1/15 (6.7%)
		 Intracranial haemorrhage in MMC brains of fetoscopic Fetal surgery 3/15 (20%)

Table 11: Additional intracranial findings using advanced MRI sequences