

Preliminary Full wwPDB EM Validation Report (i)

Dec 17, 2021 – 05:13 PM JST

Deposition ID : $D_{1300026375}$

This is a Preliminary Full wwPDB EM Validation Report.

This report is produced by the wwPDB Deposition System during initial deposition but before annotation of the structure.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis 0.0.0.dev97: 1.8.5 (274361), CSD as541be (2020) Mogul : MølProbity : 4.02b-467 20191225.v01 (using entries in the PDB archive December 25th 2019) Percentile statistics Ideal geometry (proteins) Engh & Huber (2001) : Ideal geometry (DNA, RNA) Parkinson et al. (1996) : Validation Pipeline (wwPDB-VP) : 2.24

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: *ELECTRON MICROSCOPY*

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3$, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chair	1
1	A	1016	19% 76%	20% ••
2	В	1000	76%	21% •
3	\mathbf{C}	1000	14%	23% •
4 /	0	118	52%	42% •
4	Р	118	58%	42% •
4	U	118	57%	42% •
5	Q	107	56% 61%	38% •
5	S	107	41%	38% •
		/		α i 1 i

201000			
Mol	Chain	Length	Quality of chain
			84%
5	V	107	59% 40%
			67%
6	D	3	33% 67%
			33%
6	Ε	3	33% 67%
			33%
6	F	3	33% 67%
			50%
7	G	2	50%
	_		
7	Н	2	100%
•			
7	I	2	50%
•	-	_	50%
7	J	2	50%
•			50%
7	K	2	100%
•		-	10070
7	L	2	100%
	Ц		50%
7	М	2	100%/
1	111		100%
7	Ν	2	1000/
1	11		100%
7	B	2	E00/
1	10	<u>ک</u>	50% 50%
7	т	2	100%
1	1		

 \sim +: 1 ſ

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 29187 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called spike chain A.

Mol	Chain	Residues		Α	toms			AltConf	Trace
1	А	1006	Total 7761	C 4956	N 1292	0 1478	S 35	0	0

• Molecule 2 is a protein called chain B of spike.

Mol	Chain	Residues		Ą	AltConf	Trace		
2	В	1000	Total 7732	C 4938	N O 1283 1476	S 35	0	0

• Molecule 3 is a protein called chain C of spike.

Mol	Chain	Residues	Atoms	AltConf	Trace	
3	С	1000	Total C N Ø 7677 4903 1270 146	S 9 35	0	0

• Molecule 4 is a protein called heavy chain of R33.

Mol	Chain	Residues	Atoms	AltConf	Trace
4	U	118	Total C N O S	0	0
-			928 594 151 178 5		
4	0	118	Total C N O S	0	0
4 0	0	110	928 594 151 178 5	0	0
4	D	110	Total C N O S	0	0
4 P	118	928 594 151 178 5	0	0	

• Molecule 5 is a protein called light chain of R33.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	V	107	Total	С	Ν	0	\mathbf{S}	0	0
	V	107	824	520	137	164	3	0	0
5	-	107	Total	С	Ν	0	\mathbf{S}	0	0
5	Q	107	824	520	137	164	3		0

Mol	Chain	Residues		At	oms			AltConf	Trace
5	\mathbf{S}	107	Total 824	C 520	N 137	0 164	${ m S} { m 3}$	0	0

• Molecule 6 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns		AltConf	Trace
6	D	3	Total 39	C 22	N 2	0 15	0	0
6	Е	3	Total 39	C 22	N/ /2	O 15	0	0
6	F	3	Total 39	С 22	N 2	O 15	0	0

• Molecule 7 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	A	Aton	ns /	/	AltConf	Trace
7	G	2	Total 28	C 16	N 2	O 10	0	0
7	Н	2	Total 28	C /16	N 2	O 10	0	0
7	I	2	Total 28	C 16	N 2	O 10	0	0
7	J	2	Total 28	C 16	N 2	O 10	0	0
7	К	2	Total 28	C 16	N 2	O 10	0	0
7	L	2	Total 28	C 16	N 2	O 10	0	0
7	М	2	Total 28	C 16	N 2	O 10	0	0
7	N	2	Total 28	C 16	N 2	O 10	0	0

α \cdots 1	c		
Continued	from	previous	page
	5	1	1 5

Mol	Chain	Residues	Atoms		AltConf	Trace
7	D	2	Total C N	0	0	0
(п	2	28 16 2	10	0	0
7	Т	2	Total C N	0	0	0
(1	2	28 16 2	10		0

• Molecule 8 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

					V		
Mol	Chain	Residues	A	Aton	ns		AltConf
8	А	1	Total 98	С 56	N 7	O 35	0
8	А	1	Total 98	$\begin{array}{c} \mathrm{C} \\ 56 \end{array}$	Ń 7	O 35	0
8	A	1	Total 98	C 56	N 7	O 35	0
8	A	1	Total 98	$\begin{array}{c} \mathrm{C} \\ 56 \end{array}$	N 7	O 35	0
8	А	1	Total 98	$\begin{array}{c} \mathrm{C} \\ 56 \end{array}$	N 7	O 35	0
8	А	1	Total 98	$\begin{array}{c} \mathrm{C} \\ 56 \end{array}$	N 7	O 35	0
8	A	1	Total 98	$\begin{array}{c} \mathrm{C} \\ 56 \end{array}$	N 7	O 35	0
8	В	1	Total 154	C 88	N 11	O 55	0
8	В	1	Total 154	C 88	N 11	O 55	0

Mol	Chain	Residues	A	Aton	ns		AltConf	
0	р	1	Total	С	Ν	0	0	
8	В	L	154	88	11	55	0	
0	D	1	Total	С	Ν	0	0	
0	D	L	154	88	11	55	0	
8	В	1	Total	С	Ν	0	0	
0	D	1	154	88	11	55	0	
8	В	1	Total	С	Ν	Ο	Ø	
0	D	I	154	88	11	55	0	
8	В	1	Total	\mathbf{C}	Ν	Ο	0	
0	D	T	154	88	11	55	Ű	
8	В	1	Total	\mathbf{C}	Ν	0 /		
Ű		-	154	88	11	55	Ű	
8	В	1	Total	С	Ν	0	0	
0		-	154	88	11	55	Č	
8	В	1	Total	С	N	0		
	_	_	154	88	/11	55		
8	В	1	Total	C	Ν	O (
			154	88	11	55		
8	С	1	Total	C	N	0	0	
			112	64	8	40		
8	С	1	Total	C	N	0	0	
				64	8	40		
8	С	1	10tal	C	IN	0	0	
		/	112 Tet 1	04	ð N	$\frac{40}{0}$		
8	С	1 /	10tai	61	IN O	40	0	
			Tatal	$\frac{04}{C}$	0 	40		
8	С	/1	10tal	64	N	40	0	
			Tatal	$\frac{04}{C}$	N	40		
8	С	1	10tal 119	61	/IN 0	40	0	
	/		Total	<u>C</u>	0 N	40		
8	C /	1	119	64	LN Q	40	0	
			Total	$\frac{04}{C}$	0 N	40 0		
8	Ć		119	64	1N &	70 70	0	
	/			04	0	40		

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, ørange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

D_1300026375

THR29 THR29 ASN30 SRN30 SRN30 SRN31 SRN30 SRN31 CLN53 ASP40 CLN52 ASP40 CLN52 ASP53 CLN52 ASP53 LEU55 PHE55 PHE55 PHE55 PHE55 PHE63 PHE65 PHE65	HIS66 ASI81 PR082 VAL90 LEUB3 PR085 PR085 ASI87 ASI87 ASI87 ASI89 GI790 TR91 TR91 TR91 TR91 TR91 CI7105 CI7105 CI7105 CI7105 CI7105 CI7105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71105 CI71114 CI71114
LEULIS LEULISO VALIZO VALIZO VALIZZ VALIZZ CYSISI CYSISI CYSISI CYSISI CYSISI ASN137 ASN137 ASN165 ASN165 ASN165 ASN165 ASN165 CYSISE CYSISE ASN165 ASN165 ASN165 CYSISE	TYR170 FNR170 SER175 GLN173 SER175 GLN173 FPE0176 LEU176 AR6189 Artistes
ALA213 ALA214 GLY215 LEU216 GLY219 FH2200 SER211 LEU223 ALA222 LLU223 PH2238 CLV224 TL2235 FL233 ASN234 TL223 ASN234 TL2235 ALA220 CLY261 ALA263 ALA2	ML261 LEU270 ELU271 AR0272 AR0272 AR0273 AR0276 AL0276 AL0281 TH286 ALA292 CU281 ALA292 FRA316 TH315 SER316 TH315 SER316 TH315 SER316 TH328 ALA292 FR0286 FR0286 ALA292 FR0286 FR
Autasz Prosas Prosas Prosas Aswasi Triasas Aswasi Aswas	TY339 TY336 GLY34 SER383 SER383 SER383 SER383 ASY3386 LEU3386 LEU3386 LEU3386 LEU3386 LEU3386 LEU3386 LEU3386 LEU3386 LEU3386 TTR385 ASY3394 ASY3394 ALA397 ALA397 ALA397 ALA397 ALA397 ALA397 ALA397 ALA396 CLU306 GLU406 ALA307 ALA397 ALA397 ALA397 ALA397 ALA397 ALA397 ALA396 CLU30
LL MAGG LL MAGG LL MAG HHA 15 HHA 15 HHA 15 HHA 15 HHA 21 KMA 22 KMA 22 KMA 22 KMA 22 HHA 20 HHA 20 HHA 20 HHA 20 HHA 20 HHA 20 HHA 20 KMA 30 KMA 30 KMA 30 KMA 30 KMA 40 KMA	AL1445 AL1445 IRM450 IRM450 IRM450 IRM455 IRM455 IRM455 IRM455 IRM455 IRM455 IRM456 IRM456 IRM456 IRM456 ILM477 ILM477 ILM477 ILM477 ILM477 ILM477 ILM477 ILM477 ILM477 ILM477 ILM475 ILM477 IL
REA177 RE477 RE477 R5426 S1438 S	HE615 HE615 HE615 HE615 HE615 HE615 HE615 HE615 HE621 HE623 AL620 HE623 HE633 HE633 HE633 HE633 HE633 HE633 HE633 HE633 HE633 HE633 HE634 HE633 HE634 HE634 HE634 HE634 HE634 HE635 HE636 HE636 HE636 HE636 HE637
5558 5558 7 7 5558 7	665 665 665 665 665 665 665 665
143 11 146 11 150 11 150 01 150 01 151 11 151 11 131 12 131 12 131 13 132 11 131 13 132 11 131 13 132 11 133 12 139 13 139 13 139 13 139 14 139 13 139 14 139 14 139 14 130 14 131 14 132 14 133 14 14 14 15 14 16 14 17 14 18 14 17 14 1	374 LE 381 AL 381 AL 382 VA 383 VA 384 AL 385 VA 386 AL 314 AL 328 AL 338 AL 341 AL 352 AL 353 AL 354 AL 355 AL 356 AL 357 AL 361 TH 361 TH
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
 Molecule 4: heavy chain of R33 	
Chain U: 78%	42%
CLAIL VAL2 CLAIS LEU4 VAL5 CLAIS SER7 CLY8 SER7 CLY8 SER17 CLY8 CLY16 CLV10 CLY812 CLY15 C	TYR27 THR28 PHE29 THR28 THR32 CLY33 MET34 ASN35 CLY33 MET34 ASN35 CLY33 ASN35 CLY34 AC39 CLY34 CLN36 CLY34 CLY36 CLY36 CLY36 CLY36 CLY36 CLY36 CLY36 CLY37 CLY36 CLY37 CLY36 CLY36 CLY37 C
ALA61 ASP62 ASP63 ASP65 ARG67 ARG67 ARG67 ARG67 ARG67 ARG67 ARG67 ARG67 ARG73 ALA79 THK74 SER73 ALA79 THK78 ALA79 THK78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA79 THR78 ALA64 ALA79 THR78 ALA64 ALA79 ALA79 THR78 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA64 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA79 ALA70 ALA70 ALA64	LASS7 ALA88 ALA88 ALA88 ALA88 ALA87 TYR84 TYR84 CY896 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA97 ALA114 CITV106 ALA97 ALA97 ALA114 CITV106 ALA114 ALA14

• Molecule 4: heavy chain of R33

D_1300026375

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	67%	6		
Chain D:	33%	67%		
NAG1 NAG2 BMA3			$ \geq $	

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

• Molecule 6: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	33%			
Chain F:	33%	X	67%	
•				
83 33 1				
		/		

50%

50%

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain G:

NAG1 NAG2

7

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain H:	100%
NAG2	

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain I:

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

50%

50%

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain L:

100%

100%

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain M:

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain N:

100%

100%

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

50%

Chain R:

50%

NAG1 NAG2

• Molecule 7: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain T: 10%		50%			
and the second s	Chain T:		100%		
and the second s					
				~	
anti-	NAG1 NAG2				
and the second s					
and the second s					
and the second sec					
A AND				V /	
		/			
A ANTA A ANTA A A A A A A A A A A A A A					
A MARINA A M					
	/				
			/		
		/			
			WORLDWIDE		
PROTEIN DATA BANK	v /		PROTEIN DATA BANK		

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	/
Number of particles used	Not provided	
Resolution determination method	Not provided	
CTF correction method	Not provided	/
Microscope	Not provided	
Voltage (kV)	Not provided	
Electron dose $(e^-/\text{\AA}^2)$	Not provided	
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	Not provided	
Maximum map value	1.657	Depositor
Minimum map value	-0.780	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.036	Depositor
Recommended contour level	0.177	Depositor
Map size (Å)	432.00003, 432.00003, 432.00003	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.08, 1.08, 1.08	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, BMA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
1VIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	1.33	6/7936~(0.1%)	0.83	7/10811~(0.1%)	
2	В	0.51	1/7907~(0.0%)	0.66	5/10768 (0.0%)	
3	С	0.52	3/7851~(0.0%)	0.66	3/10703~(0.0%)	
4	0	0.51	0/955	0.60	0/1300	
4	Р	0.51	0/955	0.60	0/1300	
4	U	0.51	0/955	0.60	0/1300	
5	Q	0.44	0/844	0.63	igvee 1/1146 (0.1%)	
5	S	0.44	0/844	0.62	1/1146~(0.1%)	
5	V	0.44	0/844	0.63	1/1146 (0.1%)	
All	All	0.82	$10/2909\overline{1}~(0.0\%)$	0.70	$18/3962\overline{0}\ (0.0\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А		2
2	В /	0	2
4	0/	0	1
4	P	0	1
4	U	0	1
5	Q	0	1
5	S	0	1
5	V	0	1
All	All	1	10

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	A	516	GLU	CB-CG	87.00	3.17	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	516	GLU	CA-CB	64.02	2.94	1.53
1	А	516	GLU	CG-CD	15.03	1.74	1.51
3	С	336	CYS	N-CA	-9.02	1.28	1.46
1	А	516	GLU	N-CA	8.44	1.63	1.46
3	С	336	CYS	CA-CB	-7.49	1.37	1.53
2	В	336	CYS	CA-CB	-7.15	1.38	1.53
3	С	336	CYS	CB-SG	6.85	1.93	1.82
1	А	336	CYS	CA-CB	-5.42	1.42	1.53
1	А	515	PHE	C-N	5.29	1.46	1.34

All (18) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	Observed(°)	$/Ideal(^{o})$
1	А	516	GLU	CA-CB-CG	-47.55	8.80	113.40
1	А	516	GLU	N-CA-CB	14.55	136.78	110.60
2	В	30	ASN	C-N-CA	9.23	144.79	121.70
5	V	80	PRO	CA-N-CD	-8.89	99.05	111.50
5	Q	80	PRO	CA-N-CD	-8.88	99.07	111.50
5	S	80	PRO	CA-N-CD	-8.88	99.08	111.50
3	С	703	ASN	CB-CA-C	-7.92	94.56	110.40
2	В	567	ARG	NE-CZ-NH2	-7.30	116.65	120.30
1	А	983	ARG	NE-CZ-NH2	-6.45	117.08	120.30
2	В	938	LEU	CA-CB-CG	6.03	129.18	115.30
1	А	515	PHE	C-N-CA	5.85	136.32	121.70
1	А	617	CYS	CA-CB-SG	5.67	124.20	114.00
3	С	1032	CYS	CA-CB-SG	5.55	123.99	114.00
1	А	436	TRP	CA-CB-CG	5.33	123.84	113.70
3	С	436	TRP	CA-CB-CG	5.33	123.83	113.70
2	В	436	TRP	CA-CB-CG	5.31	123.80	113.70
2	B	546	LEU	CA-CB-CG	5.15	127.15	115.30
1	A	336	CYS	CB-CA-C	5.05	120.51	110.40

All (1) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
1/	A	516	GLÚ	CA
/			/	

All (10) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
	A	513	LEU	Mainchain
	A	983	ARG	Sidechain
		a	1	

	5	1	1 5	
Mol	Chain	\mathbf{Res}	Type	Group
2	В	333	THR	Peptide
2	В	567	ARG	Sidechain
4	0	106	PHE	Peptide
4	Р	106	PHE	Peptide
5	Q	29	VAL	Peptide
5	S	29	VAL	Peptide
4	U	106	PHE	Peptide
5	V	29	VAL	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7761	0	7507	221	0
2	В	7732	0	7480	238	0
3	С	7677	0	7374	233	0
4	0	928	0	869	57	0
4	Р	928	0	869	54	0
4	U	928	0	869	55	0
5	Q	824	0	801	39	0
5	S	824	0	801	39	0
5	V	824	0	801	42	0
6	D	39	0	$\sqrt{34}$	1	0
6	Ε	39	0	34	1	0
6	F	39	0	34	1	0
7	G	28	0	25	1	0
7	H	28	0	25	0	0
7	X	28	0	25	0	0
7	J	28	0	25	0	0
7	K	28	0	25	2	0
7	L	28	0	25	1	0
7	М	28	0	25	2	0
/7	Ň	28	0	25	0	0
7	R	28	0	25	0	0
7	T	28	0	25	0	0
8	>A	98	0	91	3	0
8	В	/154	0	143	1	0
8	C	112	0	104	2	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
All	All	29187	0	28061	867	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 15.

All (867) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:357:ARG:HH12	2:B:167:THR:CA	1.12	1.63
2:B:363:ALA:CB	2:B:524:VAL:HG22	1.27	1.55
3:C:363:ALA:HB2	3:C:524:VAL:CG1	1.30	1.53
1:A:395:VAL:HG23	1:A:524:VAL:CG1	1.39	1.53
1:A:516:GLU:CD	1:A:516:GLU:CG	1.74	1.53
3:C:363:ALA:CB	3:C:524:VAL:CG1	1.92	1.46
2:B:363:ALA:CB	2:B:524:VAL:CG2	1.85	1.41
2:B:391:CYS:SG	2:B:544:ASN/CA	2.11	1.39
2:B:363:ALA:HB2	2:B:524:VAL:CG2	0.89	1.35
2:B:391:CYS:SG	2:B:544:ASN:HB2	1.66	1.34
2:B:391:CYS:SG	2:B:544:ASN:CB	2.17	1.33
2:B:386:LYS:HD2	3:C:983:ARG:C	1.47	1.32
2:B:391:CYS:HB2	2:B:544:ASN:O	1.31	1.30
2:B:382:VAL:HG13	3:C:983:ARG:CD	1.62	1.29
1:A:357:ARG:NH1	2:B:167:THR:CA	1.90	1.28
2:B:383:SER:CB	3:C:984:LEU:HA	1.62	1.27
1:A:362:VAL:CG1 /	1:A:527:PRO:HA	1.66	1.25
1:A:357:ARG:NH1	2:B:167:THR:HA	1.44	1.23
2:B:357:ARG:NÉ	3:C:230:PRO:CG	1.95	1.23
2:B:393:THR;ĤB	2:B:520:ALA:O	1.40	1.22
1:A:394:ASN:ND2	1:A:516:GLU:CB	2.03	1.21
2:B:361:CYS:O	2:B:524:VAL:HA	1.38	1.19
3:C:391:CYS:HB2	3:C:544:ASN:O	1.37	1.19
1:A:357:ARG:HH12	2:B:167:THR:CB	1.55	1.19
1:A:394:ASN:H	1:A:516:GLU:CG	1.57	1.18
2:B:383:SER:HB3	3:C:983:ARG:O	1.02	1.17
2:B:391:CYS:SG	2:B:544:ASN:C	2.23	1.16
2:B:391:CYS:CB	2:B:544:ASN:O	1.92	1.16
2:B:357:ARG:NE	/3:C:230:PRO:HG3	1.55	1.16
2:B:336:CYS:SG	2:B:524:VAL:HG23	1.85	1.15
1:A:362:VAL:CG1	1:A:527:PRO:CA	2.24	1.15
3:C:363:ALA:HB3	3:C:524:VAL:HG12	1.25	1.14
2:B:383:SER;CB	3:C:983:ARG:O	1.95	1.12

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:393:THR:C	1:A:516:GLU:CB	2.18	1.12
1:A:395:VAL:HG23	1:A:524:VAL:HG13	1.29	1.11
2:B:391:CYS:SG	2:B:544:ASN:HA	1.90	1.11
2:B:361:CYS:N	2:B:523:THR:O	1.80	1.11
1:A:362:VAL:HG13	1:A:527:PRO:HA	1.35	1.08
2:B:383:SER:HB2	3:C:984:LEU:HD23	1.31	1.08
3:C:363:ALA:HB2	3:C:524:VAL:HG11	1.26	1.08
3:C:363:ALA:CB	3:C:524:VAL:HG12	1.80	1.08
2:B:382:VAL:CG1	3:C:983:ARG:HD2	1.85	1.06
2:B:383:SER:CB	3:C:984:LEU:HD23	1.83	1.06
2:B:334:ASN:HD22	2:B:361:CYS:HA	1.20	1,06
1:A:395:VAL:CG2	1:A:524:VAL:CG1	2.32	1.06
2:B:363:ALA:HB2	2:B:524:VAL:HG23	1.14	1.06
1:A:394:ASN:H	1:A:516:GLU:HA	1.03	1.05
2:B:357:ARG:HE	3:C:230:PRO:CG	1.60	1.05
1:A:395:VAL:HG23	1:A:524:VAL:HG11	1.08	1.05
1:A:394:ASN:H	1:A:516:GLU/HG2	1.13	1.05
2:B:363:ALA:HB2	2:B:524:VAL:HG21	1.38	1.05
2:B:383:SER:HB2	3:C:984:LEU:CA	1.86	1.04
2:B:383:SER:HB2	3:C:984:LEU:CD2	1.88	1.04
3:C:363:ALA:HB2	3:C:524:VAL:HG13	1.08	1.03
2:B:359:SER:CA	2:B:523:THR:HG21	1.86	1.03
2:B:363:ALA:N	2:B:525:CYS:O	1.92	1.03
2:B:382:VAL:HG13	3:C:983:ARG:HD2	1.04	1.02
1:A:395:VAL:CG2	1:A:524:VAL:HG11	1.90	1.01
1:A:393:THR:OG1	1:A:516:GLU:CB	2.08	1.01
2:B:357:ARG:HE	3:C:230:PRO:HG2	1.23	1.01
2:B:334:ASN:ND2	2:B:361:CYS:HA	1.74	1.01
2:B:363:ALA:O	2:B:526:GLY:HA2	1.59	1.00
2:B:382:VAL:HG12	3:C:983:ARG:HB2	1.44	1.00
1:A:395:VAL:HG21	1:A:524:VAL:CG2	1.91	1.00
2:B:363:ALA:HB3	2:B:524:VAL:HG22	1.41	1.00
3:C:393:THR:CG2	3:C:520:ALA:O	2.10	1.00
2:B:336:CYS:SG	2:B:524:VAL:CG2	2.50	0.99
2:B:359:SER:HA	2:B:523:THR:CG2	1.91	0.99
1:A:394:ASN:HD22	1/A:516:GLU:CB	1.66	0.99
3:C:391:CYS:SG	/3:C:544:ASN:HA	2.03	0.98
4:U:12:LYS:HG3	4:U:18:VAL:HG11	1.45	0.98
4:O:12:LYS:HG3	4:O:18:VAL:HG11	1.45	0.98
1:A:393:THR:HA	1:A:522:ALA:HA	1.43	0.98
1:A:394:ASN:N	1:A:516:GLU:HA	1.78	0.98

Atom 1	Atom 0	Interatomic	Çlash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:393:THR:OG1	1:A:516:GLU:CA	2.11	0.98
4:U:13:LYS:HD3	4:U:14:PRO:HD2	1.46	0.98
2:B:391:CYS:SG	2:B:544:ASN:O	2.22	0.97
4:P:12:LYS:HG3	4:P:18:VAL:HG11	1.45	0.97
4:0:13:LYS:HD3	4:0:14:PRO:HD2	1.46	0.96
2:B:359:SER:CA	2:B:523:THR:CG2	2.42	0.96
4:P:13:LYS:HD3	4:P:14:PRO:HD2	1.46	0.96
3:C:360:ASN:H	3:C:523:THR:HB	1,30	0.95
1:A:362:VAL:HG11	1:A:527:PRO:HA	1.49	0.95
1:A:394:ASN:H	1:A:516:GLU:CA	1.75	0.94
2:B:396:TYR:HE2	3:C:200:TYR:HH	0.96	0.94
2:B:393:THR:CB	2:B:520:ALA:O	2.15	0.94
1:A:357:ARG:NH1	2:B:167:THR:O	2.02	0.93
1:A:393:THR:CB	1:A:516:GLU:CB	2.46	0.93
1:A:393:THR:OG1	1:A:516:GLU:CG	2.16	0.92
2:B:382:VAL:CG1	3:C:983:ARG:CD	2.46	0.92
2:B:382:VAL:C	3:C:984:LEU;HD21	1.90	0.92
3:C:391:CYS:SG	3:C:544:ASN:CA	2.58	0.92
1:A:357:ARG:NH1	2:B:167:/THR:C	2.22	0.92
2:B:383:SER:HB2	3:C:984:LEU:HA	0.93	0.92
3:C:393:THR:HA	3:C:522:ALA:HA	1,49	0.92
1:A:391:CYS:HA	1:A:525:CYS:SG	2.09	0.92
1:A:364:ASP:OD1	1:A:527:PRO:HD2	1.69	0.92
2:B:357:ARG:NE	3:C:230:PRO:HG2	1.81	0.92
1:A:394:ASN:CG	1:A:516:GLU:CA	2.39	0.91
3:C:364:ASP:OD2	3:C:527:PRO:HD3	1.71	0.91
3:C:393:THR:HG21	3:C:520:ALA:O	1.71	0.90
2:B:396:TYR:HÉ2	3:C:200:TYR:OH	1.53	0.90
1:A:883:THR:HG23	3:C:707:TYR:HB2	1.54	0.89
1:A:394:ASN:N	1:A:516:GLU:CG	2.30	0.89
2:B:396:TYR:CE2	3:C:200:TYR:OH	2.23	0.89
1:A:395:VAL:HG21	1:A:524:VAL:HG22	1.55	0.89
3:C:650:LEU:HD21	3:C:653:ALA:HB3	1.55	0.89
2:B:355:ARG:NH2	3:C:230:PRO:O	2.04	0.89
1:A:394:ASN:OD1	1:A:516:GLU:CA	2.22	0.88
2:B:396:TYR:OH	3;Ć:200:TYR:HE1	1.55	0.88
1:A:357:ARG:CZ	2:B:167:THR:HA	2.03	0.87
1:A:395:VAL:CG2	1:A:524:VAL:CG2	2.51	0.87
3:C:360:ASN:H	3:C:523:THR:CB	1.87	0.87
2:B:396:TYR:OH	3:C:200:TYR:CE1	2.27	0.86
4:U:4:LEU:HD13	4:U:109:TRP:HE1	1.40	0.86

	hi o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:200:TYR:CE2	3:C:396:TYR:OH	2.28	0.86
3:C:193:VAL:HG23	3:C:223:LEU:HD12	1.56	0.86
2:B:386:LYS:CD	3:C:983:ARG:C	2.42	0.85
1:A:357:ARG:HH12	2:B:167:THR:C	1.79	0.85
4:O:4:LEU:HD13	4:O:109:TRP:HE1	1.40	0.85
2:B:382:VAL:HG13	3:C:983:ARG:HD3	1.58	0.84
3:C:391:CYS:CB	3:C:544:ASN:O	2.22	0.84
4:P:4:LEU:HD13	4:P:109:TRP:HE1	1,40	0.84
1:A:394:ASN:N	1:A:516:GLU:CA	2.37	0.84
2:B:334:ASN:HD22	2:B:361:CYS:CA	1.91 人	0.83
2:B:361:CYS:O	2:B:524:VAL:CA	2.26	0,83
1:A:357:ARG:NH1	2:B:167:THR:CB	2.31	0.83
3:C:360:ASN:N	3:C:523:THR:HB	1.93	0.82
1:A:362:VAL:HG11	1:A:527:PRO:CA	2.06	0.81
3:C:363:ALA:CB	3:C:524:VAL:HG13	1.82	0.81
3:C:393:THR:HB	3:C:520:ALA;Ó	1.80	0.80
2:B:336:CYS:SG	2:B:524:VAL:CB	2.70	0.80
1:A:395:VAL:CG2	1:A:524:VAL:HG21	2.12	0.80
2:B:383:SER:HB3	3:C:983;ARG:C	2.02	0.80
2:B:383:SER:CA	3:C:984;LEU:HD23	2.12	0.80
1:A:395:VAL:HG21	1:A:524:VAL:HG21	1,64	0.79
1:A:393:THR:H	1:A:516:GLU:CD	1.85	0.79
1:A:357:ARG:NH1	2:B:167:THR:OG1	2.16	0.79
1:A:364:ASP:OD1	/1:A:527:PRO:CD	2.31	0.79
2:B:363:ALA:H	2:B:525:CYS:N	1.80	0.79
2:B:383:SER:N	3:C:984:LEU:HD23	1.98	0.78
3:C:393:THR:CB	3:C:520:ALA:O	2.30	0.78
2:B:383:SER:N	3:C:984:LEU:CD2	2.46	0.78
2:B:355:ARG:HH21	3:C:230:PRO:HB2	1.47	0.78
2:B:391:CY/S:CB	2:B:544:ASN:HB2	2.13	0.78
3:C:391:CYS:HB3	3:C:522:ALA:CB	2.14	0.77
2:B:359:SER:HA	2:B:523:THR:HG23	1.65	0.77
2:B:359:SER:CB	2:B:523;/THR:HG21	2.14	0.77
2:B:361:CYS:O	2:B;523:THR:O	2.03	0.77
1:A:394:ASN:N	1:A:516:GLU:CB	2.48	0.76
3:C:388:ASN:O	3;Ć:526:GLY:HA3	1.85	0.76
2:B:336:CYS:SG	2:B:524:VAL:HB	2.25	0.76
3:C:391:CYS:SG	3:C:544:ASN:C	2.64	0.76
2:B:363:ALA:O	2:B:526:GLY:CA	2.33	0.76
2:B:386:LYS:HD2	3:C:983:ARG:O	1.84	0.76
2:B:383:SER:CB	3:C:984:LEU:CD2	2.57	0.75

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
2:B:383:SER:CA	3:C:984:LEU:CD2	2.65	0.75
1:A:362:VAL:CG1	1:A:527:PRO:CB	2.64	0.75
3:C:108:THR:OG1	3:C:234:ASN:O	2.03	0.75
2:B:383:SER:CB	3:C:984:LEU:CA	2.56	0.74
1:A:362:VAL:HG11	1:A:527:PRO:CB	2.16	0.74
4:U:51:ILE:HD12	4:U:72:LEU:HB2	1.70	0.74
3:C:391:CYS:HB3	3:C:522:ALA:HB1	1.70	0.73
1:A:516:GLU:CD	1:A:516:GLU:N	2,42	0.73
1:A:983:ARG:O	3:C:383:SER:HB3	1.88	0.73
2:B:386:LYS:HD2	3:C:983:ARG:CA	2.19	0.73
3:C:361:CYS:O	3:C:524:VAL:HA	1.89	0,72
2:B:386:LYS:HD2	3:C:984:LEU:N	2.01	0.72
3:C:1106:GLN:HE21	3:C:1109:PHE:HB3	1.54	0.72
3:C:363:ALA:CB	3:C:524:VAL:HG11	1.91	0.72
4:O:51:ILE:HD12	4:O:72:LEU:HB2	1.70	0.72
2:B:701:VAL:HG13	3:C:787:GLN:HG2	1.70	0.72
2:B:393:THR:CG2	2:B:520:ALA:O	2.36	0.72
2:B:393:THR:HA	2:B:522:ALA:HA	1.71	0.72
3:C:335:LEU:HG	3:C:362:VAL:O	1.89	0.72
1:A:391:CYS:CA	1:A:525:CYS:SG	2.79	0.71
4:P:51:ILE:HD12	4:P:72:LEU:HB2	1,70	0.71
1:A:394:ASN:O	1:A:516:GLU:N	2.23	0.71
2:B:395:VAL:HG21	2:B:524:VAL:HG11	1.73	0.71
1:A:364:ASP:CG	/1:A:527:PRO:CG	2.59	0.70
1:A:394:ASN:N	1:A:516:GLU:HG2	1.96	0.70
1:A:362:VAL:HG11	1:A:527:PRO:HB3	1.73	0.70
2:B:364:ASP:OD2	2:B:527:PRO:HG3	1.92	0.69
1:A:362:VAL:CG1	1:A:527:PRO:HB3	2.21	0.69
4:P:4:LEU:HB2	4:P:109:TRP:CD1	2.27	0.69
1:A:395:VAL:N	1:A:524:VAL;HG11	2.07	0.69
8:A:1302:NAG:H83	3:C:558:LYS:HZ1	1.57	0.69
2:B:656:VAL:HG11	2:B:693:ILE:HD12	1.74	0.69
4:U:4:LEU:HB2	4:U:109:TRP:CD1	2.27	0.69
1:A:362:VAL:HG13	1:A:527:PRO:CA	2.07	0.69
2:B:363:ALA:HB2	2:B;524:VAL:HG22	0.71	0.69
1:A:395:VAL:CG2	1:A:524:VAL:HG13	2.12	0.68
2:B:362:VAL:C	2:B:525:CYS:O	2.32	0.68
4:O:4:LEU:HB2	4:0:109:TRP:CD1	2.27	0.68
1:A:787:GLN:HB3	3:C:701:VAL:HG13	1.75	0.68
4:U:13:LYS:HD3	4:U:14:PRO:CD	2.23	0.68
1.A.46.SEB.HA	1:A:279:TYR:O	1.94	0.68

Continued from previous page.

Atom-1	Atom-2	Interatomic	Clash
1100111 1		distance (A)	overlap (A)
2:B:382:VAL:C	3:C:984:LEU:CD2	2.63	0.68
2:B:355:ARG:NH2	3:C:230:PRO:HB2	2.08	0.67
2:B:905:ARG:NH1	2:B:1049:LEU:O	2.27	0.67
4:P:72:LEU:HD21	4:P:74:THR:HB	1.77	0.67
2:B:37:TYR:OH	2:B:53:ASP:OD2	2.11	0.67
1:A:722:VAL:HG12	1:A:1065:VAL:HG22	1.77	0.66
4:U:83:ILE:HG23	4:U:86:LEU:HD11	1.77	0.66
4:U:72:LEU:HD21	4:U:74:THR:HB	1,77	0.66
1:A:363:ALA:HB3	1:A:525:CYS:C	2.15	0.66
3:C:656:VAL:HG11	3:C:693:ILE:HD12	1.77 人	0.66
2:B:359:SER:C	2:B:523:THR:HG21	1.87	0,66
3:C:360:ASN:CA	3:C:523:THR:HB	2.24	0.66
4:O:83:ILE:HG23	4:O:86:LEU:HD11	1.78	0.66
4:P:13:LYS:HD3	4:P:14:PRO:CD	2.23	0.66
1:A:364:ASP:CA	1:A:527:PRO:HD3	2.25	0.66
4:P:83:ILE:HG23	4:P:86:LEU:HD11	1.78	0.66
3:C:516:GLU:HG2	3:C:519:HIS:H	1.60	0.66
2:B:176:LEU:HD23	2:B:190:ARG:HD2	1.78	0.65
1:A:394:ASN:CG	1:A:516:GLU:CB	2.65	0.65
2:B:404:GLY:HA2	2:B:508:TYR:HD2	1.62	0.65
3:C:364:ASP:OD2	3:C:527:PRO:CD	2,43	0.65
3:C:404:GLY:HA2	3:C;508:TYR:HD1	1.62	0.65
4:0:13:LYS:HD3	4:0:14:PRO:CD	2.23	0.65
1:A:404:GLY:HA2	1:A:508:TYR:HD2	1.62	0.65
1:A:725:GLU:OE1	1:A:1028:LYS:NZ	2.28	0.65
3:C:35:GLY:HA3	3:C:56:LEU:HB3	1.77	0.65
4:O:72:LEU:HD21	4:0:74:THR:HB	1.77	0.65
2:B:773:GLU:OE2	2:B:1019:ARG:NH1	2.30	0.64
5:V:8:PRO:HG2	5:V:11:LEU:HB3	1.80	0.64
3:C:905:ARG:NH1	3:C:1049:LEU:O	2.28	0.64
1:A:360:ASN:N	1:A:523:THR:OG1	2.30	0.64
3:C:91:TYR:OH	3:C:191:GLU:OE2	2.15	0.63
2:B:330:PRO:C	2:B:332:ILE:H	2.00	0.63
3:C:360:ASN:HA	3:C:523:THR:HB	1.80	0.63
5:Q:8:PRO:HG2	5:Q:11:LEU:HB3	1.80	0.63
2:B:382:VAL:CG1	3;Ć:983:ARG:HB2	2.25	0.63
2:B:395:VAL:CG2	2:B:524:VAL:HG11	2.28	0.63
1:A:393:THR:O	1:A:516:GLU:CB	2.47	0.63
1:A:567:ARG:HD3	1:A:571:ASP:HA	1.80	0.62
1:A:364:ASP:HA	1:A:527:PRO:HD2	1.82	0.62
5:S:8:PRO:HG2	5:S:11:LEU:HB3	1.80	0.62

Continued from previous page.

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:364:ASP:CG	1:A:527:PRO:HG3	2.20	0.62
4:P:106:PHE:O	4:P:107:ASP:HB2	2.00	0.62
2:B:393:THR:HB	2:B:520:ALA:C	2.16	0.62
2:B:743:CYS:SG	2:B:750:SER:N	2.73	0.62
5:Q:15:VAL:HG13	5:Q:80:PRO:HD2	1.82	0.62
1:A:983:ARG:O	3:C:383:SER:CB	2.48	0.61
2:B:363:ALA:CA	2:B:524:VAL:HG23	2.29	0.61
1:A:64:TRP:HE1	1:A:264:ALA:HB1	1,65	0.61
1:A:82:PRO:HG2	1:A:84:LEU:HD21	1.82	0.61
1:A:362:VAL:HG12	1:A:527:PRO:CA	2.24	0.61
5:S:15:VAL:HG13	5:S:80:PRO:HD2	1.82	0,61
5:V:15:VAL:HG13	5:V:80:PRO:HD2	1.82	0.61
2:B:425:LEU:HD12	2:B:426:PRO:HD2	1.83	0.61
4:U:106:PHE:O	4:U:107:ASP:HB2	2.00	0.61
1:A:393:THR:CA	1:A:516:GLU:CB	2.78	0.61
1:A:425:LEU:HD12	1:A:426:PRO:HD2	1.83	0.61
3:C:323:THR:OG1	3:C:324:GLU:OE2	2.19	0.61
5:Q:36:TYR:HD1	5:Q:46:LEU:HA	1.66	0.61
1:A:360:ASN:CA	1:A:523:THR:OG1	2.49	0.61
1:A:364:ASP:HA	1:A:527:PRO:CD	2.31	0.60
4:O:106:PHE:O	4:O:107:ASP:HB2	2.00	0.60
1:A:984:LEU:HD21	3:C:381:GLY:O	2.01	0.60
4:U:27:TYR:CZ	4:U:98:ARG:HD3	2.37	0.60
5:V:36:TYR:HD1	5:V:46:LEU:HA	1.66	0.60
1:A:905:ARG:NH1	1:A:1049:LEU:O	2.34	0.60
1:A:984:LEU:HA	3:C:383:SER:HB2	1.84	0.60
3:C:546:LEU:HD2/1	3:C:573:THR:HG21	1.81	0.60
3:C:393:THR:HB	3:C:520:ALA:C	2.21	0.60
1:A:393:THR/HB	1:A:516:GLU:CB	2.32	0.60
1:A:701:VAL:HG13	2:B:787:GLN:HG2	1.82	0.60
1:A:364:ASP:OD1	1:A:527:PRO:CG	2.49	0.60
1:A:364:ASP:CG	1:A:527:PRO:CD	2.70	0.60
1:A:364:ASP:CB	1:A:527:PRO:HD3	2.31	0.60
1:A:393:THR:C	1:A:516:GLU:HB3	2.20	0.60
1:A:401:VAL:HG22	1:A:509:ARG:HG2	1.84	0.60
2:B:401:VAL:HG22	2:B:509:ARG:HG2	1.84	0.60
1:A:983:ARG:HB3	3:C:390:LEU:HD21	1.82	0.59
3:C:425:LEU:HD12	3:C:426:PRO:HD2	1.83	0.59
5:V:33:LEU:HD13	5:V:71:PHE:CD2	2.37	0.59
5:Q:33:LEU:HD13	5:Q:71:PHE:CD2	2.37	0.59
4:P:27:TYR:CZ	4:P:98:ARG:HD3	2.37	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:362:VAL:CG1	1:A:527:PRO:N	2.65	0.59
2:B:391:CYS:HB3	2:B:522:ALA:CB	2.32	0.59
5:S:33:LEU:HD13	5:S:71:PHE:CD1	2.37	0.59
5:S:36:TYR:HD2	5:S:46:LEU:HA	1.66	0.59
2:B:355:ARG:HH22	3:C:230:PRO:C	2.05	0.59
3:C:811:LYS:HG3	3:C:812:PRO:HD2	1.85	0.59
4:0:27:TYR:CZ	4:0:98:ARG:HD3	2.37	0.59
1:A:395:VAL:H	1:A:524:VAL:HG11	1,66	0.59
1:A:789:TYR:HA	3:C:703:ASN:O	2.02	0.59
3:C:985:ASP:OD1	3:C:985:ASP:N	2.30	0.59
2:B:359:SER:HB3	2:B:523:THR:HG21	1.84	0,59
3:C:821:LEU:O	3:C:825:LYS:HG2	2.03	0.59
3:C:280:ASN:HD21	8:C:1301:NAG:H82	1.68	0.58
3:C:743:CYS:SG	3:C:750:SER:N	2.76	0.58
2:B:383:SER:HB2	3:C:984:LEU:HD22	1.82	0.58
2:B:390:LEU:HD21	3:C:983:ARG:HB3	1.86	0.58
1:A:393:THR:O	1:A:516:GLU/HB3	2.03	0.58
3:C:401:VAL:HG22	3:C:509:ARG:HG2	1.84	0.58
4:U:97:ALA:HB2	4:U:108:VAL:HG23	1.86	0.58
4:O:105:TYR:HB3	5:Q:34:HIS:CE1	2.39	0.58
7:K:1:NAG:H83	7:K:1:NAG:H3	1,85	0.58
3:C:273:ARG:HD3	3:C:292:ALA:HB3	1.86	0.58
3:C:299:THR:HG22	3:C:315:THR:HG21	1.84	0.58
4:O:97:ALA:HB2	4:O:108:VAL:HG23	1.86	0.58
1:A:707:TYR:HB2	2:B:883:THR:HG23	1.86	0.58
4:P:105:TYR:HB3	5:S:34:HIS:CE1	2.39	0.58
1:A:555:SER:HB3	1:A:586:ASP:HB2	1.85	0.58
2:B:362:VAL:CG1	2:B:525:CYS:O	2.52	0.58
1:A:703:ASN:O	2:B:789:TYR:HA	2.04	0.58
3:C:36:VAL:HG11	3:C:220:PHE:CZ	2.39	0.58
5:V:6:GLN:NE2	5:V:88:CYS:SG	2.77	0.58
4:O:51:ILE:HG21	4:O:70:PHE:HB2	1.86	0.58
4:P:58:PRO:HB2	4:P:60:TYR:CZ	2.39	0.58
1:A:763:LEU:HD22	1:A:1008:VAL:HG21	1.86	0.57
5:Q:46:LEU:HD21	5:Q:49:TYR:HB3	1.86	0.57
5:S:46:LEU:HD21	5:S:49:TYR:HB3	1.86	0.57
/1:A:883:THR:HG23	/3:C:707:TYR:CB	2.32	0.57
2:B:746:SER:HB2	2:B:749:CYS:SG	2.44	0.57
4:P:51:ILE:HG21	4:P:70:PHE:HB2	1.86	0.57
2:B:722:VAL:HG22	2:B:930:ALA:HB1	1.86	0.57
1:A:393:THR:Ó	1:A:523:THR:HG22	2.03	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
4:U:34:MET:HG2	4:U:79:ALA:HB1	1.86	0.57
4:0:58:PRO:HB2	4:O:60:TYR:CZ	2.39	0.57
5:S:6:GLN:NE2	5:S:88:CYS:SG	2.77	0.57
1:A:364:ASP:CB	1:A:527:PRO:CD	2.82	0.57
4:U:105:TYR:HB3	5:V:34:HIS:CE1	2.39	0.57
5:Q:6:GLN:NE2	5:Q:88:CYS:SG	2.77	0.57
7:K:2:NAG:H3	7:K:2:NAG:H83	1.87	0.57
5:V:46:LEU:HD21	5:V:49:TYR:HB3	1,86	0.57
1:A:702:GLU:HA	2:B:788:ILE:HB	1.87	0.57
2:B:363:ALA:CB	2:B:524:VAL:HG23	1.93	0.57
2:B:1106:GLN:HE21	2:B:1109:PHE:HB3	1.70	0.57
4:U:51:ILE:HG21	4:U:70:PHE:HB2	1.86	0.57
4:U:58:PRO:HB2	4:U:60:TYR:CZ	2.39	0.57
1:A:91:TYR:OH	1:A:191:GLU:OE1	2.17	0.56
2:B:294:ASP:OD2	2:B:294:ASP:N	2.38	0.56
1:A:394:ASN:H	1:A:516:GLU;H	1.51	0.56
4:O:34:MET:HG2	4:O:79:ALA;HB1	1.86	0.56
4:P:97:ALA:HB2	4:P:108:VAL:HG23	1.86	0.56
2:B:382:VAL:HG12	3:C:983:ARG:CB	2.29	0.56
2:B:170:TYR:CE1	2:B:172:SER:HB2	2.41	0.56
2:B:382:VAL:HA	3:C:983:ARG:HD2	1.87	0.56
2:B:386:LYS:HD3	3:C:982:SER:C	2.26	0.56
4:P:34:MET:HG2	4:P:79:ALA:HB1	1.86	0.56
8:A:1306:NAG:H3	8:A:1306:NAG:H83	1.87	0.56
2:B:386:LYS:CD	3:C:983:ARG:CA	2.83	0.56
5:S:34:HIS:HE1	5:S:50:TYR:CD2	2.24	0.56
1:A:362:VAL:HG12	1:A:527:PRO:N	2.21	0.56
4:0:12:LYS:HG3	4:0:18:VAL:CG1	2.30	0.56
5:Q:33:LEU:HA	5:Q:89:GLN:O	2.06	0.56
2:B:330:PRO:C	2:B:332:ILE:N	2.59	0.55
5:S:38:GLN:HG3	5:S:44:PRØ:HD3	1.88	0.55
3:C:472;ILE:HD11	3:C:488:CYS:HB3	1.88	0.55
3:C:738:CYS:SG	3:C:739:THR:N	2.80	0.55
5:V:38:GLN:HG3	5:V:44:PRO:HD3	1.88	0.55
5:S:33:LEU:HA	5:S:89:GLN:O	2.06	0.55
1:A:379:CYS:HA	1:A:432:CYS:HA	1.89	0.55
1:A:395:VAL:CB	1:A:524:VAL:HG11	2.37	0.55
1:A:1141:LEU:HG	1:A:1145:LEU:HD13	1.88	0.55
2:B:391:CYS:HB3	2:B:522:ALA:HB3	1.89	0.55
5:Q:64:GLY:HA2	5:Q:73:LEU:HA	1.89	0.55
3:C:822:LEU:HD21	3:C:938:LEU:HD13	1.89	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
5:V:64:GLY:HA2	5:V:73:LEU:HA	1.89	0.55
1:A:560:LEU:H	1:A:563:GLN:NE2	2.05	0.55
2:B:359:SER:CA	2:B:523:THR:HG23	2.25	0.55
3:C:379:CYS:HA	3:C:432:CYS:HA	1.89	0.55
5:V:33:LEU:HA	5:V:89:GLN:O	2.06	0.55
5:V:34:HIS:HE1	5:V:50:TYR:CD1	2.24	0.55
1:A:516:GLU:CD	1:A:516:GLU:C	2.65	0.55
2:B:170:TYR:HE1	2:B:172:SER:HB2	1,72	0.55
2:B:821:LEU:HD21	2:B:939:SER:HB2	1.87	0.55
4:O:107:ASP:HB3	4:O:109:TRP:CZ3	2.42	0.55
5:Q:38:GLN:HG3	5:Q:44:PRO:HD3	1.88	0,55
4:P:107:ASP:HB3	4:P:109:TRP:CZ3	2.42	0.55
3:C:364:ASP:OD2	3:C:527:PRO:HG3	2.06	0.55
4:O:98:ARG:NH2	4:O:109:TRP:HH2	2.05	0.55
2:B:706:ALA:HB1	7:M:2:NAG:O7	2.07	0.54
4:P:12:LYS:HG3	4:P:18:VAL:CG1	2.30	0.54
3:C:391:CYS:O	3:C:522:ALA/HB2	2.06	0.54
4:P:98:ARG:NH2	4:P:109:TRP:HH2	2.05	0.54
1:A:364:ASP:CA	1:A:527:PRO:CD	2.86	0.54
4:U:98:ARG:NH2	4:U:109:TRP:HH2	2.05	0.54
5:Q:34:HIS:HE1	5:Q:50:TYR:CD1	2,24	0.54
5:S:6:GLN:HE22	5:S:88:CYS:H	1.56	0.54
2:B:472:ILE:HD11	2:B:488:CYS:HB3	1.88	0.54
4:U:33:GLY:H	4:U:100:GLY:HA2	1.73	0.54
4:O:33:GLY:H	4:0:100:GLY:HA2	1.73	0.54
2:B:390:LEU:HD11/	3:C:983:ARG:HB3	1.89	0.54
1:A:393:THR:CA	1:A:522:ALA:HA	2.30	0.54
4:P:33:GLY:H	4:P:100:GLY:HA2	1.73	0.54
4:U:107:ASP:HB3	4:U:109:TRP:CZ3	2.42	0.54
1:A:200:TYR:HE2	3:C:396:TYR:OH	1.88	0.53
2:B:604:THR:HG21	2:B:687:VAL:HG11	1.89	0.53
2:B:707:TYR:HB2	3:C:883:THR:HG23	1.90	0.53
3:C:662:CYS:HB2	3:C:697:MET:HG2	1.90	0.53
2:B:127:VAL:HG21	8:B:1301:NAG:H5	1.90	0.53
2:B:1039:ARG:NE	3:C:1031:GLU:OE1	2.41	0.53
3:C:52:GLN:OE1	/3:C:52:GLN:N	2.39	0.53
2:B:134:GLN:HG2	/2:B:162:SER:HB3	1.90	0.53
2:B:276:LEU:O	2:B:288:ALA:HA	2.08	0.53
2:B:379:CYS:HA	2:B:432:CYS:HA	1.89	0.53
5:S:64:GLY:HA2	5:S:73:LEU:HA	1.89	0.53
5:Q:34:HIS:HE1	5:Q:50:TYR:CE1	2.27	0.53

	hi a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:472:ILE:HD13	3:C:484:LYS:HG3	1.91	0.53
1:A:105:ILE:HD12	1:A:239:GLN:HE21	1.73	0.53
1:A:121:ASN:HD21	1:A:174:PRO:HB3	1.73	0.53
1:A:228:ASP:OD2	1:A:228:ASP:N	2.42	0.53
1:A:472:ILE:HD11	1:A:488:CYS:HB3	1.88	0.53
2:B:303:LEU:HD12	2:B:308:VAL:HG12	1.90	0.53
7:G:2:NAG:H83	7:G:2:NAG:H3	1.89	0.53
3:C:336:CYS:SG	3:C:524:VAL:HG22	2,49	0.53
3:C:870:ILE:O	3:C:874:THR:HG23	2.09	0.53
1:A:1139:ASP:OD1	1:A:1139:ASP:N	2.39	0.52
3:C:565:PHE:HB3	3:C:576:VAL:HG23	1.91	0,52
4:P:45:LEU:HD11	5:S:44:PRO:HG2	1.92	0.52
3:C:193:VAL:HB	3:C:204:TYR:HB2	1.92	0.52
3:C:364:ASP:OD2	3:C:527:PRO:CG	2.58	0.52
1:A:328:ARG:HD3	1:A:578:ASP:OD/1	2.09	0.52
2:B:309:GLU:HG2	2:B:313:TYR:ØH	2.10	0.52
2:B:400:PHE:HE2	2:B:410:ILE:HD12	1.75	0.52
3:C:295:PRO:O	3:C:299:THR:HG23	2.09	0.52
5:Q:6:GLN:HE22	5:Q:88:CYS:H	1.56	0.52
5:S:34:HIS:HE1	5:S:50:TYR:CE2	2.27	0.52
3:C:388:ASN:O	3:C:526:GLY:CA	2,57	0.52
4:P:93:VAL:HG12	4:P:/14:LEU:HD23	1.91	0.52
1:A:362:VAL:HG12	1:A:527:PRO:CB	2.39	0.52
1:A:395:VAL:CB	1:A:524:VAL:HG21	2.39	0.52
1:A:472:ILE:HD13	1:A:484:LYS:HG3	1.91	0.52
2:B:567:ARG:HH21/	2:B:571:ASP:HA	1.74	0.52
5:V:6:GLN:HE22	5:V:88:CYS:H	1.56	0.52
1:A:973:ILE:HG23	1:A:992:GLN:OE1	2.10	0.52
2:B:391:CYS:O	2:B:522:ALA:HB2	2.10	0.52
3:C:532:ASN:OD1	3:C:533:LEU:N	2.42	0.52
4:U:93:VAL:HG12	4:U:114:LEU:HD23	1.91	0.52
2:B:334:ASN:ND2	2:B:360:ASN:O	2.43	0.51
3:C:856:ASN:ND2	3:C:856:ASN:O	2.43	0.51
5:V:34:HIS:HE1	5:V:50:TYR:CE1	2.27	0.51
1:A:393:THR:HB	1:A:516:GLU:HB2	1.91	0.51
3:C:560:LEU:N	3;C:563:GLN:OE1	2.43	0.51
4:U:50:TRP:CD2	4:U:104:TRP:HH2	2.28	0.51
1:A:393:THR:CB	1:A:516:GLU:HB2	2.37	0.51
2:B:472:ILE:HD13	2:B:484:LYS:HG3	1.91	0.51
4:U:37:VAL:CG2	4:U:95:TYR:HB2	2.40	0.51
4:0:48:MET:HG2	4:0:64:PHE:CD1	2.46	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:564:GLN:HG3	2:B:565:PHE:N	2.26	0.51
4:O:45:LEU:HD11	5:Q:44:PRO:HG2	1.92	0.51
4:O:93:VAL:HG12	4:O:114:LEU:HD23	1.91	0.51
4:P:48:MET:HG2	4:P:64:PHE:CD1	2.46	0.51
4:P:50:TRP:CD2	4:P:104:TRP:HH2	2.28	0.51
1:A:983:ARG:HD2	3:C:382:VAL:HG13	1.92	0.51
3:C:746:SER:HB3	3:C:749:CYS:SG	2.51	0.51
4:U:45:LEU:HD11	5:V:44:PRO:HG2	1,92	0.51
4:O:37:VAL:CG2	4:O:95:TYR:HB2	2.40	0.51
4:P:37:VAL:CG2	4:P:95:TYR:HB2	2.40	0.51
1:A:986:PRO:O	1:A:990:GLU:HG3	2.11	0.51
4:U:37:VAL:HG22	4:U:95:TYR:HB2	1.93	0.51
4:O:50:TRP:CD2	4:O:104:TRP:HH2	2.28	0.51
2:B:316:SER:OG	2:B:317:ASN:N	2.43	0.51
2:B:390:LEU:HD22	3:C:983:ARG:HD3	1.92	0.51
3:C:189:LEU:HD23	3:C:208:THR:O	2.11	0.51
1:A:217:PRO:C	1:A:219:GLY:H	2.14	0.51
1:A:787:GLN:OE1	3:C:703:ASN:HB2	2.11	0.51
3:C:400:PHE:HE2	3:C:410:ILE:HD12	1.75	0.51
4:P:35:ASN:OD1	4:P:47:/TRP:NE1	2.43	0.51
5:Q:84:ALA:HB3	5:Q:86:TYR:CE1	2,46	0.51
1:A:400:PHE:HE2	1:A:410:ILE:HD12	1.75	0.51
1:A:722:VAL:HG22	1:A:930:ALA:HB1	1.91	0.51
2:B:395:VAL:HG21	2:B:524:VAL:CG1	2.41	0.51
4:U:48:MET:HG2	4:U:64:PHE:CD1	2.46	0.51
2:B:200:TYR:HE1	2:B:230:PRO:HB3	1.77	0.50
2:B:715:PRO:HA	2:B:1072:GLU:HA	1.93	0.50
3:C:298:GLU:OÉ2	3:C:316:SER:OG	2.29	0.50
4:0:35:ASN:ØD1	4:0:47:TRP:NE1	2.43	0.50
3:C:200:TYR:CE1	3:C:230:PRO:HB3	2.46	0.50
5:V:2:ILE:HD13	5:V:27:GLN:HB2	1.93	0.50
4:O:37:VAL:HG22	4:0:95:TYR:HB2	1.93	0.50
5:Q:2:ILE:HD13	5:Q:27:GLN:HB2	1.94	0.50
1:A:132:GLU:HG2	1:A:165:ASN:HB2	1.94	0.50
1:A:362:VAL:HG12	1:A:527:PRO:HB3	1.94	0.50
8:A:1302:NAG:H83	3:C:558:LYS:NZ	2.26	0.50
3:C:34:ARG:NH1	/3:C:191:GLU:OE1	2.44	0.50
4:U:35:ASN:OD1	4:U:47:TRP:NE1	2.43	0.50
5:V:84:ALA:HB3	5:V:86:TYR:CE1	2.46	0.50
3:C:391:CYS:SG	3:C:544:ASN:CB	3.00	0.50
4:P:37:VAL:HG22	4:P:95:TYR:HB2	1.93	0.50

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:362:VAL:HA	2:B:525:CYS:H	1.76	0.50
3:C:105:ILE:HG12	3:C:241:LEU:HD21	1.93	0.50
3:C:470:THR:HG22	3:C:492:LEU:HD12	1.94	0.50
4:O:38:ARG:HD3	4:O:64:PHE:CE2	2.47	0.50
5:S:2:ILE:HD13	5:S:27:GLN:HB2	1.93	0.50
3:C:330:PRO:C	3:C:332:ILE:N	2.61	0.50
5:Q:36:TYR:CD1	5:Q:46:LEU:HA	2.47	0.50
1:A:869:MET:HG2	3:C:699:LEU:HD21	1,94	0.49
1:A:359:SER:HA	1:A:523:THR:HG23	1.95	0.49
1:A:391:CYS:CB	1:A:525:CYS:SG	3.00	0.49
1:A:746:SER:HB3	1:A:749:CYS:SG	2.52	0.49
5:V:21:ILE:O	5:V:72:THR:OG1	2.19	0.49
1:A:360:ASN:HA	1:A:523:THR:OG1	2.12	0.49
1:A:963:VAL:HG12	3:C:570:ALA:HB2	1.93	0.49
3:C:391:CYS:SG	3:C:544:ASN:HB3	2.52	0.49
4:P:38:ARG:HD3	4:P:64:PHE:CE2	2.47	0.49
1:A:473:TYR:CE2	1:A:475:ALA/HB2	2.48	0.49
3:C:206:LYS:HB2	3:C:223:LEU:HD22	1.93	0.49
4:U:34:MET:HG2	4:U:79:ALA:CB	2.42	0.49
4:U:38:ARG:HD3	4:U:64:PHE:CE2	2.47	0.49
1:A:470:THR:HG22	1:A:492:LEU:HD12	1,94	0.49
2:B:386:LYS:HE2	3:C:981:LEU:O	2.12	0.49
2:B:390:LEU:CD2	3:C:983:ARG:HD3	2.42	0.49
3:C:170:TYR:CE2	3:C:172:SER:HB2	2.48	0.49
3:C:280:ASN:ND2	8:C:1301:NAG:H82	2.27	0.49
3:C:429:PHE:HE1 /	3:C:514:SER:HA	1.77	0.49
4:O:34:MET:HG2	4:0:79:ALA:CB	2.42	0.49
1:A:578:ASP:OD2	1:A:581:THR:HG22	2.13	0.49
1:A:858:LEU:HD23	1:A:959:LEU:HD22	1.95	0.49
1:A:870:ILE:O	1:A:874:THR:/HG23	2.12	0.49
4:P:34:MET:HG2	4:P:79:ALA:CB	2.42	0.49
5:S:84:ALA:HB3	5:S:86:TYR:CE2	2.46	0.49
1:A:331:ASN:HB2	1:A:580:GLN:HG2	1.93	0.49
2:B:97:LYS:HZ2	2:B:187:LYS:N	2.11	0.49
3:C:391:CYS:O	3:C:522:ALA:CB	2.61	0.49
3:C:472:ILE:HG21	3:C:482:GLY:H	1.78	0.48
5:S:35:TRP:CD2	5:S:73:LEU:HD22	2.48	0.48
2:B:473:TYR:CE2	2:B:475:ALA:HB2	2.48	0.48
5:Q:35:TRP:CD2 /	5:Q:73:LEU:HD22	2.48	0.48
2:B:470:THR:HG22	2:B:492:LEU:HD12	1.94	0.48
4:0:107:ASP:HB3	4:O:109:TRP:CE3	2.49	0.48

	Jus puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:C:124:THR:HG22	3:C:174:PRO:HG3	1.95	0.48
3:C:391:CYS:HB2	3:C:544:ASN:C	2.27	0.48
3:C:473:TYR:CE2	3:C:475:ALA:HB2	2.48	0.48
1:A:46:SER:CA	1:A:279:TYR:O	2.61	0.48
1:A:472:ILE:HG21	1:A:482:GLY:H	1.78	0.48
3:C:567:ARG:NH1	3:C:571:ASP:OD1	2.47	0.48
1:A:976:VAL:HB	1:A:979:ASP:OD2	2.14	0.48
2:B:472:ILE:HG21	2:B:482:GLY:H	1,78	0.48
6:E:1:NAG:H4	6:E:2:NAG:H2	1.63	0.48
2:B:359:SER:C	2:B:523:THR:HG23	2.15	0.48
4:P:107:ASP:HB3	4:P:109:TRP:CE3	2.49	0,48
1:A:357:ARG:NH2	2:B:167:THR:HA	2.28	0.48
2:B:395:VAL:CG2	2:B:524:VAL:CG1	2.92	0.48
4:U:4:LEU:HB2	4:U:109:TRP:HD1	1.76	0.48
2:B:334:ASN:HD22	2:B:361:CYS:CB	2.27	0.48
3:C:725:GLU:OE1	3:C:1028:LYS:NZ	2.22	0.48
4:U:2:VAL:HG23	4:U:2:VAL:O	2.13	0.48
5:V:35:TRP:CD2	5:V:73:LEU:HD22	2.48	0.48
3:C:170:TYR:CZ	3:C:172:SER:HB2	2.49	0.48
4:O:2:VAL:HG23	4:0:2:VAL:O	2.14	0.48
4:P:4:LEU:HD23	4:P:22:CYS:SG	2,54	0.48
1:A:395:VAL:HB	1:A:524:VAL:HG21	1.95	0.47
1:A:1031:GLU:N	1:A:1031:GLU:OE1	2.47	0.47
4:U:107:ASP:HB3	4:U:109:TRP:CE3	2.49	0.47
1:A:1105:THR:HG22	1:A:1112:PRO:HA	1.96	0.47
4:P:2:VAL:HG23	4:P:2:VAL:O	2.13	0.47
3:C:200:TYR:HE1	3:C:230:PRO:HB3	1.80	0.47
3:C:206:LYS:HØ3	3:C:223:LEU:HA	1.95	0.47
4:O:4:LEU:HD23	4:0:22:CYS:SG	2.54	0.47
1:A:331:ASN:CB	1:A:580:GLN:HG2	2.45	0.47
1:A:1102:T/RP:HB2	1:A:1135:ASN:ND2	2.30	0.47
5:V:36:TYR:CD1	5:V:46:LEU:HA	2.47	0.47
1:A:200:TYR:CZ	3:C:396:TYR:OH	2.68	0.47
3:C:331:ASN:O	3:C:332:ILE:C	2.52	0.47
4:U:109:TRP:CD1	4:U:109:TRP:O	2.68	0.47
6:D:1:NAG:H4	6:D:2:NAG:H2	1.63	0.47
2:B:324:GLU:OE1	2:B:325:SER:N	2.40	0.47
5:V:4:MET:HE3	5:V:90:GLN:HB3	1.97	0.47
6:F:1:NAG:H4	6:F:2:NAG:H2	1.63	0.47
1:A:395:VAL:HG23	1:A:524:VAL:CB	2.31	0.47
2:B:386:LYS:CD	3:C:984:LEU:N	2.75	0.47

	h a c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:B:786:LYS:HG3	2:B:787:GLN:HG3	1.97	0.47
3:C:715:PRO:HA	3:C:1071:GLN:O	2.13	0.47
5:V:61:ARG:NE	5:V:79:GLN:OE1	2.48	0.47
4:P:4:LEU:HB2	4:P:109:TRP:HD1	1.77	0.47
1:A:99:ASN:CG	1:A:102:ARG:HE	2.19	0.47
5:Q:61:ARG:NE	5:Q:79:GLN:OE1	2.48	0.47
1:A:394:ASN:CB	1:A:516:GLU:CB	2.93	0.46
1:A:1037:SER:OG	1:A:1039:ARG:HG2	2,14	0.46
2:B:452:LEU:HD22	2:B:494:SER:HA	1.98	0.46
4:U:59:THR:HG23	4:U:59:THR:O	2.15	0.46
5:Q:55:ILE:HG23	5:Q:58:VAL:HB	1.97	0.46
1:A:611:LEU:HD22	1:A:666:ILE:HG23	1.97	0.46
1:A:726:ILE:HG12	1:A:1061:VAL:HG22	1.97	0.46
2:B:363:ALA:O	2:B:525:CYS:C	2.53	0.46
3:C:431:GLY:HA2	3:C:515:PHE:CD2	2.50	0.46
4:O:109:TRP:CD1	4:0:109:TRP;0	2.68	0.46
1:A:770:ILE:O	1:A:774:GLN/HG2	2.15	0.46
2:B:363:ALA:O	2:B:526:GLY:N	2.49	0.46
2:B:418:ILE:HA	2:B:422:ASN:HB2	1.98	0.46
4:U:37:VAL:O	4:U:95:TYR:N	2.45	0.46
5:Q:4:MET:HE3	5:Q:90:GLN:HB3	1,97	0.46
4:P:14:PRO:HG3	4:P:117:VAL:HG22	1.97	0.46
4:U:4:LEU:HD23	4:U:22:CYS:SG	2.54	0.46
4:U:67:ARG:HD2	4:U:84:CYS:O	2.15	0.46
4:O:95:TYR:HE2	5:Q:44:PRO:HD2	1.81	0.46
2:B:280:ASN:OD1	2:B:281:GLU:N	2.42	0.46
4:O:67:ARG:HD2	4:0:84:CYS:0	2.15	0.46
5:S:61:ARG:NÉ	5:S:79:GLN:OE1	2.48	0.46
2:B:722:VAL;HA	2:B:1064:HIS:O	2.14	0.46
3:C:418:ILE:HA	3:C:422:ASN/HB2	1.98	0.46
1:A:282:ASN:HB2	1:A:284:THR:HG22	1.98	0.46
4:U:12:LYS:HG3	4:U:18:VAL:CG1	2.30	0.46
4:0:37:VAL:0	4:0:95:TYR:N	2.45	0.46
4:P:67:ARG:HD2	4:P:84:CYS:O	2.15	0.46
1:A:418:ILE:HA	1:A:422:ASN:HB2	1.98	0.46
3:C:454:ARG:HE	3;C:454:ARG:HB3	1.59	0.46
5:V:55:ILE:HG23	5:V:58:VAL:HB	1.98	0.46
4:P:109:TRP:CD1	4:P:109:TRP:O	2.68	0.46
5:S:55:ILE:HG23	5:S:58:VAL:HB	1.98	0.46
1:A:320:VAL:HG22	1:A:591:SER:O	2.16	0.46
1:A:394:ASN:ND2	1:A:516:GLU:CA	2.79	0.46

At and 1		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:516:GLU:CB	1:A:516:GLU:CA	2.94	0.46
1:A:542:ASN:OD1	1:A:547:THR:HG22	2.16	0.46
4:P:59:THR:HG23	4:P:59:THR:O	2.15	0.46
2:B:53:ASP:HB3	2:B:55:PHE:CE1	2.51	0.45
2:B:734:THR:HG21	2:B:1007:TYR:OH	2.16	0.45
5:S:36:TYR:CD2	5:S:46:LEU:HA	2.47	0.45
4:O:59:THR:HG23	4:O:59:THR:O	2.15	0.45
2:B:390:LEU:HD11	3:C:983:ARG:CB	2,46	0.45
4:U:20:VAL:HG12	4:U:113:THR:HG21	1.98	0.45
1:A:957:GLN:HE21	2:B:765:ARG:NH2	2.14	0.45
3:C:126:VAL:CG2	3:C:172:SER:HB3	2.46	0.45
3:C:725:GLU:CD	3:C:1028:LYS:HZ3	2.15	0.45
4:O:20:VAL:HG12	4:0:113:THR:HG21	1.98	0.45
1:A:359:SER:HB3	1:A:523:THR:HG21	1.98	0.45
2:B:362:VAL:CA	2:B:525:CYS:O	2.64	0.45
2:B:362:VAL:HG13	2:B:525:CYS;O	2.16	0.45
3:C:973:ILE:HG23	3:C:992:GLN:OE1	2.17	0.45
4:U:14:PRO:HG3	4:U:117:VAL:HG22	1.97	0.45
4:U:95:TYR:HE2	5:V:44:PRO:HD2	1.81	0.45
1:A:458:LYS:HA	1:A:458:LYS:HD2	1.41	0.45
1:A:452:LEU:HD22	1:A:494:SER:HA	1,98	0.45
3:C:452:LEU:HD22	3:C:494:SER:HA	1.98	0.45
1:A:707:TYR:HB2	2:B:883:THR:CG2	2.46	0.45
3:C:271:GLN:OE1	3:C:272:PRO:HD2	2.17	0.45
3:C:977:LEU:HD11	3:C:993:ILE:HG12	1.97	0.45
4:U:51:ILE:O	4:U:51:ILE:HG13	2.17	0.45
4:O:4:LEU:HD13	4:O:109:TRP:NE1	2.21	0.45
4:P:20:VAL:HG12	4:P:113:THR:HG21	1.98	0.45
2:B:934:ILE:HD13	2:B:1063:LEU:HD13	1.99	0.45
3:C:106:PHE:HD2	3:C:235:ILE:HD11	1.82	0.45
3:C:531:THR:HG22	3:C:532:ASN:N	2.32	0.45
3:C:560;LEU:HB2	3:C:563:GLN:NE2	2.32	0.45
5:Q:21:ILE:O	5:Q:72/THR:OG1	2.19	0.45
4:P;51:ILE:HG22	4:P:58:PRO:HA	1.99	0.45
3:C:332:ILE:C	3:C:334:ASN:H	2.21	0.45
3:C:914:ASN:O	3;C:918:GLU:HG3	2.16	0.45
4:0:14:PRO:HG3	4:0:117:VAL:HG22	1.97	0.45
1:A:345:THR:HG23	4:U:104:TRP:HD1	1.82	0.44
1:A:736:VAL:HG12	1:A:858:LEU:HG	1.99	0.44
3:C:345:THR:HG23	4:P:104:TRP:HD1	1.83	0.44
4:U:51:ILE:HG22	4:U:58:PRO:HA	1.99	0.44

	• · · -	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:P:95:TYR:HE2	5:S:44:PRO:HD2	1.81	0.44
2:B:357:ARG:HE	3:C:230:PRO:HG3	1.36	0.44
2:B:702:GLU:O	2:B:703:ASN:HB3	2.18	0.44
5:V:34:HIS:CE1	5:V:50:TYR:CD1	3.05	0.44
5:Q:90:GLN:OE1	5:Q:92:ASN:N	2.44	0.44
1:A:364:ASP:HB2	1:A:527:PRO:HD3	1.98	0.44
2:B:363:ALA:O	2:B:525:CYS:O	2.36	0.44
5:Q:24:ARG:HB2	5:Q:24:ARG:CZ	2,47	0.44
5:Q:61:ARG:HD3	5:Q:77:SER:O	2.18	0.44
1:A:394:ASN:O	1:A:515:PHE:C	2.56	0.44
2:B:736:VAL:HG11	2:B:1004:LEU:HD11	1.99	0,44
3:C:29:THR:HG22	3:C:62:VAL:HG23	2.00	0.44
3:C:112:SER:HB2	3:C:134:GLN:HG2	1.99	0.44
5:V:24:ARG:NH2	5:V:24:ARG:HB2	2.33	0.44
5:V:61:ARG:HD3	5:V:77:SER:O	2.18	0.44
5:S:4:MET:HE3	5:S:90:GLN:HB3	1.99	0.44
5:S:24:ARG:HB2	5:S:24:ARG:CZ	2.48	0.44
5:S:24:ARG:HB2	5:S:24:ARG:NH2	2.33	0.44
3:C:434:ILE:HD11	3:C:513:LEU:HD12	2.00	0.44
4:O:51:ILE:HG13	4:0:51:ILE:0	2.17	0.44
1:A:811:LYS:HE2	1:A:811:LYS:HB2	1,72	0.44
5:Q:79:GLN:HA	5:Q:80:PRO:HD2	1.87	0.44
4:P:51:ILE:HG13	4:P:51:ILE:O	2.17	0.44
2:B:434:ILE:HD11	2:B:513:LEU:HD12	2.00	0.44
2:B:345:THR:HG23	4:0:104:TRP:HD1	1.83	0.43
2:B:492:LEU:HA	2:B:492:LEU:HD23	1.85	0.43
3:C:105:ILE:HD12	3:C:118:LEU:HG	1.99	0.43
4:O:51:ILE:HG22	4:0:58:PRO:HA	1.99	0.43
5:S:34:HIS:Cڃ1	5:S:50:TYR:CD2	3.05	0.43
1:A:121:ASN:HD21	1:A:174:PRO:CB	2.30	0.43
1:A:296:LEU:O	1:A:300:LYS:HG3	2.18	0.43
1:A:421;/TYR:HB3	1:A:457:ARG:HB3	2.00	0.43
1:A:492:LEU:HD23	1:A:492:LEU:HA	1.85	0.43
4:O:47:TRP:HZ2	4:O:50:TRP:HD1	1.66	0.43
2:B:714:ILE:HD11	2:B:1096:VAL:HG11	2.00	0.43
5:Q:24:ARG:HB2	5:Q:24:ARG:NH2	2.33	0.43
2:B:91:TYR:OH	/2:B:191:GLU:OE1	2.19	0.43
3:C:87:ASN:OD1	3:C:88:ASP:N	2.52	0.43
3:C:421:TYR:HB3	3:C:457:ARG:HB3	2.00	0.43
5:V:24:ARG:HB2	5:V:24:ARG:CZ	2.48	0.43
4:0:38:ARG:HB3	4:O:48:MET:HE1	2.01	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:531:THR:HG22	1:A:532:ASN:N	2.33	0.43
4:0:108:VAL:O	4:O:108:VAL:HG13	2.19	0.43
4:P:47:TRP:HZ2	4:P:50:TRP:HD1	1.66	0.43
4:P:108:VAL:HG13	4:P:108:VAL:O	2.19	0.43
1:A:434:ILE:HD11	1:A:513:LEU:HD12	2.00	0.43
3:C:441:LEU:HD13	3:C:441:LEU:HA	1.91	0.43
1:A:410:ILE:H	1:A:410:ILE:HG12	1.71	0.43
1:A:822:LEU:HD21	1:A:938:LEU:HD13	2,01	0.43
2:B:296:LEU:O	2:B:299:THR:OG1	2.28	0.43
3:C:410:ILE:H	3:C:410:ILE:HG12	1.71 人	0.43
5:V:6:GLN:NE2	5:V:88:CYS:H	2.17	0,43
2:B:421:TYR:HB3	2:B:457:ARG:HB3	2.00	0.43
2:B:455:LEU:HB3	2:B:456:PHE:H	1.51	0.43
3:C:391:CYS:CB	3:C:544:ASN:C	2.85	0.43
5:S:61:ARG:HD3	5:S:77:SER:O	2.18	0.43
1:A:299:THR:HA	1:A:302:THR:HG22	2.00	0.43
1:A:707:TYR:CD1	2:B:883:THR;HG23	2.54	0.43
1:A:912:THR:OG1	1:A:914:ASN:ND2	2.52	0.43
3:C:276:LEU:O	3:C:288:ALA:HA	2.19	0.43
4:O:4:LEU:HD11	4:0:27:TYR:OH	2.19	0.43
5:Q:6:GLN:NE2	5:Q:88:CYS:H	2,17	0.43
5:Q:6:GLN:OE1	5:Q:102:THR:HG23	2.19	0.43
4:P:4:LEU:HD11	4:P:27:TYR:OH	2.19	0.43
1:A:394:ASN:OD1	1:A:516:GLU:C	2.56	0.43
2:B:914:ASN:O	2:B:918:GLU:HG3	2.18	0.43
2:B:985:ASP:OD2	2:B:987:PRO:HD2	2.18	0.43
3:C:57:PRO:HB3	3:C:273:ARG:HH21	1.84	0.43
4:O:4:LEU:HB2	4:0:109:TRP:HD1	1.77	0.43
4:O:39:GLN:HG3	4:O:45:LEU:HD23	2.01	0.43
2:B:821:LEU:O	2:B:825:LYS:HG2	2.19	0.42
5:S:6:GLN:OE1	5:S:102:THR:HG23	2.19	0.42
5:S:84:ALA:O 人	5:S:86:TYR:HD2	2.02	0.42
2:B:129:LYS:HG2	2:B:169:GLU:HG2	2.01	0.42
2:B:201:PHE:HE2	2:B:203:ILE:HD11	1.84	0.42
3:C:564:GLN:OE1	3:C:577:ARG:HD2	2.19	0.42
5:S:34:HIS:CE1	5:S:50:TYR:HD2	2.38	0.42
1:A:199:GLY:HA2	/1:A:232:GLY:HA2	2.01	0.42
1:A:320:VAL:HG23	1:A:590:CYS:HB3	2.01	0.42
1:A:328:ARG:NH1	1:A:578:ASP:OD2	2.53	0.42
1:A:360:ASN:H	1:A:523:THR:HG23	1.85	0.42
1:A:393:THR:OG1	1:A:516:GLU:C	2.58	0.42

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
3:C:205:SER:O	3:C:206:LYS:HG2	2.20	0.42
3:C:336:CYS:SG	3:C:524:VAL:HG13	2.59	0.42
3:C:425:LEU:HD12	3:C:425:LEU:HA	1.79	0.42
5:V:6:GLN:OE1	5:V:102:THR:HG23	2.19	0.42
4:P:35:ASN:ND2	4:P:35:ASN:H	2.18	0.42
1:A:790:LYS:H	3:C:704:SER:HA	1.84	0.42
2:B:332:ILE:O	2:B:362:VAL:HG23	2.20	0.42
2:B:381:GLY:O	3:C:984:LEU:HD11	2.19	0.42
2:B:555:SER:HB3	2:B:586:ASP:HB2	2.01	0.42
2:B:856:ASN:OD1	2:B:856:ASN:N	2.50	0.42
4:U:35:ASN:ND2	4:U:35:ASN:H	2.18	0,42
4:U:108:VAL:O	4:U:108:VAL:HG13	2.19	0.42
5:V:79:GLN:HA	5:V:80:PRO:HD2	1.86	0.42
5:V:84:ALA:O	5:V:86:TYR:HD1	2.02	0.42
1:A:391:CYS:HB3	1:A:522:ALA:HB1	2.02	0.42
2:B:39:PRO:HG3	2:B:51:THR:HG21	2.02	0.42
2:B:48:LEU:CD2	2:B:278:LYS;/HG3	2.50	0.42
2:B:396:TYR:OH	3:C:230:PRO:HB3	2.19	0.42
3:C:402:ILE:H	3:C:402:ILE:HG13	1.77	0.42
1:A:29:THR:HG22	1:A:30:ASN:N	2.34	0.42
2:B:382:VAL:O	3:C:984:LEU:HD21	2,15	0.42
2:B:916:LEU:HD12	2:B;923:ILE:HD12	/2.02	0.42
4:U:38:ARG:HB3	4:U:48:MET:HE1	2.02	0.42
5:V:34:HIS:CE1	5:V:50:TYR:HD1	2.38	0.42
5:V:62:PHE:HB3	5:V:75:ILE:HA	2.02	0.42
5:Q:84:ALA:O	5:Q:86:TYR:HD1	2.02	0.42
5:S:37:GLN:HB3	5:S:47:LEU:HD11	2.02	0.42
1:A:326:ILE:O	1:A:326:ILE:HG13	2.19	0.42
2:B:583:GLU;HG2	2:B:584:ILE:H	1.84	0.42
3:C:280:ASN:CG	3:C:281:GLU:H	2.23	0.42
3:C:363:ALA:H	3:C:525:CYS:H	1.67	0.42
3:C:558:LYS:O	3:C:558:LYS:HG3	2.20	0.42
3:C:33:THR:HA	3:C:58;PHE:CD1	2.55	0.42
3:C:105:ILE:CD1	3:C:1/18:LEU:HG	2.50	0.42
4:U:34:MET:SD	4:10:96:CYS:SG	3.18	0.42
4:U:47:TRP:HZ2	4:U:50:TRP:HD1	1.66	0.42
5:Q:34:HIS:CE1	/5:Q:50:TYR:HD1	2.38	0.42
4:P:37:VAL:O	4:P:95:TYR:N	2.45	0.42
5:S:3:GLN:OE1	5:S:3:GLN:HA	2.20	0.42
5:S:11:LEU:H	5:S:11:LEU:HD23	1.85	0.42
1:A:809:PRO:HA	1:A:814:LYS:HE3	2.01	0.42

Continued from previous page

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
4:U:4:LEU:HD11	4:U:27:TYR:OH	2.19	0.42	
5:V:3:GLN:HA	5:V:3:GLN:OE1	2.20	0.42	
4:O:104:TRP:CE2	5:Q:94:TRP:HH2	2.38	0.42	
5:Q:62:PHE:HB3	5:Q:75:ILE:HA	2.02	0.42	
7:L:1:NAG:H61	7:L:2:NAG:H82	2.02	0.42	
2:B:368:LEU:N	2:B:368:LEU:CD1	2.83	0.41	
1:A:402:ILE:H	1:A:402:ILE:HG13	1.77	0.41	
2:B:126:VAL:HG13	2:B:172:SER:HB3	2,03	0.41	
2:B:552:LEU:HA	2:B:586:ASP:O	2.19	0.41	
3:C:1102:TRP:CZ2	3:C:1133:VAL:HG21	2.55	0.41	
4:U:39:GLN:HG3	4:U:45:LEU:HD23	2.01	0,41	
4:0:34:MET:SD	4:0:96:CYS:SG	3.18	0.41	
1:A:217:PRO:C	1:A:219:GLY:N	2.73	0.41	
1:A:394:ASN:O	1:A:515:PHE:HA	2.20	0.41	
1:A:868:GLU:OE2	1:A:868:GLU:N	2.51	0.41	
4:U:35:ASN:ND2	4:U:99:GLY:Ø	2.54	0.41	
4:U:62:ASP:HA	4:U:65:ARG:HH21	1.85	0.41	
4:U:104:TRP:CE2	5:V:94:TRP:HH2	2.39	0.41	
4:P:34:MET:SD	4:P:96:CYS:SG	3.18	0.41	
4:P:39:GLN:HG3	4:P:45:LEU:HD23	2.01	0.41	
2:B:577:ARG:HA	2:B:583:GLU:O	2,20	0.41	
5:Q:11:LEU:HD23	5;Q:11:LEU:H	1.85	0.41	
1:A:975:SER:OG	3;C:571:ASP:OD2	2.38	0.41	
2:B:1107:ARG:HD2	3:C:904:TYR:CE2	2.55	0.41	
3:C:31:SER:O	3:C:59:PHE:HA	2.20	0.41	
5:V:11:LEU:HD23	5:V:11:LEU:H	1.85	0.41	
4:P:35:ASN:ND2	4:P:99:GLY:O	2.54	0.41	
2:B:562:PHE:HB2	3:C:41:LYS:HE2	2.01	0.41	
2:B:733:LYS:HE3	2:B:771:ALA:O	2.21	0.41	
3:C:114:THR:HG22	3:C:115:GLN:N	2.35	0.41	
3:C:901:GLN:O	3:C:905:ARG:HG3	2.20	0.41	
2:B:382:VAL:CB	3:C:983:ARG:HD2	2.49	0.41	
2:B:552:LEU:CD2	2:B:587/ILE:HG12	2.51	0.41	
2:B:741:TYR:CE1	2:B:966:LEU:HD11	2.56	0.41	
2:B:1027:THR:HG22	2:B:1042:PHE:HZ	1.85	0.41	
1:A:134:GLN:NE2	1:A:162:SER:OG	2.32	0.41	
1:A:386:LYS:H	/1:A:386:LYS:HG3	1.58	0.41	
2:B:363:ALA:H	2:B:525:CYS:C	2.24	0.41	
2:B:437:ASN:HB2	2:B:508:TYR:CE2	2.56	0.41	
2:B:980:ILE:HG13	2:B:981:LEU:N	2.36	0.41	
3:C:437:ASN:HB2	3:C:508:TYR:CE1	2.56	0.41	

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
4:U:50:TRP:CG	4:0:104:TRP:HH2	2.39	0.41
4:0:35:ASN:H	4:0:35:ASN:ND2	2.18	0.41
4:0:39:GLN:NE2	4:0:40:ALA:0	2.54	0.41
4:0:60:TYR:CE1	4:0:69:VAL:HA	2.56	0.41
1:A:336:CYS:HA	1:A:337:PRO:HD3	1.95	0.41
1:A:368:LEU:N	1:A:368:LEU:CD1	2.83	0.41
1:A:743:CYS:SG	1:A:750:SER:N	2.93	0.41
1:A:789:TYR:HD1	3:C:703:ASN:O	2,04	0.41
2:B:172:SER:OG	2:B:173:GLN:N	2.53	0.41
2:B:658:ASN:ND2	2:B:660:TYR:CZ	2.89	0.41
2:B:658:ASN:ND2	2:B:660:TYR:OH	2.42	0.41
3:C:461:LEU:HD13	3:C:461:LEU:HA	1.90	0.41
5:V:91:SER:HA	5:V:96:LEU:HD22	2.03	0.41
4:0:50:TRP:CG	4:O:104:TRP:HH2	2.39	0.41
5:Q:3:GLN:HA	5:Q:3:GLN:OE1	2.20	0.41
4:P:62:ASP:HA	4:P:65:ARG:HH21	1.85	0.41
4:P:104:TRP:CE2	5:S:94:TRP:HH2	2.38	0.41
5:S:62:PHE:HB3	5:S:75:ILE:HA	2.02	0.41
1:A:441:LEU:HD13	1:A:441:LEU:HA	1.91	0.41
2:B:583:GLU:HG2	2:B:584:ILE:N	2.36	0.41
4:U:39:GLN:NE2	4:U:40:ALA:Q	2,54	0.41
5:V:37:GLN:HB3	5:V:47:LEU:HD11	2.02	0.41
4:0:95:TYR:CE2	5:Q:44:PRO:HD2	2.56	0.41
5:Q:34:HIS:CE1	5:Q:50:TYR:CD1	3.05	0.41
5:Q:37:GLN:HB3	5:Q:47:LEU:HD11	2.02	0.41
4:P:4:LEU:HD13	4:P:109:TRP:NE1	2.21	0.41
5:S:91:SER:HA	5:S:96:LEU:HD22	2.03	0.41
1:A:303:LEU:HD23	1:A:308:VAL:HG12	2.03	0.40
2:B:29:THR:HG22	2:B:30:ASN:N	2.37	0.40
3:C:90:VAL:HG21	3:C:238:PHE:CE1	2.56	0.40
5:V:104:LEU:HD23	5:V:104:LEU:HA	1.91	0.40
4:0:35:ASN:ND2	4:0:99:GLY:0	2.54	0.40
4:P:95:TYR:CE2	5:S:44:PRO:HD2	2.56	0.40
1:A:34:ARG:NH2	1:A:217:PRO:HB2	2.36	0.40
1:A:643:PHE:CE2	1:A:645:THR:HG22	2.56	0.40
3:C:189:LEU·HD12	3:C:216:LEU:HD11	2.03	0.40
5:V:21:ILE:0	5:V:21:ILE:HG13	2.22	0.40
4:0:98:ARG·HH21	4:0:109:TRP·HH2	1 69	0.40
4·P·50·TRP·CC	4·P·104·TRP·HH9	2.30	0.40
5.S.6.GLN.NE2	5.S.88.CVS.H	2.55	0.40
2·B·326·II E·HC/12	2.B.326.U.F.O	2.11	0.40
2.D.320.1LE.11G13	2.D.020.1LE.U	2.21	

Continued from previous page.

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:C:90:VAL:HG23	3:C:267:VAL:HG13	2.02	0.40	
3:C:386:LYS:H	3:C:386:LYS:HG3	1.59	0.40	
3:C:959:LEU:HD23	3:C:959:LEU:HA	1.89	0.40	
5:V:61:ARG:HG3	5:V:62:PHE:CD2	2.57	0.40	
5:S:61:ARG:HG3	5:S:62:PHE:CD1	2.57	0.40	
2:B:280:ASN:CG	2:B:281:GLU:N	2.75	0.40	
2:B:410:ILE:H	2:B:410:ILE:HG12	1.71	0.40	
2:B:560:LEU:N	2:B:563:GLN:OE1	2,55	0.40	
4:U:95:TYR:CE2	5:V:44:PRO:HD2	2.56	0.40	
5:S:9:SER:O	5:S:102:THR:HA	2.22	0.40	
7:M:1:NAG:O4	7:M:2:NAG:O7	2.39	0,40	
1:A:914:ASN:O	1:A:918:GLU:HG3	2.22	0.40	
2:B:805:ILE:HD11	2:B:931:ILE:HD12	2.03	0.40	
3:C:368:LEU:N	3:C:368:LEU:CD1	2.83	0.40	

There are no symmetry-related clashes,/

5.3 Torsion angles (i)

5.3.1 Protein backbone (j)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	A	988/1016~(97%)	901 (91%)	74 (8%)	13 (1%)	12	47
2	В	982/1000~(98%)	891 (91%)	80 (8%)	11 (1%)	14	50
3	C	982/1000 ($98%$)	893 (91%)	76 (8%)	13~(1%)	12	47
4	Ο	116/118~(98%)	94 (81%)	22 (19%)	0	100	100
A	Р	116/118 (98%)	94 (81%)	22 (19%)	0	100	100
4	U	116/118 (98%)	94 (81%)	22 (19%)	0	100	100
5	Q	105/107~(98%)	92~(88%)	13 (12%)	0	100	100
5	S	105/107~(98%)	92 (88%)	13 (12%)	0	100	100
5	V	105/107~(98%)	92 (88%)	13 (12%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	3615/3691~(98%)	3243 (90%)	335~(9%)	37 (1%)	20 51

All (37) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	378	LYS
1	А	516	GLU
1	А	613	GLN
2	В	32	PHE
2	В	378	LYS
3	С	332	ILE
3	С	378	LYS
1	А	32	PHE
1	А	110	LEU
1	А	422	ASN
1	А	492	LEU
2	В	422	ASN
2	В	492	LEU
2	В	703	ASN
3	С	422	ASN
3	С	492	LEU
3	С	516	GLU
3	С	518	LEU
1	А	385	THR
1	А	477	SER
1	А	491	PRO
2	В	385	THR
2	В	477	SER
2	В	/491	PRO
3	C /	385	THR
3	C	477 (SER
3	Ć	491	PRO
3	$/\mathrm{C}$	333	THR
1	A	218	GLN
2 /	В	518	LEU
3	С	481	AŚN
/1	A	463	PRO
2	В	463	PRO
3	C	463	PRO
2	B	445	VAL
1	A	445	VAL
3	C	/445	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	857/880~(97%)	783~(91%)	74 (9%)	10	39
2	В	858/877~(98%)	784 (91%)	74~(9%)	10	39
3	С	844/875~(96%)	764 (90%)	80 (10%)	8	34
4	О	97/97~(100%)	97 (100%)	0	100	100
4	Р	97/97~(100%)	97~(100%)	0	100	100
4	U	97/97~(100%)	97~(100%)	0	100	100
5	Q	94/94~(100%)	94 (100%)	0	100	100
5	S	94/94~(100%)	94 (100%)	0	100	100
5	V	94/94~(100%)	94 (100%)	0	100	100
All	All	3132/3205~(98%)	2904 (93%)	228 (7%)	18	44

All (228) residues with a non-rotameric sidechain are listed below:

			/	
Mol	Chain	\mathbf{Res}	Type	2
1	А	31	SER 4	
1	А	33 /	THR	
1	А	80	ASP	
1	А	157	PHE	
1	A	206	LYS	
1	A /	208	THR	
1	A	218	GLN	
1	Á	284	THR	
1	A	331	ASN	
1	A	332	ILE	
1/	A	333	THR	
<u>1</u>	A	334	ASN	
/1	A	335	/LEU	
1	A	356	LYS	
1	A	367	VAL	
1	A	376	THR	
	A	<i>3</i> 78	LYS	
1	A	382	VAL	
	Continue	donn	omt magao	

B

D_1300026375

Conti	nued fron	ı previc	ous page	
Mol	Chain	\mathbf{Res}	Type	
1	А	386	LYS	
1	А	387	LEU	
1	А	389	ASP	
1	А	394	ASN	
1	А	398	ASP	
1	А	402	ILE	
1	А	405	ASP	
1	А	407	VAL	
1	А	408	ARG	
1	А	409	GLN	
1	А	410	ILE	
1	А	422	ASN	
1	А	424	LYS	
1	А	425	LEU	
1	А	428	ASP	
1	А	430	THR	
1	А	434	ILE	
1	А	436	TRP	
1	А	440	ASN	/
1	А	441	LEU	
1	А	443	SER	
1	А	444	LYS	
1	А	450	ASN	
1	А	452	LÉU	
1	А	454	ARG	2
1	А	455	LEU	
1	А	456	PHE	
1	А	458	LYS	
1	А	A59	SER	
1	A	462	LYS	
1	A	463	PRO	
1	A	466	ARG	
1	Á	472	ILE	
1	A	480	CYS	
1	A	483	VAL	
1/	A	484	LYS	
1	A	493	GLN	
/1	A	495	TYR	
1	A	498	GLN	
1	A	503	VAL	
1	A	508	TYR	
	A	512	VAL	
~	Continue	ed on no	ext page	

D_1300026375

Conti	nued fron	i previc	ous page	
Mol	Chain	Res	Type	
1	А	516	GLU	
1	А	517	LEU	
1	А	518	LEU	
1	А	599	THR	
1	А	602	THR	
1	А	613	GLN	
1	А	615	VAL	
1	А	701	VAL	
1	А	716	THR	
1	А	738	CYS	
1	А	747	THR	
1	А	881	THR	
1	А	937	SER	
1	А	967	SER	
2	В	34	ARG	
2	В	50	SER	
2	В	134	GLN	
2	В	167	THR	
2	В	205	SER	
2	В	274	THR	
2	В	331	ASN	
2	В	334	ASN	
2	В	356	LYS	
2	В	367	VAL	
2	В	376	THR	
2	В	378	LYS	
2	В	382	VAL	
2	В	386	LYS	
2	В	387	LEU	
2	В	389	ASP	
2	B /	394	ASN	
2	В	398	ASP	
2	B	402	ILE	
2	B	405	ASP /	
2	В	407	VAL	
2	В	408	ARG	
2	В	409	GLN	
2	В	410	/ ILE	
	B	422	ASN	
2	В	424	LYS	
2	B	425	LEU	
2	В	428	ASP	
	Continue	ed on n	ext page	

WORLDWIDE PROTEIN DATA BANK

D_1300026375

Continued from previous page					
Mol	Chain	Res	Type		
2	В	430	THR		
2	В	434	ILE		
2	В	436	TRP		
2	В	440	ASN		
2	В	441	LEU		
2	В	443	SER		
2	В	444	LYS		
2	В	450	ASN		
2	В	452	LEU		
2	В	454	ARG		
2	В	455	LEU		
2	В	456	PHE		
2	В	458	LYS		
2	В	459	SER		
2	В	462	LYS		
2	В	463	PRO		
2	В	466	ARG		
2	В	472	ILE		
2	В	480	CYS		
2	В	483	VAL		
2	В	484	LYS /		
2	В	493	GLN		
2	В	495	TYR		
2	В	498	ĢĹN		
2	В	503	/VAL	2	
2	В	508	TYR		
2	В	512	VAL		
2	В	51/7	LEU		
2	В	518	LEU		
2	В	531	THR		
2	B	532	ASN		
2	В	546	LEU	/	
2	B	558	LYS		
2	B	567	ARG		
2	В	581	THR		
2/	В	586	ASP		
2	В	615	VAL		
2	В	638	THR		
2	В	701	VAL		
2	В	703	ASN		
2	В	738	CYS		
2	В	938	LEU		
~~~	Continue	d on n	ert nage		



B

D_1300026375

Conti	nued fron	ı previc	ous page	
Mol	Chain	Res	Type	
2	В	940	SER	
2	В	983	ARG	
2	В	1037	SER	
2	В	1097	SER	
3	С	33	THR	
3	С	63	THR	
3	С	126	VAL	
3	С	167	THR	
3	С	175	PHE	
3	С	276	LEU	
3	С	284	THR	
3	С	334	ASN	
3	С	335	LEU	
3	С	356	LYS	
3	С	367	VAL	
3	С	376	THR	
3	С	378	LYS	/
3	С	382	VAL	
3	С	386	LYS	
3	С	387	LEU	
3	С	389	ASP	
3	С	394	ASN	
3	С	398	ASP	
3	С	402	ĶЕ	
3	С	405	ASP	
3	С	407	VAL	
3	С	408	ARG	
3	С	409	GLN	
3	С	A10	ILE	
3	С	422	ASN	/
3	C /	424	LYS	
3	C	425	LEU	
3	Ć	428	ASP	
3	$\subset$ C	430	THR	
3	С	434	ILE	
3	С	436	TRP	
3	C	440	ASN	
/ 3	C	441	/LEU	
3	C	443	SER	
3	C	444	LYS	
3	Ċ	450	ASN	
3	C	452	LEU	
$\sim$	Continue	d on n	ext page	

D_1300026375

Conti	Continued from previous page										
Mol	Chain	$\mathbf{Res}$	Type								
3	С	454	ARG								
3	С	455	LEU								
3	С	456	PHE								
3	С	458	LYS								
3	С	459	SER								
3	С	462	LYS								
3	С	463	PRO								
3	С	466	ARG								
3	С	472	ILE								
3	С	480	CYS								
3	С	483	VAL								
3	С	484	LYS								
3	С	493	GLN								
3	С	495	TYR								
3	С	498	GLN								
3	С	503	VAL								
3	С	508	TYR								
3	С	512	VAL								
3	С	514	SER	/							
3	С	516	GLU								
3	С	518	LEU								
3	С	539	VAL								
3	С	568	ASP								
3	С	586	ASP								
3	$\mathbf{C}$	591	SER	$\sum$							
3	С	599	THR								
3	С	615	VAL								
3	С	701	VAL								
3	С	704	SER								
3	С	705	VAL								
3	C /	760	$\operatorname{CYS}$								
3	C	785	VAL	/							
3	Ć	819	GLU	/							
3	/ C	856	ASN								
3	С	860	VAL								
3	C	881	THR								
3	С	887	THR								
3	С	904	TYR								
3	C	974	SER								
3	C	980	ILE								
3	C	1077	THR								
3	C	1136	THR								



Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (41) such sidechains are listed below:

1       A       218       GLN         1       A       239       GLN         1       A       280       ASN         1       A       474       GLN         1       A       532       ASN         1       A       563       GLN         1       A       563       GLN         1       A       563       GLN         1       A       563       GLN         1       A       613       GLN         1       A       751       ASN         1       A       1071       GLN         1       A       1071       GLN         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       762       GLN         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         2	Mol	Chain	Res	Type	
1       A       239       GLN         1       A       280       ASN         1       A       474       GLN         1       A       532       ASN         1       A       563       GLN         1       A       563       GLN         1       A       563       GLN         1       A       613       GLN         1       A       613       GLN         1       A       101       ASN         1       A       1071       GLN         1       A       1071       GLN         1       A       1071       GLN         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         3	1	А	218	GLN	
1       A       280       ASN         1       A       474       GLN         1       A       563       GLN         1       A       563       GLN         1       A       563       GLN         1       A       563       GLN         1       A       613       GLN         1       A       914       ASN         1       A       914       ASN         1       A       1071       GLN         1       A       1071       GLN         1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3	1	А	239	GLN	
1       A       474       GLN         1       A       532       ASN         1       A       563       GLN         1       A       580       GLN         1       A       613       GLN         1       A       613       GLN         1       A       751       ASN         1       A       914       ASN         1       A       1071       GLN         1       A       1071       GLN         1       A       1101       HIS         1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       207       HIS         2       B       207       HIS         2       B       655       HIS         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3	1	А	280	ASN	
1       A       532       ASN         1       A       563       GLN         1       A       580       GLN         1       A       613       GLN         1       A       613       GLN         1       A       914       ASN         1       A       914       ASN         1       A       1071       GLN         1       A       1071       GLN         1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       207       HIS         2       B       655       HIS         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3	1	А	474	GLN	
1       A       563       GLN         1       A       613       GLN         1       A       613       GLN         1       A       751       ASN         1       A       914       ASN         1       A       1071       GLN         1       A       1071       GLN         1       A       1071       GLN         1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       207       HIS         2       B       207       HIS         2       B       207       HIS         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3       C       134       GLN         3 <td>1</td> <td>А</td> <td>532</td> <td>ASN</td> <td></td>	1	А	532	ASN	
1       A       580       GLN         1       A       613       GLN         1       A       751       ASN         1       A       914       ASN         1       A       914       ASN         1       A       1071       GLN         1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       207       HIS         2       B       207       HIS         2       B       762       GLN         2       B       762       GLN         2       B       762       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3       C       135       ASN         3	1	А	563	GLN	
1       A $613$ GLN         1       A $751$ ASN         1       A $914$ ASN         1       A $1071$ GLN         1       A $1071$ GLN         1       A $1101$ HIS         1       A $1135$ ASN         2       B $52$ GLN         2       B $137$ ASN         2       B $207$ HIS         2       B $207$ HIS         2       B $334$ ASN         2       B $762$ GLN         2       B $762$ GLN         2       B $762$ GLN         2       B $1005$ GLN         2       B $1005$ GLN         2       B $1005$ GLN         2       B $1101$ HIS         3       C $134$ GLN         3       C $134$ GLN         3       C $1005$ <t< td=""><td>1</td><td>А</td><td>580</td><td>GLN</td><td></td></t<>	1	А	580	GLN	
1       A $751$ ASN         1       A $914$ ASN         1       A $1071$ GLN         1       A $1101$ HIS         1       A $1135$ ASN         2       B $52$ GLN         2       B $137$ ASN         2       B $207$ HIS         2       B $207$ HIS         2       B $474$ GLN         2       B $655$ HIS         2       B $762$ GLN         2       B $762$ GLN         2       B $762$ GLN         2       B $935$ GLN         2       B $1005$ GLN         2       B $1005$ GLN         2       B $1005$ GLN         3       C $280$ ASN         3       C $280$ ASN         3       C $280$ ASN         3       C $474$ G	1	А	613	GLN	
1A914ASN1A1071GLN1A1101HIS1A1135ASN2B52GLN2B137ASN2B207HIS2B334ASN2B334ASN2B474GLN2B655HIS2B762GLN2B762GLN2B784GLN2B935GLN2B1005GLN2B1005GLN2B1005GLN3C134GLN3C394ASN3C135ASN4U82GLN5V34HIS5V89GLN4P82GLN5S34HIS5S89GLN	1	А	751	ASN	
1       A       1071       GLN         1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       207       HIS         2       B       334       ASN         2       B       334       ASN         2       B       762       GLN         2       B       762       GLN         2       B       762       GLN         2       B       762       GLN         2       B       935       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3       C       394       ASN         3       C       1005       GLN         3       C       135       ASN         3       C       1005       GLN         3       C       1005       GLN         5	1	А	914	ASN	
1       A       1101       HIS         1       A       1135       ASN         2       B       52       GLN         2       B       137       ASN         2       B       207       HIS         2       B       207       HIS         2       B       334       ASN         2       B       334       ASN         2       B       334       ASN         2       B       762       GLN         2       B       762       GLN         2       B       762       GLN         2       B       784       GLN         2       B       1005       GLN         2       B       1005       GLN         2       B       1005       GLN         3       C       134       GLN         3       C       134       GLN         3       C       1005       GLN         3       C       1005       GLN         3       C       1135       ASN         4       U       82       GLN         5	1	А	1071	GLN	
1A1135ASN2B52GLN2B137ASN2B207HIS2B334ASN2B474GLN2B655HIS2B762GLN2B784GLN2B935GLN2B1005GLN2B1005GLN2B1005GLN2B1005GLN3C61/ASN3C280ASN3C394ASN3C135GLN3C1005GLN3C1135ASN4U82GLN5V34HIS5V89GLN4P82GLN5S34HIS5S34HIS	1	А	1101	HIS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	1135	ASN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	52	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	137	ASN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	207	HIS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	334	ASN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	474	GLN	/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	655	HIS	/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	762	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	784	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	804	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	935	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	1005	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	В	1101	HIS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	С	61	ASN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	С	1/34	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	С	280	ASN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	C /	394	ASN	
3       C       935       GLN         3       C       1005       GLN         3       C       1135       ASN         4       U       82       GLN         5       V       34       HIS         5       V       89       GLN         4       O       82       GLN         5       V       89       GLN         4       O       82       GLN         5       Q       89       GLN         5       S       34       HIS         5       S       34       HIS         5       S       34       HIS         5       S       89       GLN	3	C	474	GLN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Ø	935	GLN	/
3       C       1135       ASN         4       U       82       GLN         5       V       34       HIS         5       V       89       GLN         4       O       82       GLN         5       Q       89       GLN         5       Q       89       GLN         5       S       34       HIS         5       S       34       HIS         5       S       89       GLN	3	$/\mathrm{C}$	1005	GLN	/
4     U     82     GLN       5     V     34     HIS       5     V     89     GLN       4     O     82     GLN       5     Q     89     GLN       4     P     82     GLN       5     S     34     HIS       5     S     34     HIS       5     S     89     GLN	3	C	1135	ASN	
5         V         34         HIS           5         V         89         GLN           4         O         82         GLN           5         Q         89         GLN           4         P         82         GLN           5         Q         89         GLN           4         P         82         GLN           5         S         34         HIS           5         S         89         GLN	4	U	82	GLŃ	
5         V         89         GLN           4         O         82         GLN           5         Q         89         GLN           4         P         82         GLN           5         S         34         HIS           5         S         89         GLN	5	V	34	HIS	
4     O     82     GLN       5     Q     89     GLN       4     P     82     GLN       5     S     34     HIS       5     S     89     GLN	$\sqrt{5}$	V	89	GLN	
5         Q         89         GLN           4         P         82         GLN           5         S         34         HIS           5         S         89         GLN	4	0	82	GLN	
4         P         82         GLN           5         S         34         HIS           5         S         89         GLN	5	Q	89	GLN	
5         S         34         HIS           5         S         89         GLN	4	P	82	GLN	
5 S 89 GLN	5	S	34	HIS	
	5	S	/ 89	GLN	



### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

29 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trune	Chain	Dec	т:	Bond lengths		В	ond ang	les	
IVIOI	туре	Chain	nes	Гик	Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
6	NAG	D	1	6,1	14,14,15	0.73	1 (7%)	17,19,21	2.54	6 (35%)
6	NAG	D	2	6	14, 14, 15	0.52	0	17,19,21	1.14	2 (11%)
6	BMA	D	3	6	11,11,12	0.44	0	15,15,17	0.49	0
6	NAG	Е	1	6,2	14,14,15	0.74	1 (7%)	17,19,21	2.54	6 (35%)
6	NAG	E	2	6	14,14,15	0.49	0	17,19,21	1.12	2 (11%)
6	BMA	E	3	6	11,11,12	0.44	0	$15,\!15,\!17$	0.49	0
6	NAG	F	1	3,6	14,14,15	0.74	1 (7%)	17,19,21	2.53	6 (35%)
6	NAG	F	2_	6	14,14,15	0.50	0	17,19,21	1.12	2 (11%)
6	BMA	F	3	6	11,11,12	0.43	0	15,15,17	0.48	0
7	NAG	G	1	7	14,14,15	0.75	1 (7%)	17,19,21	0.61	0
7	NAG	G	2	7	14,14,15	0.42	0	17,19,21	1.23	1 (5%)
7	/NAG	H	1	7,1	14,14,15	0.38	0	17,19,21	0.53	0
7	NAG	H	2 /	7	14,14,15	0.33	0	17,19,21	0.38	0
7	NAG	Í	1	7,1	14,14,15	0.28	0	17,19,21	0.62	1 (5%)
/7	NAG	Ι	2	7	14,14,15	0.29	0	17,19,21	0.37	0
7	NAG	J	1	7,1	14,14,15	1.03	1 (7%)	17,19,21	0.92	1(5%)
7	NAG	J	2	7	14,14,15	0.26	0	17,19,21	0.41	0
7	NAG	К	1	7,1	14,14,15	0.38	0	17,19,21	1.27	2(11%)
7	NAG	K	2	7	14,14,15	0.40	0	17,19,21	1.27	1 (5%)
7	NAG	L	1	7,2	14,14,15	0.49	0	17,19,21	0.44	0



Mal	Type	Chain	Dog	Link	Bo	ink Bond lengths			ond ang	les
	туре	Ullalli	nes		Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
7	NAG	L	2	7	$14,\!14,\!15$	0.22	0	/17,19,21	0.43	Ó
7	NAG	М	1	7,2	$14,\!14,\!15$	0.78	1 (7%)	17,19,21	0.78	1(5%)
7	NAG	М	2	7	14,14,15	0.75	1 (7%)	17,19,21	0.71	0
7	NAG	N	1	3,7	14,14,15	0.33	0	17,19,21	0.38	0
7	NAG	Ν	2	7	14,14,15	0.18	0	17,19,21	0.50	0
7	NAG	R	1	3,7	14,14,15	0.73	1 (7%)	17,19,21	0.68	0
7	NAG	R	2	7	14,14,15	0.20	0	17,19,21	/0.42	0
7	NAG	Т	1	3,7	$14,\!14,\!15$	0.51	0	17,19,21	0.50	0
7	NAG	Т	2	7	14,14,15	0.21	0	17,19,21	0.47	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

	Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
	6	NAG	D	1	6,1	- 1	3/6/23/26	0/1/1/1
	6	NAG	D	2	6	-	6/6/23/26	0/1/1/1
	6	BMA	D	3	6		0/2/19/22	0/1/1/1
	6	NAG	Е	1	6,2		3/6/23/26	0/1/1/1
	6	NAG	Е	2 /	6		6/6/23/26	0/1/1/1
	6	BMA	Е	3	6		0/2/19/22	0/1/1/1
	6	NAG	F	/1	3,6	- `	3/6/23/26	0/1/1/1
	6	NAG	F /	2	6	- /	6/6/23/26	0/1/1/1
	6	BMA	F	3	6	- /	0/2/19/22	0/1/1/1
	7	NAG	Ģ	1	7	4	0/6/23/26	0/1/1/1
	7	NAG	$/\mathrm{G}$	2	7	/ -	5/6/23/26	0/1/1/1
	7	NAG	Н		7,1	/ -	0/6/23/26	0/1/1/1
	7	NAG	Н	2	7 /	-	1/6/23/26	0/1/1/1
	7	NAG	I	1	$7,\!1$	-	0/6/23/26	0/1/1/1
	7	NAG	Í	2	7	-	1/6/23/26	0/1/1/1
	7	NAG	J	1	7,1	-	3/6/23/26	0/1/1/1
	7	NAG	J	2	7	-	2/6/23/26	0/1/1/1
	7	NAG	K	1	7,1	-	4/6/23/26	0/1/1/1
	7	NAG	Κ	2	7	-	5/6/23/26	0/1/1/1
/	7	NAG	L /	1	7,2	-	1/6/23/26	0/1/1/1
	7	NAG	L	2	7	-	0/6/23/26	0/1/1/1
	7	NAG	М	1	7,2	-	2/6/23/26	0/1/1/1
	7	NAG	M	2	7	-	3/6/23/26	0/1/1/1
		/	/			Co	ontinued on ne	ext page
						WORLD PROTEIND		



Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings	
7	NAG	N	1	3,7	-	2/6/23/26	0/1/1/1	
7	NAG	N	2	7	-	2/6/23/26	0/1/1/1	
7	NAG	R	1	3,7	-	2/6/23/26	0/1/1/1	
7	NAG	R	2	7	-	2/6/23/26	0/1/1/1	
7	NAG	Т	1	3,7	-	2/6/23/26	0/1/1/1	
7	NAG	Т	2	7	-	1/6/23/26	0/1/1/1	
All $(8)$	bond le	ngth outli	iers are	e listed	below:			

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
7	J	1	NAG	O5-C1	-3.68	1.37	1.43
7	М	1	NAG	O5-C1	-2.71	1.39	1.43
7	R	1	NAG	O5-C1	-2.68	1.39	1.43
7	G	1	NAG	O5-C1	-2.62	1.39	1.43
6	Е	1	NAG	O5-C1	-2.28	1.40	1.43
6	F	1	NAG	O5-C1	-2.28	1.40	1.43
6	D	1	NAG	O5-C1	-2.23	1.40	1.43
7	М	2	NAG	O5-C1	-2.04	1.40	1.43

All	(31)	) bond	angle	outliers	are	listed	below:
-----	------	--------	-------	----------	-----	--------	--------

Mol	Chain	Res	Туре	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	D	1	ŊAG	C1-O5-C5	-7.33	102.27	112.19
6	Е	1	NAG	C1-O5-C5	-7.31	102.28	112.19
6	F	1 /	NAG	C1-O5-C5	-7.30	102.30	112.19
7	Κ	2	NAG	C2-N2-C7	4.33	129.06	122.90
7	Κ	/1	NAG	C2-N2-C7	4.32	129.06	122.90
7	G	2	NAG	C2-N2-C7	4.23	128.93	122.90
6	E	1	NAG	C6-C5-C4	3.30	120.73	113.00
6	F	1	NAG	C6-C5-C4	3.29	120.71	113.00
6	Ď	1	NAG	C6-C5-C4	3.29	120.70	113.00
6	D	1	NAG	Ø5-C5-C4	-3.27	102.86	110.83
6	F	1	NAG	O5-C5-C4	-3.27	102.87	110.83
6	Е	1	NAG	O5-C5-C4	-3.26	102.89	110.83
6	D	2	NAG	C1-O5-C5	3.06	116.34	112.19
6	D	1	NAG	C4-C3-C2	3.03	115.47	111.02
6	E	1	NAG	C4-C3-C2	3.03	115.45	111.02
6	F	1 /	NAG	C4-C3-C2	3.02	115.44	111.02
6	F	2	NAG	C1-O5-C5	3.01	116.27	112.19
6	Е	/2	NAG	C1-O5-C5	2.99	116.24	112.19
6	Е	1	NAG	C2-N2-C7	2.72	126.77	122.90

Continued on next page...



Mol	Chain	Res	Type	Atoms	$\mathbf{Z}$	$Observed(^{o})$	$Ideal(^{o})$
6	D	1	NAG	C2-N2-C7	2.69	126.73	122.90
6	F	1	NAG	C2-N2-C7	2.68	126.72	/122.90
7	J	1	NAG	C3-C4-C5	2.26	114.28	110.24
6	D	2	NAG	C3-C4-C5	2.24	114.23	110.24
6	Ε	1	NAG	O4-C4-C5	2.23	114.85	109.30
6	F	1	NAG	O4-C4-C5	2.23	114.83	109.30
6	D	1	NAG	O4-C4-C5	2.23	114.83	109.30
6	Ε	2	NAG	C3-C4-C5	2.20	114.17	110.24
6	F	2	NAG	C3-C4-C5	2.20	/114.17	110.24
7	Ι	1	NAG	C1-O5-C5	2.12	115.07	112.19
7	Κ	1	NAG	C1-C2-N2	2.06	114.00	110.49
7	М	1	NAG	C1-O5-C5	2.02	114.92	112.19

There are no chirality outliers.

All $(65)$ torsion outliers are listed	l below:
----------------------------------------	----------

Mol	Chain	Res	Type	Atoms
6	D	1	NAG	C8-C7-N2-C2
6	D	1	NAG	O7-C7-N2-C2
6	D	2	NAG	C8-C7-N2-C2
6	D	2	NAG	O7-C7-N2-C2
6	Е	1	NAG	C8-C7-N2-C2
6	Е	1	NAG	O7-C7-N2-C2
6	Е	2	ŊÁG	C8-C7-N2-C2
6	Е	2	ŃAG	07-C7-N2-C2
6	F	1 /	NAG	C8-C7-N2-C2
6	F	1/	NAG	O7-C7-N2-C2
6	F	/2	NAG	C8-C7-N2-C2
6	F	2	NAG	O7-C7-N2-C2
7	M /	2	NAG	C4-C5-C6-O6
7	M	1	NAG	O5-C5-C6-O6
7	М	2	NAG	O5-C5-C6-O6
7	J	1	NAG	Ø5-C5-C6-O6
7	J	2	NAG	O5-C5-C6-O6
7 /	R	1	NAG	O5-C5-C6-O6
7	M	1	NAG	C4-C5-C6-O6
/7	G	2	ŊAG	O5-C5-C6-O6
7	Т	1	ŃAG	O5-C5-C6-O6
7	K	2 /	NAG	O5-C5-C6-O6
7	J	1/	NAG	C4-C5-C6-O6
7	J	/2	NAG	C4-C5-C6-O6
~7~	Т	1	NAG	C4-C5-C6-O6



Mol	Chain	Res	Type	Atoms
7	G	2	NAG	C8-C7-N2-C2
7	G	2	NAG	O7-C7-N2-C2
7	Κ	1	NAG	C8-C7-N2-C2
7	K	1	NAG	O7-C7-N2-C2
7	Κ	2	NAG	C8-C7-N2-C2
7	Κ	2	NAG	O7-C7-N2-C2
7	Κ	2	NAG	C4-C5-C6-O6
7	R	1	NAG	C4-C5-C6-O6
6	Е	2	NAG	O5-C5-C6-O6
6	F	2	NAG	O5-C5-C6-O6
6	D	2	NAG	O5-C5-C6-O6
7	Ν	2	NAG	O5-C5-C6-O6
7	Ν	2	NAG	C4-C5-C6-O6
6	D	2	NAG	C1-C2-N2-C7
6	Ε	2	NAG	C1-C2-N2-Q7
6	F	2	NAG	C1-C2-N2-C7
7	Т	2	NAG	O5-C5-C6-O6
7	Н	2	NAG	O5-C5-C6-O6
7	G	2	NAG	C4-C5-C6-O6
6	D	1	NAG	C3-C2-N2-C7
6	Е	1	NAG	C3-C2-N2-C7
6	F	1	NAG	C3-C2-N2-C7
7	Ν	1	NAG	C4-C5-C6-O6
7	J	1	NAG	C1-C2-N2-C7
7	R	2	NAG	C4-C5-C6-O6
7	Ν	1	NAG	O5-C5-C6-O6
6	D	2 /	NAG	C3-C2-N2-C7
6	Ε	2/	NAG	C3-C2-N2-Q7
6	F	/2	NAG	C3-C2-N2-C7
7	М	2	NAG	C3-C2-N2-C7
6	D	2	NAG	C4-C5-C6-O6
6	E	2	NAG	C4-C5-C6-O6
6	Æ	2	NAG	C4-C5-C6-O6
7		A	NAG	C1-C2-N2-C7
7	R	2	NAG	O5-C5-C6-O6
7	K	1	NAG	C4-C5-C6-O6
7	G	2	NAG	C3-C2-N2-C7
/7	K	1	NAG	C3-C2-N2-C7
7	K	2	NAG	C3-C2-N2-C7
7		2/	NAG	C4-C5-C6-O6

There are no ring outliers.



		Ъ	m		a al l
Mol	Chain	Res	Type	Clashes	Symm-Clashes
6	F	2	NAG	1	0
6	D	1	NAG	1	0
6	Е	2	NAG	1	0
6	D	2	NAG	1	0
7	L	1	NAG	1	0
7	М	1	NAG	1	0
6	Е	1	NAG	1	0
7	М	2	NAG	2	0
7	К	2	NAG	1	0
6	F	1	NAG	1	0
7	L	2	NAG	1	0
7	K	1	NAG	1	0
7	G	2	NAG	1	0

13 monomers are involved in 9 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.





D_1300026375























# 5.6 Ligand geometry (i)

26 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

/	Mal	Tung	Chain	Pos	Link	Bond lengths			Bond angles		
	IVIOI	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z  > 2
	8	NAG	A	1304	1	14,14,15	0.34	0	17,19,21	0.57	0
	8	NAG	/B	1302	2	$14,\!14,\!15$	0.27	0	$17,\!19,\!21$	0.54	0
	8	NAG	B	1303	2	14,14,15	0.19	0	17,19,21	0.51	0
K	8	NAG	C	1308	3	14,14,15	0.26	0	17,19,21	0.43	0



Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths		ond ang	iles /
	Type	Ullalli	nes		Counts	RMSZ	# Z  > 2	Counts	RMSZ	# Z  > 2
8	NAG	С	1306	3	14,14,15	0.18	0	17,19,21	0.47	0
8	NAG	В	1307	2	14,14,15	0.24	0	$17,\!19,\!21$	0.42	0
8	NAG	В	1304	2	14,14,15	0.33	0	17, 19, 21	0.54	0
8	NAG	С	1307	3	14,14,15	0.39	0	17,19,21	0.38	0
8	NAG	С	1302	3	14,14,15	0.19	0	17,19,21	0.45	0
8	NAG	С	1304	3	14,14,15	0.19	0	17,19,21	0.43	0
8	NAG	С	1305	3	14,14,15	0.21	0	17,19,21	0.42	0
8	NAG	В	1309	2	14,14,15	0.38	0	17,19,21	0.41	0
8	NAG	А	1305	1	14,14,15	0.26	0	17,19,21	0.48	0
8	NAG	В	1310	2	14,14,15	0.32	0	17,19,21	0.70	1 (5%)
8	NAG	А	1302	1	14,14,15	0.51	0	17,19,21	0.62	0
8	NAG	В	1306	2	14,14,15	0.21	0	17,19,21	0.49	0
8	NAG	В	1312	2	14,14,15	0.19	0	17,19,21	0.71	1 (5%)
8	NAG	С	1309	3	14,14,15	0.15	0	17,19,21	0.57	0
8	NAG	А	1307	1	14,14,15	0.22	0	17,19,21	0.56	0
8	NAG	С	1301	3	14,14,15	0.22	0	$17,\!19,\!21$	0.42	0
8	NAG	А	1306	1	14,14,15	0.34	0	$17,\!19,\!21$	1.27	1 (5%)
8	NAG	А	1303	1 /	14,14,15	0.23	0	17,19,21	0.44	0
8	NAG	В	1308	2	14,14,15	0.18	0	$17,\!19,\!21$	0.49	0
8	NAG	A	1301	/1	14,14,15	0.31	0	17,19,21	0.43	0
8	NAG	В	1311	2	14, 14, 15	0.31	0	17,19,21	0.39	0
8	NAG	В	1301	2	14,14,15	0.25	0	17, 19, 21	0.53	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	A	1304	1	-	4/6/23/26	0/1/1/1
8	NAG	В	1302	2	-	3/6/23/26	0/1/1/1
8	NAG	В	1303	2	-	4/6/23/26	0/1/1/1
8	ŃAG	C	1308	3	-	0/6/23/26	0/1/1/1
8	NAG	С	1306	3	-	2/6/23/26	0/1/1/1
8	NAG	B	1307	2	-	0/6/23/26	0/1/1/1
8	NAG	ЪΒ	1304	2	-	3/6/23/26	0/1/1/1
8	NAG	C	1307	3	-	2/6/23/26	0/1/1/1
8	NAG	С	1302	3	-	4/6/23/26	0/1/1/1
8	NAG	Ċ	1304	3	-	2/6/23/26	0/1/1/1
8	NAG	/ C	1305	3	-	0/6/23/26	0/1/1/1



			Duyc.		~	-	
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
8	NAG	В	1309	2	-	2/6/23/26	0/1/1/1
8	NAG	А	1305	1	-	2/6/23/26	0/1/1/1
8	NAG	В	1310	2	-	1/6/23/26	0/1/1/1
8	NAG	А	1302	1	-	3/6/23/26	0/1/1/1
8	NAG	В	1306	2	-	3/6/23/26	0/1/1/1
8	NAG	В	1312	2	-	2/6/23/26	0/1/1/1
8	NAG	С	1309	3	-	2/6/23/26	0/1/1/1
8	NAG	А	1307	1	-	2/6/23/26	0/1/1/1
8	NAG	С	1301	3	-	2/6/23/26	0/1/1/1
8	NAG	А	1306	1	-	<mark>3/6/23/26</mark>	0/1/1/1
8	NAG	А	1303	1	- /	4/6/23/26	0/1/1/1
8	NAG	В	1308	2	-/	2/6/23/26	0/1/1/1
8	NAG	А	1301	1	/-	3/6/23/26	0/1/1/1
8	NAG	В	1311	2		< <mark>2/6/23/26</mark>	0/1/1/1
8	NAG	В	1301	2	-	4/6/23/26	0/1/1/1

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	А	1306	MAG	C2-N2-C7	4.31	129.04	122.90
8	В	1312	NAG	C1-O5-C5	2.58	115.69	112.19
8	В	1310	NAG	C1-O5-C5	2.39	115.43	112.19

There are no chirality outliers.

All (61) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms						
8	B	1304	ŇAG	C4-C5-C6-O6						
8	С	1301	NAG	C4-C5-C6-O6						
8	C	1306	NAG	C4-C5-C6-O6						
8	А	1301	NAG	O5-C5-C6-O6						
8	A	1303	NAG	O5-C5-C6-O6						
8	A	1305	NAG	O5-C5-C6-O6						
8	C	1306	NAG	O5-C5-C6-O6						
8	В	1304	NAG	O5-C5-C6-O6						
8	С	1/301	NAG	O5-C5-C6-O6						
8	A	1307	NAG	C4-C5-C6-O6						



Conti	nued from	n previo	ous page.	
Mol	Chain	Res	Type	Atoms
8	В	1302	NAG	C4-C5-C6-O6
8	В	1306	NAG	O5-C5-C6-O6
8	В	1312	NAG	O5-C5-C6-O6
8	А	1304	NAG	O5-C5-C6-O6
8	А	1301	NAG	C4-C5-C6-O6
8	В	1301	NAG	O5-C5-C6-O6
8	В	1303	NAG	O5-C5-C6-O6
8	С	1309	NAG	O5-C5-C6-O6
8	А	1304	NAG	C4-C5-C6-O6
8	А	1302	NAG	C4-C5-C6-O6
8	А	1307	NAG	O5-C5-C6-O6
8	В	1311	NAG	O5-C5-C6-O6
8	В	1301	NAG	C4-C5-C6-O6
8	С	1309	NAG	C4-C5-C6-O6
8	А	1303	NAG	C4-C5-C6-Ø6
8	А	1305	NAG	C4-C5-C6-O6
8	С	1307	NAG	C4-C5-C6-O6
8	В	1303	NAG	C4-C5-C6-O6
8	В	1306	NAG	C4-C5-C6-O6
8	В	1312	NAG	C4-C5-C6-O6
8	А	1303	NAG	C8-C7-N2-C2
8	А	1303	NAG	O7-C7-N2-C2
8	А	1304	NAG	C8-C7-N2-C2
8	А	1304	NAG	O7-C7-N2-C2
8	А	1306	ŅAG	C8-C7-N2-C2
8	А	1306	NAG	O7-C7-N2-C2
8	В	1301	NAG	C8-C7-N2-C2
8	В	1301	NAG	O7-C7-N2-C2
8	В	1⁄303	NAG	C8-C7-N2-C2
8	В	1303	NAG	O7-C7-N2-C2
8	C /	1302	NAG	C8-C7-N2-C2
8	C	1302	NAG	O7-C7-N2-C2
8	B	1302	NAG	O5-C5-C6-O6
8	C	1307	NAG	Ó5-C5-C6-O6
8	В	1309	NAG	O5-C5-C6-O6
8	A	1302	NAG	O5-C5-C6-O6
8	C	1302	NAG	C4-C5-C6-O6
8	В	1311	MAG	C4-C5-C6-O6
8	В	1310	NAG	O5-C5-C6-O6
8	C	1302	NAG	O5-C5-C6-O6
8	В	1308	NAG	C4-C5-C6-O6
8	В	1304	NAG	C1-C2-N2-C7
	/	Ca	pntinued	on next page



Mol	Chain	Res	Type	Atoms
8	В	1308	NAG	O5-C5-C6-O6
8	В	1309	NAG	C4-C5-C6-O6
8	А	1302	NAG	C3-C2-N2-C7
8	В	1302	NAG	C3-C2-N2-C7
8	В	1306	NAG	C3-C2-N2-C7
8	С	1304	NAG	C4-C5-C6-O6
8	А	1301	NAG	C1-C2-N2-C7
8	С	1304	NAG	O5-C5-C6-O6
8	А	1306	NAG	C3-C2-N2-C7

There are no ring outliers.

4 monomers are involved in 6 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
8	А	1302	NAG	2	0
8	С	1301	NAG	2	0
8	А	1306	NAG	1 /	0
8	В	1301	NAG	1/	0

# 5.7 Other polymers (i

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i

The following chains have linkage breaks:

Mol	Chain	Number of breaks
3	C /	8
1	A	8
2	B	8

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	C	241/:LEU	С	261:GLY	Ν	14.44
1	A	241:LEU	С	261:GLY	Ν	13.72
1	С	620:VAL	С	641:ASN	Ν	12.86
1	А	620:VAL	С	640:SER	Ν	12.55
	C	176:LEU	С	187:LYS	Ν	12.05



Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	176:LEU	С	187:LYS	Ν	11.99
1	В	176:LEU	С	187:LYS	N	11.91
1	А	828:LEU	С	853:GLN	N /	11.67
1	С	828:LEU	С	853:GLN	N	10.51
1	В	620:VAL	С	638:THR	Ŋ	9.78
1	В	241:LEU	С	263:ALA	N	9.47
1	В	209:PRO	С	217:PRO	N	9.42
1	В	828:LEU	С	853:GLN	N	9.11
1	С	95:THR	С	99:ASN	N	8.82
1	А	95:THR	С	99:ASN	Ν	7.64
1	В	66:HIS	С	81:ASN	N	7.50
1	А	142:GLY	С	156:GLU	N	7.26
1	С	66:HIS	С	81:ASN	N	6.61
1	С	140:PHE	С	157:PHE	N	6.54
1	А	66:HIS	С	79:PHE	N	6.04
1	В	672:ALA	C /	687:VAL	N	5.40
1	А	672:ALA	C	687:VAL	N	5.33
1	С	672:ALA	C	687:VAL	Ņ	5.14
1	В	141:LEU	C	155:SER	N	4.86



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry D_1300026375. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

# 6.1 Orthogonal projections (i)

### 6.1.1 Primary map



The images above show the map projected in three orthogonal directions.

# 6.2 Central slices (i)

### 6.2.1 Primary map





X Index: 200

Y Index: 200





Z Index: 200  $\,$ 

D 1300026375

The images above show central slices of the map in three orthogonal directions.

## 6.3 Largest variance slices (i)

### 6.3.1 Primary map



X Index: 211

Y Index: 192

Z Index: 153

The images above show the largest variance slices of the map in three orthogonal directions.

## 6.4 Orthogonal surface views (i

#### 6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.177. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.


## 6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.



 $D_{1300026375}$ 

# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



#### 7.2 Volume estimate (i)



The volume at the recommended contour level is  $285 \text{ nm}^3$ ; this corresponds to an approximate mass of 257 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.





# 8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map D_1300026375 and PDB model D_1300026375. Per-residue inclusion information can be found in section 3 on page 8.

### 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.177 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



### 9.2 Atom inclusion (i)



At the recommended contour level, 73% of all backbone atoms, 63% of all non-hydrogen atoms, are inside the map.

