

Supplementary Figure S1: Survey MALDI mass spectrum of permethylated N-glycans from recombinant asprosin. PNGaseF-liberated N-glycans were methylated and analyzed by positive ion reflectron MALDI mass spectrometry. The profile is characterized by dominant high-mannose N-glycan M5 and core-fucosylated complex-type N-glycans with two to four antennae. Besides fully processed species, the profile contains significant amounts of partially processed (truncated) –Gal species.



Supplementary Figure S2: Post-Source-Decay MALDI mass spectrum of permethylated O-glycan alditol detected at precursor ion mass m/z 1706. Only one major precursor ion was detectable in MALDI survey spectra of O-glycan alditols derived from recombinant asprosin. PSD analysis of the compound detected at m/z 1706 revealed a fragment pattern supporting a hexasaccharide (disialylated core 2 tetrasaccharide) of the structure shown.

![](_page_2_Figure_0.jpeg)

m/z Supplementary Figure S3: MALDI mass spectra of de-N-glycosylated peptides from recombinant asprosin after double digestion with V8 and trypsin. A. The section shows a

**recombinant asprosin after double digestion with V8 and trypsin. A**. The section shows a mass range of the spectrum from m/z 1300 to 1430 to highlight the signal at the monoisotopic mass m/z 1319.69, which corresponds to the native peptide mass m/z 1318.66 of p18-29 (ANVSLASWDVEK). The observed mass shift of +1 results from conversion of Asn to Asp during enzymatic liberation of N-linked glycans. **B**. The section shows a mass range of the spectrum from m/z 1520 to 1650 to highlight the signals at the monoisotopic masses m/z 1549.84 and 1640.81, which correspond to the native peptide masses m/z 1548.82 of p30-43 (TAIFAFNISHVSNK) and m/z 1639.66 of p1-15 (STNETDASNIEDQSE). The observed mass shift of +1 results from conversion of Asn to Asp during enzymatic liberation of N-linked glycans.

![](_page_3_Figure_0.jpeg)

**Supplementary Figure S4: Critical parameters of established asprosin sandwich ELISA. A.** Linear range of asprosin sandwich ELISA was determined to be between 0 – 50 ng/ml. **B.** Concentration of coated capture antibody (pc-asp) affects sensitivity of asprosin sandwich ELISA. Data were analyzed using Graphpad Prism version 8.0.2.

![](_page_4_Figure_0.jpeg)

**Supplementary Figure S5: Affinity of pc-asp versus mab against glycosylated and deglycosylated asprosin. A.** Measurement of pc-asp and mab-asp affinity by SPR. Sensorgrams of injections of 2-fold serial dilutions (0-160 nM) of (left) pc-asp and (right) mab antibodies onto asprosin immobilized on chip. The calculated affinity (K<sub>D</sub>) of pc-asp was 0.29 ± 0.3 nM and mab was 22 ± 2 nM. **B.** Sensorgrams showing higher sensitivity of pc-asp (1.25 nM) compared to mab (160 nM) to immobilized asprosin on chip. **C.** pc-asp shows a higher sensitivity against immobilized human asprosin (purchased from Biolegend, #761902) versus mab. **D.** (left) pc-asp antibody showed high specificity to human asprosin and no cross reactivity to mouse asprosin in direct ELISA assay and western blot analysis (right). **E.** (top) Domain structure of fibrillin-2 and and sequence of its C-terminal propeptide, placensin (marked in grey). Placensin consists of 133 amino acids (S<sup>2780</sup>-Y<sup>2912</sup>) after furin cleavage from pro-fibrillin-2 (position of furin cleavage site within domain structure is marked by arrow, furin cleavage site is underlined). (bottom) Placensin sequence with a C-terminally placed double Strep-tag II which was overexpressed in HEK293 cells. Residues representing linker regions are indicated in green, thrombin cleavage (LVPRGS) site is underlined, and Strep-tag II sequences are marked in blue. **F.** Coomasie stained quality control gel of eluted fractions (F2-F6) of human placensin after affinity chromatography. **G.** Specific detection of recombinantly expressed asprosin containing a C-terminally placed double Strep-tag II by asprosin sandwich ELISA. No crossreactivity to recombinantly expressed double strep-tagged placensin was observed by asprosin sandwich ELISA. **H.** Sensitivity of pc-asp and mab to glycosylated and deglycosylated asprosin using direct ELISA. (left) Pc-asp antibody shows almost equal sensitivity to immobilized glycosylated and deglycosylated asprosin using direct ELISA. (left) Pc-asp antibody shows almost equa

![](_page_4_Figure_2.jpeg)

![](_page_4_Figure_3.jpeg)

![](_page_4_Figure_4.jpeg)

![](_page_5_Figure_0.jpeg)

|      | sample | expected<br>(ng/ml) | detected<br>(ng/ml) | recovery (%) | expected<br>(ng/ml) | detected<br>(ng/ml) | recovery (%)   |
|------|--------|---------------------|---------------------|--------------|---------------------|---------------------|----------------|
|      | 1      | 30                  | 23.18               | 77.28        |                     | 59.99               | 119.98         |
| ma   | 2      | 30                  | 27.34               | 91.16        | 50                  | 45.02<br>40.30      | 90.04<br>80.61 |
| lasi | 3      | 30                  | 30.63               | 102.11       |                     | 29.21               | 116.86         |
| q    | · 4    | 30                  | 28.36               | 94.55        | 25                  | 24.08               | 96.34          |
|      | 5      | 30                  | 26.24               | 87.48        |                     | 24.56               | 98.26          |
|      | 1      | 30                  | 28.31               | 94.39        |                     |                     |                |
| E    | 2      | 30                  | 32.37               | 107.91       |                     |                     |                |
| erui | 3      | 30                  | 25.38               | 84.63        |                     |                     |                |
| Š    | 4      | 30                  | 32.22               | 107.41       |                     |                     |                |
|      | 5      | 30                  | 36.33               | 121.10       |                     |                     |                |

Supplementary Figure S6: Linearity of dilution and spike and recovery assessment of asprosin sandwich ELISA. A. Dilution of asprosin in DMEM, 10 % FCS does not affect accuracy and precision of asprosin detection, correlation of detected asprosin and excepted asprosin concentrations using Spearman correlation = 0.9996. B. (left) Dilution of asprosin spiked serum with PBS does not affect the accuracy and precision of asprosin detection, the average recovery is 102.8 %. (right) Table showing expected and detected asprosin concentration values, in addition to estimated asprosin recovery. C. (left) Investigation of matrix effect on asprosin detection by using spiking asprosin in various serum and plasma samples, showing average recovery 96.8%. (right) Assessment of spiked asprosin recovery in serum samples before and after 1:2 dilution. Data were analyzed using Graphpad Prism version 8.0.2.

#### DAPI / pc-asp antibody DAPI / anti-rabbit antibody

![](_page_6_Figure_1.jpeg)

Supplementary Figure S7: Effect of fixation and treatments on asprosin recognition by immunostaining in human cartilage.

Immunodetection of asprosin in human chondrocytes *in situ*. Cryosections from cartilage specimen (top raw) were fixed with 4% paraformaldehyde, (middle raw) treated with acetone, or (bottom raw) fixed with acetone:methanol mixture. The left images showed sections incubated with pc-asp asprosin antibody (green) and DAPI (blue). The right images showed sections incubated only with secondary antibody (control) and DAPI. Confocal images were obtained from a Leica SP8 confocal microscope and Leica LAS AF Lite 4.0 software. Images were further processed using Fiji/ImageJ software to obtain average intensity Z-projection.

![](_page_7_Figure_0.jpeg)

hyaluronidase + pepsin + proteinase K

Supplementary Figure S8: Effect of digestion by various enzymes on asprosin detection by immunostaining in human cartilage.

Cartilage cryosections were treated (top, left) with acetone only, or additionally (top, right) digested with hyaluronidase, or (middle, left) with proteinase K, or (middle, right) with pepsin, or (bottom) with a mixture of all of these enzymes together. The signal of pc-asp asprosin was detected in green, DAPI nuclei staining in blue. Confocal images were obtained from a Leica SP8 confocal microscope and Leica LAS AF Lite 4.0 software. Images were further processed using Fiji/ImageJ software to obtain average Intensity Z-projection.

#### Supplementary Table S1: Reported asprosin concentrations in clinical samples. Shown data are from studies available on PubMed, search term "asprosin" until June 2<sup>nd</sup>, 2021.

| Year first          | PN   | IID range of detected asprosin                                                                                          | amounts      | sample       | BMI                                                                                    | age (years)                                                 | total number,                            | a  |
|---------------------|------|-------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|----|
| author              |      |                                                                                                                         | (ng/ml)      |              |                                                                                        |                                                             | sex (f/m)                                |    |
| 2016 Romere         | 27   | 087445 5-12 nM (nonfasted- fasted); (nonobese- obese)                                                                   | 185-444      | plasma       | no information given                                                                   | no information given                                        | 23,                                      | Ca |
| 2017 Zhang          | 29   | 104036 ctrls: 1.77 (1.24-3.45) ng/ml; diabetes type 2: 3.52 (1.50-7.17) ng/ml                                           | 1.77-7.17    | serum        | ctrls: 24.81 ± 3.91; T2DM: 25.25 ± 4.20                                                | 47.60 ± 7.9549.93 ± 10.99                                   | 170, 69/101                              | Н  |
| 2018 Acara          | 29   | 274804 UAP: admission 7.84 ± 6.57 ng/ml; after 24h angiography: 9.21 ± 12.7 ng/ml                                       | 1.27-21.91   | serum        | no information                                                                         | 60.27 ± 10.67                                               | 22, 7/15                                 | Н  |
| 2018 Wang           | 29   | 743813 ctrls: 16.22 ± 9.27 ng/mL; impaired glucose regulation: 82.40 ± 91.06 ng/mL; nTD2: 73.25 ± 91.69 ng/ml           | 6.95-173.46  | plasma       | ctrls: 22.76 ± 3.61, IGR: 23.86 ± 3.08, nT2DM: 24.73 ± 3.55                            | 63.62 - 66.63                                               | 143, 84/59                               | Η  |
| 2018 Li             | 30   | 524197 ctrls: 2-12; TD2: 5-25, PCOS: 7-17 ng/ml                                                                         | 2.0-17.0     | plasma       | ctrl: 22.68 ± 4.00, T2D: 24.98 ± 3.31, PCOS: 26.68 ± 5.66                              | ctrls: 37.02 ± 8.16, T2DM: 47.02 ± 4.92, PCOS: 22.68 ± 5.66 | 160, 160/0, ctrls:66, T2DM: 53, PCOS: 41 | Н  |
| 2018 Wiecek         | 30   | 618797 3.7 ± 0.7 nM (f) vs 6.33 ± 3.45 (m) nM                                                                           | 106-362      | plasma       | 23.71 ± 1.58                                                                           | 21.64 ± 1.22 and 22.64 ± 1.49                               | 20, 10/10                                | S  |
| 2019 Alan           | 30   | 325247 ctrls: 3.69 ± 1.22 ng/ml; PCOS: 6.41 ± 1.89 ng/ml                                                                | 2.47-8.3     | serum        | ctrls: 26.64 ± 4.55, PCOS: 26.47 ± 4.44                                                | ctrls: 30.10 ± 6.69, PCOS: 30.30 ± 6.78                     | 156, 156/0                               | Н  |
| 2019 Wang           | 30   | 459402 ctrls: 307 ± 832 ng/ml; obese: 2360 ± 5094 ng/ml                                                                 | 307-7454     | serum        | 25.3 ± 3.6 vs. 41.6 ± 6.3                                                              | ctrls: 18–71 obese: 20–63                                   | 174, 107/67, ctrls: 57, obese: 117       | Cá |
| 2019 Chang          | 31   | 015585 ctrls: 61.5 ± 7.09 ng/ml; PCOS with BMI>25: 71.04 ± 7.81 ng/ml                                                   | 54.41-78.85  | serum        | ctrl: 22.59 ± 0.36, PCOS: 25.23 ± 0.28                                                 | ctrls: 27.42 ± 0.37, PCOS: 25 ± 0.22                        | 600, 600/0, ctrls: 156, PCOS:444         | E  |
| 2019 Ugur           | 31   | 049060 ctrls: 14.0 ± 3.75 ng/ml; overweight-obese: 60-130 ng/ml                                                         | 10.25-130    | serum, saliv | va ctrl: 21.86 ± 1.96, underweight: 15.5 ± 0.71, overweight: 27.68 ± 1.2               | 25-44                                                       | 116                                      | S  |
| 2019 Long           | 31   | 212299 ctrls: 12.33 ± 4.18 ng/ml, obese: 9.24 ± 4.11 ng/ml                                                              | 4.03-14.39   | plasma       | ctrls: boys: 16.17±2.34, girls: 15.36±1.61; obese: boys: 24.77±2.33, girls: 20.80±4.99 | 8.0-11.0                                                    | 87, 38/49                                | Н  |
| 2019 Baykus         | 31   | 400492 ctrls: 15.9-16.4 ng/ml, study group: 11.7-42.8 ng/ml                                                             | 11.2-42.8    | serum        | 29.1-32.1                                                                              | 28.1-30.9                                                   | 179, 179/0                               | S  |
| 2019 Wiecek         | 31   | 510055 ctrls: 4.26 ± 2.05 nM; methabolic syndrome: 4.77 ± 5.17 nM                                                       | 82-372       | serum        | 25.15–29.23                                                                            | 55 - 70                                                     | 37, 37/0                                 | S  |
| 2019 Groener        | · 31 | 536600 T1D with and without hypoglycaemia unawareness: 60-280 ng/ml                                                     | 60-280       | plasma       | 24.4 (20.1–31.3) and 25.4 (21–38.9)                                                    | 29-75                                                       | 15, 7/8                                  | Н  |
| 2019 Wang           | 31   | 775140 ctrls: 0.96 ± 0.48 ng/ml; obese: 1.51 ± 0.44 ng/ml                                                               | 0.48-1.9     | serum        | ctrls: 15.67±2.30 vs.obese: 27.44±3.93                                                 | 8.6-13.1                                                    | 119, 43/76                               | U  |
| 2020 Ke             | 33   | 414826 ctrls: 2.71 ± 0.86 ng/ml; agromegaly patients: 2.18 ± 0.86 ng/ml                                                 | 2.18-2.71    | serum        | ctrls: 26.44 ± 3.41, agromegaly: 25.79 ± 3.52                                          | ctrls: 44.5 ± 13.0, agromegaly: 41.3 ± 15.0                 | 189, agromegaly: 39/29, ctrls: 78/43     | U  |
| 2020 Zhang          | 31   | 529619 5-6 ng/ml                                                                                                        | 5.0-6.0      | serum        | ctrls: 25.98 ± 2.73, T2D: 26.32 ± 3.41                                                 | ctrls: 54.62 ± 5.97; T2D: 56.40 ± 7.49                      | 120, 54/66                               | Н  |
| 2020 Silistre       | 32   | 003085 ctrls: 70.903 ± 17.49 ng/ml; overweight: 79.744 ± 29.54 ng/ml; obese: 106.293 ± 122.69 ng/ml                     | 53.41-186.03 | serum        | ctrls: 19.745 (7.82), overweight: 24.32 (10.49), obese: 29.585 (20.56)                 | 12.589 ± 2.42                                               | 158, 77/81                               | Н  |
| 2020 Zhong          | 32   | 090964 ctrls: 0.5 (1.13) ng/ml; gestational diabetes mellitus (GDM): 1.35 (0.92) ng/ml                                  | 0.5-1.35     | plasma       | ctrls: 25.9 ± 2.48, GDM: 25.01 ± 5.28                                                  | 34.18 ± 3.24                                                | 80, 80/0                                 | Н  |
| 2020 Zhang          | 32   | 458209 ctrls: 5.08 ± 1.31 ng/ml, non diabetic kidney disease (nDKD): 6.23 ± 0.87 ng/ml, DKD: 7.23 ± 0.94 ng/ml          | 3.77-8.17    | serum        |                                                                                        | 49.38 - 64.57                                               | 105, 52/53                               | Н  |
| 2020 Ke             | 32   | 645536 ctrls: 1.54 ± 0.47 ng/ml, NAFLD: 2.27 ± 1.05 ng/ml                                                               | 1.07-3.32    | serum        | ctrls: 22.40 ± 2.99, NAFLD: 25.24 ± 2.68                                               | ctrls: 53.10 ± 12.64, NAFLD: 52.98 ± 14.88                  | 93                                       | Н  |
| 2020 Naiemiar       | n 32 | 714446 ctrls: 3.50 (1.85) ng/ml, T2D: 4.18 (4.4) ng/ml                                                                  | 1.65-8.58    | serum        | ctrls: 26.66 (3.01), T2D: 27 (3.27)                                                    | 52-54                                                       | 194, 94/100, ctrls: 97, T2DM: 97         | С  |
| 2020 Ceylan         | 32   | 741294 morning ctrl: 0.70 ±.17 ng/ml, OW/OO: 0 .97 ±.26 ng/ml; evening ctrl: 0.66 ±.12 ng/ml, OW/OO: 0.97 ±.26 ng/ml    | 0.53-1.17    | serum        | ctrls: 18.5–24.9, OW/OO: 25–29.9 or 30–39.9                                            | 30-45                                                       | 20, 0/20                                 | E  |
| 2020 Wen            | 32   | 894050 ctrls: 10-480 ng/ml, dilated cardiomyopathy: 50-220 ng/ml                                                        | 10-220       | serum        | 25.8-26.4                                                                              | 54-55                                                       | 50, 7/43                                 | Cá |
| 2020 Deng           | 32   | 894050 T2DM/Normoalbuminuria: 1.59(1.18–2.09) ng/ml, Microalb.: 2.10(1.60–2.90) ng/ml, Macroalb.: 2.37(1.63–3.57) ng/ml | 1.18-3.57    | serum        | 24.22 ± 3.45, 24.93 ± 3.43, 25.81 ± 2.84                                               | 60.15 ± 10.56, 62.96 ± 10.87, 63.40 ± 10.51                 | 207, 44/63, 33/47, 10/10                 | Ji |
| 2021 Hu             | 32   | 026376 ctrls: 1947.0 ± 2143.8 pg/mL; anorexia nervosa: 2514.8 ± 1957.2 pg/mL                                            | 0-4.47       | plasma       | ctrls: 19.0 ± 1.7, anorexia nervosa: 15.0 ± 2.0                                        | ctrls: 18.7 ± 2.2, anorexia nervosa: 18.7 ± 2.2             | 46, 46/0                                 | A  |
| 2021 Deniz          | 32   | 608281 ctrls: 9 ± 2, PCOS: 28 ± 4 ng/ml                                                                                 | 7.0-32.0     | plasma       | ctrls: 23.99 ± 4.2, PCOS: 24.77 ± 4.12                                                 | ctrls: 28.22 ± 2.6, PCOS: 27.14 ± 3.21                      | 60, 0/60 (ctrls:30; PCOS: 30)            | Н  |
| 2021 Du             | 32   | 661697 ctrls: 1-18 ng/ml, cachexia, anorexia, post-operation: 1-25 ng/ml                                                | 1.0-25.0     | plasma       | 22.7 (3.4)                                                                             | <65: 83, >65: 37                                            | 120, 24/96                               | a  |
| 2021 Leonard        | I 33 | 289860 oral contraceptive : 0.75 ± 0.38, non-OC: 1.00 ± 0.37 ng/ml                                                      | 0.37-1.37    | plasma       | 22.3 ± 2.8, 21.9 ± 1.9, 21.9 ± 2.7, 22.2 ± 2.4                                         | 24 ± 3, 27 ± 5, 24 ± 2, 25 ± 5                              | 32, 32/0                                 | Н  |
| 2021 Hoseini        | 33   | 352518 30.8 (23.8 – 48.0) ng/ml                                                                                         | 23.8 - 48.0  | serum        | $23.83 \pm 8.06$                                                                       | 27.6+-5.6                                                   | 759, 759/0                               | Е  |
| 2021 Jiang          | 33   | 766125 placebo ctrl: 33.43 (19.64, 49.94), SGLT2 inhibitor: 36.88 (24.81, 69.04)                                        | 19.64-69.04  | serum        | placebo: 25.64 ± 1.41, SGLT2 inhibitor: 26.60 ± 1.32                                   | placebo: 59.3 ± 9.03, SGLT2 inhibitor: 58.32 ± 8.01         | 31, placebo: 8/2, SGLT2: 11/9            | E  |
| 2021 Hong           | 33   | 747078 ctrls: 16.70 [12.87, 22.38] ng/mL, metabolic syndrome: 23.52 [16.70, 32.05] ng/mL                                | 12.87-32.05  | serum        | ctrls: 23.28 ± 2.49, MetS: 25.52 ± 3.02                                                | ctrls: 49.47 ± 9.16, MetS: 50.90 ± 9.45                     | 295, ctrl: 84/78, MetS: 66/65            | Н  |
| 2021 Corica         | 33   | 662891 ctrls: 358.1 ± 74.1 pg/ml, obese: 331.9 ± 120.5 pg/ml                                                            | 0.28-0.45    | serum        | obese vs lean                                                                          | children                                                    | no information given                     | n  |
|                     |      |                                                                                                                         |              |              |                                                                                        |                                                             |                                          |    |
| Abbreviations       | 5    |                                                                                                                         |              |              |                                                                                        |                                                             |                                          |    |
| a a la mina a a i d |      | had mean index style controls OV conflicient of conjetion OO share comparisht OW comparisht DOOC action stile comparis  |              |              | average NAEL Drace cleanable fatty liver diagona T1(2) Drace 1 (2) diabates LIAD, was  | table engine negtorie                                       |                                          |    |

aa: amino acid, BMI: body mass index, ctrls: controls, CV: coefficient of variation, OO: obese overweight, PCOS: polycystic ovary syndrome, MetS: metabolic syndrome, NAFLD: non-alcoholic fatty liver disease, T1(2)D: type 1 (2) diabetes, UAP: unstable angina pectoris

| prosin detection kit                                                                                                                                                             | de |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                  |    |
| pture: mouse mab anti-asprosin against aa 106–134 (human profibrillin aa 2838–2865), detector: polyclonal goat anti-asprosin aa 6–19 (human profibrillin aa 2737–2750) by Abnova |    |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      |    |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      |    |
| iman ELISA kit, Wuhan ElAab Science Co. Ltd., China                                                                                                                              |    |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      | 1. |
| (00229-06 (Aviscera Bioscience, Inc., United States)                                                                                                                             | 37 |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      | 0. |
| pture: rabbit polyclonal antibody against asprosin aa 106-134 (Abcam, USA), detector: goat polyclonal antibody against asprosin aa 6–19 (Abnova, Taiwan)                         |    |
| Aab, Phoenix Pharmaceuticals, and Millipore Corporation                                                                                                                          |    |
| anghai sunredbio (SRB) Technology Co. Ltd, catalog no. 201-12-3287, Shanghai, China                                                                                              | 1- |
| iman ELISA Kit; Wuhan EIAab Science Co. Ltd., China)                                                                                                                             |    |
| INRED BIOSCIENCE, catalogue #:201-12-5592, Shanghai,CHINA)                                                                                                                       | 0. |
| K00229-09 (Aviscera Bioscience, Inc., Santa Clara, CA, USA                                                                                                                       | 37 |
| iman Asprosin (ASPRO) ELISA Kit, Wuhan Abebio Science Co., Ltd, Wuhan, China, Code: AE26043HU)                                                                                   |    |
| SCN Life Science Inc., Wuhan, China                                                                                                                                              |    |
| SCN Life Science Inc., Wuhan, China, Article no. SEA332Hu                                                                                                                        |    |
| iman ELISA kit; Wuhan ElAab Science Co. Ltd., Wuhan, China                                                                                                                       |    |
| imanAsprosin Elisa Kit, catalogue number: SG-15241 (SinogeneclonHang Zhou, China)                                                                                                | 7. |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      |    |
| iman ELISA kit, Wuhan ElAab Science Co. Ltd., China                                                                                                                              |    |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      |    |
| it. No: CK-E91570; EASTBIOPHARM, China                                                                                                                                           |    |
| EL-H2266-Elabscience, Biotechnology                                                                                                                                              | 0. |
| pture antibody: mouse monoclonal anti-asprosin against: human profibrillin aa 2832–2871, detector: polyclonal goat anti-asprosin (human profibrillin aa 2737–2750) by Abnova     |    |
| ingsu, Feiya biological technology, Jiangsu, China; catalogue No. MM-1650H1                                                                                                      |    |
| prosin (human) Matched Pair Detection Set (catalog number AG-46B-0011-KI01) pur-chased from Adipogen Ltd., San Diego, USA                                                        | 0  |
| iman Asprosin ELISA Kit Bioassay TechnologyLaboratory, Catalogue no: E4095Hu Shanghai, CHIN                                                                                      | 0. |
| x555449, AbbexaBiotech, UK                                                                                                                                                       |    |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      |    |
| STBIOPHARM, China                                                                                                                                                                |    |
| aab Science INC. Wuhan, China (Catalogue Numbers, E15190h)                                                                                                                       | 1. |
| iman Asprosin ELISA Kit. Catalogue No: abx257694, Abbexa Ltd, Cambridge, UK                                                                                                      |    |
| information given                                                                                                                                                                |    |
|                                                                                                                                                                                  |    |
|                                                                                                                                                                                  |    |

| tection range                                                         | minimal amounts                                                                       | intra-                                                               | inter-                                                       |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                       | detectable                                                                            | assay CV                                                             | assay CV                                                     |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       | <0.938 ng/ml                                                                          | <10%.                                                                | <6%                                                          |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       | <10%                                                                 | <12%                                                         |
| 563 -100 ng/mL                                                        | <0.938 ng/mL                                                                          | <8%                                                                  | <10%                                                         |
| ′ - 1197 ng/ml (1–32 nmol/L)                                          |                                                                                       | <8%                                                                  | <12%                                                         |
| 156 - 10 ng/ml                                                        |                                                                                       | <6%                                                                  | <8%                                                          |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
| 300 ng/mL                                                             | 0.756 ng/mL                                                                           | <10%                                                                 | <12%                                                         |
| -                                                                     |                                                                                       | <12%                                                                 | <10%                                                         |
| 25 - 70 ng/ml                                                         | 0.214 ng/ml                                                                           | <8%                                                                  | <12 %                                                        |
| ' - 1197 ng/ml (1 - 32 nmol/L)                                        |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       | <10%                                                                 | <10%                                                         |
|                                                                       |                                                                                       | <6.7%                                                                | <12.9%                                                       |
|                                                                       |                                                                                       |                                                                      |                                                              |
| 80 - 500 ng/ml                                                        | 2.1 ng/ml                                                                             | <8%                                                                  | <10%                                                         |
| Ť                                                                     | <0.938 ng/ml                                                                          | <10%.                                                                | <8%                                                          |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       | <0.938 ng/ml                                                                          | <10%.                                                                | <6%                                                          |
|                                                                       |                                                                                       | <10%                                                                 | <12%                                                         |
| 31 - 20 ng/ml                                                         |                                                                                       | <10%                                                                 |                                                              |
| 5                                                                     |                                                                                       |                                                                      |                                                              |
|                                                                       | 0.1 ng/ml                                                                             | <10%                                                                 | <15%                                                         |
| - 5 ng/ml                                                             |                                                                                       | <5%                                                                  | <7%.                                                         |
| 5 - 100 na/ml                                                         | 0.23 ng/ml                                                                            | <8%                                                                  | <10 %                                                        |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       | 0.34 ng/ ml                                                                           | <10%                                                                 | <12%                                                         |
| 563 ng/ml to 100 ng/ml                                                | 0.938 ng/ml                                                                           | <6.6%                                                                | <7.6%                                                        |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
|                                                                       |                                                                                       |                                                                      |                                                              |
| 31 - 20 ng/ml<br>- 5 ng/ml<br>5 - 100 ng/ml<br>563 ng/ml to 100 ng/ml | <0.938 ng/ml<br><0.938 ng/ml<br>0.1 ng/ml<br>0.23 ng/ml<br>0.34 ng/ ml<br>0.938 ng/ml | <10%.<br><10%.<br><10%<br><10%<br><5%<br><8%<br><8%<br><10%<br><6.6% | <8%<br><6%<br><12%<br><15%<br><7%.<br><10 %<br><12%<br><7.6% |

| M+Na (experimental) | Structural asignment | Antennarity* - |
|---------------------|----------------------|----------------|
| 1579.74             | H5N2 (M5)            |                |
| 1783.84             | H6N2 (M6)            |                |
| 1835.88             | F1H3N4               | 2              |
| 1987.92             | H7N2 (M7)            |                |
| 2039.96             | F1H4N4               | 2              |
| 2080.99             | F1H3N5               | 2              |
| 2192.01             | H8N2 (M8)            |                |
| 2244.05             | F1H5N4               | 2              |
| 2285.08             | F1H4N5               | 3              |
| 2489.17             | F1H5N5               | 3              |
| 2605.21             | S1F1H5N4             | 2              |
| 2646.23             | S1F1H4N5             | 3              |
| 2693.25             | F1H6N5               | 3              |
| 2734.27             | F1H5N6               | 4              |
| 2850.32             | S1F1H5N5             | 3              |
| 2938.37             | F1H6N6               | 4              |
| 3054.41             | S1F1H6N5             | 3              |
| 3299.53             | S1F1H6N6             | 4              |
| 3415.58             | S2F1H6N5             | 3              |
| 3503.63             | S1F1H7N6             | 4              |
| 3864.83             | S2F1H7N6             | 4              |
| 4226.04             | S3F1H7N6             | 4              |
| 4588.31             | S4F1H7N6             | 4              |

Supplementary Table S2: N-linked glycans expressed on recombinant asprosin expressed in HEK293 cells. MALDI mass spectrometric analysis of methylated glycans.

\*Antennarity is defined only for complex-type N-glycans. Structural asignments refer to monosaccharide compositions in terms of S, N-acetylneuraminic acid; F, fucose; H, hexose; and N, N-acetylnexosamine.

#### Supplementary Table S3: Peptides of de-N-glycosylated asprosin after double digestion with trypsin and V8.

1 STNETDASNI EDQSETEANV SLASWDVEKT AIFAFNISHV SNKVRILELL PALTTLTNHN RYLIESGNED GFFKINQKEG 81 ISYLHFTKKK PVAGTYSLQI SSTPLYKKKE LNQLEDKYDK DYLSGELGDN LKMKIQVLLH

| Detected | m/z<br>(mi) | m/z<br>(av) | Modifications | Start | End | Missed<br>Cleavages | Sequence N                   | -glycosylation site |
|----------|-------------|-------------|---------------|-------|-----|---------------------|------------------------------|---------------------|
| 0        | 450.1831    | 450.4278    |               | 1     | 4   | 0                   | (-)STNE(T)                   | N3                  |
| 1        | 708.2683    | 708.6602    |               | 12    | 17  | 1                   | (E)DQSETE(A)                 |                     |
| 1        | 1065.5728   | 1066.2526   |               | 80    | 88  | 0                   | (E)GISYLHFTK(K)              |                     |
| 0        | 1180.4964   | 1181.1618   |               | 1     | 11  | 1                   | (-)STNETDASNIE(D)            | N3                  |
| 0        | 1190.5688   | 1191.2906   |               | 18    | 28  | 0                   | (E)ANVSLASWDVE(K)            | N19                 |
| 1        | 1193.6677   | 1194.4278   |               | 80    | 89  | 1                   | (E)GISYLHFTKK(K)             |                     |
| 1        | 1194.6154   | 1195.3688   |               | 79    | 88  | 1                   | (K)EGISYLHFTK(K)             |                     |
| 1        | 1318.6638   | 1319.4658   | +1            | 18    | 29  | 1                   | (E)ANVSLASWDVEK(T)           | N19                 |
| 0        | 1420.6591   | 1421.5125   |               | 16    | 28  | 1                   | (E)TEANVSLASWDVE(K)          | N19                 |
| 1        | 1463.8329   | 1464.7182   |               | 49    | 61  | 0                   | (E)LLPALTTLTNHNR(Y)          |                     |
| 1        | 1548.7540   | 1549.6877   | +1            | 16    | 29  | 2                   | (E)TEANVSLASWDVEK(T)         | N19                 |
| 1        | 1548.8169   | 1549.7806   | +1            | 30    | 43  | 0                   | (K)TAIFAFNISHVSNK(V)         | N36                 |
| 1        | 1639.6566   | 1640.5774   | +1            | 1     | 15  | 2                   | (-)STNETDASNIEDQSE(T)        | N3                  |
| 0        | 1676.9119   | 1677.9558   |               | 29    | 43  | 1                   | (E)KTAIFAFNISHVSNK(V)        | N36                 |
| 0        | 1803.9864   | 1805.1027   |               | 30    | 45  | 1                   | (K)TAIFAFNISHVSNKVR(I)       | N36                 |
| 1        | 1869.7468   | 1870.7993   | +1            | 1     | 17  | 3                   | (-)STNETDASNIEDQSETE(A)      | N3                  |
| 0        | 1879.8192   | 1880.9281   |               | 12    | 28  | 2                   | (E)DQSETEANVSLASWDVE(K)      | N19                 |
| 0        | 1932.0814   | 1933.2779   |               | 29    | 45  | 2                   | (E)KTAIFAFNISHVSNKVR(I)      | N36                 |
| 0        | 2007.9142   | 2009.1033   |               | 12    | 29  | 3                   | (E)DQSETEANVSLASWDVEK(T)     | N19                 |
| 0        | 2159.1971   | 2160.5398   |               | 30    | 48  | 2                   | (K)TAIFAFNISHVSNKVRILE(L)    | N36                 |
| 0        | 2287.2921   | 2288.7150   |               | 29    | 48  | 3                   | (E)KTAIFAFNISHVSNKVRILE(L)   | N36                 |
| 0        | 2610.1326   | 2611.6621   |               | 5     | 28  | 3                   | (E)TDASNIEDQSETEANVSLASWDVE  | (K) <b>N19</b>      |
| 0        | 2848.4628   | 2850.2236   |               | 18    | 43  | 2                   | (E)ANVSLASWDVEKTAIFAFNISHVSN | JK(V) N19, N36      |

Supplementary Table S4: Serum asprosin concentrations (mean  $\pm$  SD) before (t0) and after (t1 – t4) treadmill exercise (n = 15 subjects).

| time points | asprosin       | 95 % confidence interval |             |  |  |
|-------------|----------------|--------------------------|-------------|--|--|
| (min)       | (ng/ml)        | lower limit              | upper limit |  |  |
| t0 (0)      | $11.8\pm6.2$   | 8.4                      | 15.2        |  |  |
| t1 (30)     | 13.7 ± 6.5 (*) | 10.1                     | 17.4        |  |  |
| t2 (60)     | $13 \pm 7.1$   | 9.1                      | 16.9        |  |  |
| t3 (90)     | $13.1\pm6.5$   | 9.5                      | 16.6        |  |  |
| t4 (120)    | $13.3\pm7.6$   | 9.1                      | 17.5        |  |  |

\*P = 0.0385

Supplementary Table S5: Serum asprosin concentrations (mean  $\pm$  SD before (t0) and after (t1 - t3) total hip replacement (THR) surgery (n = 14 patients).

| time points  | asprosin (ng/ml)       | 95% confidence interval |             |  |  |
|--------------|------------------------|-------------------------|-------------|--|--|
| ( <b>d</b> ) |                        | lower limit             | upper limit |  |  |
| t0 (0)       | $21.0\pm9.0$           | 15.8                    | 26.2        |  |  |
| t1 (7)       | $14.8 \pm 6.5 \ (***)$ | 11.1                    | 18.6        |  |  |
| t2 (90)      | $19.1 \pm 8.1$         | 14.4                    | 23.7        |  |  |
| t3 (365)     | $16.8\pm7.5$           | 12.5                    | 21.2        |  |  |
|              |                        |                         |             |  |  |

\*\*\*P = 0.0003

Supplementary Table S6: Serum COMP concentrations (mean  $\pm$  SD) before (t0) and after (t1 - t3) total hip replacement (THR) surgery (n = 14 patients).

|             |                    | 95% confide | ence interval |
|-------------|--------------------|-------------|---------------|
| time points | COMP (ng/ml)       | lower limit | upper limit   |
| t0          | $707.0\pm171.0$    | 608.3       | 805.7         |
| t1          | 467.1 ± 124.1 (**) | 395.4       | 538.8         |
| t2          | $783.7\pm286.2$    | 618.5       | 949.0         |
| t3          | $737.1 \pm 216.0$  | 612.4       | 861.7         |
|             |                    |             |               |

\*\*P = 0.0056

| cohort                                 | f/m  | age (years)   | height (m)    | weight (kg)  | BMI<br>(kg/m <sup>2</sup> ) |
|----------------------------------------|------|---------------|---------------|--------------|-----------------------------|
| treadmill exercise                     | 0/15 | 27.5 ± 3.1    | $1.8\pm0.05$  | $78 \pm 7.7$ | $23.9 \pm 1.9$              |
| total hip replacement<br>(THR) surgery | 7/7  | $61.4\pm10.5$ | $1.74\pm0.07$ | 79.7 ± 16.4  | $26.2\pm4.7$                |

Supplementary Table S7: Anthropometric measures of the two analyzed cohorts in this study.

# Original gels and western blots

Markers were purchased from Thermo Fisher Scientific:

1- PageRuler Prestained Protein Ladder, 10 to 180 kDa (#26616)

2- PageRuler Plus Prestained Protein Ladder, 10 to 250 kDa (#26620)

3- Spectra Multicolor High Range Protein Ladder, 40 to 300 kDa (#26625)

Blot/gel images were arranged and edited for figure preparation using Microsoft PowerPoint 2016

| Figure percentage (%)<br>SDS-PAGE gel c |     | running condition | method of<br>analysis | used antibody                  |
|-----------------------------------------|-----|-------------------|-----------------------|--------------------------------|
| 1B                                      | 12  | reducing          | Coomassie             | -                              |
| 1D                                      | 10  | reducing          | Coomassie             | -                              |
| 1F(left)                                | 10  | reducing          | WB                    | pc-asp                         |
| 1F(middle)                              | 7.5 | non-reducing      | WB                    | fibrillin-1 (rF90)*            |
| 1F(right)                               | 7.5 | non-reducing      | WB                    | CPTC-FBN1-3*                   |
| 1G                                      | 10  | reducing          | WB                    | pc-asp                         |
| 3B(left)                                | 10  | reducing          | Coomassie             | -                              |
| 3B(right)                               | 10  | reducing          | WB                    | mab anti-asprosin<br>(Birdy-1) |
| 3C                                      | 10  | reducing          | WB                    | mab anti-asprosin<br>(Birdy-1) |
| 4A                                      | 7.5 | non-reducing      | WB                    | fibrillin-1 (rF90)*            |
| S5D                                     | 10  | reducing          | WB                    | pc-asp                         |
| S5F                                     | 10  | reducing          | Coomassie             | -                              |
| S5I 10                                  |     | reducing          | WB                    | mab anti-asprosin<br>(Birdy-1) |

\*non-reducing condition was chosen, since antibodies recognize folded epitopes.

#### Figure 1B

asprosin elution fractions

F2 F3 F4 F5 F6

![](_page_16_Picture_3.jpeg)

#### Figure1D

![](_page_16_Picture_5.jpeg)

#### Figure 1F

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

# Figure 1G

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_19_Picture_1.jpeg)

### Figure 3C

#### High Exposure

![](_page_19_Picture_4.jpeg)

# Figure 4A

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

#### Figure S5D

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

deglyc. mix

![](_page_21_Picture_5.jpeg)

#### Figure S5I

![](_page_21_Picture_7.jpeg)