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Supplementary Note 1: Anion vacancies with 2- charge states in MX2 (M: Mo, W; X: S, Se, 
Te). 

We performed a set of calculations for anion vacancies in TMD monolayers in 2- charge state with 

an even number of electrons. Energy differences between the triplet and singlet states, listed in 

Supplementary Table 1, indicate that these negatively charged vacancy defects host triplet ground 

states. Despite the favorable energetics, the defect levels for all these negatively charged vacancies 

are fully occupied in the spin-up channel, so that the only plausible transitions lie within the spin-

down channel (Supplementary Figure 1). Unfortunately, all the unoccupied defect levels in the 

spin-down channel lie at fairly high energies due to the exchange interactions and locate in the 

conduction bands. This lack of unoccupied in-gap defect levels makes the necessary qubit 

excitation process impossible. We thus rule out the negatively charged anion vacancy as a plausible 

qubit candidate. 

 

Defect ΔE%&'()*%+,'-.)*% (eV) 

V/!+ in MoS! -0.179 

V/*!+ in MoSe! -0.193 

V0*!+ in MoTe! -0.146 

V/!+ in WS! -0.130 

V/*!+ in WSe! -0.140 

V0*!+ in WTe! -0.196 

 

Supplementary Table 1: Energy differences between the triplet and singlet states of anion 

vacancies with 2- charge states. The negative energy differences between the triplet and singlet 

states of anion vacancies 𝑉1!+ in MX2 (M: Mo, W; X: S, Se, Te) indicate that these negatively 

charged vacancies host stable triplet ground states. 
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Supplementary Figure 1: Schematic defect-level diagrams of anion vacancies with 2- charge 

states. The defect levels are comprised by fully occupied a1 level and half-occupied e levels. The 

unoccupied e levels in spin-down channel lie in the conduction bands, which makes defect-level-

based optical transitions in the spin-down channel impossible. 
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Supplementary Note 2: Pristine and defective 1H-TMDs. 
The calculated geometric and electronic structure related data for pristine and defective 1H-TMDs 

(with C3v local symmetry) are presented in Supplementary Table 2.  

 

Pristine TMD WS! WSe! WTe! MoS! MoSe! MoTe! 

a	(Å) 3.147 3.275 3.505 3.147 3.278 3.505 

d$+1	(Å) 2.391 2.513 2.701 2.385 2.511 2.700 

d1+1(Å) 3.107 3.311 3.578 3.090 3.300 3.573 

Antisite M1
# W/

# W/*
#  W0*

#  Mo/# Mo/*#  Mo0*#  

d2+$(Å) 2.633 2.615 2.578 2.669 2.655 2.579  

d2+1!"#$%(Å) 3.516 3.596 2.916 3.549 3.632 3.065  

d-orbital 

order 

d"3, d"&+3& , 

d4& 	 

d"3, d"&+3& , 

d4& 

d4& , (d"3, d"4), 

(d34, d"&+3&) 

d"3, d"&+3& , 

d4& 

d"3, d"&+3& , 

d4& 	 

d4& , (d"3, d"4), 

(d34, d"&+3&) 

ΔE%&'()*%+,'-.)*%	 

(eV) 
-0.273 -0.295 -0.301 -0.349 -0.343 -0.264 

 

Supplementary Table 2: Geometric parameters for pristine MX2 and neutral anion antisites 

MX0 (M: Mo, W; X: S, Se, Te).  d$+1 denotes the distance between a cation and its adjacent 

anions.  d1+1 is the distance between anions in the upper and lower anion layers. In the defective 

systems, the distances between the antisite (labeled A) and the adjacent cations M, are labeled by 

d2+$. The distances between the antisite cation A and the anion in the bottom layer are labeled by 

d2+1!"#$%(Å). The d-orbital order refers to the increased ordering of in-gap defect levels in energy. 

Defect levels are mainly contributed by d-orbitals of the antisite. M0*
# 		in MoTe! and WTe! hosts 

a set of levels labeled as 𝑑5& , (𝑑67, 𝑑65) , and (𝑑75 , 𝑑6&+7&),  where brackets represent the 

hybridization of d-orbitals. 
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Supplementary Note 3: Transition levels and ionization energies of anion antisites in 1H-
TMDs 𝐌𝐗𝟐 (M: Mo, W; X: S, Se, Te). 

The anisotropic-correction method for charged defect systems is based on the extrapolation of an 

asymptotic expression of ionization energy (IE):1,2 IE(𝑆, 𝐿𝑧) = 𝐼𝐸# +
9
√;
+ <

;
𝐿5, where 𝐼𝐸# is size-

independent ionization energy, S is the area of the 2D system, and 𝐿5 is the vacuum thickness. 

Here, 𝛼 is the Madelung constant for a point charge and mainly depends on geometry instead of 

the defect type.1,2 Supercells were built with sizes of 5×5 and 6×6 and vacuum thicknesses of 20 

and 25 Å. To test the convergence of extrapolation, we performed an additional set of calculations 

for the antisite defect W/  in WS!  with a supercell size of 4x4. Differences in the ionization 

energies between what is fitted by 3-size calculations (4x4, 5x5, and 6x6) and 2-size calculations 

(5x5 and 6x6) are 0.14 eV and 0.05 eV for the donor and acceptor states, respectively. This level 

of differences does not affect any of the main conclusions of this study. The charge states q = -1, 

0, and 1 were considered for all anion antisites. The anisotropic correction was carried out in two 

steps: (1) We extrapolated IE(𝑆, 𝐿5)  with respect to 𝐿5 . The y-intercept of the linear line 

corresponds to 𝐼𝐸# +
9
√;

. Different lines are the extrapolations based on different sizes of 

supercells. This was followed by step (2) where we extrapolated 𝐼𝐸# +
9
√;

 with respect to =
√;

. Here 

the y-intercept is the size-independent ionization energy 𝐼𝐸#. The ionization energy of the donor-

state 𝜖(+/0) /acceptor-state 𝜖(0/−)  is defined as the energy difference between the donor 

state/acceptor state and CBM/VBM. 



7 

 

 
Supplementary Figure 2: Implementation of extrapolation method for anisotropic 

corrections of low-dimensional charged defects. Black circles highlight the size-independent 
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ionization energies (𝐼𝐸#)  of the donor 𝜖(+/0)  and acceptor states 𝜖(0/−) for various anion 

antisites. W/: (2.24 eV, 1.77 eV), W/*: (1.43 eV, 1.65 eV), W0*: (0.71 eV, 1.43 eV), Mo/: (2.01 

eV, 1.31 eV), Mo/*: (1.93 eV, 1.37 eV), and Mo0*: (0.88 eV, 0.97 eV). To test the convergence 

of extrapolation, extra data points obtained from 4x4 supercell calculations are included in the case 

of W/
#.
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Supplementary Note 4: Antisite defect qubit in 𝐖𝐒𝐞𝟐. 

Antisite qubit W/*
#  in WSe!  resembles W/

#  in WS2 in terms of defect geometry and electronic 

structure. Optimized pristine structure is characterized by the W-Se and Se-Se distances of 2.513 

Å and 3.311 Å, respectively. Hybrid functional calculations predict a band gap of 2.13 eV, which 

is comparable with experimental result.3 The calculated in-gap defect levels, labeled by 𝐶>? point 

group, are shown in Supplementary Figure 3b. Optical transitions were calculated with 

consideration of SOC, and the ZPL is 0.585 eV. Position of the singlet	=𝐴= is 0.382 eV above	>𝐴!, 

which is estimated by considering the Coulombic interaction. Note that the energy difference 

between	>𝐴! and	=𝐸  was calculated with consideration of SOC. The zero-field splitting (ZFS) 

between the sublevels E and A1 in the triplet ground state is found to be 6.81 GHz (Supplementary 

Note 5). Nonradiative decay paths are identified based on group theory and are identical to the 

case of W/
# in WS2. 

 
 

Supplementary Figure 3: Geometry and electronic structures of neutral antisite qubit 𝐖𝐒𝐞
𝟎  

in 𝐖𝐒𝐞𝟐. a Optimized structure of W/*
#  antisite in WSe!. b Energy diagram of the defect levels in 
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the triplet ground state	>𝐴!. The defect levels e and 𝑎= mainly derived from  {𝑑6&+7&, 𝑑67} and 

𝑑5&  orbitals of the antisite. Wavefunctions of these three levels are shown schematically. c 

Configuration coordinate diagram of W/*
#  in WSe! for the triplet ground state	>𝐴! and the triplet 

excited state	>𝐸. d Sublevels for the triplet ground state	>𝐴!, the triplet excited state	>E, and the 

singlet states	=𝐸 and 	=𝐴= (labeled by the IRs of C3v). Spin-conserving optical transitions are shown 

by colored solid arrows. Symmetry-allowed intersystem-crossing paths are denoted by dashed 

arrows. The labels {𝛤#C, 𝛤=C} and 𝛤!5 indicate the allowed intersystem-crossing paths via nonaxial 

spin-orbit coupling and axial spin-orbit coupling, respectively.
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Supplementary Note 5: Zero-phonon line and zero-field splitting for 𝐌𝐗
𝟎 (M = Mo, W; X = S, 

Se). 

Optical transitions and the ZFS of the sublevels play a key role in the operation and robustness of 

a defect qubit. We have computed these transitions for our four qubit candidates M1
# (M = Mo, W; 

X = S, Se), including the zero-phonon lines (ZPLs) and relaxation energies, both with 

(Supplementary Table 3) and without spin-orbit coupling (Supplementary Table 4) using the 

hybrid functional HSE06 and constrained DFT. Notations in Supplementary Tables 3-5 are defined 

in Supplementary Figure 4. ZFSs of the sublevels in the triplet ground states for M1
# (M = Mo, W; 

X=S, Se) due to the spin-spin dipolar coupling were evaluated by spin-spin dipolar Hamiltonian, 

𝐻P;; = 𝐒Q𝐃𝐒Q, where 𝐒Q is the total-spin operator and D is a 3 × 3 ZFS tensor4 (Supplementary Table 

5). In systems with axial symmetry such as C3v, 𝐻P;; can be expressed as 𝐻P;; = 𝐷(𝑆5! −
;(;F=)

>
), 

where 𝐷 = >
!
𝐷55 is a measurable quantity, Sz is the spin projection along the z-direction, and S is 

the total spin. The modified Python package Pyzfs5 was used to calculate the scalar parameter D, 

which involves the use of pseudo-wavefunctions obtained from the VASP code. Previous 

calculations for NV+ center in diamond based on this method give a ZFS of 2.90 GHz6 and 2.854 

GHz7, which are close to the experimental value of 2.88 GHz.8  

 
Supplementary Figure 4: Notations for optical transitions and relaxation energies. A → B 

and C → D represent vertical transitions between the ground and excited states. B → C and D → A 

represent the Franck-Condon relaxation in the ground and excited state, respectively. 
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Defect A → B	(eV) B → C (meV) C → D (eV) D → A (meV) ZPL (eV) 

W/
# 0.732 5 0.726 1 0.727 

W/*
#  0.595 10 0.584 1 0.585 

Mo/# 0.932 1 0.930 1 0.931 

Mo/*#  0.817 3 0.813 1 0.814 

Supplementary Table 3: Optical transition energies and relaxation energies calculated using 

the hybrid functional HSE06 with spin-orbit coupling.  

 

 

Defect A → B	(eV) B → C (meV) C → D (eV) D → A (meV) ZPL (eV) 

W/
# 0.738 4 0.733 1 0.734 

W/*
#  0.648 11 0.635 2 0.637 

Mo/# 0.890 3 0.886 1 0.887 

Mo/*#  0.804 4 0.800 1 0.801 

Supplementary Table 4: Optical transition energies and relaxation energies calculated using 

the hybrid functional HSE06 without spin-orbit coupling.  

 

 

 

 

 

 

 

 

Supplementary Table 5: Zero-field splitting parameters for the triplet ground states	𝟑𝐀𝟐 

in	𝐌𝐗
𝟎 (M = Mo, W; X = S, Se). 

Defect  Zero-field splitting D (GHz) 

Mo/# 8.41  

Mo/*#  7.22  

W/
# 7.89  

W/*
#  6.81  
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Supplementary Note 6: Antisite qubit 𝐖𝐒
𝟎 with local-symmetry 𝑪𝒉. 

If a random symmetry-breaking structural perturbation is applied, W/
# antisite may experience an 

in-plane displacement from the center, which would lower the symmetry from C3v to Ch. Note 

that lowering C3v to Ch reduces the total energy by only about 25 meV per unit cell. The results 

of W/
# with local symmetry Ch are presented in this section. Symmetry-lowering causes the 

splitting of the degenerate sublevels Sx (ms = 1) and Sy (ms = -1). We evaluated this splitting by 

calculating the D tensor due to spin-spin dipolar interaction. The scalar parameters D and E 

defined as >
!
𝐷55 and J''+J((	

!
 describe the splitting between ms = ±1 and ms = 0 and the splitting 

between ms = 1 and ms = -1, respectively. The calculated |𝐷| and |𝐸| values are 6.60 GHz and 

1.25 GHz, respectively. The ratio of |𝐷| and |𝐸| is about 5:1, implying that the extent of 

deviation from C3v to Ch is relatively small. 

 
Supplementary Figure 5: Geometric and electronic structure of neutral antisite defect 𝐖𝐒

𝟎 in 

𝐖𝐒𝟐 with local-symmetry Ch.  a The relaxed structure of W/
# with local-symmetry Ch. The y-

direction is defined to lie along the mirror plane 𝜎L(red line) and the x-direction is perpendicular 

to 𝜎L . b A schematic energy diagram of the in-gap defect levels and the depictions of 
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wavefunctions. Defect levels are labeled by 1𝑎′,	1𝑎′′, and 2𝑎′ from low to high energy. Despite 

hybridization with the neighboring d-orbitals, the lowest unoccupied level is mainly contributed 

by 𝑑5& orbital of the antisite. c Calculated configuration coordinate diagram with the zero-phonon-

line (ZPL) of 0.913 eV and Frank-Condon relaxation energies of 9 meV and 1 meV for the excited 

and ground state, respectively. The optical transitions were calculated with consideration of SOC. 

d Sublevels and the corresponding IRs for the triplet ground state	>𝐴′′, triplet excited state	>𝐴′, 

and the singlet state	=𝐴′. The singlet state	=𝐴′ is 0.207 eV above	>𝐴′′ with consideration of SOC. 

Due to symmetry-lowering, the sublevels ms = ±1 have a relatively small splitting of 1.25 GHz, 

compared to the splitting of 6.60 GHz between ms = 1 and ms = 0. The allowed intersystem-crossing 

paths are denoted by 𝛤# , 𝛤=, and 𝛤!, where 𝛤= is a weak transition due to the slightly lowered 

symmetry from C3v to Ch. 
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Supplementary Note 7: Qubit operation of  𝐖𝐒
𝟎 antisite with local-symmetry Ch. 

According to the discussion in Supplementary Note 6, an approximate two-level qubit system can 

be formed by the sublevels ms = ±1 and ms = 0. A key difference between the defect qubit in C3v 

and Ch symmetries is reflected in the relative strengths of the intersystem-crossing paths 𝛤= and 𝛤!. 

For large |𝐸| (see Supplementary Note 6 for the definition of E), the system is in 𝐶L symmetry and 

it deviates dramatically from C3v, resulting in a strong 𝛤= and a weak 𝛤!. Although 𝛤= allowed in 

our case, its strength is thus quite small. As a result, during initialization and readout, only a small 

fraction of the population will be polarized into the sublevel Sy (ms = -1), and a majority of the 

population will occupy the sublevel Sz (ms = 0) via the strong intersystem-crossing path 𝛤!. 

 
 

Supplementary Figure 6: Operational loop for 𝐖𝐒
𝟎 antisite qubit with local-symmetry Ch. a 

Initialization of the qubit by pumping the system optically. Due to the existence of the intersystem 

paths 𝛤# and 𝛤!, most of the population is polarized into the sublevel Sz. Note that 𝛤= is a weak 

transition because the symmetry is lowered only slightly from C3v to Ch. b Manipulation of the 

qubit can be implemented via techniques similar to those used in NV+ center such as electron 

paramagnetic resonance (EPR). c Readout process can also be implemented in analogy with NV+ 

by pumping the antisite first and then detecting intensity differences in luminescence. Note that 

the luminescence involving ms = ±1 is weaker than that involving ms = 0 due to the existence of 

the intersystem crossing path 𝛤#. 
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Supplementary Note 8: Symmetry-allowed intersystem crossings in 𝐖𝐒
𝟎. 

The single-particle spin-orbit coupling operator  𝐻P;M with C3v symmetry can be defined as   𝐻P/N =

∑ 𝜆67e𝑙O6𝑠O6 + 𝑙O
7𝑠O

7h + 𝜆5𝑙O5𝑠O5O , where 𝑙OP  and 𝑠OP  denote the angular momentum and spin operator 

projected onto the i%Q	component for the k%Q  electron, respectively.9 The nonaxial and axial 

strengths of spin-orbit coupling are denoted by 𝜆67 	and	𝜆5, respectively. If the system is imposed 

by axial symmetry, one can rewrite 𝐻P;Min terms of the raising and lowering operators as:  𝐻P/N =

∑ 𝜆67(𝑙OF𝑠O+ + 𝑙O+𝑠OF) + 𝜆5𝑙O5𝑠O5O , where 𝑙O
± and 𝑆O

± are the raising and lowering operators for the 

angular momentum and spin operator, respectively. Nonaxial components include 𝑙± and 𝑠± that 

mix different Slater-determinants (i.e. mix 𝑒! and 𝑎==𝑒=) and different spin projections. On the 

other hand, the axial component contains 𝑙5  and 𝑠5  that is only able to mix identical Slater-

determinants and spin projections. We emphasize that NV+ center hosts identical electron/hole 

configurations (e: 𝑎=!𝑒!, h: 𝑒!) and sublevel symmetries. Note that nonaxial spin-orbit interaction 

is much weaker than the axial one in the NV+ center.10  

Intersystem crossing is allowed only if  < 𝛹P|𝐻P/N|𝛹S > is nonzero. Since 𝐻P;M	is a scalar operator, 

which belongs to IR 𝐴=	 , the matrix element would be non-zero only if the involved IRs satisfy the 

condition: rep(𝛹P)⨂rep(𝐻P/N)⨂rep(𝛹S) ⊃ 𝐴= . For the triplet ground state, the spatial 

wavefunction 𝜓TUVWPVX belongs to IR 𝐴!		  and the three spin projectors {𝑆6 , 𝑆7} and 𝑆5 belong to the 

2D IR 𝐸 and 1D IR 𝐴!, respectively. By decomposing the reducible representation (𝐸	⨁𝐴!)⨂𝐴!  

into the sum of IRs in 𝐶>Y, we obtain the 2D degenerate sublevels E and the 1D sublevel 𝐴=. The 

sublevel space forms a 3D state space that is given by the product of the dimensions of 𝜓TUVWPVX 

(1D) and the spin projectors (3D). Accordingly, for the triplet excited state	>𝐸, we have a six-

dimensional sublevel space consisting of IRs {𝐸=!, 𝐸67, 𝐴=, 𝐴!} . Here, the IRs {𝐸=!, 𝐴=, 𝐴! } 

involves spin components {𝑆6 , 𝑆7} while the IR 𝐸67  only involves 𝑆5 . The singlet states 	=𝐸 

and	=𝐴= form sublevels labeled by E and 𝐴=, which share a common spin-zero component (𝑆#). A 

nonzero matrix element also depends on the condition that the axial (nonaxial) spin-orbit operators 

mix sublevels with identical (distinct) Slater-determinants and spin projectors. As a result, we 

identified three symmetry-allowed intersystem crossings as noted in the main text.
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Supplementary Note 9: Formation energies for 𝐌𝐱
𝟎, 𝐗𝐱𝟎, 𝑽𝐱𝟎, 𝐚𝐧𝐝	𝑽𝐌𝟎  (M: W; X: S, Se). 

The formation energy of a neutral defect is defined as: 𝐸S = 𝐸W\W(defect) − 𝐸W\W(MX!) − ∑ 𝑛P𝜇P' , 

where 𝑛P is a positive/negative integer when adding/removing an atom. For tungsten, the adopted 

reference phase is the bulk metallic body-centered (bcc) structure. For sulfur and selenium, S8 and 

Se8 allotropes were used. Note that the formation energies of defects depend on experimental 

growth conditions. For this reason, we consider both W-rich and X-rich conditions and find that 

the anion antisites have the second-lowest energies under W-rich conditions. The relatively high 

formation energies indicate that the intrinsic concentration of antisite defects in the as-grown 

TMDs under equilibrium conditions would be low. Anion antisites could potentially also be 

created under nonequilibrium conditions involving irradiation or ion implantation. Note that anion 

antisite defects in both WS! and WSe! have been observed experimentally.11,12 

 

Defect in WS! W-rich (eV) S-rich (eV) Defect in WSe! W-rich (eV) Se-rich (eV) 

W/
# 5.45 9.44 W/*

#  5.60 8.47 

S]#  9.75 5.75 Se]#  7.59 4.72 

V]#  7.73 5.07 V]#  6.42 4.50 

V/# 1.63 2.96 V/*#  1.94 2.90 

Supplementary Table 6: Formation energies for neutral anion antisites (𝐌𝐗
𝟎), neutral cation 

antisites (𝐗𝐌𝟎 ), neutral anion vacancies (𝑽𝐗𝟎), and neutral cation vacancies (𝑽𝐌𝟎 ) (M: W; X: S, 

Se) under W-rich and X-rich conditions.  
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Supplementary Note 10: Correlation between the displacement in the z-direction and the 
defect-level pattern. 

In order to gain insight into the differences in level-splitting patterns in various 1H-TMDs, we 

performed an analysis of their bonding using the crystal orbital Hamilton population (COHP) 

approach13. In this way, we identified a key difference in the orbital interactions that is driven by 

the z-position of the antisite. Results for anion antisites in WS! for different z-positions are shown 

in Supplementary Figure 7.  As the antisite moves toward the cation plane, a1 and e levels form 

two overlap patterns involving the wavefunctions of the antisite and the adjacent cations. In regime 

1, the a1 (mainly 𝑑5&) as well as the e level (mainly (𝑑67, 𝑑6&+7&)) displays an enhanced overlap, 

and both the in-gap a1 and e levels move up in energy due to their antibonding nature identified 

via the COHP analysis. In regime 2, the wavefunction overlap associated with the e level continues 

to increase as the antisite moves toward the cation plane, but the overlap of the a1 level becomes 

weaker. As the two sets of defect levels get closer in energy with the antisite moving toward the 

cation plane, at z = -0.3 Å, a defect-level switching takes place. Note that the three levels a1, e1, 

and e2 are occupied by two electrons, resulting in the e levels splitting into e1 and e2 due to the 

Jahn-Teller effect. It is thus the difference in wavefunction overlaps and orbital interactions which 

is responsible for the two level-splitting patterns discussed in the main text.  
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Supplementary Figure 7: Correlation between the displacement of the antisite in the z-

direction and the defect-level energies.  As the antisite moves toward the cation plane, the 

wavefunction overlap for the a1 level increases in regime 1, while it decreases in regime 2. On the 

other hand, the wavefunction overlap of the e levels increases in both regimes. At z = -0.3, the e 

levels split into e1 and e2 due to magnetic Jahn-Teller effect. Blue lines: e levels, red lines: a1 level. 

For the x-axis, zero is the equilibrium z-position, positive values denote moving upward relative 

to the equilibrium z-position, and negative values denote moving downward relative to equilibrium 

z-position. 
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Supplementary Note 11: Correlation between the equilibrium z-positions of the antisites and 
anion species. 

In order to analyze the effects of different chemical environments of the antisites in S-, Se-, and 

Te-based TMDs, we performed a Bader charge analysis14 and found the associated Bader volumes 

of the antisites to be larger than those of the chalcogen anions (S and Se), resulting in the antisites 

as replacements of the anions to shift up along the z-direction. In contrast, the Bader volume of the 

antisite is smaller than that of the Te anion in Te-based TMD, and as a result the antisite shifts 

down along the z-direction. The equilibrium z-positions of the antisites thus depend on the anion 

species (Supplementary Figure 8).  

 
Supplementary Figure 8: A schematic illustrating the correlation between the location of the 

antisites and anion species S and Te. Depending on the anion (S, Te) involved, the equilibrium 

z-position of the antisite exhibits two patterns. For S, the antisite moves up to a higher equilibrium 

z-position. For Te, the antisite moves down to a lower equilibrium z-position. The vertical yellow 

arrow shows the displacement between the atomic center of antisite and Te along the z-direction, 

and the vertical green arrows shows the displacement between the atomic center of antisite and S 

along the z-direction. Note that 3.147 Å and 3.505 Å are lattice constants of WS2 and WTe2. M 

denotes the adjacent cations (Mo/W) around the antisite. 
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Supplementary Note 12: Defect levels of MX0 (M: Mo, W; X=S, Se, Te) with spin-orbit 
coupling. 

As the nature of anion antisite defects is largely determined by the relatively massive cations in 

TMDs, the defect levels are affected by the spin-orbit coupling (SOC). We performed calculations 

in which spin-orbit interaction was treated perturbatively. For both the W- and Mo-based antisites, 

with the SOC, the occupied defect level e splits into two levels. The defect level a1 is barely 

affected due to its 𝑑5& nature with zero projected angular quantum number ml. For WS0 and WSe0, 

the energy splittings between the highest two occupied levels are estimated to be 0.374 eV and 

0.343 eV, respectively. For MoS0 and MoSe0, the splittings are 0.114 eV and 0.118 eV, respectively. 

For the Te-based antisites, the level splittings between the lowest unoccupied and the highest 

occupied defect levels are 0.546 eV for WTe0 and 0.676 eV for MoTe0. 

 
 

Supplementary Figure 9: Defect levels of MX0 (M: Mo, W; X=S, Se, Te) with the spin-orbit 

coupling. The defect levels are denoted by black lines and the arrows represent electrons. The 

numbers in parenthesis are energies relative to the vacuum. The blue and orange bars denote 

valence and conduction bands, respectively. 
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Supplementary Note 13: Calculated ZPLs with SOC for different occupation configurations 
in CDFT. 

The ZPLs in Figure 2 (main text), Supplementary Figigures 3 and 5, and Supplementary Tables 3 

and 4 are based on the excitations obtained by setting the two highest occupied levels in the ground 

state as half occupation and the lowest unoccupied level in the ground state as full occupation in 

CDFT, which is an occupation configuration that is consistent with what is used for the NV- center 

in diamond. Since the highest two occupied levels of the antisite naturally split due to SOC effects, 

it is necessary to consider other potential excited-state occupation configurations, including the 

one-electron excitation from the highest occupied level of the ground state (denoted as 1-0-1) and 

the one-electron excitation from the second-highest occupied level of the ground state (denoted as 

0-1-1) within the CDFT framework.  The calculated ZPLs, vertical transitions, and Franck-Condon 

relaxations for these two configurations are shown in Supplementary Tables 7 and 8. For W/
# with 

local symmetry Ch, the calculated optical transition energies and relaxation energies with the 0-1-

1 occupation configuration are shown in Supplementary Table 9. Notation for the optical 

transitions and relaxation energies are the same as in Supplementary Figure 4. The results clearly 

show that the ZPLs are dependent on the excited-state occupation configurations. More rigorous 

treatment of the excited states, such as many-body perturbation theory, is called for to provide a 

more accurate evaluation of the optical transitions associated with these antisite defects.  

 

Defect A → B	(eV) B → C (meV) C → D (eV) D → A (meV) ZPL (eV) 

W/
# 0.269 4 0.264 1 0.265 

W/*
#  0.210 8 0.201 1 0.202 

Mo/# 0.587 2 0.584 1 0.585 

Mo/*#  0.537 4 0.532 1 0.533 

 

Supplementary Table 7: Optical transition energies and relaxation energies calculated using 

the hybrid functional HSE06 with spin-orbit coupling. The excitation from the highest occupied 

level to the lowest unoccupied level of the ground state (denoted as 1-0-1) is considered. 
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Defect A → B	(eV) B → C (meV) C → D (eV) D → A (meV) ZPL (eV) 

W/
# 0.677 6 0.670 1 0.671 

W/*
#  0.550 11 0.538 1 0.539 

Mo/# 0.787 7 0.779 1 0.780 

Mo/*#  0.689 6 0.682 1 0.683 

 

Supplementary Table 8: Optical transition energies and relaxation energies calculated using 

the hybrid functional HSE06 with spin-orbit coupling. The excitation from the second-highest 

occupied level to the lowest unoccupied level of the ground state (denoted as 0-1-1) is considered.  

  

 

Occupation 

configuration 

A → B	(eV) B → C (meV) C → D (eV) D → A (meV) ZPL (eV) 

0.5-0.5-1 0.922 9 0.912 1 0.913 

1-0-1 0.496 10 0.485 1 0.486 

0-1-1 0.871 10 0.860 1 0.861 

 

Supplementary Table 9: Optical transition energies and relaxation energies for WS0 with Ch 

symmetry calculated using the hybrid functional HSE06 with spin-orbit coupling. The 

excitation from the second-highest occupied level to the lowest unoccupied level of the ground 

state (denoted as 0-1-1) is considered.  
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